JP3141150U - Discharge tube - Google Patents

Discharge tube Download PDF

Info

Publication number
JP3141150U
JP3141150U JP2008000657U JP2008000657U JP3141150U JP 3141150 U JP3141150 U JP 3141150U JP 2008000657 U JP2008000657 U JP 2008000657U JP 2008000657 U JP2008000657 U JP 2008000657U JP 3141150 U JP3141150 U JP 3141150U
Authority
JP
Japan
Prior art keywords
discharge
discharge tube
case member
gap
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008000657U
Other languages
Japanese (ja)
Other versions
JP3141150U7 (en
Inventor
孝一 今井
俊行 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okaya Electric Industry Co Ltd
Original Assignee
Okaya Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okaya Electric Industry Co Ltd filed Critical Okaya Electric Industry Co Ltd
Priority to JP2008000657U priority Critical patent/JP3141150U/en
Publication of JP3141150U publication Critical patent/JP3141150U/en
Application granted granted Critical
Publication of JP3141150U7 publication Critical patent/JP3141150U7/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

【課題】放電開始電圧が安定的であると共に、早期点弧の発生を抑制することができる長寿命な放電管を実現する。
【解決手段】円筒状のケース部材12の両端開口部を、放電電極を兼ねた一対の蓋部材14,14で気密に封止することによって気密外囲器16を形成すると共に、該気密外囲器16内にネオン、アルゴン及び水素より成る放電ガスを封入し、また、上記蓋部材14,14の放電電極部18,18間に放電間隙22を形成すると共に、ケース部材12の内壁面24に、その両端が、蓋部材14,14と微小放電間隙26を隔てて配置された複数のトリガ放電膜28を形成し、さらに、上記放電電極部18の表面に、多数の穴部を形成すると共に、上記穴部内面に、ヨウ化ナトリウム、モリブデン酸セシウム、モリブデン酸カリウム及び臭化ルビジウムを含有した被膜30を形成して成る放電管10であって、上記多数の穴部29を、円筒状のケース部材12の内壁面24と同心の円上に配置形成した。
【選択図】図1
Disclosed is a discharge tube that has a stable discharge start voltage and can suppress the occurrence of early firing.
A hermetic envelope 16 is formed by hermetically sealing the opening portions at both ends of a cylindrical case member 12 with a pair of lid members 14 and 14 that also serve as discharge electrodes. A discharge gas composed of neon, argon and hydrogen is sealed in the vessel 16, a discharge gap 22 is formed between the discharge electrode portions 18, 18 of the lid members 14, 14, and the inner wall 24 of the case member 12 is formed. A plurality of trigger discharge films 28 are formed at both ends with the lid members 14 and 14 being spaced from the minute discharge gap 26, and a plurality of holes are formed on the surface of the discharge electrode portion 18. A discharge tube 10 in which a coating 30 containing sodium iodide, cesium molybdate, potassium molybdate and rubidium bromide is formed on the inner surface of the hole, wherein the numerous holes 29 are formed in a cylindrical shape. Ke It was placed on the inner wall surface 24 concentric with the circle of the scan element 12.
[Selection] Figure 1

Description

この考案は放電管に係り、特に、プロジェクターや自動車のメタルハライドランプ等の高圧放電ランプやガス調理器等の着火プラグに、点灯用又は着火用の定電圧を供給するためのスイッチングスパークギャップとして、或いは、サージ電圧を吸収するためのガスアレスタ(避雷管)として好適に使用できる放電管に関する。   The present invention relates to a discharge tube, in particular, as a switching spark gap for supplying a constant voltage for lighting or ignition to a high-pressure discharge lamp such as a projector or a metal halide lamp of an automobile, or an ignition plug of a gas cooker, or The present invention relates to a discharge tube that can be suitably used as a gas arrester for absorbing surge voltage.

この種の放電管として、本出願人は、先に実用新案登録第3133824号を提案した。
この放電管60は、図11乃至図13に示すように、両端が開口した絶縁材よりなる円筒状のケース部材62の両端開口部を、放電電極を兼ねた一対の蓋部材64,64で気密に封止することによって気密外囲器66を形成し、該気密外囲器66内に、所定の放電ガスを封入してなる。
As this type of discharge tube, the present applicant has previously proposed Utility Model Registration No. 3133824.
As shown in FIGS. 11 to 13, the discharge tube 60 is formed by sealing a cylindrical case member 62 made of an insulating material having both ends opened with a pair of lid members 64 and 64 serving as discharge electrodes. A hermetic envelope 66 is formed by sealing with a predetermined discharge gas in the hermetic envelope 66.

上記蓋部材64は、気密外囲器66の中心に向けて大きく突き出た平面状の放電電極部68と、ケース部材62の端面に接する接合部70を備えており、両蓋部材64,64の放電電極部68,68間には、所定の放電間隙72が形成されている。
また、上記ケース部材62の内壁面74には、その両端が、放電電極を兼ねた上記蓋部材64,64と微小放電間隙76を隔てて配置されたトリガ放電膜78が複数形成されている。
The lid member 64 includes a flat discharge electrode portion 68 that protrudes greatly toward the center of the hermetic envelope 66, and a joint portion 70 that contacts the end surface of the case member 62. A predetermined discharge gap 72 is formed between the discharge electrode portions 68 and 68.
A plurality of trigger discharge films 78 are formed on the inner wall surface 74 of the case member 62 so that both ends of the case member 62 are spaced apart from the lid members 64 and 64 that also serve as discharge electrodes and a minute discharge gap 76.

上記放電電極部68の表面には、略半球状の穴部79(図12参照)が多数形成されており、各穴部79内面に、電子放出特性が良好な臭化セシウム、チタン、モリブデン酸カリウム及び酸化マグネシウムの混合物が含有された被膜80が形成されている。
略半球状の上記穴部79は、4×4の合計16個が、マトリクス状に配置形成されている。
A large number of substantially hemispherical holes 79 (see FIG. 12) are formed on the surface of the discharge electrode portion 68, and cesium bromide, titanium, molybdic acid having good electron emission characteristics are formed on the inner surface of each hole 79. A film 80 containing a mixture of potassium and magnesium oxide is formed.
A total of 16 4 × 4 holes 79 are arranged and formed in a matrix.

上記構成を備えた放電管60にあっては、放電電極を兼ねた上記一対の蓋部材64,64間に、当該放電管60の放電開始電圧以上の電圧が印加されると、トリガ放電膜78の両端と蓋部材64,64間の微小放電間隙76に電界が集中し、これにより微小放電間隙76に電子が放出されてトリガ放電としての沿面コロナ放電が発生する。次いで、この沿面コロナ放電は、電子のプライミング効果によってグロー放電へと移行する。そして、このグロー放電が放電電極部68,68間の放電間隙72へと転移し、主放電としてのアーク放電に移行するのである。
実用新案登録第3133824号
In the discharge tube 60 having the above-described configuration, when a voltage equal to or higher than the discharge start voltage of the discharge tube 60 is applied between the pair of lid members 64 and 64 that also serve as discharge electrodes, the trigger discharge film 78 is provided. The electric field is concentrated in the minute discharge gap 76 between the both ends of the cover member 64 and the lid members 64, 64, whereby electrons are emitted into the minute discharge gap 76 to generate creeping corona discharge as a trigger discharge. Next, this creeping corona discharge shifts to glow discharge due to an electron priming effect. Then, this glow discharge is transferred to the discharge gap 72 between the discharge electrode portions 68 and 68, and is transferred to arc discharge as the main discharge.
Utility Model Registration No. 3133824

ところで、放電は放電電極部68と被膜80との界面で発生する傾向が有るため、放電時の衝撃で被膜80がスパッタされやすく、スパッタで飛散した被膜80の構成材料(以下、スパッタ飛散物と称する)がケース部材62の内壁面74やトリガ放電膜78に付着・堆積することが、放電開始電圧の不安定化をもたらす原因となっている。   By the way, since discharge tends to occur at the interface between the discharge electrode portion 68 and the coating 80, the coating 80 is likely to be sputtered by the impact during discharge, and the constituent material of the coating 80 scattered by sputtering (hereinafter referred to as spatter Is attached to and deposited on the inner wall surface 74 and the trigger discharge film 78 of the case member 62, which causes the discharge start voltage to become unstable.

従来の上記放電管60にあっては、被膜80の形成される穴部79が、放電電極部68の表面にマトリクス状に配置形成されているので、円筒状のケース部材62の内壁面74と各穴部79との距離がバラバラであった。
このため、穴部79との距離が小さい箇所のケース部材62の内壁面74・トリガ放電膜78へのスパッタ飛散物の堆積量は多くなり、一方、穴部79との距離が大きい箇所のケース部材62の内壁面74・トリガ放電膜78へのスパッタ飛散物の堆積量は少なくなっていた。
このように、スパッタ飛散物の堆積量が、ケース部材62の内壁面74やトリガ放電膜78の箇所毎にバラバラであることが、放電開始電圧の不安定化を促進する大きな要因となっていた。
In the conventional discharge tube 60, since the holes 79 in which the coating 80 is formed are arranged in a matrix on the surface of the discharge electrode portion 68, the inner wall surface 74 of the cylindrical case member 62 and The distance from each hole 79 was different.
For this reason, the amount of spatter scattered on the inner wall surface 74 / trigger discharge film 78 of the case member 62 where the distance from the hole 79 is small increases, while the case where the distance from the hole 79 is large. The amount of spatter scattered on the inner wall surface 74 and the trigger discharge film 78 of the member 62 was small.
As described above, the amount of spatter scattered is different for each portion of the inner wall surface 74 and the trigger discharge film 78 of the case member 62, which has been a major factor for promoting instability of the discharge start voltage. .

また、上記放電管60においては、規定電圧より低い電圧で放電してしまう早期点弧を生じることもあった。   Further, in the discharge tube 60, there is a case where an early ignition that discharges at a voltage lower than a specified voltage may occur.

この考案は、従来の上記問題に鑑みてなされたものであり、その目的とするところは、放電開始電圧が安定的であると共に、早期点弧の発生を抑制することができる長寿命な放電管を実現することにある。   The present invention has been made in view of the above-described conventional problems, and its object is to provide a long-life discharge tube that has a stable discharge start voltage and can suppress the occurrence of early firing. Is to realize.

本考案者らは、被膜に含有させる材料、放電ガスの組成、被膜を被着する穴部の配置態様等について種々検討を試みた結果、被膜中にヨウ化ナトリウム(NaI)、モリブデン酸セシウム(CsMoO)、モリブデン酸カリウム(KMoO)及び臭化ルビジウム(RbBr)を含有した場合、放電ガスをネオン(Ne)、アルゴン(Ar)及び水素(H)の混合ガスで構成した場合、被膜を被着する穴部を、円筒状のケース部材の内壁面と同心の円上に配置形成した場合に、放電開始電圧が安定的であると共に、早期点弧の発生を抑制することができることを見出し、本考案を完成するに至ったものである。
すなわち、本考案に係る放電管は、円筒状のケース部材の両端開口部を、放電電極を兼ねた一対の蓋部材で気密に封止することによって気密外囲器を形成すると共に、該気密外囲器内に、ネオン、アルゴン及び水素で構成された放電ガスを封入し、また、気密外囲器内に配置される上記蓋部材の放電電極部間に放電間隙を形成すると共に、上記ケース部材の内壁面に、その両端が上記蓋部材と微小放電間隙を隔てて配置された複数のトリガ放電膜を形成し、さらに、上記放電電極部の表面に、多数の穴部を形成すると共に、上記穴部内面に、ヨウ化ナトリウム、モリブデン酸セシウム、モリブデン酸カリウム及び臭化ルビジウムを含有した被膜を形成して成る放電管であって、上記多数の穴部を、円筒状のケース部材の内壁面と同心の円上に配置形成したことを特徴とする。
As a result of various investigations on the material to be contained in the coating, the composition of the discharge gas, the arrangement of the holes where the coating is applied, the inventors have found that sodium iodide (NaI), cesium molybdate ( When Cs 2 MoO 4 ), potassium molybdate (K 2 MoO 4 ) and rubidium bromide (RbBr) are contained, the discharge gas is composed of a mixed gas of neon (Ne), argon (Ar) and hydrogen (H 2 ). In this case, when the hole for coating the coating is arranged on a circle concentric with the inner wall surface of the cylindrical case member, the discharge start voltage is stable and the occurrence of early firing is suppressed. It has been found that it is possible to complete this invention.
That is, the discharge tube according to the present invention forms an airtight envelope by hermetically sealing the opening portions at both ends of a cylindrical case member with a pair of lid members that also serve as discharge electrodes, and A discharge gas composed of neon, argon and hydrogen is enclosed in the envelope, and a discharge gap is formed between the discharge electrode portions of the lid member disposed in the hermetic envelope, and the case member Forming a plurality of trigger discharge films whose both ends are spaced apart from the lid member by a minute discharge gap, and forming a plurality of holes on the surface of the discharge electrode portion, and A discharge tube in which a coating containing sodium iodide, cesium molybdate, potassium molybdate and rubidium bromide is formed on the inner surface of the hole, wherein the numerous holes are formed on the inner wall surface of the cylindrical case member On a concentric circle Characterized in that the location is formed.

上記穴部を略半球状と成すのが好ましい。   The hole is preferably substantially hemispherical.

上記被膜に含有されるヨウ化ナトリウムの含有割合を0.01〜40重量%、モリブデン酸セシウムの含有割合を0.01〜40重量%、モリブデン酸カリウムの含有割合を0.01〜40重量%、臭化ルビジウムの含有割合を0.01〜40重量と成すのが好ましい。
また、放電ガス中のネオンの混合割合を0.1〜70体積%、アルゴンの混合割合を0.1〜70体積%、水素の混合割合を0.1〜70体積%と成すのが好ましい。
The content of sodium iodide contained in the coating is 0.01 to 40% by weight, the content of cesium molybdate is 0.01 to 40% by weight, and the content of potassium molybdate is 0.01 to 40% by weight. The content ratio of rubidium bromide is preferably 0.01 to 40 wt.
Further, it is preferable that the mixing ratio of neon in the discharge gas is 0.1 to 70% by volume, the mixing ratio of argon is 0.1 to 70% by volume, and the mixing ratio of hydrogen is 0.1 to 70% by volume.

本考案に係る放電管にあっては、被膜中にヨウ化ナトリウム、モリブデン酸セシウム、モリブデン酸カリウム及び臭化ルビジウムを含有させると共に、ネオン、アルゴン及び水素で放電ガスを構成し、さらに、被膜が形成される多数の穴部を、円筒状のケース部材の内壁面と同心の円上に配置形成したことにより、放電開始電圧が安定的であると共に、早期点弧の発生を抑制できる長寿命な放電管を実現することができる。   In the discharge tube according to the present invention, the coating film contains sodium iodide, cesium molybdate, potassium molybdate and rubidium bromide, and the discharge gas is composed of neon, argon and hydrogen. By arranging and forming many holes to be formed on a circle concentric with the inner wall surface of the cylindrical case member, the discharge starting voltage is stable and the long life can be suppressed. A discharge tube can be realized.

上記穴部を略半球状と成した場合には、被膜の状態が安定化し、放電特性のバラツキを低減することができる。すなわち、穴部を「略半球状」と成した場合には、穴部の全方向から表面張力が均等に掛かり、その結果、被膜が全方向に均等に形成されるため、被膜の状態が安定化し、放電特性のバラツキを低減することができるのである。   When the hole is formed in a substantially hemispherical shape, the state of the coating is stabilized, and variations in discharge characteristics can be reduced. In other words, when the hole is made “substantially hemispherical”, the surface tension is applied uniformly from all directions of the hole, and as a result, the film is formed uniformly in all directions, so the state of the film is stable. Thus, variation in discharge characteristics can be reduced.

図1乃至図5に示す本考案に係る放電管10は、両端が開口した絶縁材としてのセラミックよりなる円筒状のケース部材12の両端開口部を、放電電極を兼ねた一対の蓋部材14,14で気密に封止することによって気密外囲器16を形成してなる。   A discharge tube 10 according to the present invention shown in FIGS. 1 to 5 includes a pair of lid members 14 that serve as discharge electrodes at both ends of a cylindrical case member 12 made of ceramic as an insulating material having both ends open. The hermetic envelope 16 is formed by hermetically sealing with 14.

上記蓋部材14は、気密外囲器16の中心に向けて大きく突き出た略円柱状の放電電極部18と、ケース部材12の端面に接する接合部20を備えており、両蓋部材14,14の放電電極部18,18間には、所定の放電間隙22が形成されている。
放電電極部18と接合部20を備えた上記蓋部材14は、無酸素銅や、無酸素銅にジルコニウム(Zr)を含有させたジルコニウム銅で構成されている。尚、ケース部材12の端面と蓋部材14の接合部20とは、銀ろう等のシール材(図示せず)を介して気密封止されている。
The lid member 14 includes a substantially cylindrical discharge electrode portion 18 projecting greatly toward the center of the hermetic envelope 16, and a joint portion 20 in contact with the end surface of the case member 12, and both lid members 14, 14 A predetermined discharge gap 22 is formed between the discharge electrode portions 18 and 18.
The lid member 14 provided with the discharge electrode portion 18 and the joint portion 20 is made of oxygen-free copper or zirconium copper containing oxygen-free copper containing zirconium (Zr). Note that the end surface of the case member 12 and the joint portion 20 of the lid member 14 are hermetically sealed through a sealing material (not shown) such as silver solder.

また、上記ケース部材12の内壁面24には、その両端が、放電電極を兼ねた上記蓋部材14,14と微小放電間隙26を隔てて配置された線状のトリガ放電膜28が複数形成されている。図1乃至図3においては、トリガ放電膜28を、ケース部材12の内壁面24の円周方向に、45度の等間隔で8本形成した場合が例示されている。
上記トリガ放電膜28は、カーボン系材料等の導電性材料で構成されている。このトリガ放電膜28は、例えば、カーボン系材料より成る芯材を擦り付けることにより形成することができる。
In addition, a plurality of linear trigger discharge films 28 are formed on the inner wall surface 24 of the case member 12 so that both ends of the case member 12 are spaced apart from the lid members 14 and 14 that also serve as discharge electrodes and a minute discharge gap 26. ing. 1 to 3 exemplify a case where eight trigger discharge films 28 are formed at equal intervals of 45 degrees in the circumferential direction of the inner wall surface 24 of the case member 12.
The trigger discharge film 28 is made of a conductive material such as a carbon-based material. The trigger discharge film 28 can be formed, for example, by rubbing a core material made of a carbon-based material.

上記放電電極部18の表面には、略半球状の穴部29が多数形成されており、各穴部29内面に、ヨウ化ナトリウム(NaI)、モリブデン酸セシウム(CsMoO)、モリブデン酸カリウム(KMoO)及び臭化ルビジウム(RbBr)を含有した被膜30が形成されている。
図3及び図5に示すように、上記穴部29は、円筒状のケース部材12の内壁面24と同心の円(以下、同心円と称する)X,Y上に等間隔で配置形成されている。すなわち、同心円X上に、30度の等間隔で12個の穴部29が形成され、また、同心円Y上に、90度の等間隔で4個の穴部29が形成されている。また、円筒状のケース部材12の円心の位置にも1個の穴部29が配置形成されている。
尚、図3及び図5の同心円X,Yは説明の便宜上示した仮想円である。
A large number of substantially hemispherical holes 29 are formed on the surface of the discharge electrode 18, and sodium iodide (NaI), cesium molybdate (Cs 2 MoO 4 ), molybdic acid are formed on the inner surface of each hole 29. A film 30 containing potassium (K 2 MoO 4 ) and rubidium bromide (RbBr) is formed.
As shown in FIGS. 3 and 5, the holes 29 are formed at equal intervals on circles X and Y concentric with the inner wall surface 24 of the cylindrical case member 12 (hereinafter referred to as concentric circles). . That is, twelve hole portions 29 are formed on the concentric circle X at equal intervals of 30 degrees, and four hole portions 29 are formed on the concentric circle Y at equal intervals of 90 degrees. A single hole 29 is also arranged and formed at the center of the cylindrical case member 12.
The concentric circles X and Y in FIGS. 3 and 5 are virtual circles shown for convenience of explanation.

上記被膜30は、ヨウ化ナトリウムの粉末、モリブデン酸セシウムの粉末、モリブデン酸カリウムの粉末及び臭化ルビジウムの粉末を、珪酸ナトリウムと純水よりなるバインダーに添加したものを、放電電極部18表面の穴部29内面に塗布することによって形成することができる。
この場合、ヨウ化ナトリウム、モリブデン酸セシウム、モリブデン酸カリウム、臭化ルビジウムの含有割合は、ヨウ化ナトリウムが0.01〜40重量%、モリブデン酸セシウムが0.01〜40重量%、モリブデン酸カリウムが0.01〜40重量%、臭化ルビジウムが0.01〜40重量%と成すのが、放電開始電圧の安定化及び早期点弧の抑制効果向上の観点から好ましい。
また、ヨウ化ナトリウム、モリブデン酸セシウム、モリブデン酸カリウム及び臭化ルビジウムと、バインダーとの配合割合は、ヨウ化ナトリウム及びモリブデン酸セシウムが10〜90重量%、バインダーが10〜90重量%と成される。
尚、バインダー中の珪酸ナトリウムと純水との配合割合は、珪酸ナトリウムが0.01〜70重量%、純水が99.99〜30重量%の配合割合で混合される。
The coating 30 is obtained by adding sodium iodide powder, cesium molybdate powder, potassium molybdate powder, and rubidium bromide powder to a binder made of sodium silicate and pure water, on the surface of the discharge electrode portion 18. It can be formed by applying to the inner surface of the hole 29.
In this case, the content of sodium iodide, cesium molybdate, potassium molybdate, and rubidium bromide is 0.01 to 40% by weight for sodium iodide, 0.01 to 40% by weight for cesium molybdate, and potassium molybdate. Is preferably 0.01 to 40% by weight and rubidium bromide is 0.01 to 40% by weight from the viewpoint of stabilizing the discharge start voltage and improving the effect of suppressing early ignition.
The blending ratio of sodium iodide, cesium molybdate, potassium molybdate and rubidium bromide and the binder is 10 to 90% by weight for sodium iodide and cesium molybdate, and 10 to 90% by weight for the binder. The
The blending ratio of sodium silicate and pure water in the binder is such that sodium silicate is 0.01 to 70% by weight and pure water is 99.99 to 30% by weight.

上記気密外囲器16内には、ネオン(Ne)、アルゴン(Ar)及び水素(H)より成る放電ガスが封入されている。
この場合、ネオン、アルゴン、水素の混合割合は、ネオンが0.1〜70体積%、アルゴンが0.1〜70体積%、水素が0.1〜70体積%と成すのが、放電開始電圧の安定化及び早期点弧の抑制効果向上の観点から好ましい。
In the hermetic envelope 16, a discharge gas composed of neon (Ne), argon (Ar), and hydrogen (H 2 ) is enclosed.
In this case, the mixing ratio of neon, argon, and hydrogen is 0.1 to 70% by volume for neon, 0.1 to 70% by volume for argon, and 0.1 to 70% by volume for hydrogen. It is preferable from the viewpoint of stabilizing the heat and improving the effect of suppressing early ignition.

本考案の上記放電管10にあっては、放電電極を兼ねた上記一対の蓋部材14,14間に、当該放電管10の放電開始電圧以上の電圧が印加されると、トリガ放電膜28の両端と蓋部材14,14間の微小放電間隙26に電界が集中し、これにより微小放電間隙26に電子が放出されてトリガ放電としての沿面コロナ放電が発生する。次いで、この沿面コロナ放電は、電子のプライミング効果によってグロー放電へと移行する。そして、このグロー放電が放電電極部18,18間の放電間隙22へと転移し、主放電としてのアーク放電に移行するのである。   In the discharge tube 10 of the present invention, when a voltage equal to or higher than the discharge start voltage of the discharge tube 10 is applied between the pair of lid members 14 and 14 that also serve as discharge electrodes, the trigger discharge film 28 The electric field concentrates in the minute discharge gap 26 between the both ends and the lid members 14 and 14, whereby electrons are emitted into the minute discharge gap 26 to generate creeping corona discharge as a trigger discharge. Next, this creeping corona discharge shifts to glow discharge due to an electron priming effect. Then, the glow discharge is transferred to the discharge gap 22 between the discharge electrode portions 18 and 18, and the arc discharge is performed as the main discharge.

尚、放電電極部18の表面に形成する穴部29の形状は、上記した「略半球状」に限定されるものではなく、図6及び図7の放電管10の変形例に示すように、「略直方体状」であっても良い。
もっとも、穴部29を「略半球状」と成した場合の方が、被膜30の状態が安定化し、放電特性のバラツキを低減することができるので好ましい。すなわち、穴部29を「略半球状」と成した場合には、穴部29の全方向から表面張力が均等に掛かり、その結果、被膜30が全方向に均等に形成されるため、被膜30の状態が安定化し、放電特性のバラツキを低減することができるのである。
In addition, the shape of the hole 29 formed on the surface of the discharge electrode portion 18 is not limited to the above-described “substantially hemispherical”, and as shown in the modification of the discharge tube 10 in FIGS. 6 and 7, It may be “substantially rectangular parallelepiped”.
However, the case where the hole 29 is formed to be “substantially hemispherical” is preferable because the state of the coating 30 can be stabilized and variations in discharge characteristics can be reduced. That is, when the hole portion 29 is formed to be “substantially hemispherical”, the surface tension is uniformly applied from all directions of the hole portion 29, and as a result, the coating film 30 is formed uniformly in all directions. This stabilizes the state and can reduce variations in discharge characteristics.

而して、本考案の放電管10にあっては、被膜30中にヨウ化ナトリウム、モリブデン酸セシウム、モリブデン酸カリウム及び臭化ルビジウムを含有させると共に、ネオン、アルゴン及び水素で放電ガスを構成し、さらに、被膜30が形成される多数の穴部29を、円筒状のケース部材12の内壁面24と同心の円X,Y上に配置形成したことにより、放電開始電圧が安定的であると共に、早期点弧の発生を抑制することができる。
尚、被膜30が形成される多数の穴部29を、円筒状のケース部材12の内壁面24と同心の円X,Y上に配置形成することが、放電開始電圧の安定に寄与するのは以下の理由による。すなわち、被膜30が形成される多数の穴部29を、円筒状のケース部材12の内壁面24と同心の円X,Y上に配置形成すると、同一の円X又はY上に配置された各穴部29とケース部材12の内壁面24との距離は全て同一となる。
このため、ケース部材12の内壁面24の特定の箇所及び特定のトリガ放電膜28において、スパッタ飛散物の堆積量に多少の差が生じることを抑制でき、ケース部材12の内壁面24及びトリガ放電膜28へのスパッタ飛散物の堆積量が平準化されるので、放電開始電圧が安定化するのである。
Thus, in the discharge tube 10 of the present invention, the coating 30 contains sodium iodide, cesium molybdate, potassium molybdate and rubidium bromide, and the discharge gas is composed of neon, argon and hydrogen. Furthermore, since a large number of holes 29 in which the coating 30 is formed are arranged on the circles X and Y concentric with the inner wall surface 24 of the cylindrical case member 12, the discharge start voltage is stable. The occurrence of early firing can be suppressed.
The fact that the numerous holes 29 where the coating film 30 is formed is arranged on the circles X and Y concentric with the inner wall surface 24 of the cylindrical case member 12 contributes to the stability of the discharge start voltage. For the following reasons. That is, when a large number of holes 29 in which the coating 30 is formed are arranged on the circles X and Y concentric with the inner wall surface 24 of the cylindrical case member 12, each of the holes 29 arranged on the same circle X or Y is arranged. The distances between the hole 29 and the inner wall surface 24 of the case member 12 are all the same.
For this reason, it is possible to suppress the occurrence of a slight difference in the amount of spatter scattered in a specific portion of the inner wall surface 24 of the case member 12 and a specific trigger discharge film 28, and the inner wall surface 24 and trigger discharge of the case member 12 can be suppressed. Since the amount of spatter scattered on the film 28 is leveled, the discharge start voltage is stabilized.

図8は、本考案に係る放電管10と、比較例の放電管における、暗中での放電回数と初期放電開始電圧との関係を示すグラフである。これら放電管は、何れも放電開始電圧が800Vに設定されているものを用いており、この場合、初期放電開始電圧が980V(最高限界電圧)を越えた場合、或いは、初期放電開始電圧が720V(最低限界電圧)を下回った場合に使用に適さないものと評価される。
本考案に係る放電管10として、被膜30中のヨウ化ナトリウム、モリブデン酸セシウム、モリブデン酸カリウム及び臭化ルビジウムの含有割合が5:1:1:1と成され、放電ガス中のネオン、アルゴン、水素の混合割合が、ネオン50体積%、アルゴン30体積%、水素20体積%と成されているものを用いた。
また、比較例の放電管として、従来の放電管60の如く、被膜の形成される穴部が、放電電極部の表面にマトリクス状に配置形成されると共に、被膜中にヨウ化ナトリウムが含有され、また、アルゴン77体積%、クリプトン3体積%、水素20体積%で放電ガスを構成したものを用いた。
尚、初期放電開始電圧は、放電管を繰り返し動作させた場合における初回の放電開始電圧のことをいい、この初期放電開始電圧に続く2回目以降の放電開始電圧を追随放電開始電圧という。
図8のグラフに示される通り、比較例の放電管の場合(図8のグラフB)には、放電回数が10万回を越えると徐々に初期放電開始電圧が上昇していくのに対し、本考案の放電管10の場合(図8のグラフA)には、放電回数が20万回となっても初期放電開始電圧がほぼ一定であり、安定していることが判る。
FIG. 8 is a graph showing the relationship between the number of discharges in the dark and the initial discharge start voltage in the discharge tube 10 according to the present invention and the discharge tube of the comparative example. Each of these discharge tubes uses a discharge start voltage set to 800 V. In this case, when the initial discharge start voltage exceeds 980 V (maximum limit voltage), or the initial discharge start voltage is 720 V. It is evaluated as unsuitable for use when the value is below (minimum limit voltage).
As the discharge tube 10 according to the present invention, the content ratio of sodium iodide, cesium molybdate, potassium molybdate and rubidium bromide in the coating 30 is 5: 1: 1: 1, and neon and argon in the discharge gas. The mixture ratio of hydrogen is 50% by volume of neon, 30% by volume of argon, and 20% by volume of hydrogen.
Further, as a discharge tube of a comparative example, like the conventional discharge tube 60, holes where a film is formed are arranged and formed in a matrix on the surface of the discharge electrode part, and the film contains sodium iodide. Further, a discharge gas composed of 77% by volume of argon, 3% by volume of krypton, and 20% by volume of hydrogen was used.
The initial discharge start voltage refers to the first discharge start voltage when the discharge tube is repeatedly operated, and the second and subsequent discharge start voltages subsequent to the initial discharge start voltage are referred to as follow-up discharge start voltages.
As shown in the graph of FIG. 8, in the case of the discharge tube of the comparative example (graph B of FIG. 8), the initial discharge start voltage gradually increases when the number of discharges exceeds 100,000, In the case of the discharge tube 10 of the present invention (graph A in FIG. 8), it can be seen that the initial discharge start voltage is substantially constant and stable even when the number of discharges reaches 200,000.

図9は、本考案に係る放電管10と、上記比較例の放電管における、暗中での放電回数と追随放電開始電圧との関係を示すグラフである。この場合、追随放電開始電圧が920V(最高限界電圧)を越えた場合、或いは、追随放電開始電圧が720V(最低限界電圧)を下回った場合に使用に適さないものと評価される。
図9のグラフに示される通り、比較例の放電管の場合(図9のグラフB)には、放電回数が20万回程度で追随放電開始電圧が最低限界電圧である720Vまで低下している。
これに対し、本考案の放電管10の場合(図9のグラフA)には、放電回数が20万回となっても追随放電開始電圧が最低限界電圧である720Vを上回って推移しており、長寿命化が実現されていることが判る。
FIG. 9 is a graph showing the relationship between the number of discharges in the dark and the follow-up discharge start voltage in the discharge tube 10 according to the present invention and the discharge tube of the comparative example. In this case, when the follow-up discharge start voltage exceeds 920 V (maximum limit voltage), or when the follow-up discharge start voltage falls below 720 V (minimum limit voltage), it is evaluated as unsuitable for use.
As shown in the graph of FIG. 9, in the case of the discharge tube of the comparative example (graph B of FIG. 9), the number of discharges is about 200,000 times, and the follow-up discharge start voltage is reduced to 720 V, which is the lowest limit voltage. .
On the other hand, in the case of the discharge tube 10 of the present invention (graph A in FIG. 9), even if the number of discharges is 200,000 times, the follow-up discharge start voltage has moved above the minimum limit voltage of 720V. It can be seen that a long life is realized.

図10は、放電開始電圧が800Vに設定されている本考案の放電管10を、10ms間隔で動作させた場合の放電開始電圧の推移を示すチャートである。
図10のチャートに示される通り、本考案の放電管10は、早期点弧が発生することなく、安定した放電開始電圧が得られている。
FIG. 10 is a chart showing the transition of the discharge start voltage when the discharge tube 10 of the present invention in which the discharge start voltage is set to 800 V is operated at intervals of 10 ms.
As shown in the chart of FIG. 10, in the discharge tube 10 of the present invention, a stable discharge start voltage is obtained without causing early firing.

本考案に係る放電管を示す概略断面図である。It is a schematic sectional drawing which shows the discharge tube which concerns on this invention. 図1のB−B概略断面図である。It is BB schematic sectional drawing of FIG. 図1のC−C概略断面図である。It is CC schematic sectional drawing of FIG. 本考案に係る放電管の要部拡大断面図である。It is an important section expanded sectional view of a discharge tube concerning the present invention. 本考案に係る放電管の放電電極部表面を示す拡大図である。It is an enlarged view which shows the discharge electrode part surface of the discharge tube which concerns on this invention. 本考案に係る放電管の変形例の放電電極部表面を示す拡大図である。It is an enlarged view which shows the discharge electrode part surface of the modification of the discharge tube which concerns on this invention. 本考案に係る放電管の変形例の要部拡大断面図である。It is a principal part expanded sectional view of the modification of the discharge tube which concerns on this invention. 本考案に係る放電管と比較例の放電管における、放電回数と初期放電開始電圧との関係を示すグラフである。It is a graph which shows the relationship between the frequency | count of discharge and the initial stage discharge start voltage in the discharge tube which concerns on this invention, and the discharge tube of a comparative example. 本考案に係る放電管と比較例の放電管における、放電回数と追随放電開始電圧との関係を示すグラフである。It is a graph which shows the relationship between the frequency | count of discharge and a follow-up discharge start voltage in the discharge tube which concerns on this invention, and the discharge tube of a comparative example. 本考案に係る放電管を、10ms間隔で動作させた場合の放電開始電圧の推移を示すチャートである。It is a chart which shows transition of the discharge start voltage at the time of operating the discharge tube concerning this invention at intervals of 10 ms. 従来の放電管を示す概略断面図である。It is a schematic sectional drawing which shows the conventional discharge tube. 従来の放電管の要部拡大断面図である。It is a principal part expanded sectional view of the conventional discharge tube. 図11のA−A概略断面図である。It is AA schematic sectional drawing of FIG.

符号の説明Explanation of symbols

10 放電管
12 ケース部材
14 蓋部材
16 気密外囲器
18 放電電極部
20 接合部
22 放電間隙
24 ケース部材の内壁面
26 微小放電間隙
28 トリガ放電膜
29 穴部
30 被膜
X 円筒状のケース部材の内壁面と同心の円
Y 円筒状のケース部材の内壁面と同心の円
10 discharge tube
12 Case material
14 Lid member
16 Airtight envelope
18 Discharge electrode
20 joints
22 Discharge gap
24 Inner wall surface of case member
26 Micro discharge gap
28 Trigger discharge membrane
29 holes
30 Coating X Circle concentric with the inner wall surface of the cylindrical case member Y Circle concentric with the inner wall surface of the cylindrical case member

Claims (4)

円筒状のケース部材の両端開口部を、放電電極を兼ねた一対の蓋部材で気密に封止することによって気密外囲器を形成すると共に、該気密外囲器内に、ネオン、アルゴン及び水素で構成された放電ガスを封入し、また、気密外囲器内に配置される上記蓋部材の放電電極部間に放電間隙を形成すると共に、上記ケース部材の内壁面に、その両端が上記蓋部材と微小放電間隙を隔てて配置された複数のトリガ放電膜を形成し、さらに、上記放電電極部の表面に、多数の穴部を形成すると共に、上記穴部内面に、ヨウ化ナトリウム、モリブデン酸セシウム、モリブデン酸カリウム及び臭化ルビジウムを含有した被膜を形成して成る放電管であって、上記多数の穴部を、円筒状のケース部材の内壁面と同心の円上に配置形成したことを特徴とする放電管。   A hermetic envelope is formed by hermetically sealing the opening portions at both ends of the cylindrical case member with a pair of lid members that also serve as discharge electrodes, and neon, argon, and hydrogen are formed in the hermetic envelope. And a discharge gap is formed between the discharge electrode portions of the lid member disposed in the hermetic envelope, and both ends of the lid are formed on the inner wall surface of the case member. Forming a plurality of trigger discharge films arranged with a gap between the member and the minute discharge gap, and further forming a plurality of holes on the surface of the discharge electrode part, and sodium iodide, molybdenum on the inner surface of the hole part; A discharge tube in which a film containing cesium oxide, potassium molybdate and rubidium bromide is formed, wherein the numerous holes are arranged and formed on a circle concentric with the inner wall surface of the cylindrical case member. Discharge characterized by . 上記穴部を、略半球状と成したことを特徴とする請求項1に記載の放電管。   The discharge tube according to claim 1, wherein the hole portion has a substantially hemispherical shape. 上記ヨウ化ナトリウムの含有割合が0.01〜40重量%、モリブデン酸セシウムの含有割合が0.01〜40重量%、モリブデン酸カリウムの含有割合が0.01〜40重量%、臭化ルビジウムの含有割合が0.01〜40重量と成されていることを特徴とする請求項1又は2に記載の放電管。   The sodium iodide content is 0.01 to 40% by weight, the cesium molybdate content is 0.01 to 40% by weight, the potassium molybdate content is 0.01 to 40% by weight, and rubidium bromide. The discharge tube according to claim 1 or 2, wherein the content ratio is 0.01 to 40 weight. 上記ネオンの混合割合が0.1〜70体積%、アルゴンの混合割合が0.1〜70体積%、水素の混合割合が0.1〜70体積%と成されていることを特徴とする請求項1乃至3の何れかに記載の放電管。   The neon mixing ratio is 0.1 to 70% by volume, the argon mixing ratio is 0.1 to 70% by volume, and the hydrogen mixing ratio is 0.1 to 70% by volume. Item 4. The discharge tube according to any one of Items 1 to 3.
JP2008000657U 2008-02-12 2008-02-12 Discharge tube Expired - Lifetime JP3141150U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008000657U JP3141150U (en) 2008-02-12 2008-02-12 Discharge tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008000657U JP3141150U (en) 2008-02-12 2008-02-12 Discharge tube

Publications (2)

Publication Number Publication Date
JP3141150U true JP3141150U (en) 2008-04-24
JP3141150U7 JP3141150U7 (en) 2008-08-14

Family

ID=43291221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008000657U Expired - Lifetime JP3141150U (en) 2008-02-12 2008-02-12 Discharge tube

Country Status (1)

Country Link
JP (1) JP3141150U (en)

Similar Documents

Publication Publication Date Title
JP4651434B2 (en) Discharge tube
JP3141150U (en) Discharge tube
JP3151069U (en) Discharge tube
JP3141150U7 (en)
JP3114203U (en) Discharge tube
JP3114203U7 (en)
JP4977524B2 (en) Discharge tube and manufacturing method thereof
JP3141985U (en) Discharge tube
JP3140979U (en) Discharge tube
JP3140978U (en) Discharge tube
JP3125268U (en) Discharge tube
JP3125264U (en) Discharge tube
JP3133824U (en) Discharge tube
JP3128365U (en) Discharge tube
JP3150958U (en) Discharge tube
JP3141982U (en) Discharge tube
JP3125267U (en) Discharge tube
JP3150959U (en) Discharge tube
JP3141984U (en) Discharge tube
JP3125270U (en) Discharge tube
JP3128033U (en) Discharge tube
JP4651433B2 (en) Discharge tube
JP4764076B2 (en) Discharge tube
JP3128032U (en) Discharge tube
JP3125266U (en) Discharge tube

Legal Events

Date Code Title Description
A623 Registrability report

Free format text: JAPANESE INTERMEDIATE CODE: A623

Effective date: 20080314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 3

R231 Written correction (descriptions, etc.)

Free format text: JAPANESE INTERMEDIATE CODE: R231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 3

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term