JP3132254B2 - 軟磁性膜および軟磁性多層膜の製造方法 - Google Patents

軟磁性膜および軟磁性多層膜の製造方法

Info

Publication number
JP3132254B2
JP3132254B2 JP05195860A JP19586093A JP3132254B2 JP 3132254 B2 JP3132254 B2 JP 3132254B2 JP 05195860 A JP05195860 A JP 05195860A JP 19586093 A JP19586093 A JP 19586093A JP 3132254 B2 JP3132254 B2 JP 3132254B2
Authority
JP
Japan
Prior art keywords
soft magnetic
film
bias
magnetic film
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05195860A
Other languages
English (en)
Other versions
JPH06124846A (ja
Inventor
久美男 名古
勇 青倉
斉 山西
浩一 小佐野
博 榊間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP05195860A priority Critical patent/JP3132254B2/ja
Publication of JPH06124846A publication Critical patent/JPH06124846A/ja
Application granted granted Critical
Publication of JP3132254B2 publication Critical patent/JP3132254B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、磁気録画再生装置(V
TR)、磁気録音再生装置等の磁気記録再生装置におけ
る磁気ヘッド等に用いられる軟磁性膜および軟磁性多層
膜の製造方法に関するものである。
【0002】
【従来の技術】近年の磁気記録分野における高密度記録
化の要求に対して、高性能磁気ヘッドの開発が進められ
ている。高密度記録を達成するためには、磁気ヘッドの
トラック幅やギャップ長を極力小さく設定し、高い飽和
磁束密度と高透磁率を有する軟磁性膜をコア材料に用い
た磁気ヘッドを作製することが必要となってきた。
【0003】このような要求に対して、磁気ヘッドとし
ては、軟磁性膜と非磁性絶縁膜とをトラック幅方向に交
互に積層したコア材料が基板で挟持され、前記コア材料
で磁気回路が形成される夕イプのリング型の積層型ヘッ
ドや、磁路の大部分がフェライトで構成され、磁気的に
飽和しやすい磁気ギャップ近傍にのみ軟磁性膜を設けた
磁気ヘッド(MIGヘッドと呼ばれている)が開発され
ている。また、磁気ヘッドの特性は、それに使用するコ
ア材料の材料特性に密接に関連しており、高密度記録を
達成するためには、磁気ヘッドのコア材料の特性とし
て、高い飽和磁束密度(主に記録特性に影響)と高透磁
率(主に再生特性に影響)が要求されている。
【0004】この様な要求に対して、前記積層型ヘッド
のコア材料としては、等方的な高透磁率が要求され(磁
気ヘッドの形状によっては弱い異方性を有する方が良
い)、現在センダスト(Fe−Al−Si系合金)膜や
Co基非晶質合金膜が実用化されている。また、前記M
IGヘッドのコア材料としては、面内一軸異方性を誘導
させた高透磁率を有する軟磁性膜が好ましく、センダス
ト合金膜やCo基非晶質合金膜が実用化されている。し
かしながら、センダスト合金膜やCo基非晶質合金膜の
飽和磁束密度は約1T前後と低く、更に、高い保磁力を
有する媒体を用いて高密度記録を実現するためには、こ
れら従来の材料では飽和磁束密度に限界がある。
【0005】そこで、高い飽和磁束密度と高透磁率を有
する軟磁性膜の研究開発が盛んに行なわれている。その
一つとして、(Fe,Co)−M−(N,C,B)系膜
(ただし、MはZr、Hf、Ti、Nb、Taの少なく
とも1種以上の元素)、Fe−Co−B系、Fe−N系
膜等が研究されている。
【0006】一方、センダスト合金膜やパーマロイ薄膜
等の軟磁性膜作製技術としては、電子ビーム蒸着法やス
パッタ法等が研究されてきた。特に、マグネトロンスパ
ッタ法は、薄膜の形成速度が電子ビーム蒸着法に比べ約
1桁遅いというスパッタ法の欠点を解決し、薄膜形成速
度の高速化を可能にした。また、矩形平板ターゲットを
有するマグネトロンスパッタリング電極を具備し、円筒
型の基板ホルダーを回転させながら薄膜形成を行なうカ
ルーセル型スパッタ装置やターゲットに対し基板を平行
移動させて薄膜形成を行なう大型のインラインスパッタ
装置等は、マグネトロンスパッタ法の特徴である薄膜形
成速度の高速化のみならず、均一な膜厚分布の大面積化
も可能にし、軟磁性膜形成の量産化を可能にした。
【0007】(図18)は従来の矩形平板ターゲットを
有するマグネトロンスパッタリング電極の概略図であ
る。ターゲット1はインジウム等のハンダ剤によりバッ
キングプレート5に接着され、真空シール用のO−リン
グを介して電極本体6に設置される。前記ターゲット1
の裏側にはマグネトロン放電用磁気回路が具備され、閉
じた磁力線7を形成し、かつ少なくとも前記磁力線7の
一部が、前記ターゲット1の表面で平行になるように配
置される。その結果、前記ターゲット1の表面にはトロ
イダル型の閉じたトンネル状の磁界8が形成される。そ
して、前記矩形平板ターゲット1を取り付けたスパッタ
リング電極に直流あるいは交流電源により負の電圧を印
加すると、電界と磁界が直交するトロイダル型トンネル
状磁界8の周辺でマグネトロン放電が起こり、ターゲッ
ト1がスパッタされ、基板4上に軟磁性膜が形成され
る。
【0008】
【発明が解決しようとする課題】しかしながら、高い飽
和磁束密度と高透磁率を有する前述の(Fe,Co)−
M−(N,C,B)系膜(ただし、Mは、Zr、Hf、
Ti、Nb、Taの少なくとも1種以上の元素)、Fe
−Co−B系、Fe−N系膜等を前述の従来の矩形平板
ターゲットを有するマグネトロンスパッタ法、または窒
化膜を作製する際に窒素ガスを導入する反応性スパッタ
法で作製する場合、飽和磁束密度の高い(Fe,Co)
−M系(ただし、MはZr、Hf、Ti、Nb、Taの
少なくとも1種以上の元素)、Fe−Co−B系、Fe
等の矩形平板ターゲットを放電させる必要があるが、タ
ーゲットを少し厚くすると、ターゲット表面に磁束が漏
れないため、マグネトロン放電が起こらず、スパッタリ
ングが不可能である。
【0009】そこで、ターゲットの厚みを薄くすると、
マグネトロン放電が起こり、スパッタリングは可能とな
る。しかしながら、前記従来のマグネトロンスパッタ法
では、スパッタされる領域((図18)の9、以下エロ
ージョン領域と記す)とスパッタされた粒子が再付着す
る領域が出来、ターゲットの侵食が不均一に進むため、
スパッタリングが進むとエロージョン領域が変化する。
その結果、膜厚分布が変化し、また、作製した膜の磁気
特性も変化する。従って、従来のマグネトロンスパッタ
法では、ターゲットの厚みを薄くすると、ターゲットの
利用効率が悪く、量産性に課題を生じる。
【0010】一方、前述したように前記積層型ヘッドの
コア材料としては、膜面内の等方的な高透磁率が要求さ
(磁気ヘッドの形状によっては弱い異方性を有する方
が良い)、前記MIGヘッドや主磁極励磁型ヘッド等の
コア材料としては、面内一軸異方性を誘導させた高透磁
率を有する軟磁性膜が要求されるため、異方性の制御が
重要である。
【0011】本発明は、各種磁気ヘッドに要求される、
所望の異方性を有する高透磁率と高飽和磁束密度を示す
軟磁性膜、及び前記軟磁性膜をコア材料に使用した磁気
ヘッドを量産性高く製造する方法を提供せんとするもの
である。
【0012】
【課題を解決するための手段】本発明は、矩形平板ター
ゲットの表面に平行に磁力線が通り、かつ、前記磁力線
の強度が、前記磁力線の方向に略平行な方向のターゲッ
トの中心線に対し、左右対称で前記磁力線の方向が反対
であるように磁石を配置したスパッタリング電極を具備
したスパッタ装置を用いて、FeまたはCoを主成分と
する軟磁性膜、特に、Feを主成分とし、Nを5〜20
原子%含むと共にM(ただし、Mは、Ta、Zr、H
f、Nb、Tiの少なくとも1種以上の元素)を5〜1
5原子%含む組成を有するFe−M−N系膜を形成する
基板に、小さなバイアス(無バイアスも含む)を印加し
ながら、前記軟磁性膜を形成することにより、各種磁気
ヘッドに要求される、所望の異方性を有する高透磁率と
高飽和磁束密度を示す軟磁性膜を量産性高く製造する方
法を提供することが出来る。
【0013】また、前記軟磁性膜と非磁性膜を交互に積
層した軟磁性多層膜において、各層の軟磁性膜を、バイ
アス(無バイアスも含む)を印加しながら、または各層
の軟磁性膜の少なくとも1層の軟磁性膜を、異なった大
きさのバイアス(無バイアスも含む)を印加して形成す
ることにより、基板上に形成された軟磁性膜は、大面積
にわたって等方的、または弱い異方性を有する高透磁率
を示し、量産性高く、前記積層型ヘッドのコア材料とし
ての軟磁性膜を提供することが出来る。
【0014】特に、Feを主成分とし、Nを5〜20原
子%含むと共にM(ただし、Mは、Ta、Zr、Hf、
Nb、Tiの少なくとも1種以上の元素)を5〜15原
子%含む組成を有するFe−M−N系軟磁性膜と非磁性
膜を交互に積層した軟磁性多層膜において、各層の軟磁
性膜が、バイアス(無バイアスも含む)を印加しなが
ら、または各層の軟磁性膜の少なくとも1層の軟磁性膜
が、異なった大きさのバイアス(無バイアスも含む)を
印加して形成され、かつ、前記軟磁性膜、および非磁性
が特定の厚みである軟磁性多層膜は、大面積にわたっ
て高周波帯域で等方的、または弱い異方性を有する高透
磁率を示し、量産性高く、高周波帯域で駆動するシステ
ムに用いられる、前記積層型ヘッドのコア材料としての
軟磁性膜を提供することが出来る。
【0015】また、前記Fe−M−N系軟磁性膜が、F
eを主成分とし、Nを5〜20原子%含むと共にM(た
だし、Mは、Ta、Zr、Hf、Nb、Tiの少なくと
も1種以上の元素)を5〜15原子%含む組成を有し、
かつ、前記軟磁性膜が、M(ただし、Mは、Ta、Z
r、Hf、Nb、Tiの少なくとも1種以上の元素)、
N(窒素)、Mの窒化物の少なくとも1種以上の元素、
あるいは化合物を固溶して格子が膨張したα−Feの微
結晶とMの窒化物微粒子が混在した微細組織から成る材
料であり、前記α−Feの微結晶の平均粒径が15nm
以下、Mの窒化物微粒子の平均粒径が5nm以下である
とき、更に優れた軟磁気特性を示す軟磁性膜を提供する
ことが出来る。
【0016】
【作用】(請求項1)の発明の構成によれば、Feまた
はCoを主成分とする軟磁性膜の製造方法において、矩
形平板ターゲットの表面に平行に磁力線が通り、かつ、
前記磁力線の強度が、前記磁力線の方向に略平行な方向
のターゲットの中心線に対し、左右対称で前記磁力線の
方向が反対であるように磁石を配置したスパッタリング
電極を具備したスパッタ装置を用いて、前記軟磁性膜を
基板上に形成するものであるから、高飽和磁束密度と高
透磁率を有する軟磁性膜が、量産性高く得られる。
【0017】特に、(請求項2)または(請求項3)の
発明の構成によれば、Feを主成分とし、Nを5〜20
原子%含むと共にM(ただし、Mは、Ta、Zr、H
f、Nb、Tiの少なくとも1種以上の元素)を5〜1
5原子%含む組成を有する軟磁性膜の製造方法におい
て、矩形平板ターゲットの表面に平行に磁力線が通り、
かつ、前記磁力線の強度が、前記磁力線の方向に略平行
な方向のターゲットの中心線に対し、左右対称で前記磁
力線の方向が反対であるように磁石を配置したスパッタ
リング電極を具備したスパッタ装置を用いて、前記軟磁
性膜を基板上に形成するものであるから、高飽和磁束密
度と高透磁率を有する軟磁性膜が、量産性高く得られ
る。
【0018】(請求項4)の発明の構成によれば、(請
求項1)〜(請求項3)のいずれかに記載の軟磁性膜の
製造方法において、前記軟磁性膜を形成する基板に、バ
イアス(無バイアスも含む)を印加しながら、前記軟磁
性膜を形成するものであるから、基板上に形成された軟
磁性膜は、大面積にわたって透磁率の異方性の向きが一
方向に揃い、MIGヘッドや主磁極励磁型ヘッド等のコ
ア材料として最適であり、量産性高く、前記MIGヘッ
ド等のコア材料としての軟磁性膜を提供することが出来
る。
【0019】(請求項5)または(請求項6)の発明の
構成によれば、(請求項1)〜(請求項3)のいずれか
に記載の軟磁性膜と非磁性膜を交互に積層した軟磁性多
層膜において、各層の軟磁性膜が、バイアス(無バイア
スも含む)を印加しながら、あるいは各層の軟磁性膜の
少なくとも1層の軟磁性膜が、異なった大きさのバイア
ス(無バイアスも含む)を印加して形成されるものであ
るから、基板上に形成された軟磁性膜は、大面積にわた
って等方的、または弱い異方性を有する高透磁率特性を
示し、量産性高く、前記積層型ヘッド等のコア材料とし
ての軟磁性膜を提供することが出来る。
【0020】(請求項7)(請求項8)の発明の構成に
よれば、(請求項4)〜(請求項6)のいずれかに記載
のバイアスの大きさが、パワー密度で3700W/m2
下であるから、量産性高く、前記MIGヘッド等のコア
材料としての軟磁性膜を提供することが出来る。
【0021】(請求項)の発明の構成によれば、(請
求項2)〜(請求項)のいずれかに記載の軟磁性膜
および(請求項5)〜(請求項8)のいずれかに記載の
軟磁性多層膜の軟磁性膜が、Feを主成分とし、Nを5
〜20原子%含むと共にM(ただし、Mは、Ta、Z
r、Hf、Nb、Tiの少なくとも1種以上の元素)を
5〜15原子%含む組成を有する軟磁性膜である場合、
前記軟磁性膜が、M(ただし、Mは、Ta、Zr、H
f、Nb、Tiの少なくとも1種以上の元素)、N(窒
素)、Mの窒化物の少なくとも1種以上の元素、あるい
は化合物を固溶して格子が膨張したα-Feの微結晶と
Mの窒化物微粒子が混在した微細組織から成る材料であ
り、前記α-Feの微結晶の平均粒径が15nm以下、
Mの窒化物微粒子の平均粒径が5nm以下であるもので
あるとき、更に優れた軟磁気特性を示す軟磁性膜を提供
することが出来る。
【0022】
【0023】
【実施例】(実施例1) (図1)は、本実施例で用いた量産用スパッタ装置の電
極部分と基板設置位置を示す概略図の一例である。以
下、(図1)について説明する。(図18)に示した従
来例と同一物には共通の符号を付して示し、その説明は
省略する。
【0024】矩形ターゲット1の側面に永久磁石2が配
置され磁場発生用の磁気回路を形成する。個々の永久磁
石2は、磁界強度を変化させることが出来るように、数
個の小片の磁石で構成されており、矩形ターゲット1の
表面に平行に通る磁力線3の強度が、前記磁力線の方向
に略平行な方向のターゲットの中心線Aに対し、左右対
称で前記磁力線の方向が反対であるように配置されてい
る。そして、矩形ターゲット1を取り付けたスパッタリ
ング電極に直流あるいは交流電源により負の電圧を印加
する。矩形ターゲット1の上方には前記ターゲット1の
表面に平行に基板4が配置され、基板4には、バイアス
を印加することが出来るようになっている。
【0025】また、矩形ターゲットの表面に平行に通る
磁力線の方向が一方向になるように磁石を配置した場
合、磁場と電場による電子の螺旋運動が一方向に限られ
てしまうため、ターゲットの表面に平行に通る磁力線に
直行する方向にプラズマ密度の高低を生じ、その結果、
膜厚分布に極端な勾配を生じるという問題を生じる。
【0026】縦127mm、横381mmのFe−Ta
の矩形合金ターゲットを用い、(図1)に示したスパッ
タ装置を用いて、Arガス中にN2ガスを導入する反応
性スパッタ法により、Fe−Ta−N系軟磁性膜を作製
した。基板を設置する基板ホルダーの有効面積は、2.
7×10-22(縦100mm、横270mmで、基板
ホルダー全体に高周波(RF)バイアスを0〜150W
(パワー密度に換算すると0〜5556W/m2)の範
囲で印加し、熱膨張係数115×10-7/℃の水冷した
非磁性セラミックス基板上に、膜厚2.5μmのFe−
Ta−N系軟磁性膜を形成した。
【0027】(図2)にターゲット表面直上のターゲッ
ト表面に平行方向の磁界分布の一例を示した。(図2)
におけるターゲットの中心線Aは、(図1)のターゲッ
トの中心線Aと同一のものであり、磁界の符号は、(図
1)の側磁石のN極から側磁石のS極へと磁力線が
通るときを正、逆に側磁石のN極から側磁石のS極
へと磁力線が通るときを負としている。作製したFe−
Ta−N膜の組成分析は、RBS(ラザフォード後方散
乱)により行った。基板ホルダー全体に印加した高周波
(RF)バイアスと膜組成の関係を(図3)に示す。
(図3)より、バイアス0〜100Wまで膜中Fe含有
量に変化は見られず、約79原子%の一定値を示してい
る。
【0028】また、膜中Ta、及びN含有量は、バイア
ス0〜20Wまで変化せず、約10原子%の一定値を示
し、バイアス100Wにおいても大きな変化は見られ
ず、Ta含有量が約1原子%増加し、N含有量が約2原
子%減少するだけである。また、膜中にArが0.7〜
1.5原子%含有しているが、不可避的に数原子%のA
r、または酸素が不純物として、膜中に含有することも
ある。
【0029】作製した膜はすべて、真空中、無磁界中で
550℃の温度で1時間の熱処理を行った。これらの膜
の保磁力Hcと基板ホルダー全体に印加した高周波バイ
アスの関係を(図4)に示す。(図4)に示すように、
バイアス0〜80Wまでは、Hcの値が20A/m以下
の良好な軟磁気特性を有する軟磁性膜が得られる。しか
しながら、バイアスが100W以上になると、急激にH
cが増加し(その値は約500A/mを示す)、軟磁気
特性は劣化する。この軟磁気特性の大きな変化は、(図
5)に示すように膜構造の変化によるものである。(図
5)は、膜のX線回折図形のバイアスによる変化を示し
たものである。(図5)から、0〜80Wの範囲の高周
波バイアスを印加して作製した、良好な軟磁気特性を示
す膜は、格子が膨張したα−FeとTaの窒化物の混在
した微細構造を有するものであることが分かる。また、
電子顕微鏡観察の結果、これらの膜のα−Feの微結晶
の平均粒径は15nm以下であり、Taの窒化物微粒子
の平均粒径は5nm以下であった。また、良好な軟磁気
特性を示したこれらの膜の飽和磁束密度Bsは、1.5
〜1.6Tであり、飽和磁歪λsは絶対値で10-6以下
であった。
【0030】(実施例2) (実施例1)と同様の方法で、0〜80Wの範囲の高周
波バイアスを印加して作製した、Fe−Ta−N系軟磁
性膜の膜面内の透磁率の測定を行った。膜厚は2.5μ
mで、膜の保磁力、飽和磁束密度、飽和磁歪、膜組成、
及び膜構造は、(実施例1)と同じである。
【0031】作製した膜の膜面内の透磁率の異方性は、
斜め入射の影響で基板位置によって変化する。一例とし
て、基板位置の異なった膜の膜面内の1MHzにおける
複素透磁率の実数部μ′の変化を(図6)および(図
7)に示す。膜の作製は、無バイアス、及び20W、8
0Wの高周波バイアスを印加して行った。(図6)に示
した基板位置で作製された膜は、無バイアスでは等方的
な高透磁率を示し、20W、及び80Wのバイアスで
は、一軸異方性を示している。一方、(図7)に示した
基板位置で作製された膜は、無バイアスで透磁率に異方
性を示すが、バイアス20Wで比較的、等方的な透磁率
を示し、バイアス80Wでは、一軸異方性を示すように
なる。80Wのバイアスを印加して作製した膜は、すべ
ての基板位置において、高透磁率を示す方向が一方向に
揃い、前記MIGヘッド等に適したコア材料を量産性高
く作製することが出来る。
【0032】前述のように、無バイアスでFe−Ta−
N系軟磁性膜を作製した場合、(図6)に示した基板位
置では、等方的な高透磁率を示すが、(図7)に示した
基板位置では、透磁率に異方性を生じる。また、バイア
ス20Wでは、(図7)に示した基板位置では、等方的
な高透磁率を示すが、(図6)に示した基板位置では、
透磁率に異方性を生じる。
【0033】しかしながら、無バイアスで作製したFe
−Ta−N系軟磁性膜と20Wの高周波バイアスを印加
して作製したFe−Ta−N系軟磁性膜を非磁性膜を介
して交互に積層した軟磁性多層膜は、(図6)に示した
基板位置においても、(図7)に示した基板位置におい
ても、共に等方性膜化し、基板ホルダー内の等方性膜領
域が拡大する。これは、前記軟磁性多層膜の膜面内の透
磁率の変化が、各層の無バイアスで作製した膜とバイア
ス20Wで作製した膜の相加平均値を示すのではなく、
各層磁性膜の面内において、透磁率の高い方にひっぱら
れる傾向を示し、等方性膜化するためである。
【0034】(実施例3) (実施例1)と同様の方法で、無バイアスで作製したF
e−Ta−N系軟磁性膜と20Wの高周波バイアスを印
加して作製したFe−Ta−N系軟磁性膜をSiO2
磁性膜を介して交互に積層した軟磁性多層膜を作製し
た。各層のSiO2非磁性膜の厚みは0.15μmとし、
各層のFe−Ta−N系軟磁性膜の厚みは2.5μmと
し、Fe−Ta−N系軟磁姓膜の総厚みが15μmとな
るように軟磁性多層膜を作製した。
【0035】比較として、無バイアスで作製した、Fe
−Ta−N系軟磁性膜(膜厚2.5μm)とSiO2非磁
性膜(膜厚0.15μm)を交互に積層した軟磁性多層
膜、及び20Wの高周波バイアスを印加して作製したF
e−Ta−N系軟磁性膜(膜厚2.5μm)とSiO2
磁性膜(膜厚0.15μm)を交互に積層した軟磁性多
層膜(Fe−Ta−N系軟磁性膜の総厚みが15μm)
を作製した。無バイアス、及び20Wの高周波バイアス
を印加して作製した各層のFe−Ta−N系軟磁性膜の
組成は、(実施例1)、(実施例2)と同様、Ta1
0.5原子%、N10原子%、Fe79.5原子%であっ
た。また、各層のFe−Ta−N系軟磁性膜の保磁力、
飽和磁束密度、飽和磁歪、及び膜構造も、(実施例
1)、(実施例2)と同じである。
【0036】一例として、ひとつの基板位置における前
記3者の軟磁性多層膜の膜面内の1MHzにおける複素
透磁率の実数部μ′の変化を(図8)に示す。(図8)
において、(P)は無バイアスで作製したFe−Ta−
N系軟磁性膜と20Wの高周波バイアスを印加して作製
したFe−Ta−N系軟磁性膜をSiO2非磁性膜を介
して交互に積層した軟磁性多層膜、(Q)は無バイアス
で作製したFe−Ta−N系軟磁性膜とSiO2非磁性
膜を交互に積層した軟磁性多層膜、(R)は20Wのバ
イアスを印加して作製したFe−Ta−N系軟磁性膜と
SiO2非磁性膜を交互に積層した軟磁性多層膜であ
る。
【0037】(図8)に示すように、無バイアスで作製
したFe−Ta−N系軟磁性膜とSiO2非磁性膜を交
互に積層した軟磁性多層膜(Q)、及び20Wのバイア
スを印加して作製したFe−Ta−N系軟磁性膜とSi
2非磁性膜を交互に積層した軟磁性多層膜(R)は、
透磁率に異方性を生じるが、無バイアスで作製したFe
−Ta−N系軟磁性膜と20Wの高周波バイアスを印加
して作製したFe−Ta−N系軟磁性膜をSiO2非磁
性膜を介して交互に積層した軟磁性多層膜(P)は等方
的な高透磁率を示すことが分かる。
【0038】この結果は、すべての基板位置において確
認され、大面積にわたって等方的な高透磁率を示し、前
記積層型ヘッドのコア材料を量産性高く作製することが
出来る。
【0039】尚、本実施例では、無バイアスで作製した
軟磁性膜と20Wの高周波バイアスを印加して作製した
軟磁性膜を非磁性膜を介して交互に積層した軟磁性多層
膜について述べたが、印加するバイアスは直流バイアス
でもよく、軟磁性膜と非磁性膜を交互に積層した軟磁性
多層膜において、各層の軟磁性膜を、バイアス(無バイ
アスも含む)を印加しながら、または各層の軟磁性膜の
少なくとも1層の軟磁性膜を、異なった大きさのバイア
ス(無バイアスも含む)を印加して作製した場合であっ
ても、基板上に形成された軟磁性多層膜は、大面積にわ
たって等方的、または弱い異方性を有する高透磁率を示
し、前記積層型ヘッド等のコア材料を作 製することが出
来る。
【0040】(実施例4) (実施例3)で説明した、無バイアスで作製したFe−
Ta−N系軟磁性膜と20Wの高周波バイアスを印加し
て作製したFe−Ta−N系軟磁性膜をSiO2非磁性
膜を介して交互に積層した、等方的な高透磁率を示す軟
磁性多層膜(P)を使用して、無磁界中の磁気ヘッド加
工熱処理工程により積層型ヘッドを作製した。作製した
磁気ヘッドの概略図を(図9)に示す。また、前記磁気
ヘッドの媒体との摺動面を(図10)に示す。作製した
磁気ヘッドのトラック幅は15μm、ギャップ長0.2
μm、ギャップ深さ20μm、コイル巻数は18ターン
とした。ヘッド出力の測定は、ドラムテスターを用い、
保磁力120kA/mのMP(メタル塗布型)テープを
使用して、相対速度4.5m/sでの自己録再特性を測
定した。無バイアスで作製したFe−Ta−N系軟磁性
膜とSiO2非磁性膜を交互に積層した、透磁率に異方
性を生じる軟磁性多層膜(Q)を使用して作製した同一
諸元の積層型ヘッドと比較して、3MHzから10MH
zの高周波帯域で約5dB以上C/Nが向上した。
【0041】この効果は、すべての基板位置において確
認され、大面積にわたって、前記積層型磁気ヘッドを量
産性高く作製することが出来る。
【0042】尚、本実施例では、無バイアスで作製した
軟磁性膜と20Wの高周波バイアスを印加して作製した
軟磁性膜を非磁性膜を介して交互に積層した軟磁性多層
膜について述べたが、印加するバイアスは直流バイアス
でもよく、軟磁性膜と非磁性膜を交互に積層した軟磁性
多層膜において、各層の軟磁性膜を、バイアス(無バイ
アスも含む)を印加して作製した場合、特に、各層の軟
磁性膜の少なくとも1層の軟磁性膜を、異なった大きさ
のバイアス(無バイアスも含む)を印加して作製した場
合に、良好な記録再生特性を有する積層型ヘッド等を作
製することが出来る。
【0043】(実施例5) (実施例1)と同様の方法で、膜厚約10nmのSiO
2を被覆したMn−Znフェライト基板上に、80Wの
高周波バイアスを印加して、膜厚約4μmのFe−Ta
−N系軟磁性膜を形成し、無磁界中、550℃の磁気ヘ
ッド加工熱処理工程により、MIGヘッドを作製した。
作製した磁気ヘッドの概略図を(図11)に示す。ま
た、前記磁気ヘッドの媒体との摺動面を(図12)に示
す。80Wの高周波バイアスを印加して作製した膜は、
すべての基板位置において、一軸異方性を示し、その異
方性の向きは一方向に揃っている。作製した磁気ヘッド
のトラック幅は15μm、ギャップ長0.2μm、ギャ
ップ深さ20μm、コイル巻数は20ターンとした。ヘ
ッド出力の測定は、ドラムテスターを用い、保磁力12
0kA/mのMP(メタル塗布型)テープを使用して、
相対速度4.5m/sでの自己録再特性を測定した。無
バイアスで作製したFe−Ta−N系軟磁性膜を使用し
て作製した同一諸元のMIGヘッドは、成膜時の前記フ
ェライト基板設置位置の違いにより、ヘッド出力にばら
つきを生じたが、80Wの高周波バイアスを印加して作
製した膜は、すべての基板位置において、高透磁率を示
す方向が一方向に揃うため、高周波バイアスを印加して
作製した軟磁性膜を用いたMIGヘッドは量産性高く、
安定したヘッド出力を示すことが出来る。
【0044】(実施例6) (実施例3)と同様の方法で、無バイアスで作製したF
e−Ta−N系軟磁性膜と20Wのバイアスを印加して
作製したFe−Ta−N系軟磁性膜をSiO2 非磁性膜
を介して交互に積層した軟磁性多層膜を作製した。各層
のSiO2 非磁性膜の厚みは0.15μmとし、各層のF
e−Ta−N系軟磁性膜の厚みは0.5〜2.5μmの範
囲で変化させ、Fe−Ta−N系軟磁性膜の総厚みが5
μmとなるように軟磁性多層膜を作製した。各層のFe
−Ta−N系軟磁性膜の組成、及び構造は(実施例1)
と同じである。これらの膜は、(実施例3)と同様、大
面積の基板位置にわたって、等方的な高透磁率特性を示
した。各層のFe−Ta−N系軟磁性膜の厚みに対する
30MHz、及び80MHzにおける複素透磁率の実数
部μ′の関係を(図13)に示す。(図13)に示すよ
うに、各層のFe−Ta−N系軟磁性膜の厚みが薄くな
るほど、高周波帯域(30MHz、及び80MHz)に
おける透磁率μ′は大きな値を示していることが分か
る。
【0045】次に、同様の方法で、無バイアスで作製し
たFe−Ta−N系軟磁性膜と20Wのバイアスを印加
して作製したFe−Ta−N系軟磁性膜をSiO2 非磁
性膜を介して交互に積層した軟磁性多層膜を作製した。
各層のFe−Ta−N系軟磁性膜の厚みは0.5μmと
し、各層のSiO2 非磁性膜の厚みを変化させ、Fe−
Ta−N系軟磁性膜の総厚みが5μmとなるように軟磁
性多層膜を作製した。
【0046】これらのSiO2 非磁性膜を介して作製し
た軟磁性多層膜は、(実施例3)と同様、大面積の基板
位置にわたって、等方的な高透磁率を示した。一例とし
て、各層のSiO2 非磁性膜の厚みを0、0.05、0.
1、及び0.15μmとした場合の複素透磁率の実数部
μ′、及び虚数部μ″の周波数依存性を順に(図1
4)、(図15)、(図16)、及び(図17)に示
す。(図14)、(図15)、(図16)、及び(図1
7)から各層のSiO2非磁性膜の厚みを厚くするほ
ど、軟磁性多層膜の高周波帯域における複素透磁率の実
数部μ′の値は大きくなり、複素透磁率の虚数部μ″が
最大値を示す周波数が高周波側にシフトしていくことが
分かる。
【0047】また、各層のSiO2 非磁性膜の厚みを、
0.3μm以上にした場合、複素透磁率の実数部μ′、
及び虚数部μ″の周波数依存性は余り変化しなかった。
各層のFe−Ta−N系軟磁性膜の少なくとも1層の軟
磁性膜を、異なった大きさのバイアス(無バイアスも含
む)を印加して作製した軟磁性多層膜において、各層の
Fe−Ta−N系軟磁性膜の厚みを薄くするほど、ま
た、SiO2 非磁性膜の厚みを厚くするほど、高周波帯
域において等方的、または弱い異方性を有する高透磁率
を示すことから、前記軟磁性膜、および非磁性膜の厚み
を任意に設定することにより、任意の高周波帯域で駆動
するシステムに合わせて、前記積層型ヘッドのコア材料
としての軟磁性多層膜を、大面積にわたって、量産牲高
く作製することが出来る。
【0048】なお、本実施例では、Fe−Ta−N系軟
磁性膜について詳細に説明したが、Feを主成分とし、
Nを5〜20原子%含むと共にM(ただし、Mは、T
a、Zr、Hf、Nb、Tiの少なくとも1種以上の元
素)を5〜15原子%含む組成を有する軟磁性膜におい
ても、また、これらの系に耐食性等を向上させる目的で
Cr、Al、Si、Ru等の元素を添加した軟磁性膜に
おいても同様の効果を有する。また、前記軟磁性膜が、
Feを主成分とし、Nを5〜20原子%含むと共にM
(ただし、Mは、Ta、Zr、Hf、Nb、Tiの少な
くとも1種以上の元素)を5〜15原子%含む組成を有
し、かつ、前記軟磁性膜が、M、N(窒素)、Mの窒化
物の少なくとも1種以上の元素、あるいは化合物を固溶
して格子が膨張したα−Feの微結晶とMの窒化物微粒
子が混在した微細結晶組織から成る材料であり、前記α
−Feの微結晶の平均粒径が15nm以下、Mの窒化物
微粒子の平均粒径が5nm以下であるとき、更に優れた
軟磁気特性を示す。
【0049】尚、本実施例では、無バイアスで作製した
軟磁性膜と20Wの高周波バイアスを印加して作製した
軟磁性膜を非磁性膜を介して交互に積層した軟磁性多層
膜について述べたが、印加するバイアスは直流バイアス
でもよく、軟磁性膜と非磁性膜を交互に積層した軟磁性
多層膜において、各層の軟磁性膜を、バイアス(無バイ
アスも含む)を印加しながら、または各層の軟磁性膜の
少なくとも1層の軟磁性膜を、異なった大きさのバイア
ス(無バイアスも含む)を印加して作製した場合であっ
ても、同様の効果を奏する。また、一例として(図2)
に示したターゲット表面の磁界分布を変えると、プラズ
マ状態が変わり、基板位置による膜面内の透磁率の異方
性の変化の仕方も変わってくるが、その場合において
も、本実施例で説明したものと同様の効果を有する。
【0050】なお、本実施例で詳細に説明した軟磁性膜
の製造方法は、FeまたはCoを主成分とする材料、例
えば、センダスト(Fe−Al−Si系合金)膜やCo
基非晶質合金膜、Fe−M−(C,B)系膜、Co−M
−(N,C)系膜(ただし、MはZr、Hf、Ti、N
b、Taの少なくとも1種以上の元素)等の磁性膜にも
適用出来るものである。
【0051】
【発明の効果】(請求項1)の発明によれば、Feまた
はCoを主成分とする軟磁性膜の製造方法において、矩
形平板ターゲットの表面に平行に磁力線が通り、かつ、
前記磁力線の強度が、前記磁力線の方向に略平行な方向
のターゲットの中心線に対し、左右対称で前記磁力線の
方向が反対であるように磁石を配置したスパッタリング
電極を具備したスパッタ装置を用いて、前記軟磁性膜を
基板上に形成するものであるから、高飽和磁束密度と高
透磁率特性を有する軟磁性膜が、量産性高く得られる。
【0052】特に、(請求項2)または(請求項3)の
発明によれば、Feを主成分とし、Nを5〜20原子%
含むと共にM(ただし、Mは、Ta、Zr、Hf、N
b、Tiの少なくとも1種以上の元素)を5〜15原子
%含む組成を有する軟磁性膜の製造方法において、矩形
平板ターゲットの表面に平行に磁力線が通り、かつ、前
記磁力線の強度が、前記磁力線の方向に略平行な方向の
ターゲットの中心線に対し、左右対称で前記磁力線の方
向が反対であるように磁石を配置したスパッタリング電
極を具備したスパッタ装置を用いて、前記軟磁性膜を基
板上に形成するものであるから、高飽和磁束密度と高透
磁率特性を有する軟磁性膜が、量産牲高く得られる。
【0053】(請求項4)の発明によれば、(請求項
1)〜(請求項3)のいずれかに記載の軟磁性膜の製造
方法において、前記軟磁性膜を形成する基板に、バイア
ス(無バイアスも含む)を印加しながら、前記軟磁性膜
を形成するものであるから、基板上に形成された軟磁性
膜は、大面積にわたって透磁率の異方性の向きが一方向
に揃い、MIGヘッドや主磁極励磁型ヘッド等のコア材
料として最適であり、量産性高く、前記MIGヘッド等
のコア材料としての軟磁性膜を提供することが出来る。
また、(請求項5)または(請求項6)の発明によれ
ば、(請求項1)〜(請求項3)のいずれかに記載の軟
磁性膜と非磁性膜を交互に積層した軟磁性多層膜におい
て、各層の軟磁性膜が、バイアス(無バイアスも含む)
を印加しながら、または各層の軟磁性膜の少なくとも1
層の軟磁性膜が、異なった大きさのバイアス(無バイア
スも含む)を印加して形成されるものであるから、基板
上に形成された軟磁性膜は、大面積にわたって等方的、
または弱い異方性を有する高透磁率特性を示し、量産性
高く、前記積層型ヘッドのコア材料としての軟磁性膜を
提供することが出来る。また、(請求項7)(請求項
8)の発明によれば、(請求項4)〜(請求項6)のい
ずれかに記載のバイアスの大きさが、パワー密度で37
00W/m2以下であるから、量産性高く、前記MIGヘ
ッド等のコア材料としての軟磁性膜を提供することが出
来る。
【0054】(請求項)の発明によれば、(請求項
2)〜(請求項4)のいずれかに記載の軟磁性膜、およ
び(請求項5)〜(請求項8)のいずれかに記載の軟磁
性多層膜の軟磁性膜が、Feを主成分とし、Nを5〜2
0原子%含むと共にM(ただし、Mは、Ta、Zr、H
f、Nb、Tiの少なくとも1種以上の元素)を5〜1
5原子%含む組成を有し、かつ、前記軟磁性膜が、M、
N(窒素)、Mの窒化物の少なくとも1種以上の元素、
あるいは化合物を固溶して格子が膨張したα-Feの微
結晶とMの窒化物微粒子が混在した微細組織から成る材
料であり、前記α-Feの微結晶の平均粒径が15nm
以下、Mの窒化物微粒子の平均粒径が5nm以下である
ものであるから、更に優れた軟磁気特性を示す軟磁性膜
を提供することが出来る。
【0055】
【図面の簡単な説明】
【図1】本発明の実施例で用いたスパッタ装置の概略図
【図2】ターゲット表面の磁界分布を示す図
【図3】軟磁性膜の組成と基板ホルダー全体に印加した
高周波バイアスの関係を示す図
【図4】軟磁性膜の保磁力Hcと基板ホルダー全体に印
加した高周波バイアスの関係を示す図
【図5】軟磁性膜のX線回折図形
【図6】軟磁性膜の膜面内の透磁率の変化を示す図
【図7】軟磁性膜の膜面内の透磁率の変化を示す図
【図8】軟磁性多層膜の膜面内の透磁率の変化を示す図
【図9】本発明の積層型ヘッドの概略図
【図10】本発明の積層型ヘッドの媒体との摺動面を示
す図
【図11】本発明のMIGヘッドの概略図
【図12】本発明のMIGヘッドの媒体との摺動面を示
す図
【図13】軟磁性多層膜の各層の軟磁性膜の厚みと透磁
率の関係を示す図
【図14】軟磁性膜の透磁率の周波数依存性を示す図
【図15】SiO2 非磁性膜の厚みが0.05μmの軟磁
性多層膜の透磁率の周波数依存牲を示す図
【図16】SiO2 非磁性膜の厚みが0.1μmの軟磁性
多層膜の透磁率の周波数依存性を示す図
【図17】SiO2 非磁性膜の厚みが0.15μmの軟磁
性多層膜の透磁率の周波数依存性を示す図
【図18】従来のマグネトロンスパッタリング電極の概
略図
【符号の説明】
1 ターゲット 2 永久磁石 3 磁力線 4 基板 5 バッキングプレート 6 電極本体 7 磁力線 8 トロイダル型の閉じたトンネル状の磁界 9 エロージョン領域 10、17 軟磁性膜 11、19 非磁性膜(SiO2) 12 非磁性基板 13、18 非磁性体(ガラス) 14、16 磁気ギャップ 15 フェライト
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G11B 5/31 G11B 5/31 M H01F 10/14 H01F 10/14 (72)発明者 小佐野 浩一 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 榊間 博 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (58)調査した分野(Int.Cl.7,DB名) H01F 41/18 G11B 5/127 G11B 5/147 G11B 5/23 G11B 5/31 H01F 10/14

Claims (9)

    (57)【特許請求の範囲】
  1. 【請求項1】FeまたはCoを主成分とする軟磁性膜の
    製造方法において、矩形平板ターゲットの表面に平行に
    磁力線が通り、かつ、前記磁力線の強度が、前記磁力線
    の方向に略平行な方向のターゲットの中心線に対し、左
    右対称で前記磁力線の方向が反対であるように磁石を配
    置したスパッタリング電極を具備したスパッタ装置を用
    いて、前記軟磁性膜を基板上に形成することを特徴とす
    る軟磁性膜の製造方法。
  2. 【請求項2】Feを主成分とし、N(窒素)を5〜20
    原子%含むと共にM(ただし、Mは、Ta、Zr、H
    f、Nb、Tiの少なくとも1種以上の元素)を5〜1
    5原子%含む組成を有する軟磁性膜の製造方法におい
    て、矩形平板ターゲットの表面に平行に磁力線が通り、
    かつ、前記磁力線の強度が、前記磁力線の方向に略平行
    な方向のターゲットの中心線に対し、左右対称で前記磁
    力線の方向が反対であるように磁石を配置したスパッタ
    リング電極を具備したスパッタ装置を用いて、前記軟磁
    性膜を基板上に形成することを特徴とする軟磁性膜の製
    造方法。
  3. 【請求項3】Feを主成分とし、N(窒素)を5〜20
    原子%含むと共にTaを5〜15原子%含む組成を有す
    る軟磁性膜の製造方法において、矩形平板ターゲットの
    表面に平行に磁力線が通り、かつ、前記磁力線の強度
    が、前記磁力線の方向に略平行な方向のターゲットの中
    心線に対し、左右対称で前記磁力線の方向が反対である
    ように磁石を配置したスパッタリング電極を具備したス
    パッタ装置を用いて、前記軟磁性膜を基板上に形成する
    ことを特徴とする軟磁性膜の製造方法。
  4. 【請求項4】請求項1〜3のいずれかに記載の軟磁性膜
    の製造方法において、前記軟磁性膜を形成する基板に、
    バイアス(無バイアスも含む)を印加しながら、前記軟
    磁性膜を基板上に形成することを特徴とする軟磁性膜の
    製造方法。
  5. 【請求項5】請求項1〜3のいずれかに記載の軟磁性膜
    と非磁性膜を交互に積層した軟磁性多層膜において、各
    層の軟磁性膜が、バイアス(無バイアスも含む)を印加
    して形成されることを特徴とする軟磁性多層膜の製造方
    法。
  6. 【請求項6】請求項1〜3のいずれかに記載の軟磁性膜
    と非磁性膜を交互に積層した軟磁性多層膜において、各
    層の軟磁性膜の少なくとも1層の軟磁性膜が、異なった
    大きさのバイアス(無バイアスも含む)を印加して形成
    されることを特徴とする軟磁性多層膜の製造方法。
  7. 【請求項7】請求項4に記載の軟磁性膜の製造方法にお
    いて、バイアスの大きさは、パワー密度で3700W/
    2以下であることを特徴とする軟磁性膜の製造方法。
  8. 【請求項8】請求項5または6に記載の軟磁性多層膜の
    製造方法において、バイアスの大きさは、パワー密度で
    3700W/m 2 以下であることを特徴とする軟磁性多層
    膜の製造方法。
  9. 【請求項9】請求項2〜8のいずれかに記載の軟磁性膜
    が、Feを主成分とし、Nを5〜20原子%含むと共に
    M(ただし、Mは、Ta、Zr、Hf、Nb、Tiの少
    なくとも1種以上の元素)を5〜15原子%含む組成を
    有する軟磁性膜である場合、前記軟磁性膜が、M(ただ
    し、Mは、Ta、Zr、Hf、Nb、Tiの少なくとも
    1種以上の元素)、N(窒素)、Mの窒化物の少なくと
    も1種以上の元素、あるいは化合物を固溶して格子が膨
    張したα-Feの微結晶とMの窒化物微粒子が混在した
    微細組織から成る材料であり、前記α-Feの微結晶の
    平均粒径が15nm以下、Mの窒化物微粒子の平均粒径
    が5nm以下であることを特徴とする軟磁性膜の製造方
    法。
JP05195860A 1992-08-24 1993-08-06 軟磁性膜および軟磁性多層膜の製造方法 Expired - Fee Related JP3132254B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05195860A JP3132254B2 (ja) 1992-08-24 1993-08-06 軟磁性膜および軟磁性多層膜の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-223773 1992-08-24
JP22377392 1992-08-24
JP05195860A JP3132254B2 (ja) 1992-08-24 1993-08-06 軟磁性膜および軟磁性多層膜の製造方法

Publications (2)

Publication Number Publication Date
JPH06124846A JPH06124846A (ja) 1994-05-06
JP3132254B2 true JP3132254B2 (ja) 2001-02-05

Family

ID=26509392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05195860A Expired - Fee Related JP3132254B2 (ja) 1992-08-24 1993-08-06 軟磁性膜および軟磁性多層膜の製造方法

Country Status (1)

Country Link
JP (1) JP3132254B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7989095B2 (en) 2004-12-28 2011-08-02 General Electric Company Magnetic layer with nanodispersoids having a bimodal distribution

Also Published As

Publication number Publication date
JPH06124846A (ja) 1994-05-06

Similar Documents

Publication Publication Date Title
US5403457A (en) Method for making soft magnetic film
JPH0722235A (ja) 同一材料を使用する多層化強磁性体の薄膜及び磁気ヘッド
JPS59130408A (ja) 磁性体膜およびそれを用いた磁気ヘッド
US5452167A (en) Soft magnetic multilayer films for magnetic head
JPS6134723A (ja) 磁気記録媒体及びその製造法
JP3132254B2 (ja) 軟磁性膜および軟磁性多層膜の製造方法
JP3130407B2 (ja) 磁性膜の製法および薄膜磁気ヘッド
JPS60132305A (ja) 鉄−窒素系積層磁性体膜およびそれを用いた磁気ヘツド
JPH0727822B2 (ja) Fe−Co磁性多層膜及び磁気ヘッド
JP2853923B2 (ja) 軟磁性合金膜
JPH0389502A (ja) 磁性多層膜
JP2001015339A (ja) 軟磁性積層膜および薄膜磁気ヘッド
Nago et al. Substrate bias effect on the magnetic properties of Fe-Ta-N films
JPH01175707A (ja) 積層軟磁性薄膜
JP2782994B2 (ja) 磁気ヘッドの製造方法
JP2853204B2 (ja) 磁気抵抗効果素子の製造方法
JP2979557B2 (ja) 軟磁性膜
JPS59193528A (ja) 磁気記録媒体の製造法
JPS615421A (ja) 磁気記録媒体
JPS581832A (ja) 垂直磁化記録媒体
JPS63247914A (ja) フレキシブルデイスク
JPH01239821A (ja) 磁性多層膜およびその製造方法
JPH11144955A (ja) 磁性体薄膜及びそれを用いた磁気ヘッド
JPH06251311A (ja) 軟磁性膜の製造方法と磁気ヘッド
JPH0513223A (ja) 磁気ヘツド

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees