JP3124127B2 - Cleaning method for semiconductor manufacturing equipment, etc. - Google Patents
Cleaning method for semiconductor manufacturing equipment, etc.Info
- Publication number
- JP3124127B2 JP3124127B2 JP04283653A JP28365392A JP3124127B2 JP 3124127 B2 JP3124127 B2 JP 3124127B2 JP 04283653 A JP04283653 A JP 04283653A JP 28365392 A JP28365392 A JP 28365392A JP 3124127 B2 JP3124127 B2 JP 3124127B2
- Authority
- JP
- Japan
- Prior art keywords
- cleaning
- semiconductor manufacturing
- pickling
- blasting
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Cleaning In General (AREA)
- Physical Vapour Deposition (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体製造装置、その
補助機材等の清掃方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing apparatus and a method for cleaning auxiliary equipment.
【0002】[0002]
【従来の技術】半導体等の高精密加工におけるスパッタ
ー装置、真空蒸着装置等は、繰り返しの使用により装置
に蒸着物等が付着堆積し装置内部が汚染される。この付
着物が、半導体等の製品の製造時に、半導体等の製品に
落下することにより汚染し、製品の歩留まりを低下させ
る。このため、半導体製造装置等が蒸着物等によりある
程度汚染されると、装置内部を清掃し、清浄にすること
を行っている。2. Description of the Related Art Sputtering equipment, vacuum evaporation equipment and the like in high-precision processing of semiconductors and the like repeatedly deposit and deposit on the equipment due to repeated use, and the inside of the equipment is contaminated. The deposits are contaminated by dropping on products such as semiconductors during the production of products such as semiconductors, and lower the yield of products. For this reason, when a semiconductor manufacturing apparatus or the like is contaminated to some extent by deposits or the like, the inside of the apparatus is cleaned and cleaned.
【0003】清掃方法の一つとして、塩酸、硝酸等の酸
性薬品、又は、水酸化ナトリウムのようなアルカリ性薬
品に浸漬して化学的に付着物を除去する方法が取られて
いる。しかし、二酸化珪素などは、上記の化学的な洗浄
方法では、付着物を除去できないため、ブラスト処理に
よる物理的な方法により除去される。ブラスト処理は、
固体粒子(投射材)を機械的な方法で、流体(気体、液
体)の噴射にのせて高速で加工物の表面に衝突させ加工
物表面の付着物を除去する方法である。投射材として
は、金属、砂、ガラスビーズ、樹脂、くるみ殻等が加工
の目的によって使用されるが、半導体製造装置や、補助
機材等においては、アルミナ粒子が多く使用されてい
る。As one of the cleaning methods, a method of immersing in an acidic chemical such as hydrochloric acid or nitric acid or an alkaline chemical such as sodium hydroxide to chemically remove deposits has been adopted. However, silicon dioxide and the like cannot be removed by the above-described chemical cleaning method, and thus are removed by a physical method by blasting. The blasting process
This is a method in which solid particles (projection material) are applied to a fluid (gas, liquid) by a mechanical method and collide with the surface of a workpiece at high speed to remove deposits on the surface of the workpiece. As the projection material, metal, sand, glass beads, resin, walnut shell and the like are used for the purpose of processing, but alumina particles are often used in semiconductor manufacturing equipment and auxiliary equipment.
【0004】[0004]
【発明が解決しようとする課題】しかし、アルミナを投
射材を用いてブラスト処理した場合、投射材の一部が母
材(被処理物)に食い込んだまま残存したり、またブラ
スト処理中に発生した母材および投射材の微細な粒子
が、製造装置表面に付着して残存する。このため、更
に、硝弗酸等の薬品に浸漬(酸洗い)することにより装
置表面を化学的にエッチングを行い、残存した投射材や
母材の微粒子を装置表面から除去するという後処理がと
られている。しかし、この後処理を行っても、装置表面
にはかなりの汚染物が残存しており、半導体製造時に装
置内を真空にする時に、付着物が装置内に浮遊し、これ
が原因となって半導体製造時の歩留まりを低下させる原
因となっている。本発明は、この様な問題点を解決し、
清掃後の半導体装置やその補助機材の表面に微細な粒子
の付着を残さない清掃方法を提供する。However, when alumina is blasted using a blasting material, a part of the blasting material remains as it bites into the base material (workpiece) or is generated during the blasting process. Fine particles of the base material and the projection material adhere to the surface of the manufacturing apparatus and remain. For this reason, the post-treatment of chemically etching the device surface by immersing (pickling) it in a chemical such as nitric hydrofluoric acid and removing the remaining projection material and fine particles of the base material from the device surface is also required. Have been. However, even after this post-processing, considerable contaminants remain on the device surface, and when vacuuming the inside of the device at the time of manufacturing a semiconductor, attached matter floats in the device, which causes the semiconductor. This is a cause of lowering the production yield. The present invention solves such problems,
Provided is a cleaning method that does not leave fine particles attached to the surface of a semiconductor device or auxiliary equipment after cleaning.
【0005】[0005]
【課題を解決するための手段】上記課題を解決するため
に、本発明は、半導体製造装置、補助機材等の清掃方法
において、結晶石灰岩を投射材としてブラスト処理を行
った後、酸洗い、次いで純水による洗浄を行うことを特
徴とする半導体製造装置、その補助機材等の清掃方法を
提供する。本清掃方法により清掃後の半導体製造装置等
の表面への付着物が少なくなり半導体製造時の製品の歩
留まりを改善することができる。In order to solve the above-mentioned problems, the present invention provides a method for cleaning semiconductor manufacturing equipment, auxiliary equipment, etc., in which blasting is performed using crystalline limestone as a projection material, followed by pickling, A method for cleaning a semiconductor manufacturing apparatus and its auxiliary equipment characterized by performing cleaning with pure water. With this cleaning method, the amount of deposits on the surface of a semiconductor manufacturing apparatus or the like after cleaning is reduced, and the yield of products during semiconductor manufacturing can be improved.
【0006】本発明の言う結晶石灰岩とは、炭酸カルシ
ウムを主成分とする(50重量%以上)天然石であり、
例えば、霰石、大理石、寒水石、白亜等が挙げられる。
投射材の投射方法としては、湿式法でもよいし、乾式法
でもよい。投射材としての結晶石灰岩は適度な粒度に粉
砕されて使用されるが、その粒度は、付着物に対応して
適宜選択すればよいが、一般には0.01〜2.0mmの
粒度のものが使用される。投射材の投射圧も付着物に対
応して適宜選択すればよい。一般には、5〜200kg/
cm2であり、好ましくは、乾式法の場合は、5〜15kg
/cm2であり、湿式法の場合は、50〜200kg/cm2あ
る。The crystalline limestone according to the present invention is a natural stone containing calcium carbonate as a main component (50% by weight or more).
For example, aragonite, marble, cold water stone, chalk and the like can be mentioned.
The method for projecting the blast material may be a wet method or a dry method. Crystalline limestone as a blasting material is used after being pulverized to an appropriate particle size, and the particle size may be appropriately selected according to the attached matter, but generally a particle size of 0.01 to 2.0 mm is used. used. The projection pressure of the projection material may be appropriately selected in accordance with the attached matter. Generally, 5-200 kg /
cm 2, and preferably, in the case of the dry method, 5~15kg
/ Cm 2 and 50 to 200 kg / cm 2 in the case of the wet method.
【0007】又、堆積物の装置への付着が強固であり、
結晶石灰岩を投射材としてブラスト処理を行っても十分
除去できない場合は、アルミナを投射材としてブラスト
処理した後、本発明の方法を実施することにより清掃後
の付着物が少なく、製品への汚染の少ない清掃処理を行
うことができるFurther, the adhesion of the sediment to the device is strong,
If crystal limestone cannot be sufficiently removed by blasting as a blasting material, the blasting process is performed using alumina as a blasting material, and then the method of the present invention is performed. Small cleaning process can be performed
【0008】本発明によるブラスト処理後の酸洗いに使
用される酸としては、一般的には、鉱酸、例えば、塩
酸、硫酸、硝酸、燐酸、あるいは、炭酸等を使用するこ
とができる。水溶液として使用され、その濃度は、特に
限定されるものではないが、一般的にこの酸洗いにより
ブラスト処理時に付着した石灰岩が溶解される濃度でよ
い。一般的には、5〜20容量%水溶液が使用される。
この酸洗いによりブラスト処理時に付着した結晶石灰岩
が溶解除去されると共に、装置の母材、および堆積物か
らきた微粒子をも除去され装置は付着物の少ない良好な
ものになる。As the acid used for pickling after the blast treatment according to the present invention, generally, a mineral acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, or carbonic acid can be used. It is used as an aqueous solution, and its concentration is not particularly limited, but may be a concentration at which limestone adhered at the time of blasting by this pickling is generally dissolved. Generally, a 5-20% by volume aqueous solution is used.
By this pickling, the crystal limestone adhered during the blasting treatment is dissolved and removed, and also the fine particles coming from the base material of the apparatus and the sediment are removed, so that the apparatus becomes good with little deposits.
【0009】酸洗い後、純水により水洗される。更に仕
上げの水洗として比抵抗値16MΩ・cm以上の超純水を
使用するとよい。After pickling, it is washed with pure water. Further, it is preferable to use ultrapure water having a specific resistance value of 16 MΩ · cm or more for the final washing.
【0010】[0010]
実施例1 タングステンシリサイド(W−Si)が付着した半導体
製造装置部品(母材はSUS304)をアルミナ(粒径
0.3mm)を投射材としてブラスト処理(投射圧5kg/
cm2)し、次いで、粒径0.05mmの寒石水を投射材と
し、70kg/cm2 の圧水とともに投射し、W−Siを除
去した。次いで、10容量%の硝酸水溶液で5分間酸洗
いし、次いで、純水で洗浄した。最終仕上げとして超純
水で洗浄をした。装置部品の清浄度を調べるため、清掃
後の装置部品を超純水中で超音波洗浄を行い、超純水中
の微粒子の数を水中微粒子計(株式会社東レエンジニア
リング製)を用いて計測した。結果を表1に示した。次
の比較例1に比べ付着微粒子の数は、約5分の2に減少
していた。 Example 1 Semiconductor with tungsten silicide (W-Si) attached
Production equipment parts (base material is SUS304) converted to alumina (particle size)
Blast treatment (projection pressure 5 kg /
cmTwo), And then cold water with a particle size of 0.05 mm
And 70kg / cmTwo And pressurized water to remove W-Si
I left. Next, pickling with a 10% by volume aqueous solution of nitric acid for 5 minutes
The chair was then washed with pure water. Ultra pure as final finish
Washed with water. Cleaning to check the cleanliness of equipment parts
Ultrasonic cleaning of the subsequent equipment parts in ultrapure water
Underwater particle meter (Toray Engineer Co., Ltd.)
(Made by a ring). The results are shown in Table 1. Next
The number of attached fine particles is reduced to about two-fifths compared to Comparative Example 1
Was.
【0011】比較例1 実施例1において、寒水石を投射材とするブラスト処理
を除いた以外は、同様の方法を行った。又、実施例1と
同様に清掃後の付着微粒子の数を計測した。結果を表1
に示した。Comparative Example 1 A similar method was performed as in Example 1 except that the blast treatment using cold water stone as a projectile was omitted. Further, the number of adhered fine particles after cleaning was measured in the same manner as in Example 1. Table 1 shows the results
It was shown to.
【0012】 [0012]
【0013】実施例2 二酸化珪素の付着した半導体製造装置部品(母材SUS
304)を寒水石を投射材とし(粒径は、0.3mm)、
170Kg/cm2の圧水とともに投射した。ガラス膜状に
付着していた二酸化珪素の膜は破壊され母材の表面から
離脱した。次いで、酸洗いを行った後、超純水で水洗し
た。清掃後の寒水石の付着状態を調べるため、蛍光X線
分析装置(株式会社島津製作所製)を用いて、カルシウ
ムの蛍光X線強度を計測した。又、実施例1と同様に付
着微粒子の数を計測した。結果を表2に示した。Embodiment 2 Semiconductor manufacturing equipment parts to which silicon dioxide is adhered (base metal SUS)
304) using cold water stone as a projectile (particle size is 0.3 mm),
It was projected together with 170 kg / cm 2 of pressurized water. The silicon dioxide film attached to the glass film was broken and detached from the surface of the base material. Next, after pickling, it was washed with ultrapure water. In order to examine the adhesion state of the chilled water stone after cleaning, the fluorescent X-ray intensity of calcium was measured using a fluorescent X-ray analyzer (manufactured by Shimadzu Corporation). Further, the number of attached fine particles was measured in the same manner as in Example 1. The results are shown in Table 2.
【0014】比較例2 実施例2の清掃工程において、酸洗いと水洗を除いた他
は同様に清掃した。また、同様に蛍光X線強度、およ
び、付着微粒子の数を測定した。結果を表2に示した。Comparative Example 2 In the cleaning step of Example 2, cleaning was carried out in the same manner except that pickling and washing with water were omitted. Similarly, the fluorescent X-ray intensity and the number of attached fine particles were measured. The results are shown in Table 2.
【0015】比較例3 実施例2で用いた被清掃物の清掃を行う前のカルシウム
の蛍光X線強度と付着粒子の数を表2に示した。Comparative Example 3 Table 2 shows the fluorescent X-ray intensity of calcium and the number of adhered particles before the cleaning of the object to be cleaned used in Example 2 was performed.
【0016】比較例4 実施例2で用いた寒水石に変えてアルミナ(粒径0.3
mm)を用いて同様に清掃を行った。また、実施例と同様
に清掃後の被清掃物表面に付着している付着アルミナを
調べるためにアルミニウムの蛍光X線強度の測定、およ
び付着微粒子の数を調べた。その結果を表2に示した。COMPARATIVE EXAMPLE 4 Alumina (particle size: 0.3) was used instead of the dolomite used in Example 2.
mm). Further, in order to examine the adhered alumina adhered to the surface of the object to be cleaned after cleaning, the measurement of the fluorescent X-ray intensity of aluminum and the number of adhered fine particles were examined in the same manner as in the example. The results are shown in Table 2.
【0017】比較例5 比較例4の清掃工程において、酸洗いを除いた他は同様
に清掃した。また、同様に蛍光X線強度と付着微粒子量
を測定した。結果を表2に示した。Comparative Example 5 In the cleaning step of Comparative Example 4, cleaning was carried out in the same manner except that pickling was omitted. Similarly, the fluorescent X-ray intensity and the amount of attached fine particles were measured. The results are shown in Table 2.
【0018】 [0018]
【0019】以上のように投射材としてアルミナのみを
用いた処理品は、酸洗い、純水洗浄を行っても表面の付
着微粒子の数は僅かしか減少しないが、投射材として結
晶石灰岩の場合には、酸洗い、純水洗浄を行うことによ
り、大巾に減少し、後の半導体等の製造に影響がなくな
った。As described above, in the treated product using only alumina as the projecting material, the number of fine particles adhered to the surface is slightly reduced even by pickling and washing with pure water. By performing acid washing and pure water washing, the amount of the metal was greatly reduced, and the subsequent production of semiconductors and the like was not affected.
【0020】[0020]
【発明の効果】半導体製造装置やその補助機材を本発明
による清掃方法により清掃することによって、清掃後の
半導体製造装置等の表面への付着物が大きく減少し、半
導体等の製品の製造においての製品の歩留まりが良好に
なる。By cleaning the semiconductor manufacturing apparatus and its auxiliary equipment by the cleaning method according to the present invention, the amount of deposits on the surface of the semiconductor manufacturing apparatus and the like after the cleaning is greatly reduced, and the semiconductor manufacturing apparatus and the like are used in the manufacture of products such as semiconductors. Good product yield.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−242970(JP,A) 特開 昭60−130414(JP,A) 特開 昭56−133112(JP,A) 特開 昭53−96927(JP,A) 特開 平4−72083(JP,A) 特公 昭49−28088(JP,B1) (58)調査した分野(Int.Cl.7,DB名) B24C 1/00 B24C 11/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-242970 (JP, A) JP-A-60-130414 (JP, A) JP-A-56-133112 (JP, A) 96927 (JP, A) JP-A-4-72083 (JP, A) JP-B-49-28088 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) B24C 1/00 B24C 11 / 00
Claims (1)
石灰岩を投射材としてブラスト処理を行った後、酸洗
い、次いで、純水による水洗を行うことを特徴とする半
導体製造装置等の清掃方法。1. A method for cleaning a semiconductor manufacturing apparatus or the like, comprising: performing blasting using crystalline limestone as a projection material, and then pickling and then washing with pure water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04283653A JP3124127B2 (en) | 1992-09-28 | 1992-09-28 | Cleaning method for semiconductor manufacturing equipment, etc. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04283653A JP3124127B2 (en) | 1992-09-28 | 1992-09-28 | Cleaning method for semiconductor manufacturing equipment, etc. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06106480A JPH06106480A (en) | 1994-04-19 |
JP3124127B2 true JP3124127B2 (en) | 2001-01-15 |
Family
ID=17668316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04283653A Expired - Lifetime JP3124127B2 (en) | 1992-09-28 | 1992-09-28 | Cleaning method for semiconductor manufacturing equipment, etc. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3124127B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10209063A (en) * | 1997-01-27 | 1998-08-07 | Mitsubishi Materials Shilicon Corp | Quartz boat and manufacturing method of the same |
US8097089B2 (en) * | 2007-12-19 | 2012-01-17 | Quantum Global Technologies LLC | Methods for cleaning process kits and chambers, and for ruthenium recovery |
EP2113339A1 (en) * | 2008-04-30 | 2009-11-04 | Omya Development AG | Alkaline earth carbonate containing mineral for surface cleaning |
CN114664699A (en) * | 2022-03-03 | 2022-06-24 | 上海富乐德智能科技发展有限公司 | Method for regenerating Belljar in ETCH equipment for semiconductor |
-
1992
- 1992-09-28 JP JP04283653A patent/JP3124127B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06106480A (en) | 1994-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW473403B (en) | Method for cleaning a surface | |
TWI687548B (en) | Yttrium-based spray coating and its manufacturing method | |
US4116714A (en) | Post-polishing semiconductor surface cleaning process | |
JPH07503670A (en) | Abrasive film remover and its usage | |
WO2001013418A1 (en) | A single-operation method of cleaning semiconductors after final polishing | |
JPH08195369A (en) | Cleaning method of substrate | |
JP2002057129A (en) | Method of regenerating wafer | |
US5964953A (en) | Post-etching alkaline treatment process | |
CA2200615C (en) | Stainless steel alkali treatment | |
JP3124127B2 (en) | Cleaning method for semiconductor manufacturing equipment, etc. | |
EP2426705A1 (en) | Method for cleaning of semiconductor substrate and acidic solution | |
US20070012338A1 (en) | Methods and removers for removing anodized films | |
JP5321168B2 (en) | Cleaning method for polished quartz glass substrate | |
JP2009215093A (en) | Detergent for glass substrate, and method for producing glass substrate | |
JP4482844B2 (en) | Wafer cleaning method | |
US6530381B1 (en) | Process for the wet-chemical surface treatment of a semiconductor wafer | |
KR101629336B1 (en) | Method for cleaning aluminum member | |
JP2005150768A (en) | Cleaning method and cleaning method of electronic component | |
TW513765B (en) | Sandblasting agent, wafer treated with the same, and method of treatment with the same | |
JP2005075924A (en) | Silica scale remover | |
JP2019179813A (en) | Circuit forming substrate cleaning method and cleaning apparatus | |
JP3649534B2 (en) | Silicon wafer and silicon oxide cleaning solution | |
JPS6029277A (en) | Cleaning method with ice drops | |
WO2001034877A1 (en) | Alkaline etching solution and process for etching semiconductor wafers | |
JPH05109683A (en) | Removal of metallic impurity in semiconductor silicon wafer cleaning fluid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071027 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081027 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081027 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091027 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101027 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101027 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111027 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121027 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |