JPH0897181A - Method for treating surface of semiconductor element - Google Patents

Method for treating surface of semiconductor element

Info

Publication number
JPH0897181A
JPH0897181A JP22688394A JP22688394A JPH0897181A JP H0897181 A JPH0897181 A JP H0897181A JP 22688394 A JP22688394 A JP 22688394A JP 22688394 A JP22688394 A JP 22688394A JP H0897181 A JPH0897181 A JP H0897181A
Authority
JP
Japan
Prior art keywords
layer
type semiconductor
semiconductor layer
conductivity type
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22688394A
Other languages
Japanese (ja)
Other versions
JP3144236B2 (en
Inventor
Kazuo Matsuzaki
一夫 松崎
Akira Amano
彰 天野
Kenji Kamijo
憲二 上條
Takeki Okabayashi
健木 岡林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP22688394A priority Critical patent/JP3144236B2/en
Publication of JPH0897181A publication Critical patent/JPH0897181A/en
Application granted granted Critical
Publication of JP3144236B2 publication Critical patent/JP3144236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Weting (AREA)

Abstract

PURPOSE: To eliminate breakage of a diode piece in the production step, reduce a chip area thereof and realize cost reduction while maintaining its characteristics by preventing abnormal etching that is caused during surface treatment of mesa-type diode with piled-up p-n joints. CONSTITUTION: A diode structure of n<+> layer 2-n layer 1-p<+> layer 3 is formed in a silicon wafer, and the wafer is piled up with electrode metals 4 and 5 in between by a solder 6, then the wafer is cut into diode pieces with a dicing saw. Further they are subject to surface treatment while a voltage is applied to them, or they are subject to surface treatment by a mixing liquid of ammonia solution and hydrogen peroxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、pn接合が電極を介
して複数直列接続されたメサ型構造の半導体素子の表面
処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment method for a semiconductor device having a mesa structure in which a plurality of pn junctions are connected in series via electrodes.

【0002】[0002]

【従来の技術】一般に、半導体素子はシリコンチップ内
に複数のp形およびn形領域を有する。接合界面がチッ
プ表面に露出するタイプのプレーナ型半導体素子では、
通常、プロセス投入からプロセス完了まで、常に、表面
保護膜である酸化膜でpn接合界面は保護されている。
しかし、メサ形半導体素子はpn接合界面はチップの表
面でなしに側面に露出し、酸化膜での保護は困難であ
り、通常、プロセスの最終段階で、チップのpn接合界
面が露出した側面を表面処理したのち、保護膜を被覆さ
せる方法がとられる。この表面処理は、チップ化の際の
ダイシングソーでできた機械的な歪み層を除去するため
に、高濃度の酸またはアルカリ液で行われる。
2. Description of the Related Art Generally, a semiconductor device has a plurality of p-type and n-type regions in a silicon chip. In the planar type semiconductor device of the type where the bonding interface is exposed on the chip surface,
Normally, from the process input to the process completion, the pn junction interface is always protected by an oxide film which is a surface protective film.
However, in the mesa type semiconductor device, the pn junction interface is not exposed on the surface of the chip but is exposed on the side surface, and it is difficult to protect it with an oxide film. Usually, at the final stage of the process, the exposed side surface of the pn junction interface of the chip is not used. After the surface treatment, a method of coating a protective film is adopted. This surface treatment is performed with a high-concentration acid or alkali solution in order to remove the mechanical strain layer formed by the dicing saw at the time of chip formation.

