JP3609171B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP3609171B2
JP3609171B2 JP26965395A JP26965395A JP3609171B2 JP 3609171 B2 JP3609171 B2 JP 3609171B2 JP 26965395 A JP26965395 A JP 26965395A JP 26965395 A JP26965395 A JP 26965395A JP 3609171 B2 JP3609171 B2 JP 3609171B2
Authority
JP
Japan
Prior art keywords
layer
film
silicon
etching
phosphorus atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26965395A
Other languages
Japanese (ja)
Other versions
JPH09115857A (en
Inventor
彰 天野
一夫 松崎
憲二 上條
健木 岡林
一之 蒔田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP26965395A priority Critical patent/JP3609171B2/en
Publication of JPH09115857A publication Critical patent/JPH09115857A/en
Application granted granted Critical
Publication of JP3609171B2 publication Critical patent/JP3609171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Weting (AREA)
  • Chemically Coating (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、シリコンで製作され、はんだでリード線付けを行うダイオード、サイリスタおよびトランジスタなどの半導体装置の製造方法に関する。
【0002】
【従来の技術】
従来の無電解ニッケル(Ni)メッキ被膜は1)半導体素子の電極、2)各種電子コンポーネンツ電極、3)ハードディスク用磁気ヘッドの安定した非磁性下地層膜など電子工業分野に広く使用されている。
図2は従来のダイオードを形成する工程を順に同図(a)ないし同図(e)に示す。n層1となる数十Ω・cmの抵抗率を持つn形のシリコン基板(同図(a))を用い、図の上側のアノードにはボロン(B)等の3価のp形不純物をシリコン基板表面より数十μm〜100μm程度拡散し、p層2を形成し(但し、深さはデバイスの耐圧設計により決まる)、図の下側のカソードには例えばリン原子(P)等の5価のn形不純物を拡散し、n+ 層3を形成し、アノードもカソードもそれぞれオーミック接触可能な表面不純物濃度にし、表面を電気的に活性にする(同図(b))。その後、全体にライフタイムキラー4を導入する(同図(c))。つぎに、アノード、カソード両面はメッキ前処理として、アンカー効果(メッキ膜の密着性を向上させること)を出すために、サンドブラスト等で両面を研削(研磨でもよい)して、表面を荒らし、適当な凹凸の研削面5を形成し、さらにNiイオンが析出し易いように、この研削面5を酸性或いはアルカリ性のエッチング液で活性化処理し、活性サイトを作る(同図(d))。その後、無電解Niメッキ液中で、両面同時に1〜2μm程度のNi膜7で電極を形成する。このときメッキ液中にはNiイオンが還元剤として析出し易いように触媒として作用する次亜リン酸ソーダが10g/l(リットル)程度溶解しており、Ni膜7中には同時に数%(重量比)のリン原子も必ず析出してくる。このようにして、はんだ付け可能なNi膜7の電極を形成する。このNi膜7を形成したシリコン(Si)ウェハを積層し、マルチワイヤーソーなどを用いて1mm□程度の四角形の小チップにSiウェハを切断する(同図(e))。ただし、同図(e)では説明を簡単にするため1枚のSiウェハが描かれている。
【0003】
図3は図2に続く工程で、Siペレットにリード線をはんだ付けする工程を順に同図(a)、同図(b)に示す。小チップ化されたSiペレット8(同図(a))を形成し、このSiペレット8の両端面にリード線10をはんだ9付けする(同図(b))。ただし、図では説明をし易くするため1枚のチップのSiペレット8を示した。
【0004】
【発明が解決しようとする課題】
図4は図3(b)をエッチングした状態で、同図(a)はKOH水溶液でのエッチング状態図、同図(b)は混酸溶液でのエッチング状態図を示す。同図(a)において、KOHエッチャント(10%水溶液、50〜70℃)では、Ni膜7とn+ 層3の界面のNi−Si層6がNi膜7とp層2の界面のNi−Si層6よりも十数μm多く選択的に異常エッチングされ、異常エッチング部13を形成し、その結果、界面のn+ 層3も異常エッチングされ有効断面積(通電断面積)が小さくなる。そのため、チップの小型化、低コスト化が困難となる。尚、n層1、p層2、Ni−Si層6およびNi膜7のエッチング面は正常エッチングされ、正常エッチング部12を形成する。
同図(b)において、混酸エッチャント(HF:HNO3 :CH3 COOH=1:1:5、容積比)ではNi膜7とn+ 層3の界面のNi−Si層6がNi膜7とp層2の界面のNi−Si層6よりも数μm少なくエッチングされ、従って、n+ 層3、n層1、p層2、Ni−Si層6およびNi膜7は正常エッチング部12を形成する。つまり、KOHエッチャントよりも選択的にエッチングされる量は少ないが、鉄や銅などの重金属汚染が多く、電気的特性が悪く実用できない。
【0005】
この発明の目的は、前記の課題を解決して、KOH水溶液での表面エッチングでも電気的特性が良好で、選択的に異常エッチングされる量が少ないn型導電層上のNi膜の電極を有する半導体装置の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
前記の目的を達成するために、シリコン素子のn型導電層上にリン原子を8重量%以上含有する非晶質(アモルファス)のニッケル膜の電極を形成し、n型導電層とニッケル膜との間にNi−Si層が形成され、KOH水溶液で表面エッチングを行うこととする。またこのNi膜が無電解メッキで形成されるとよい。
リン原子を8重量%以上に含有させた非晶質のNiメッキ被膜はリン原子の作用で表面に不動態被膜(Niとの界面のSi原子がKOH等のエッチャントで流出しにくくする膜のこと)を作りやすく、酸性やアルカリ性のエッチャントに対して耐食性の良い電極膜となり、これをマスク材としてSiを薬液処理したとき、前述のSi半導体特有の選択的エッチングの他は生ぜず、マスク材としての役割も充分に果たす。
【0007】
尚、図5はエッチングで電極界面のシリコンが異常エッチングを起こすメカニズムを説明した図で、同図(a)はシリコンのエネルギーダイヤグラム図、同図(b)はエッチャントの酸化還元電位を説明した図を示す。同図(a)において、左側はn形シリコンでEc 、EF およびEv は伝導帯、フェルミ準位および価電子帯の各エネルギーレベル(電子エネルギーで示したレベル)を示す。電位的には、真空レベルを0eVとして矢印の方向に正の大きい値となり、電子エネルギーとは逆の符号が付く。右側はp形シリコンの場合である。Evより下側のハッチングで示したエネルギーで、電位が−4.5eVの酸化還元電位を持つ例えば混酸などの溶液では、n形シリコンでもp形シリコンでも、シリコンから溶液へ電子の授与が行われ、エッチャントとなる。同図(b)において、KOH水溶液での酸化体EOX、還元体Ered のエネルギー状態密度分布を示し、n形シリコンの場合はシリコンのフェルミレベルEF と一致するようにシリコンからKOH水溶液へ電子が授与され、酸化体EOXの酸化還元電位が上昇し、その結果、シリコンの価電子帯の正孔が増大し、シリコンがKOH水溶液に溶解する。一方、p形シリコンの場合はシリコンのフェルミレベルEFと一致するようにシリコンへKOH水溶液から電子が授与され、還元体Eredの酸化還元電位が下降し、その結果、シリコンの価電子体の正孔は減少し、シリコンはKOH水溶液に溶解しない。
【0008】
この発明ではリン原子を8重量%以上含有する非晶質のNi膜はその表面に不動態被膜を形成し、Ni膜とエッチャント間での電子または正孔のやり取りする作用を断ち切る働きをするため、Ni膜の異常エッチングが防止される。Ni膜の異常エッチングが防止されると、Ni膜で覆われたシリコンの界面では前記のような電子や正孔のやり取りが行われず、従ってシリコンのエッチングによる隙間は発生せず、従って、界面のシリコンでは異常エッチングは起こらない。
【0009】
【発明の実施の形態】
図1はこの発明の一実施例の要部断面図を示す。積層され、表面をエッチングされたダイオード片のSiペレット8(ここでは説明を簡単にするため1層のSiペレットとした)はn層1を挟んで、上側にp層2、下側にn+ 層3が形成され、p層2およびn+ 層3の表面にリン原子が8重量%ドーピングされたアモルファスのNi膜15がNi−Si層16(リン原子を含むシンター層)を介して電極として形成され、このNi膜15上にリード線10がはんだ9付けされ、モールド樹脂20でSiペレット8は被覆されている。従来のNi膜7で電極を形成した場合のような、Ni膜7とn+ 層3とに挟まれるNi−Si層16に異常エッチング部13(図4(a))は発生しない。なお製造工程で従来との違いは、電極に単なるNi膜7(図4(a))でなくリン原子が8重量%ドーピングされたアモルファスのNi膜15が使用される点にありその他の工程は従来工程と同様であるため、ここでは省略する。前記のメカニズムにより、アモルファス状で、リン原子がドーピングされたNi膜15が電極として形成されることで、Ni膜15上に前記の不動態被膜が形成され、Ni膜15を構成するNi−Si層16(Niとシリコンのシンター層)がKOH水溶液でも異常エッチングされず、そのため、Ni−Si層16で被覆されたn+層3とエッチャント間で電子または正孔のやり取りが断ち切られNi−Si層16とn+ 層3の界面での異常エッチングは防止される。リン原子の代わりにボロン原子をドーピングしたアモルファスのNi膜でも同様の効果が期待できる。尚、リン原子のドープ量が8重量%未満では、不動態被膜としての効果が弱く、異常エッチングが発生する。
【0010】
【発明の効果】
この発明によれば、シリコン素子の電極として、無電解メッキの8重量%以上のリン原子をドープしたアモルファス状のNi膜を利用することで、高圧ダイオードの耐圧を確保するためのKOH水溶液による表面エッチングで、Ni膜が異常エッチングされることが防止され、その結果、界面のシリコン(n+層)の異常エッチングが防止される。そのため、有効面積を減ずることがなく、チップの小型化と低価格化を実現できる。
【図面の簡単な説明】
【図1】この発明の一実施例の要部断面図
【図2】従来のダイオードを形成する工程で(a)ないし(e)は順に示した工程図
【図3】(a)、(b)は図2(e)に続く工程を順に示した工程図
【図4】図3(b)をエッチングした状態で、(a)はKOH水溶液でのエッチング状態図、(b)は混酸溶液でのエッチング状態図
【図5】エッチングで電極界面のシリコンが異常エッチングを起こすメカニズムを説明した図で、(a)はシリコンのエネルギーダイヤグラム図、(b)はエッチャントの酸化、還元電位を説明した図
【符号の説明】
1 n層
2 p層
3 n+
4 ライフタイムキラー
5 研削面
6 Ni−Si層
7 Ni膜
8 Siペレット
9 はんだ
10 リード線
12 正常エッチング部
13 異常エッチング部
15 Ni膜(アモルファス)
16 Ni−Si層(リン原子含有)
20 モールド樹脂
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a semiconductor device such as a diode, a thyristor, and a transistor that are made of silicon and lead-wired with solder.
[0002]
[Prior art]
Conventional electroless nickel (Ni) plating film 1) of the semiconductor element electrodes, 2) various electronic components electrodes, 3) are widely used in electronic industry such as a stable non-magnetic undercoat layer film of a magnetic head for a hard disk .
FIG. 2 shows the steps of forming a conventional diode in order (a) to (e). Using an n-type silicon substrate (FIG. (a)) having a resistivity of several tens of Ω · cm to be the n layer 1, a trivalent p-type impurity such as boron (B) is applied to the upper anode in the figure. A p-layer 2 is formed by diffusing about several tens of μm to 100 μm from the surface of the silicon substrate (however, the depth is determined by the breakdown voltage design of the device). The cathode on the lower side of the figure has 5 atoms such as phosphorus atoms (P). The n-type impurity is diffused to form the n + layer 3, and both the anode and the cathode are brought to a surface impurity concentration capable of ohmic contact, and the surface is electrically activated ((b) in the figure). Thereafter, the lifetime killer 4 is introduced to the whole ((c) in the figure). Next, both surfaces of the anode and cathode are pre-plated, and in order to provide an anchor effect (improving adhesion of the plating film), both surfaces are ground (or may be polished) with sandblasting to roughen the surface. An uneven grinding surface 5 is formed, and this grinding surface 5 is activated with an acidic or alkaline etching solution so that Ni ions are more likely to precipitate, thereby creating active sites (FIG. 4D). Thereafter, an electrode is formed with a Ni film 7 of about 1 to 2 μm at the same time on both surfaces in an electroless Ni plating solution. At this time, about 10 g / l (liter) of sodium hypophosphite acting as a catalyst is dissolved in the plating solution so that Ni ions are likely to be deposited as a reducing agent. Phosphorus atoms (by weight) will always be deposited. In this way, an electrode of the Ni film 7 that can be soldered is formed. The silicon (Si) wafer on which the Ni film 7 is formed is stacked, and the Si wafer is cut into small square chips of about 1 mm □ using a multi-wire saw or the like (FIG. (E)). However, in the figure (e), one Si wafer is drawn for easy explanation.
[0003]
FIG. 3 is a process subsequent to FIG. 2, and the process of soldering the lead wire to the Si pellet is shown in FIG. A small-sized Si pellet 8 (FIG. 1A) is formed, and lead wires 10 are soldered 9 to both end faces of the Si pellet 8 (FIG. 1B). However , in the figure, the Si pellet 8 of one chip is shown for easy explanation.
[0004]
[Problems to be solved by the invention]
FIG. 4 shows a state where FIG. 3B is etched, FIG. 4A shows an etching state diagram with a KOH aqueous solution, and FIG. 4B shows an etching state diagram with a mixed acid solution. In FIG. 6A, in a KOH etchant (10% aqueous solution, 50 to 70 ° C.), the Ni—Si layer 6 at the interface between the Ni film 7 and the n + layer 3 becomes Ni— at the interface between the Ni film 7 and the p layer 2. The abnormal etching is selectively performed more than 10 μm more than the Si layer 6 to form the abnormal etching portion 13, and as a result, the n + layer 3 at the interface is also abnormally etched to reduce the effective cross-sectional area (current cross-sectional area). For this reason, it is difficult to reduce the size and cost of the chip. Note that the etched surfaces of the n layer 1, the p layer 2, the Ni—Si layer 6, and the Ni film 7 are normally etched to form a normal etching portion 12.
In FIG. 6B, in the mixed acid etchant (HF: HNO3: CH3 COOH = 1: 1: 5, volume ratio), the Ni—Si layer 6 at the interface between the Ni film 7 and the n + layer 3 is replaced by the Ni film 7 and the p layer. Thus, the n + layer 3, the n layer 1, the p layer 2, the Ni—Si layer 6, and the Ni film 7 form a normal etching portion 12. That is, although the amount etched selectively is smaller than that of the KOH etchant, there are many heavy metal contaminations such as iron and copper, and the electrical characteristics are poor and cannot be put into practical use.
[0005]
The object of the present invention is to solve the above-mentioned problems, and has an electrode of a Ni film on an n-type conductive layer that has good electrical characteristics even with surface etching with an aqueous KOH solution and has a small amount of selective abnormal etching. An object of the present invention is to provide a method for manufacturing a semiconductor device .
[0006]
[Means for Solving the Problems]
In order to achieve the above object, an amorphous nickel film electrode containing 8% by weight or more of phosphorus atoms is formed on the n-type conductive layer of the silicon element , and the n-type conductive layer, the nickel film, A Ni—Si layer is formed between the surfaces, and surface etching is performed with a KOH aqueous solution . The Ni film is preferably formed by electroless plating.
An amorphous Ni plating film containing 8% by weight or more of phosphorus atoms is a passive film on the surface by the action of phosphorus atoms (a film that prevents Si atoms at the interface with Ni from flowing out with an etchant such as KOH). ) And is an electrode film with good corrosion resistance against acidic and alkaline etchants. When this is used as a mask material and Si is treated with a chemical solution, no other than the above-mentioned selective etching peculiar to Si semiconductors occurs, and as a mask material. Also fulfills the role of.
[0007]
5A and 5B are diagrams for explaining the mechanism that causes abnormal etching of silicon at the electrode interface during etching. FIG. 5A is an energy diagram of the silicon, and FIG. 5B is a diagram illustrating the oxidation-reduction potential of the etchant. Indicates. In FIG. 5A, the left side is n-type silicon, and Ec, EF and Ev indicate the energy levels (levels indicated by electron energy) of the conduction band, Fermi level and valence band. In terms of potential, the vacuum level is set to 0 eV, and a positive positive value is obtained in the direction of the arrow, and a sign opposite to the electron energy is attached. The right side is the case of p-type silicon. In a solution such as a mixed acid having an oxidation-reduction potential of −4.5 eV with the energy indicated by hatching below Ev, electrons are transferred from the silicon to the solution in both n-type silicon and p-type silicon. Become an etchant. In FIG. 5B, the energy state density distribution of the oxidant EOX and the reductant Ered in the KOH aqueous solution is shown. In the case of n-type silicon, electrons are given from the silicon to the KOH aqueous solution so as to coincide with the Fermi level EF of silicon. As a result, the oxidation-reduction potential of the oxidant EOX increases, and as a result, the holes in the valence band of silicon increase and silicon dissolves in the KOH aqueous solution. On the other hand, in the case of p-type silicon, electrons are given to the silicon from the KOH aqueous solution so as to coincide with the Fermi level EF of silicon, and the redox potential of the reductant Ered is lowered. Decreases and silicon does not dissolve in the aqueous KOH solution.
[0008]
In the present invention, an amorphous Ni film containing 8% by weight or more of phosphorus atoms forms a passive film on the surface, and functions to cut off the exchange of electrons or holes between the Ni film and the etchant. , Abnormal etching of the Ni film is prevented. When the abnormal etching of the Ni film is prevented, the exchange of electrons and holes as described above is not performed at the interface of the silicon covered with the Ni film, and therefore no gap due to the etching of the silicon is generated. Silicon does not cause abnormal etching.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a sectional view showing an essential part of one embodiment of the present invention. The Si pellet 8 of the diode piece which is laminated and whose surface is etched (here, for simplification of description, a single Si pellet) is sandwiched between the n layer 1 and the p layer 2 on the upper side and n + on the lower side. The amorphous Ni film 15 in which the layer 3 is formed and the surface of the p layer 2 and the n + layer 3 is doped with 8% by weight of phosphorus atoms is used as an electrode through the Ni-Si layer 16 (sinter layer containing phosphorus atoms). The lead wire 10 is soldered 9 on the Ni film 15 and the Si pellet 8 is covered with the mold resin 20. The abnormal etching portion 13 (FIG. 4A) does not occur in the Ni—Si layer 16 sandwiched between the Ni film 7 and the n + layer 3 as in the case where the electrode is formed by the conventional Ni film 7. The manufacturing process is different from the conventional one in that an amorphous Ni film 15 doped with 8% by weight of phosphorus atoms is used for the electrode instead of a simple Ni film 7 (FIG. 4A). Since it is the same as the conventional process, it is omitted here. By the mechanism described above, the Ni film 15 that is amorphous and doped with phosphorus atoms is formed as an electrode, so that the passive film is formed on the Ni film 15, and the Ni-Si constituting the Ni film 15 is formed. The layer 16 (Ni / silicon sinter layer) is not abnormally etched even in an aqueous solution of KOH. Therefore, the exchange of electrons or holes between the n + layer 3 covered with the Ni—Si layer 16 and the etchant is cut off. Abnormal etching at the interface between the layer 16 and the n + layer 3 is prevented. A similar effect can be expected with an amorphous Ni film doped with boron atoms instead of phosphorus atoms. When the doping amount of phosphorus atoms is less than 8% by weight, the effect as a passive film is weak and abnormal etching occurs.
[0010]
【The invention's effect】
According to the present invention, an amorphous Ni film doped with 8% by weight or more of phosphorous atoms of electroless plating is used as an electrode of a silicon element, so that the surface by a KOH aqueous solution for ensuring the withstand voltage of a high voltage diode. The etching prevents the Ni film from being abnormally etched, and as a result, abnormal etching of the silicon (n + layer) at the interface is prevented. Therefore, it is possible to reduce the chip size and cost without reducing the effective area.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an essential part of one embodiment of the present invention. FIG. 2 is a process diagram sequentially illustrating steps (a) to (e) in forming a conventional diode. ) Is a process diagram sequentially showing the process following FIG. 2 (e). FIG. 4 is a state in which FIG. 3 (b) is etched, (a) is an etching state diagram in a KOH aqueous solution, and (b) is a mixed acid solution. FIG. 5 is a diagram for explaining the mechanism that causes abnormal etching of silicon at the electrode interface during etching, where (a) is an energy diagram of silicon, and (b) is a diagram illustrating oxidation and reduction potentials of an etchant. [Explanation of symbols]
1 n layer 2 p layer 3 n + layer 4 lifetime killer 5 grinding surface 6 Ni-Si layer 7 Ni film 8 Si pellet 9 solder 10 lead wire 12 normal etching part 13 abnormal etching part 15 Ni film (amorphous)
16 Ni-Si layer (containing phosphorus atoms)
20 Mold resin

Claims (1)

シリコン素子のn型導電層上にリン原子を8重量%以上含有する非晶質(アモルファス)のニッケル膜の電極を形成し、n型導電層とニッケル膜との間にNi−Si層が形成されKOH水溶液で表面エッチングを行うことを特徴とする半導体装置の製造方法。 An amorphous nickel film electrode containing 8% by weight or more of phosphorus atoms is formed on the n-type conductive layer of the silicon element, and a Ni-Si layer is formed between the n-type conductive layer and the nickel film. A method for manufacturing a semiconductor device, wherein surface etching is performed with a KOH aqueous solution.
JP26965395A 1995-10-18 1995-10-18 Manufacturing method of semiconductor device Expired - Fee Related JP3609171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26965395A JP3609171B2 (en) 1995-10-18 1995-10-18 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26965395A JP3609171B2 (en) 1995-10-18 1995-10-18 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPH09115857A JPH09115857A (en) 1997-05-02
JP3609171B2 true JP3609171B2 (en) 2005-01-12

Family

ID=17475356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26965395A Expired - Fee Related JP3609171B2 (en) 1995-10-18 1995-10-18 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3609171B2 (en)

Also Published As

Publication number Publication date
JPH09115857A (en) 1997-05-02

Similar Documents

Publication Publication Date Title
US7952143B2 (en) Semiconductor device having IGBT and diode
JP3417013B2 (en) Insulated gate bipolar transistor
JPH0473306B2 (en)
WO2010125861A1 (en) Backside-electrode type solar battery and manufacturing method thereof
JP4126359B2 (en) Silicon carbide Schottky diode and manufacturing method thereof
JPH10294473A (en) Surface-mount type semiconductor device and manufacture thereof
US3397450A (en) Method of forming a metal rectifying contact to semiconductor material by displacement plating
JP3609171B2 (en) Manufacturing method of semiconductor device
JP6579989B2 (en) Semiconductor device and manufacturing method of semiconductor device
CN115602721B (en) Method and assembly for reducing contact resistance
JP2934606B2 (en) Semiconductor device
US20230131163A1 (en) Semiconductor device and method for manufacturing the same
JPH0248147B2 (en)
JP2005135972A (en) Manufacturing method of semiconductor device
JP3498672B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPS58148469A (en) Schottky diode
EP0366916B1 (en) Shorted-anode semiconductor device and methods of making the same
JP2018041753A (en) Photovoltaic element and method of manufacturing the same
JP3144236B2 (en) Surface treatment method for semiconductor device
JP2005079233A (en) Schottky diode and its manufacturing method
JP2021061332A (en) Semiconductor device and power conversion device
JP2003124478A (en) Semiconductor device
JP3067034B2 (en) Schottky barrier semiconductor device
CN114005802B (en) Power device and manufacturing method thereof
CN217306512U (en) Transient voltage suppression protection device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees