JP3112721B2 - 液体原料用気化器 - Google Patents

液体原料用気化器

Info

Publication number
JP3112721B2
JP3112721B2 JP03235413A JP23541391A JP3112721B2 JP 3112721 B2 JP3112721 B2 JP 3112721B2 JP 03235413 A JP03235413 A JP 03235413A JP 23541391 A JP23541391 A JP 23541391A JP 3112721 B2 JP3112721 B2 JP 3112721B2
Authority
JP
Japan
Prior art keywords
raw material
liquid
liquid raw
vaporizer
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03235413A
Other languages
English (en)
Other versions
JPH06316765A (ja
Inventor
弘文 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP03235413A priority Critical patent/JP3112721B2/ja
Publication of JPH06316765A publication Critical patent/JPH06316765A/ja
Application granted granted Critical
Publication of JP3112721B2 publication Critical patent/JP3112721B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、半導体製造プロセス
における液体原料の高精度供給、特にTEOS (Tetra
Ethyl Ortho Silicate)を始めとする薄膜形成用液体原
料の高精度流量制御や、化学工業分野における液体
(例えば、アルコール類、有機酸類)の高精度移送、特
に次工程が減圧状態にある反応炉などの場合の高精度移
送に最適な液体原料用気化器に関する。
【0002】
【従来の技術】以下、半導体製造のCVDプロセスを例
にとって説明する。半導体ウェハーの層間絶縁膜材料と
して、最近、TEOSが特に注目されつつある。その理
由として、従来の減圧CVDを使用した(SiH4)の堆積
メカニズムと異なり、表面反応律速であり、そのために
ステップカバレッジが良好である事、SiH4は極めて反
応性が高く、爆発事故を発生する可能性が高いが、これ
に対してTEOSは安全性が高く、保存も容易である
事、将来、原料として低コスト化が期待出来るためで
ある。
【0003】TEOSを用いるCVD法には、減圧CV
D法、常圧CVD法並びにプラズマCVD法などがあ
る。常圧CVDは、特にステップカバレッジ性が良好で
あり、真空排気系を必要としないなどの利点があり、広
く普及している。
【0004】常圧CVD法においては、減圧CVDより
も流量を多く流す。そのためには温度を高くすることが
考えられるが、沸点以上に温度を上げると突沸を生じ、
安定した流量が得られない。又、突沸すれば、膜生成が
不均一となり、良品は得られない。又、高温ではTEO
S等の有機材料の熱分解や多量体を生じ、良好な膜質を
得る事ができない。
【0005】そこで、突沸を防ぐために沸点以下の温度
で液体原料を気化供給することが要求されたので、必要
な気化流量を確保するために蒸発面積を大きくする事と
し、図6に示すような底部が浅い皿状の気化器(B')を提
案した。しかしながら、この気化器(B')では正確な量の
気化原料(L')の気化供給が行えなかった。
【0006】即ち、この気化器(B')を恒温槽内に入れ、
沸点以下の温度で加熱しながら底部(5')から気化器(B')
内に供給した液体原料(L')を蒸発させた処、底部(5')に
均等に液体原料(L')が流れ広がらず、底部(5')上を不定
形に流れ広がって行くことが確認された。そして、気化
後の気化原料(R')の量を計測用質量流量計(図示せず)で
刻々と測定してみると、液体原料(L')の不定形な接触面
積の拡大又は蒸発による接触面積の縮小に起因する気化
量の変動が認められた。
【0007】これは皿状の底部(5')上に不定形に流れ広
がった液体原料(L')に搬送ガス(H')を接触させて気化す
るのであるから、液体原料(L')の流れ広がり方によって
搬送ガス(H')と液体原料(L')との接触面積が変動し、こ
れによって気化量が左右されるものと考えられる。例え
ば、液体原料(L')の流れ広がり方によっては急に蒸発速
度が増して液体原料(L')が底部(5')に形成された液体原
料供給口(4')近辺まで後退する現象や、逆に、蒸発速度
が遅く、その結果、液面が上昇して底部(5')の全面を満
たすような現象が観察された。
【0008】このような現象が発生する原因としては、
気化器(B')の底部(5')を完全に水平に保ことができず、
液体原料(L')が液体原料供給口(4')を中心にして同心円
状に広がらないことや、液体原料(L')の表面張力のため
に平坦な底部(5')上を液体原料(L')が移動しやすいこと
による。
【0009】更に、液体原料(L')の供給中には、搬送ガ
ス(H')による液体原料(L')の気化量と、液体原料(L')の
供給量がうまくマッチングしていない場合もあり、この
場合は、例えば、液体原料(L')が気化量よりも多い場合
には気化器本体(1')内の液体原料(L')の量が次第に増
え、浅い皿状の底部(5')に不定形に流れ広がって行く。
そしてこの次第に流れ広がって流出面積の増加している
液体原料(L')に搬送ガス(H')を接触させて気化させて行
くと、液体原料(L')の流れ広がり面積の増加に従って気
化量が増加して行くことになる。逆に、液体原料(L')の
供給量が気化量に比べて寡少であった場合には液体原料
(L')が皿状の底部(5')に流れ広がらず、気化量が増加し
ない事になる。
【0010】
【発明が解決しようとする課題】液体原料が搬送ガスと
接触する面積を常時ほぼ一定に保つ事ができると同時に
液体原料の供給量に合わせて気化量を自動的にコントロ
ールすることが出来る液体原料用気化器の提案が望まれ
ていた。
【0011】
【課題を解決するための手段】前記、課題を達成するた
めに、本発明に係る液体原料用気化器は、 [1] 液体原料(L)を底部(5)に貯留し、 [2] 貯留される液体原料(L)の液面よりも上方に、搬送
ガス(H)を導入するための流入口(2)、及び、気化され
気化原料ガス(R)と共に搬送ガス(H)が流出する流出口
(3)がそれぞれ設けられ、 [3] さらに上記底部(5)に液体原料(L)を供給する液体
原料供給口(4)が設けられ た気化器本体(1)と、 [4] 上記液体原料供給口(4)に接続される液体原料供給
器(LMFC)とを有する液体原料用気化器(A)であって、 [5] 上記気化器本体(1)の底部(5)の形状を上広がりの
錘状に形成した事を特徴とするものである。これによ
り、液体原料(L)が搬送ガス(H)と接触する面積を常時ほ
ぼ一定に保つ事ができて気化量を常に一定に保つ事が出
来ると同時に液体原料(L)の供給量に合わせて気化量を
自動的にコントロールすることができた。
【0012】
【実施例】以下、本発明を図示実施例に従って詳述す
る。図1は本発明にかかる気化器(A)を使用した場合の
フローチャートである。
【0013】 まず、本発明にかかる気化器(A)を利
用した液体原料(L)のフローに付いて説明する。図1
から分かるように本プロセスは、原料タンク(T)、タ
ンク用加圧ガスの調圧器(TC)、搬送ガス用調圧器
(HC)、液体原料供給器(LMFC)、搬送ガス供給
(HMFC)、気化器(A)、気化原料測定用質量流
量計(MFM)とで構成されている。
【0014】 搬送ガス用調圧器(HC)は搬送ガス
給器(HMFC)の入口に接続されており、一定圧に調
圧された搬送ガス(H)を搬送ガス供給器(HMFC)
に供給する。搬送ガス供給器(HMFC)は公知の構造
のもので、一定質量の搬送ガス(H)を気化器(A)に
送り出すようになっている。原料タンク(T)には液体
原料(L)が貯留されており、調圧器(TC)によって
タンク(T)内に一定圧のガス圧が加えられており、タ
ンク(T)から液体原料(L)が液体原料供給器(LM
FC)に供給されるようになっている。液体原料供給器
(LMFC)も公知の構造のもので、一定量の液体原料
(L)が気化器(A)に供給されるようになっている。
気化器(A)では搬送ガス(H)と接触し、又は補助的
な使用されたヒータ(6)によって加熱されて蒸発した
気化原料(R)が搬送ガス(H)と共に流出し、気化原
料測定用質量流量計(MFM)によって定量された後、
例えば、CVDなどの半導体製造装置(C)やその他製
造炉に供給される事になる。
【0015】 次に、本発明に掛かる気化器(A)を図
2から図5に従って説明する。図2は本発明にかかる気
化器(A)の一実施例の断面図で、気化器本体(1)は
中空体で、液体原料(L)を貯留する気化器本体(1)
の底部(5)の形状を上広がりの錘状に形成されてお
り、底部(5)の中央に液体原料(L)を供給する液体
原料供給口(4)が形成されており、液体原料供給器
(LMFC)に繋がっている。更に、搬送ガス(H)を
気化器本体(1)内に導入するための流入口と、気化器
本体(1)内にて気化した気化原料ガス(R)と共に搬
送ガス(H)が流出する流出口とが設けられており、前
述のように流入口には搬送ガス供給器(HMFC)が接
続されており、流出口には例えばCVDなどの半導体製
造装置などが接続されている。(6)は底部に設けられ
たヒータで、液体原料(L)を加熱するためのものであ
る。
【0016】気化器本体(1)の底部(5)の形状は、前述の
ように上広がりの錘状に形成されている。一般的には、
図3のように平面形状が円であって全体がロート状(上
広がりの円錐状)になるが、勿論これに限られず、三角
錐、四角錐などあってもよい。垂直線に対する底部(5)
のテーパ角度(θ)の範囲は80〜88°程度で、通常は85°
前後が選ばれる。角度(θ)が急であれば底部(5)に溜ま
った液体原料(L)の増減が液体原料(L)の表面の面積の増
減に著しく影響し、逆に、角度(θ)が大き過ぎれば底部
(5)が平坦面の場合と差がなくなるからである。
【0017】 液体原料供給器(LMFC)からの液体
原料(L)の供給を受けると、気化器(A)の底部
(5)に液体原料(L)が溜まるが、底部(5)が前述
のようにロート状となっているために安定して液体原料
供給口(4)を中心として同心円状に液体原料(L)が
溜って行く。この液体原料(L)は必要に応じて沸点以
下の低温度にヒータ(6)によって加熱されて表面から
蒸発し、液体原料(L)の上を接触しながら通過して行
く搬送ガス(H)と共に流出して行く。
【0018】ここで、液体原料(L)の蒸発速度と供給速
度との関係を図4に従って詳述する。 今、Ql=液体原料の供給量 (g/min) G =液体原料の単位面積当たりの蒸発速度 (g/mim・cm
2) S =液面の表面積 (cm2) Qv=気化原料の流量、即ち蒸発量 (g/min) H =流入口 (0点)から液面までの高さ、とすると、 Qv=G・S となる。…………第1式
【0019】液体原料(L)の供給開始時点では、液体原
料(L)の供給量(Ql)は気化原料(R)の流量(Qv)より大き
いため (Ql>Qv)、図4のO−A曲線を辿って次第に
液体原料(L)が底部(5)に溜まって行く。
【0020】時間が経過して液体原料(L)の供給量(Ql)
と気化原料(R)の流量(Qv)とが等しくなると (Ql=Q
v)、図4のA−B曲線を辿って水平状態が保たれる。
ここで、液体原料(L)の供給量(Ql)と気化原料(R)の流
量(Qv)とのバランスが何らかの原因で崩れ、例えば、
液体原料(L)の供給量(Ql)が気化原料(R)の流量(Qv)を
上回ると液面が上昇して液面の表面積が増加し、液体原
料(L)の蒸発量が増え、その結果液面が下がる。逆に、
液体原料(L)の供給量(Ql)が気化原料平(R)流量(Qv)を
下回ると液面が下降して液面の表面積が減少し、液体原
料(L)の蒸発量が少なくなり、その結果液面が上がる。
このようにして、液体原料(L)の供給量(Ql)と気化原料
(R)の流量(Qv)とのバランスが何らかの原因で崩れたと
しても、自動的に両者の関係を調整してほぼ水平な気化
原料(R)の蒸発量を保つ。
【0021】時間(t2)で液体原料(L)の供給を停止する
と、底部(5)の残留分が蒸発し、図4の下降曲線B−C
を辿って時間(t3)で0になる。
【0022】 図5のグラフは、図1のフローチャート
に示すプロセスを用い、内径65mm、底部のテーパ角
度(θ)が85°の気化器(A)を使用して行った実測
グラフである。横軸が時間、縦軸が流量である。使用の
液体原料(L)はTEOSで流量は0.59g/mi
n、気化器(A)の温度は135℃、搬送ガス(H)は
窒素ガスで、その流量は1,100SCCM(SCCM
=0℃1気圧の標準状態で1分間に流れる流体の体積
「=cc」)である。図5のグラフの下側の矩形曲線
は、気化器(A)の底部の液体原料供給口(4)に供給
される液体原料(L)の供給曲線であり、上側の曲線は
液体原料(L)であるTEOSの蒸発による流量増減曲
線で、基準線から低いほうの水平線までが窒素ガスの流
量である(Nで示す。)。TEOS供給曲線の水平部
分は定常状態を保って推移していることが分かる。図
中、横軸1目盛りは10分である。
【0023】 本発明にかかる気化器(A)の構造は、
上記のように非常に簡単であるから非常に低コストで製
作することができる。また、ヒータ(6)によって液体
原料(L)を加熱する場合でも沸点以下の温度であるか
ら突沸を生じるようなことがなく、急激な流量変動を発
生しないものである。更に、液体原料(L)の沸点や蒸
気圧のデータから気化条件を容易に選定することがで
き、各種液体原料(L)への適用範囲が広い。尚、図1
に示すようなフローにおいて、液体原料供給器(LMF
C)との組合わせにより例えば常圧CVDへの液体原料
(L)の供給が極めて容易になった。
【0024】
【効果】本発明の液体原料用気化器は、液体原料を貯留
する気化器本体の底部の形状を上広がりの錘状に形成し
てあるので、液体原料が流入口を中心とする底部に溜ま
り、搬送ガスと接触する面積を常時ほぼ一定に保つ事が
できて気化量を常に一定に保つ事が出来、且つ、液体原
料の供給量に合わせて気化量を自動的にコントロールす
ることが出来るという利点がある。
【図面の簡単な説明】
【図1】本発明の気化器を用いた場合のフローチャート
【図2】本発明の気化器の一実施例の正断面図
【図3】図2に示す本発明の気化器の平断面図
【図4】本発明の気化器を使用した場合の時間−液体原
料蒸発量の関係グラフ
【図5】本発明の気化器を使用した場合の実測時間−液
体原料蒸発量の関係グラフ
【図6】従来例の正断面図
【符号の説明】
(A)…気化器 (L)…液体原料 (H)…搬送ガス (T)…原料タンク (LMFC)…液体原料供給器 (HMFC)…搬送ガス供給器MFM)…気化原料測定用質量流量計 (1)…気化器本体 (2)…流入口 (3)…流出口 (4)…液体原料供
給口 (5)…底部 (6)…ヒータ

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】 液体原料を底部に貯留し、貯留される
    液体原料の液面よりも上方に、搬送ガスを導入するため
    の流入口、及び、気化された気化原料ガスと共に搬送ガ
    スが流出する流出口がそれぞれ設けられ、さらに上記
    部に液体原料を供給する液体原料供給口が設けられた気
    化器本体と、上記液体原料供給口に接続される液体原料
    供給器とを有する液体原料用気化器であって、上記気化
    器本体の底部の形状を上広がりの錘状に形成してなる事
    を特徴とする液体原料用気化器。
JP03235413A 1991-08-21 1991-08-21 液体原料用気化器 Expired - Lifetime JP3112721B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03235413A JP3112721B2 (ja) 1991-08-21 1991-08-21 液体原料用気化器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03235413A JP3112721B2 (ja) 1991-08-21 1991-08-21 液体原料用気化器

Publications (2)

Publication Number Publication Date
JPH06316765A JPH06316765A (ja) 1994-11-15
JP3112721B2 true JP3112721B2 (ja) 2000-11-27

Family

ID=16985731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03235413A Expired - Lifetime JP3112721B2 (ja) 1991-08-21 1991-08-21 液体原料用気化器

Country Status (1)

Country Link
JP (1) JP3112721B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334158B1 (ko) * 2009-04-02 2013-11-28 주식회사 테라세미콘 소스가스 공급장치 및 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3883918B2 (ja) 2002-07-15 2007-02-21 日本エー・エス・エム株式会社 枚葉式cvd装置及び枚葉式cvd装置を用いた薄膜形成方法
JP4537101B2 (ja) * 2004-03-29 2010-09-01 財団法人国際科学振興財団 液体材料供給装置、液体材料供給装置のための制御方法
KR101688512B1 (ko) * 2014-06-03 2017-01-03 한국에너지기술연구원 복합체 대량 합성장치, 복합체 합성장치용 반응기 및 이를 이용한 복합체 합성방법
JP7045743B1 (ja) * 2021-10-11 2022-04-01 株式会社リンテック 気化器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334158B1 (ko) * 2009-04-02 2013-11-28 주식회사 테라세미콘 소스가스 공급장치 및 방법

Also Published As

Publication number Publication date
JPH06316765A (ja) 1994-11-15

Similar Documents

Publication Publication Date Title
US11639548B2 (en) Film-forming material mixed-gas forming device and film forming device
US5224202A (en) Apparatus for the evaporation of liquids
US5372754A (en) Liquid vaporizer/feeder
CA1228268A (en) Vacuum deposition system with improved mass flow control
US8348248B2 (en) Bubbling supply system for stable precursor supply
US4717596A (en) Method for vacuum vapor deposition with improved mass flow control
CN101285178B (zh) 汽化器和半导体处理系统
US5069930A (en) Method for the evaporation of monomers that are liquid at room temperature
JP2001257202A (ja) 高温フィルタ
JP2009533556A (ja) 化学気相堆積のための装置及び方法
JP3112721B2 (ja) 液体原料用気化器
JPH0610144A (ja) 低蒸気圧材料供給装置
EP1517863B1 (en) Method and device for vaporizing a liquid reactant in manufacturing a glass preform
KR101585054B1 (ko) 액상 전구체 공급장치
JPH06240456A (ja) 半導体装置のアルミニウム配線の形成方法及び装置
JP2767284B2 (ja) 液状半導体形成材料気化供給装置
JPH11269653A (ja) 液体材料気化装置
JP2005501214A (ja) 蒸気送出システム
JPH03126872A (ja) 液状半導体形成材料気化供給装置
KR890007368A (ko) 화합물 반도체 제조 장치
JP2010284628A (ja) 液体原料のバブリング気化供給方法及び装置
JP2005175249A (ja) 液体材料の気化器及び気化方法
JP2000319095A (ja) トリクロロシランガス気化供給装置及び方法
JPH0372078A (ja) 薄膜作成方法および装置
JP2003332327A (ja) 気化供給方法

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

EXPY Cancellation because of completion of term