【0003】図4は従来のpn接合が電極金属4、5と
はんだ6からなる金属層11を介して積層されたメサ型
ダイオードの要部断面図を示す。同図(a)は機械加工
後の要部断面図を示す。n形半導体ウエハの一方にp+
層3、他方にn+ 層2を拡散で形成し、p+ 層3、n層
1およびn+ 層2のpn構造とし、n+ 層2、p+ 層3
の表面に電極金属4、5を被着させてダイオード構造と
し、このダイオード構造のウエハを2個以上(同図は2
個の場合)をはんだ6を介して直列に積層し、その後ウ
エハをダイシングソーで切断し、小さな積層されたダイ
オード片とし、その両側にはんだでリード線7、8をそ
れぞれ接続してメサ型ダイオードとする。積層されたダ
イオード片のpn接合が露出している側面の表面層には
ダイシング時の機械的歪み層9が形成されている。同図
(b)は同図(a)のダイオード片を高濃度の水酸化カ
リウム水溶液で湿式エッチングした後の要部断面図を示
す。電極金属4と接するn+ 層2がエッチングにより楔
状の欠落部10が形成されている。ただし、リード線7
に隣接したn+ 層2の界面は楔状の欠落部10がない。
FIG. 4 shows a cross-sectional view of a main part of a mesa type diode in which a conventional pn junction is laminated via a metal layer 11 made of electrode metals 4 and 5 and solder 6. FIG. 3A shows a cross-sectional view of the main part after machining. p + on one side of n-type semiconductor wafer
The layer 3 and the n + layer 2 on the other side are formed by diffusion to form the pn structure of the p + layer 3, the n layer 1 and the n + layer 2, and the n + layer 2 and the p + layer 3 are formed.
Electrode metals 4 and 5 are deposited on the surface of the device to form a diode structure, and two or more wafers having this diode structure (see FIG.
(In the case of one piece) are serially laminated via solder 6, and then the wafer is cut with a dicing saw to form small laminated diode pieces, and lead wires 7 and 8 are connected to both sides of each by solder to form a mesa diode. And A mechanical strain layer 9 at the time of dicing is formed on the surface layer on the side surface where the pn junction of the laminated diode pieces is exposed. FIG. 2B shows a cross-sectional view of essential parts after the diode piece of FIG. 1A is wet-etched with a high-concentration potassium hydroxide aqueous solution. A wedge-shaped missing portion 10 is formed by etching the n + layer 2 in contact with the electrode metal 4. However, lead wire 7
The interface of the n + layer 2 adjacent to is not provided with the wedge-shaped missing portion 10.

【0004】[0004]

【発明が解決しようとする課題】この様に、楔状の欠落
部10があると、この部分から積層したダイオード片が
折れ易くなり、機械的強度の点からと、欠落部分で電流
が絞られるためダイオード片の面積の縮小化の阻害要因
となる。この発明は前記の課題を解決するために、楔状
の欠落部分が生じない半導体素子の表面処理方法を提供
することを目的とする。
As described above, if the wedge-shaped cutout portion 10 is present, the laminated diode piece is easily broken from this portion, and the current is narrowed at the cutout portion in terms of mechanical strength. This becomes an obstacle to the reduction of the area of the diode piece. SUMMARY OF THE INVENTION In order to solve the above problems, an object of the present invention is to provide a surface treatment method for a semiconductor device in which a wedge-shaped missing portion does not occur.

【0005】[0005]

【課題を解決するための手段】この発明は前記の目的を
達成するために、第一導電形半導体層の一主面に第二導
電形半導体層が、この第二導電形半導体層上に金属層が
それぞれ形成され、第一導電形半導体層の他主面に高濃
度第一導電形半導体層が、この高濃度第一導電形半導体
層上に金属層がそれぞれ形成された半導体基体が少なく
とも2個以上直列に積層され、切断されて形成される半
導体素子片において、第一導電形半導体層と第二導電形
半導体層とが接する接合部が露出している側面の表面歪
み層を化学的処理により除去する。また第一導電形半導
体層と第二導電形半導体層の接合部に電圧を印加しなが
ら化学的処理をすると効果的である。さらに化学的処理
を湿式エッチングで行うとよい。また無電圧の状態で少
なくともアンモニア水と過酸化水素水と水との混合液を
用いて湿式エッチングしてもよい。
In order to achieve the above-mentioned object, the present invention provides a second conductivity type semiconductor layer on one main surface of a first conductivity type semiconductor layer and a metal on the second conductivity type semiconductor layer. At least 2 semiconductor layers each having a high-concentration first-conductivity-type semiconductor layer formed on the other main surface of the first-conductivity-type semiconductor layer and a metal layer formed on the high-concentration first-conductivity-type semiconductor layer. In a semiconductor element piece formed by stacking at least one piece in series and cutting it, the surface strained layer on the side surface where the joint where the first conductivity type semiconductor layer and the second conductivity type semiconductor layer are in contact is exposed is chemically treated. To remove. Further, it is effective to perform chemical treatment while applying a voltage to the junction between the first conductivity type semiconductor layer and the second conductivity type semiconductor layer. Further, the chemical treatment may be wet etching. Further, wet etching may be performed in a state of no voltage using at least a mixed solution of ammonia water, hydrogen peroxide water and water.

【0006】[0006]

【作用】金属層とn+ 層との界面部分のシリコン層が楔
が入ったように異常エッチングされるという現象が生ず
るメカニズムを説明する。図5は金属層11をn層1、
+ 層2の半導体とp+ 層3、n層1の半導体とで挟み
こんだ部分の拡大断面図と各層に対応する電子エネルギ
ー準位を模式的に示す図である。同図(a)は各層の位
置関係を示した図で、金属層11を挟んで、左右に半導
体の各層が位置している。同図(b)が接合状態のエネ
ルギー準位図を示し、フェルミ準位12を点線で示す。
電解液に浸漬せず、ダイオード片に電圧を印加していな
状態では、フェルミ準位12はn層1、n+ 層2、金属
層(金属電極、はんだ層および金属電極を含んだ層をい
う)11、p+ 層3およびn層1の各層で同じ高さにな
っている。また金属層11との界面の半導体側の禁制帯
のエネルギーバンド13はn + 層2側、p+ 層3側とも
電子エネルギー準位が高くなるように曲がっており、n
+ 層2側では電子が金属層11に注入されるのが抑えら
れ非オーミック接合となり、p+ 層3側では正孔が金属
層11に自由に注入されるオーミック接合となってい
る。この系が電解質と接すると、電極電位E(電子エネ
ルギー準位で表現した電位で通常のプラス電荷に対する
電位と逆になる)はNernstの式で表され、次式に
従って変動する。
[Function] Metal layer and n+The silicon layer at the interface with the layer is wedged
The phenomenon of abnormal etching as if there was
The mechanism for In FIG. 5, the metal layer 11 is an n-layer 1,
n+Layer 2 semiconductor and p+Sandwiched between layer 3 and n layer 1 semiconductor
Enlarged sectional view of the dented part and electron energy corresponding to each layer
FIG. 3 is a diagram schematically showing a level. The figure (a) shows the position of each layer
In the figure showing the positional relationship, the semiconductor layer is sandwiched between the left and right sides of the metal layer 11.
Each layer of the body is located. The figure (b) shows the energy in the joined state.
A Rougie level diagram is shown, and the Fermi level 12 is shown by a dotted line.
Do not apply voltage to the diode piece without immersing it in the electrolyte.
In the state, the Fermi level 12 is n layer 1, n+Layer 2, metal
Layers (including metal electrodes, solder layers and layers containing metal electrodes)
U) 11, p+Have the same height in each of the layers 3 and 1
ing. Also, the forbidden band on the semiconductor side at the interface with the metal layer 11
Energy band 13 of n +Layer 2 side, p+With layer 3 side
It is bent so that the electron energy level becomes higher, and
+On the layer 2 side, it is possible to suppress injection of electrons into the metal layer 11.
Non-ohmic junction, p+On the layer 3 side, holes are metal
It is an ohmic junction that is freely injected into layer 11.
It When this system comes into contact with the electrolyte, the electrode potential E (electron energy
The potential expressed by the Lugie level for the ordinary positive charge
Is the opposite of the potential) is expressed by the Nernst equation,
Therefore, it fluctuates.

【0007】[0007]

【数1】E=EO −2.3kTpH (eV) (1) 〔ここで、EO は電解質に接する前の標準電極電位、k
はボルツマン定数、Tは系の絶対温度、pHは電解質の
ペーハー値(厳密には、ペーハー値というよりも電解質
内のイオンの活動度で論ずるべきであるが、ここでは便
宜上ペーハー値とした)である。〕 この系をペーハー値の高い電解質に浸漬すると、上式か
ら電極電位Eは低下し、反対にペーハー値の低い電解質
に浸漬すると、電極電位Eは高くなる。
## EQU1 ## E = E o -2.3 kTpH (eV) (1) [where E o is the standard electrode potential before coming into contact with the electrolyte, k
Is the Boltzmann constant, T is the absolute temperature of the system, and pH is the pH value of the electrolyte (strictly speaking, it should be discussed not by the pH value but by the activity of the ions in the electrolyte, but here it is the pH value for convenience). is there. When this system is dipped in an electrolyte having a high pH value, the electrode potential E decreases from the above formula. Conversely, when it is dipped in an electrolyte having a low pH value, the electrode potential E increases.

【0008】同図(c)は同図(b)の接合状態の系を
pH値の高い電解質内に置いた状態を示す図である。電
解質の影響で金属層11に対して半導体側は電子エネル
ギー準位が相対的に高くなり、フェルミ準位は金属層1
1との界面の半導体側の電子エネルギー準位が低くなる
ように曲がる。そのため、n+ 層2側では電子が金属層
11に自由に注入されるオーミック接合に変わり、金属
層11の近傍のn+ 層2のシリコンが電解質に溶解し、
そのときにn+ 層2に取り残された電子が金属層11に
入り込み、一方p+ 層3の正孔はオーミック接合を通り
金属層11に入り込み、一部の電子、正孔は金属層11
内で結合し、一部は金属層11と接する電解質に溶解し
たシリコンと結合する。
FIG. 3C is a diagram showing a state in which the system in the joined state of FIG. 1B is placed in an electrolyte having a high pH value. Due to the influence of the electrolyte, the electron energy level on the semiconductor side is relatively higher than that on the metal layer 11, and the Fermi level is on the metal layer 1.
Bend so that the electron energy level on the semiconductor side of the interface with 1 becomes low. Therefore, on the n + layer 2 side, an ohmic junction in which electrons are freely injected into the metal layer 11 is changed, silicon in the n + layer 2 near the metal layer 11 is dissolved in the electrolyte,
At that time, the electrons left in the n + layer 2 enter the metal layer 11, while the holes in the p + layer 3 enter the metal layer 11 through the ohmic junction, and some of the electrons and holes are in the metal layer 11.
It is bonded inside, and part of it is bonded to silicon dissolved in the electrolyte in contact with the metal layer 11.

【0009】同図(d)は同図(b)の接合状態の系を
pH値の低い電解質内に置いた状態を示す図である。電
解質の影響で金属層11に対して半導体側はフェルミ準
位12が相対的に低くなり、そのため金属層11との界
面の半導体側のエネルギーバンド13はn+ 層2側、p
+ 層3側ともこの系を電解質に浸漬しない場合よりも、
一層、電子エネルギー準位が高くなるように曲げられ、
+ 層3側はオーミック性を保ったままであるが、n+
層2側では非オーミック性が強まり、n+ 層2から金属
層11への電子の注入が遮断される。そのため、n+
2のシリコンは電解質に溶解しないことになる。しか
し、pH値の低い電解質は酸ということになるが、酸に
よる処理は電極金属、およびはんだからなる金属層を腐
食するなどの問題があり採用が困難であるため、これと
同等の効果がある次に述べる方法が実用的である。
FIG. 3D is a diagram showing a state in which the system in the bonded state of FIG. 1B is placed in an electrolyte having a low pH value. Due to the influence of the electrolyte, the Fermi level 12 is relatively low on the semiconductor side with respect to the metal layer 11, so that the energy band 13 on the semiconductor side at the interface with the metal layer 11 is on the n + layer 2 side, p side.
Compared to the case where the + layer 3 side is not immersed in the electrolyte,
Bent so that the electron energy level becomes higher,
The p + layer 3 side remains ohmic, but n +
The non-ohmic property is enhanced on the layer 2 side, and the injection of electrons from the n + layer 2 to the metal layer 11 is blocked. Therefore, the silicon of the n + layer 2 will not dissolve in the electrolyte. However, although the electrolyte having a low pH value is an acid, the treatment with an acid has a problem that it corrodes the electrode metal and the metal layer made of solder, which makes it difficult to adopt. The following method is practical.

【0010】前記の現象はp+ 層3を金属層11に対し
て高い電位(電子エネルギー準位としては低くする)を
与えることで同等の効果がでる。このとき、印加する電
圧VはNernstの式を目安に次式で見積もられる。
The above-mentioned phenomenon has the same effect by giving the p + layer 3 a high potential (reducing the electron energy level) to the metal layer 11. At this time, the applied voltage V is estimated by the following equation using the Nernst equation as a guide.

【0011】[0011]

【数2】V=0.059×n×ΔpH (V) (2) 〔ここで、nはn+ 層2−金属層11−p+ 層3を一組
の層として積層する層数、ΔpHは用いる表面処理液の
ペーハー値と不具合が発生しない表面処理液のペーハー
値の差である。〕 また、前記とは異なり、シリコンを酸化し、その酸化膜
をエッチングで除去する方法もある。この場合は、酸化
膜によって電子および正孔の金属膜11への注入が遮断
されるので、類似の効果が得られる。
[Formula 2] V = 0.059 × n × ΔpH (V) (2) [where n is the number of layers in which n + layer 2−metal layer 11-p + layer 3 are laminated as one set, ΔpH Is the difference between the pH value of the surface treatment liquid used and the pH value of the surface treatment liquid that does not cause any problems. Also, unlike the above, there is also a method of oxidizing silicon and removing the oxide film by etching. In this case, injection of electrons and holes into the metal film 11 is blocked by the oxide film, so that a similar effect is obtained.

【0012】[0012]

【実施例】図1はこの発明の第一の実施例の表面処理を
行う前と後の積層された要部断面図を示す。同図(a)
は表面処理前の積層されたダイオードの要部構造図を示
す。シリコンウエハにn+ 層2−n層1−p+ 層3から
なるダイオードを形成し、n+ 層2上およびp+ 層3上
にそれぞれNi/Auの無電解メッキにより電極付けを
した後、このウエハを10枚重ね高温はんだで互いを接
着し、ダイシングソーで切断し、積層したダイオード片
とし、このダイオード片の両端にリード線7、8が取り
付けられる。この切断により機械的歪み層9が表面層に
形成される。同図(b)は表面処理後のダイオードの要
部断面図を示す。同図(a)の状態の機械的歪み層9が
表面層に形成されているダイオード片の側面を、7%K
OH液に80°Cで1.5分間浸漬してダイオード片の
両側にp+ 層3が正極、n+ 層2が負極に成るように電
圧を印加しながら、湿式エッチングによる表面処理を行
う。従来処理のような楔状の欠落部10(図4(b)参
照)は生じていない。図2は表面処理時に使用する治具
とダイオード15を示し、同図(a)はPtで製作され
た簡単な電圧を印加するための治具141、142にダ
イオードのリード線7、8を挟み込んだ図と同図(b)
はこのリード線7、8を挟み込む部分(A部)の拡大図
を示す。ダイオードのリード端子間には図3は積層され
たダイオードのリード端子間に印加される電圧の極性を
示す図である。このとき、リード端子間に印加する電圧
Vは、(2)式からn=10、ΔpH=7として、約4
Vとした。その結果、450μm□のチップサイズのダ
イオード片で無電圧処理の場合に発生していた楔の深さ
L(図4(b)参照)が30ないし40μmからほぼ0
μmにすることができた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a cross-sectional view of a main portion of a laminated structure before and after the surface treatment of the first embodiment of the present invention. FIG.
[Fig. 3] shows a structural view of a main part of the stacked diodes before surface treatment. After forming a diode composed of n + layer 2 -n layer 1 -p + layer 3 on a silicon wafer and attaching electrodes on the n + layer 2 and p + layer 3 respectively by electroless plating of Ni / Au, Ten of the wafers are stacked and bonded to each other with high temperature solder, cut with a dicing saw to form a laminated diode piece, and lead wires 7 and 8 are attached to both ends of the diode piece. By this cutting, the mechanical strain layer 9 is formed on the surface layer. FIG. 3B shows a sectional view of the main part of the diode after the surface treatment. The side surface of the diode piece in which the mechanical strain layer 9 in the state of FIG.
A surface treatment is performed by wet etching while immersing in an OH liquid at 80 ° C. for 1.5 minutes while applying voltage such that the p + layer 3 serves as a positive electrode and the n + layer 2 serves as a negative electrode on both sides of the diode piece. The wedge-shaped missing portion 10 (see FIG. 4B) unlike the conventional processing is not generated. FIG. 2 shows a jig and a diode 15 used at the time of surface treatment, and FIG. 2 (a) shows a jig 141, 142 made of Pt for applying a simple voltage, in which the lead wires 7 and 8 of the diode are sandwiched. Figure and Figure (b)
Shows an enlarged view of a portion (A portion) sandwiching the lead wires 7 and 8. Between the lead terminals of the diodes, FIG. 3 is a diagram showing the polarities of the voltages applied between the lead terminals of the stacked diodes. At this time, the voltage V applied between the lead terminals is about 4 when n = 10 and ΔpH = 7 from the equation (2).
It was set to V. As a result, the depth L of the wedge (see FIG. 4 (b)) generated in the case of the voltage-free processing with the diode piece having the chip size of 450 μm □ is from 30 to 40 μm to almost 0.
could be made to be μm.

【0013】また、この発明の第二の実施例は、表面処
理液をアンモニア水と過酸化水素水の混合液を用いる方
法である。この混合液は基本的には通常SC−1とよば
れるウエハの洗浄液として知られているものと同一であ
る。このアンモニア水と過酸化水素水の混合液はシリコ
ン基板の酸化作用とエッチング作用と洗浄作用があるこ
とが知られている。NH4OH:H2O2:H2O=1:1:5 の場合、シ
リコン基板上では酸化膜は瞬時に5Å程形成され、その
厚さで飽和してしまうが、エッチングは約1nm/分
(90°C)の速度で進む。即ち、酸化とエッチングが
共存する系であるため、電子および正孔の金属膜への流
入が断続的であり、楔の深さLの大きさもかなり小さく
できる。実際、上記の表面処理液に3分浸漬した結果、
従来と変わらない素子特性が得られ、且つ楔の深さLは
0.1μm以下と実用上問題のない結果が得られた。
The second embodiment of the present invention is a method of using a mixed solution of ammonia water and hydrogen peroxide water as the surface treatment solution. This mixed solution is basically the same as what is generally known as SC-1 and is known as a wafer cleaning solution. It is known that this mixed solution of ammonia water and hydrogen peroxide water has an oxidizing action, an etching action and a cleaning action on the silicon substrate. In the case of NH 4 OH: H 2 O 2 : H 2 O = 1: 1: 5, the oxide film is instantly formed on the silicon substrate in an amount of about 5Å and saturates at that thickness, but the etching is about 1 nm / Proceed at a speed of 90 minutes. That is, since the system coexists with oxidation and etching, the inflow of electrons and holes into the metal film is intermittent, and the size of the depth L of the wedge can be made considerably small. In fact, as a result of soaking in the above surface treatment solution for 3 minutes,
The device characteristics that are the same as those of the conventional device were obtained, and the depth L of the wedge was 0.1 μm or less, which was a result with no practical problem.

【0014】[0014]

【発明の効果】この発明によれば、pn接合が積層され
たメサ型ダイオードの機械的歪み層を除去するための表
面処理で発生する楔状の異常サイドエッチをダイオード
の両端に電圧を印加しながら表面処理するか、表面処理
液を従来の表面処理液からアンモニア水と過酸化水素の
混合液に変更することによって、防止することができ
る。その結果、積層されたダイオード片が表面処理後の
工程で折れが発生せず、工程歩留りが向上した。また、
機械的強度の確保が可能となったことと、通電断面積を
チップサイズ一杯まで取れることにより、従来よりチッ
プサイズを小さくして、同等の性能が得られた。その結
果、チップコストの低減が図られた。
According to the present invention, the wedge-shaped abnormal side etching generated by the surface treatment for removing the mechanically strained layer of the mesa type diode in which the pn junction is laminated is applied while applying a voltage across the diode. This can be prevented by performing surface treatment or changing the surface treatment liquid from a conventional surface treatment liquid to a mixed liquid of aqueous ammonia and hydrogen peroxide. As a result, the laminated diode pieces did not break in the process after the surface treatment, and the process yield was improved. Also,
Since it is possible to secure mechanical strength and the current-carrying cross-sectional area can be as large as the chip size, the chip size can be made smaller than that of the conventional product, and equivalent performance can be obtained. As a result, the chip cost was reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第一の実施例の表面処理前後の積層
されたダイオードの要部断面図で、同図(a)は表面処
理前の要部断面図、同図(b)は表面処理後の要部断面
1A and 1B are cross-sectional views of a main part of a stacked diode before and after surface treatment according to a first embodiment of the present invention, where FIG. 1A is a cross-sectional view of a main part before surface treatment, and FIG. Cross-sectional view of essential parts after processing

【図2】第一の実施例の表面処理を行うときに使用する
電圧を印加する治具にダイオードを挟み込んだ図
FIG. 2 is a diagram in which a diode is sandwiched in a jig for applying a voltage used when performing the surface treatment of the first embodiment.

【図3】第一の実施例の表面処理のときのダイオードに
電圧を印加するときの極性を示した図
FIG. 3 is a diagram showing the polarities when a voltage is applied to the diode during the surface treatment of the first embodiment.

【図4】従来の表面処理前後の積層されたダイオードの
要部断面図で、同図(a)は表面処理前の要部断面図、
同図(b)は表面処理後の要部断面図
FIG. 4 is a cross-sectional view of a main part of a stacked diode before and after conventional surface treatment, in which FIG. 4A is a cross-sectional view of the main part before surface treatment,
FIG. 3B is a cross-sectional view of the main part after the surface treatment.

【図5】積層したダイオードの拡大断面図とそれに対応
した各層の電子エネルギー準位図
FIG. 5 is an enlarged cross-sectional view of stacked diodes and corresponding electron energy level diagrams of each layer.

【符号の説明】[Explanation of symbols]

1 n層 2 n+ 層 3 p+ 層 4 電極金属 5 電極金属 6 はんだ 7 リード端子 8 リード端子 9 機械的歪み層 10 楔状の欠落部 11 金属層(電極金属/はんだ/電極金属) 12 フェルミ準位 13 禁制帯のエネルギーバンド 141 電圧印加治具 142 電圧印加治具 15 ダイオード L 楔の深さ1 n layer 2 n + layer 3 p + layer 4 electrode metal 5 electrode metal 6 solder 7 lead terminal 8 lead terminal 9 mechanical strain layer 10 wedge-shaped missing portion 11 metal layer (electrode metal / solder / electrode metal) 12 Fermi quasi Position 13 Forbidden energy band 141 Voltage application jig 142 Voltage application jig 15 Diode L Wedge depth

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡林 健木 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenki Okabayashi 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】第一導電形半導体層の一主面に第二導電形
半導体層が、この第二導電形半導体層上に金属層がそれ
ぞれ形成され、第一導電形半導体層の他主面に高濃度第
一導電形半導体層が、この高濃度第一導電形半導体層上
に金属層がそれぞれ形成された半導体基体が少なくとも
2個以上直列に積層され、切断されて形成される半導体
素子片において、第一導電形半導体層と第二導電形半導
体層とが接する接合部が露出している側面の表面歪み層
を化学的処理により除去することを特徴とする半導体素
子の表面処理方法。
1. A second conductivity type semiconductor layer is formed on one main surface of a first conductivity type semiconductor layer, and a metal layer is formed on this second conductivity type semiconductor layer, and the other main surface of the first conductivity type semiconductor layer is formed. A semiconductor element piece in which a high-concentration first-conductivity-type semiconductor layer is formed by stacking and cutting at least two semiconductor substrates in which metal layers are respectively formed on the high-concentration first-conductivity-type semiconductor layer 2. The method for surface treatment of a semiconductor device, wherein the surface strained layer on the side surface where the joint where the first conductivity type semiconductor layer and the second conductivity type semiconductor layer are in contact is exposed is removed by a chemical treatment.
【請求項2】第一導電形半導体層の一主面に第二導電形
半導体層が、この第二導電形半導体層上に金属層がそれ
ぞれ形成され、第一導電形半導体層の他主面に高濃度第
一導電形半導体層が、この高濃度第一導電形半導体層上
に金属層がそれぞれ形成された半導体基体が少なくとも
2個以上直列に積層され、切断されて形成される半導体
素子片において、第一導電形半導体層と第二導電形半導
体層とが接する接合部が露出している側面の表面歪み層
を、第一導電形半導体層と第二導電形半導体層の接合部
に電圧を印加しながら化学的処理により除去することを
特徴とする半導体素子の表面処理方法。
2. A second conductivity type semiconductor layer is formed on one main surface of the first conductivity type semiconductor layer, and a metal layer is formed on the second conductivity type semiconductor layer, and the other main surface of the first conductivity type semiconductor layer is formed. A semiconductor element piece in which a high-concentration first-conductivity-type semiconductor layer is formed by stacking and cutting at least two semiconductor substrates in which metal layers are respectively formed on the high-concentration first-conductivity-type semiconductor layer In, the surface strain layer on the side surface where the junction where the first conductivity type semiconductor layer and the second conductivity type semiconductor layer are in contact is exposed, is applied to the junction between the first conductivity type semiconductor layer and the second conductivity type semiconductor layer. A method for surface treatment of a semiconductor element, characterized in that the surface is removed by a chemical treatment while applying.
【請求項3】湿式エッチングを用いて化学的処理を行う
ことを特徴とする請求項1又は2記載の半導体素子の表
面処理方法。
3. The surface treatment method for a semiconductor device according to claim 1, wherein the chemical treatment is performed by using wet etching.
【請求項4】少なくともアンモニア水と過酸化水素水と
水との混合液を用いて化学的処理を行うことを特徴とす
る請求項1記載の半導体素子の表面処理方法。
4. The surface treatment method for a semiconductor device according to claim 1, wherein the chemical treatment is performed using a mixed solution of at least ammonia water, hydrogen peroxide water and water.
JP22688394A 1994-09-21 1994-09-21 Surface treatment method for semiconductor device Expired - Fee Related JP3144236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22688394A JP3144236B2 (en) 1994-09-21 1994-09-21 Surface treatment method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22688394A JP3144236B2 (en) 1994-09-21 1994-09-21 Surface treatment method for semiconductor device

Publications (2)

Publication Number Publication Date
JPH0897181A true JPH0897181A (en) 1996-04-12
JP3144236B2 JP3144236B2 (en) 2001-03-12

Family

ID=16852080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22688394A Expired - Fee Related JP3144236B2 (en) 1994-09-21 1994-09-21 Surface treatment method for semiconductor device

Country Status (1)

Country Link
JP (1) JP3144236B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171975B1 (en) 1997-07-29 2001-01-09 Nec Corporation Wet-chemical treatment method, treatment method of semiconductor substrate, and manufacturing method of semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6091793B2 (en) * 2012-07-27 2017-03-08 株式会社フジマック Five virtues

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171975B1 (en) 1997-07-29 2001-01-09 Nec Corporation Wet-chemical treatment method, treatment method of semiconductor substrate, and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP3144236B2 (en) 2001-03-12

Similar Documents

Publication Publication Date Title
US8916871B2 (en) Bondable top metal contacts for gallium nitride power devices
JP2003516631A (en) Low leakage current protected silicon carbide device and manufacturing method
US7682895B2 (en) Semiconductor device and method of manufacturing the same
JP3144236B2 (en) Surface treatment method for semiconductor device
JPS58197825A (en) Method of forming semiconductor protecting layer
US3891483A (en) Method for etching semiconductor surfaces
JPH05291186A (en) Formation of metal contact on surface of semiconductor chip
JP3339549B2 (en) Glass-coated semiconductor device and method of manufacturing the same
JP2003338620A (en) Semiconductor device and manufacturing method therefor
JP4216059B2 (en) III / V compound semiconductor solar cell manufacturing method
JP2008205249A (en) Method of fabricating semiconductor device
JP2007305906A (en) Diode
JPS6327075A (en) Hall element
JP2542718B2 (en) Method for manufacturing DHD type diode
JP3609171B2 (en) Manufacturing method of semiconductor device
US20240128381A1 (en) Power Diode Device and Method of Manufacturing the Same
JP2713232B2 (en) Method for manufacturing semiconductor integrated circuit
JP2005294858A (en) Semiconductor device
JPH0756895B2 (en) Mesa type semiconductor substrate
JPS6352490A (en) Glass-sealed light-emitting semiconductor device
CN115332072A (en) Insulated gate bipolar transistor and preparation method thereof
JPS61231760A (en) Compound semiconductor element
JP2000216410A (en) Manufacture of schottky barrier diode
KR0182971B1 (en) Semiconductor memory device and manufacture thereof
JPH1117162A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees