JP3099567B2 - Method for producing lead zirconate titanate thin film - Google Patents

Method for producing lead zirconate titanate thin film

Info

Publication number
JP3099567B2
JP3099567B2 JP743093A JP743093A JP3099567B2 JP 3099567 B2 JP3099567 B2 JP 3099567B2 JP 743093 A JP743093 A JP 743093A JP 743093 A JP743093 A JP 743093A JP 3099567 B2 JP3099567 B2 JP 3099567B2
Authority
JP
Japan
Prior art keywords
alkoxide
thin film
lead
zirconate titanate
lead zirconate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP743093A
Other languages
Japanese (ja)
Other versions
JPH06211522A (en
Inventor
良夫 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP743093A priority Critical patent/JP3099567B2/en
Priority to DE69424885T priority patent/DE69424885T2/en
Priority to EP94100801A priority patent/EP0607967B1/en
Priority to US08/184,675 priority patent/US5993901A/en
Publication of JPH06211522A publication Critical patent/JPH06211522A/en
Application granted granted Critical
Publication of JP3099567B2 publication Critical patent/JP3099567B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はチタン酸ジルコン酸鉛薄
膜の製造方法、特に、電子部品用材料として有用なチタ
ン酸ジルコン酸鉛の製造方法に関するものである。
The present invention relates to a method for producing a lead zirconate titanate thin film, and more particularly to a method for producing lead zirconate titanate useful as a material for electronic parts.

【0002】[0002]

【従来の技術】チタン酸ジルコン酸鉛は、強誘電体材
料、圧電体材料あるいは焦電体材料として優れた性質を
有し、磁器コンデンサ、アクチュエータ、焦電型赤外線
センサー等に幅広く応用されている。一般に、これらの
用途に適用する場合、チタン酸ジルコン酸鉛はバルクの
形態で使用されているが、電子機器の小型化、高性能化
等に伴い、チタン酸ジルコン酸鉛を薄膜として使用する
ことが試みられ、その薄膜化の方法として、例えば、ス
パッタリング法(特公昭63ー238799号公報)、C
VD、MOCVD法(日本セラミックス協会1991年
会講演予稿集p.427、同1990年会予稿集p.7
1)、真空蒸着法(特開平1ー6306号)、塗布焼付け
法(特開平3ー283583号公報)、ゾルゲル法(特開
平1ー260870号公報)、及び水熱法(第8回強誘電
体応用会議講演予稿集pp88−89)などが提案されて
いる。
2. Description of the Related Art Lead zirconate titanate has excellent properties as a ferroelectric material, a piezoelectric material or a pyroelectric material, and has been widely applied to porcelain capacitors, actuators, pyroelectric infrared sensors and the like. . In general, when applied to these applications, lead zirconate titanate is used in bulk form, but with the miniaturization and high performance of electronic equipment, lead zirconate titanate must be used as a thin film. Have been tried, and as a method of forming a thin film, for example, a sputtering method (Japanese Patent Publication No. 63-238799), C
VD, MOCVD method (Proceedings of the 1991 Annual Meeting of the Ceramic Society of Japan, p. 427;
1), vacuum deposition method (Japanese Patent Application Laid-Open No. Hei 1-6306), coating and baking method (Japanese Patent Application Laid-Open No. Hei 3-283585), sol-gel method (Japanese Patent Application Laid-Open No. Hei 1-260870), and hydrothermal method (the eighth ferroelectric method). Proceedings of the Lectures on Body Application Conference, pp. 88-89) have been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、スパッ
ター法、CVD、MOCVD法、及び真空蒸着法などの
気相法は、複雑で高価な装置を必要とし、原料ガスの流
れの中に基材をさらすため複雑な基材や基板の裏側には
成膜できないという問題がある。塗布焼付け法は、塗布
と焼付けを繰り返す必要があり作業が繁雑であり、しか
も、複雑な形状の基材には適用できないという問題があ
る。ゾルゲル法は、焼成の際にマイクロクラックが生じ
ることが避けられず、しかも、基材表面に段差等がある
場合には、膜厚にムラを生じることがあるなどの問題が
ある。水熱法は、基材自体を金属Tiで形成するか、基
材表面に予め金属Tiの膜を形成しておく必要があるた
め、応用面の発展性に著しく欠けるという問題がある。
However, vapor phase methods such as sputtering, CVD, MOCVD, and vacuum evaporation require complicated and expensive equipment and expose the substrate to the flow of the source gas. For this reason, there is a problem that a film cannot be formed on a complicated base material or the back side of the substrate. The coating and baking method has a problem that it is necessary to repeat coating and baking, the operation is complicated, and it cannot be applied to a substrate having a complicated shape. The sol-gel method has a problem that microcracks are inevitably generated at the time of firing, and when the surface of the substrate has a step or the like, the film thickness may be uneven. The hydrothermal method has a problem in that the base material itself must be formed of metal Ti or a metal Ti film must be formed on the surface of the base material in advance, so that the development of the application is significantly lacking.

【0004】従って、本発明は、基材の形状や材質にさ
ほど制約を受けることなく、大面積のチタン酸ジルコン
酸鉛を安価に製造できるようにすることを目的とするも
のである。
Accordingly, an object of the present invention is to make it possible to produce large-area lead zirconate titanate at a low cost without much restriction on the shape and material of the base material.

【0005】[0005]

【課題を解決するための手段】本発明は、前記課題を解
決するための手段として、基本的には、カルボン酸鉛と
チタンアルコキシド及びジルコニウムアルコキシドとの
液相反応により複合アルコキシドを生成させ、該複合ア
ルコキシドの水溶液を調製した後、その水溶液に基材表
面を浸漬して前記複合アルコキシドを加水分解するよう
にしたものである。また、生成した複合アルコキシドを
エタノールアミンで変成し、その溶液に基材を浸漬して
加水分解するようにしても良い。
According to the present invention, as a means for solving the above problems, basically, a composite alkoxide is produced by a liquid phase reaction of a lead carboxylate with a titanium alkoxide and a zirconium alkoxide. After preparing an aqueous solution of the composite alkoxide, the substrate surface is immersed in the aqueous solution to hydrolyze the composite alkoxide. Alternatively, the formed composite alkoxide may be denatured with ethanolamine, and the substrate may be immersed in the solution to hydrolyze.

【0006】カルボン酸鉛としては、炭素数10以下、
好ましくは6以下のものが好適であり、例えば、酢酸
鉛、プロピオン酸鉛、酪酸鉛、カプロン酸鉛、カプリル
酸鉛などが挙げられる。このカルボン酸鉛は、そのまま
後述のチタンアルコキシド及びジルコニウムアルコキシ
ドを含むアルコキシド溶液に添加しても良く、また、チ
タンアルコキシドを溶解するのに使用した溶媒と同じ溶
媒に溶解させて溶液となし、その溶液をアルコキシド溶
液と混合するようにしても良い。
[0006] Lead carboxylate includes 10 or less carbon atoms,
Preferably, those having 6 or less are suitable, and examples thereof include lead acetate, lead propionate, lead butyrate, lead caproate, and lead caprylate. This lead carboxylate may be directly added to an alkoxide solution containing titanium alkoxide and zirconium alkoxide described below, or may be dissolved in the same solvent as that used to dissolve the titanium alkoxide to form a solution, and the solution may be added. May be mixed with the alkoxide solution.

【0007】チタンアルコキシド及びジルコニウムアル
コキシドとしては、任意のものを使用できるが、アルコ
キシ基の炭素数が15以下、好ましくは、8以下のもの
が望ましい。代表的なものとしては、チタンのアルコキ
シドを例にすると、チタンエトキシド、チタンイソブト
キシド (Ti (OC494)、チタンイソプロポキシ
ド (Ti (OC374)、ジブトキシ−ジトリエタノ
ール−アミネートチタン、ジブトキシ−ジ (2− (ヒド
ロキシエチルアミノ)エトキシ)チタン (Ti(C49
O)2・ [N (C24OH)2・ (C24O)2])などが
挙げられるが、これらに限定されるものではない。
As the titanium alkoxide and the zirconium alkoxide, any one can be used, but an alkoxy group having 15 or less, preferably 8 or less carbon atoms is desirable. Typical examples are titanium alkoxide, titanium ethoxide, titanium isobutoxide (Ti (OC 4 H 9 ) 4 ), titanium isopropoxide (Ti (OC 3 H 7 ) 4 ), dibutoxide Ditriethanol-aminate titanium, dibutoxy-di (2- (hydroxyethylamino) ethoxy) titanium (Ti (C 4 H 9
O) 2. [N (C 2 H 4 OH) 2. (C 2 H 4 O) 2 ]), but is not limited thereto.

【0008】前記液相反応を行う溶媒としては、エチレ
ングリコールモノアルキルエーテル(ROCH2CH2
H)を使用するのが好適である。前記エチレングリコー
ルモノアルキルエーテルには、エチレングリコールモノ
メチルエーテル、エチレングリコールモノエチルエーテ
ル、エチレングリコールモノイソプロピルエーテル、エ
チレングリコールモノn−プロピルエーテル、エチレン
グリコールモノイソブチルエーテル、エチレングリコー
ルモノn−ブチルエーテル、エチレングリコールフェニ
ルエーテルなどが含まれ、市販の商品名では、メチルセ
ロソルブ、エチルセロソルブなどが挙げられる。
As a solvent for performing the liquid phase reaction, ethylene glycol monoalkyl ether (ROCH 2 CH 2 O)
H) is preferably used. The ethylene glycol monoalkyl ether includes ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol mono n-propyl ether, ethylene glycol monoisobutyl ether, ethylene glycol mono n-butyl ether, ethylene glycol phenyl Ethers and the like are included, and commercially available trade names include methyl cellosolve, ethyl cellosolve and the like.

【0009】[0009]

【作用】アルコール性水酸基とエーテル結合を有するエ
チレングリコールモノアルキルエーテル溶液中で、カル
ボン酸鉛とチタンアルコキシド及びジルコニウムアルコ
キシドを反応させると、複合アルコキシドが形成する。
この複合アルコキシドを水に溶解して水溶液を調製し、
これに基材を浸漬して徐々に加水分解させると、不均一
核形成により基材表面に目的とする組成の膜の核が形成
し、加水分解の進行に伴って核が成長し、膜となる。こ
の膜を熱処理することによりチタン酸ジルコン酸鉛薄膜
が形成される。
When a lead carboxylate is reacted with a titanium alkoxide and a zirconium alkoxide in an ethylene glycol monoalkyl ether solution having an alcoholic hydroxyl group and an ether bond, a complex alkoxide is formed.
This complex alkoxide is dissolved in water to prepare an aqueous solution,
When the substrate is immersed in this and is gradually hydrolyzed, a nucleus of a film having a desired composition is formed on the surface of the substrate due to heterogeneous nucleation, and the nucleus grows as the hydrolysis proceeds, and the film and Become. By heat treating this film, a lead zirconate titanate thin film is formed.

【0010】[0010]

【実施例1】0.1モルの酢酸鉛を0.8モルのエチレン
グリコールモノメチルエーテルに溶解し、約110℃に
加熱、保持して水分を完全に蒸発させた後、約50℃ま
で冷却し、それにチタン酸テトライソプロピル及びジル
コン酸テトライソプロピルを表1に示す割合で添加し、
約100℃で反応させ、複合アルコキシドを得た。この
複合アルコキシドを表1に示す濃度、温度でイオン交換
蒸留水30mlに溶解し、その中に表面を鏡面研摩した1
0×15×2mmの大きさのアルミナ焼結体基板を4日間
浸漬した。その後、各基板を表1に示す温度にまで加熱
し、1時間保持した後、室温まで冷却する熱処理を行っ
た処、試料番号1及び2以外の基板表面にチタン酸ジル
コン酸鉛薄膜が形成された。
EXAMPLE 1 0.1 mol of lead acetate was dissolved in 0.8 mol of ethylene glycol monomethyl ether, heated and maintained at about 110 ° C. to completely evaporate water, and then cooled to about 50 ° C. , To which are added tetraisopropyl titanate and tetraisopropyl zirconate in the proportions shown in Table 1,
The reaction was performed at about 100 ° C. to obtain a composite alkoxide. This complex alkoxide was dissolved in 30 ml of ion-exchange distilled water at the concentration and temperature shown in Table 1, and the surface thereof was mirror-polished.
An alumina sintered body substrate having a size of 0 × 15 × 2 mm was immersed for 4 days. Thereafter, each substrate was heated to the temperature shown in Table 1, held for 1 hour, and then subjected to a heat treatment of cooling to room temperature. As a result, a lead zirconate titanate thin film was formed on the surfaces of the substrates other than Sample Nos. 1 and 2. Was.

【0011】[0011]

【表1】 番号 Pb(II) Ti(IV) Zr(IV) Pb:Ti:Zr 液温 熱処理温度 (mM/l) (mM/l) (mM/l) (モル比) (℃) (℃) *1 0.005 0.0025 0.0025 1:0.5:0.5 110 500 *2 100 10 90 1:0.1:0.9 115 500 3 0.01 0.048 0.052 1:0.48:0.52 110 400 4 0.1 0.05 0.095 1:0.05:0.95 100 500 5 1 0.7 0.3 1:0.7:0.3 40 700 6 10 5 5 1:0.5:0.5 5 800 7 100 40 60 1:0.4:0.6 0 900 [Table 1] No. Pb (II) Ti (IV) Zr (IV) Pb: Ti: Zr Liquid temperature Heat treatment temperature (mM / l) (mM / l) (mM / l) (molar ratio) (° C) (° C) * 1 0.005 0.0025 0.0025 1: 0.5: 0.5 110 500 * 2 100 10 90 1: 0.1: 0.9 115 500 3 0.01 0.048 0.052 1: 0.48: 0.52 110 400 4 0.1 0.05 0.095 1: 0.05: 0.95 100 500 5 1 0.7 0.3 1: 0.7 : 0.3 40 700 6 10 5 5 1: 0.5: 0.5 5 800 7 100 40 60 1: 0.4: 0.6 0 900

【0012】得られた番号5の試料について得た薄膜X
線回折チャートを図1に示す。図1の結果から明らかな
ように、本発明方法によれば、ペロブスカイト相単相の
みからなるチタン酸ジルコン酸鉛薄膜を得ることができ
る。
The thin film X obtained for the sample No. 5 obtained
The line diffraction chart is shown in FIG. As is clear from the results in FIG. 1, according to the method of the present invention, a lead zirconate titanate thin film consisting of only a single perovskite phase can be obtained.

【0013】なお、試料番号1のように浸漬液に含まれ
る鉛イオン濃度又はチタンイオン及びジルコニウムイオ
ンの合計濃度が0.01モル未満では、チタン酸ジルコ
ン酸鉛は島状に離散的に析出し、膜を形成せず、また、
試料番号2のように、鉛イオン濃度又はチタンイオン及
びジルコニウムイオンの合計濃度が100mMを越える
と、基板表面を利用した不均一核形成が起こらず、均一
核形成により水溶液中に沈澱が析出するため膜が得られ
ない。従って、鉛イオン濃度及びチタンイオン及びジル
コニウムイオンの合計濃度はそれぞれ0.01〜100
mMにするのが好適である。
When the concentration of lead ions or the total concentration of titanium ions and zirconium ions contained in the immersion liquid is less than 0.01 mol as in sample No. 1, lead zirconate titanate is discretely precipitated in the form of islands. , Does not form a film,
When the concentration of lead ions or the total concentration of titanium ions and zirconium ions exceeds 100 mM as in Sample No. 2, heterogeneous nucleation using the substrate surface does not occur, and precipitates are precipitated in the aqueous solution by uniform nucleation. No film is obtained. Accordingly, the lead ion concentration and the total concentration of titanium ion and zirconium ion are 0.01 to 100, respectively.
Preferably, it is mM.

【0014】また、浸漬液の温度が0℃未満では、析出
速度が極端に低下して膜を形成できず、110℃を越え
ると、気泡が発生して膜の連続性、平滑性及び均質性が
損なわれるので、液温は0〜110℃が好適である。更
に、熱処理温度が400℃未満ではアモルファス相又は
パイロクロア相が生成して強誘電体薄膜が得られず、9
00℃を越えると、膜の平滑性及び均質性が損なわれる
ため、熱処理温度は400〜900℃の範囲が好適であ
る。
If the temperature of the immersion liquid is lower than 0 ° C., the deposition rate is extremely reduced and the film cannot be formed. If the temperature exceeds 110 ° C., bubbles are generated and the continuity, smoothness and homogeneity of the film are generated. Therefore, the liquid temperature is preferably 0 to 110 ° C. Further, when the heat treatment temperature is lower than 400 ° C., an amorphous phase or a pyrochlore phase is generated, and a ferroelectric thin film cannot be obtained.
If the temperature exceeds 00 ° C., the smoothness and homogeneity of the film are impaired, so that the heat treatment temperature is preferably in the range of 400 to 900 ° C.

【0015】[0015]

【発明の効果】以上説明したように、本発明は、鉛、チ
タン及びジルコニウムの複合アルコキシドを生成させた
後、これを加水分解してその液中に浸漬された基板表面
に薄膜を析出させ、これを熱処理することによってチタ
ン酸ジルコン酸鉛薄膜を形成するようにしたので、基板
の材質や形状に左右されることなく、均質な薄膜を製造
でき、しかも、熱処理を低温度で行えるので、従来の乾
式法のように焼成時の鉛の蒸発による損失がなく、モル
比のズレのない所望の組成を有する大面積の薄膜を簡便
かつ安価に製造することができるという優れた効果が得
られる。
As described above, according to the present invention, a composite alkoxide of lead, titanium and zirconium is produced, and then hydrolyzed to deposit a thin film on the surface of the substrate immersed in the liquid. Heat-treating this to form a lead zirconate titanate thin film enables a uniform thin film to be manufactured without being affected by the material and shape of the substrate. As in the dry method described above, there is obtained an excellent effect that a large-area thin film having a desired composition without a loss due to evaporation of lead during sintering and having a desired molar ratio can be easily and inexpensively produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明方法により製造されたチタン酸ジルコ
ン酸鉛薄膜のX線回折チャートを示す図である。
FIG. 1 is a diagram showing an X-ray diffraction chart of a lead zirconate titanate thin film produced by the method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01G 25/00 H01L 41/24 CA(STN)──────────────────────────────────────────────────の Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C01G 25/00 H01L 41/24 CA (STN)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 カルボン酸鉛とチタンアルコキシド及び
ジルコニウムアルコキシドとの液相反応により複合アル
コキシドを生成させ、該複合アルコキシドの水溶液を調
製した後、その水溶液に基材表面を浸漬して前記複合ア
ルコキシドを加水分解することを特徴とするチタン酸ジ
ルコン酸鉛薄膜の製造方法。
1. A composite alkoxide is produced by a liquid phase reaction of a lead carboxylate with a titanium alkoxide and a zirconium alkoxide, and an aqueous solution of the composite alkoxide is prepared. A method for producing a lead zirconate titanate thin film, comprising hydrolyzing.
【請求項2】 前記水溶液中に含まれる鉛、チタン及び
ジルコニウムのイオン濃度が、それぞれPb(II)、Ti(I
V)及びZr(IV)イオンに換算して、0.01mM/l≦Pb
(II)≦100mM/l、0.01mM/l≦Ti(IV)≦100
mM/l、0.01mM/l≦Zr(IV)≦100mM/lの範囲
内にある請求項1に記載の方法。
2. The ion concentrations of lead, titanium and zirconium contained in the aqueous solution are Pb (II) and Ti (I
V) and Zr (IV) ion, 0.01 mM / l ≦ Pb
(II) ≦ 100 mM / l, 0.01 mM / l ≦ Ti (IV) ≦ 100
2. The method according to claim 1, wherein the value is in the range of mM / l, 0.01 mM / l≤Zr (IV) ≤100 mM / l.
【請求項3】 前記複合アルコキシドを生成する液相反
応を、エチレングリコールモノアルキルエーテルを溶媒
とする溶液中で行う請求項1又は2に記載の方法。
3. The method according to claim 1, wherein the liquid phase reaction for producing the complex alkoxide is performed in a solution using ethylene glycol monoalkyl ether as a solvent.
JP743093A 1993-01-20 1993-01-20 Method for producing lead zirconate titanate thin film Expired - Lifetime JP3099567B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP743093A JP3099567B2 (en) 1993-01-20 1993-01-20 Method for producing lead zirconate titanate thin film
DE69424885T DE69424885T2 (en) 1993-01-20 1994-01-20 Production of thin films of a lead titanate system
EP94100801A EP0607967B1 (en) 1993-01-20 1994-01-20 Production of thin films of a lead titanate system
US08/184,675 US5993901A (en) 1993-01-20 1994-01-21 Production of thin films of a lead titanate system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP743093A JP3099567B2 (en) 1993-01-20 1993-01-20 Method for producing lead zirconate titanate thin film

Publications (2)

Publication Number Publication Date
JPH06211522A JPH06211522A (en) 1994-08-02
JP3099567B2 true JP3099567B2 (en) 2000-10-16

Family

ID=11665654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP743093A Expired - Lifetime JP3099567B2 (en) 1993-01-20 1993-01-20 Method for producing lead zirconate titanate thin film

Country Status (1)

Country Link
JP (1) JP3099567B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080813A (en) 2008-09-29 2010-04-08 Fujifilm Corp Piezoelectric film and method of manufacturing the same, piezoelectric device, and liquid discharge apparatus
RU2470866C1 (en) * 2011-06-22 2012-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет радиотехники, электроники и автоматики" Method of preparing anhydrous film-forming solutions for forming ferroelectric lead zirconate-titanate films with low freezing point

Also Published As

Publication number Publication date
JPH06211522A (en) 1994-08-02

Similar Documents

Publication Publication Date Title
Tani et al. Lead Oxide Coatings on Sol–Gel‐Derived Lead Lanthanum Zirconium Titanate Thin Layers for Enhanced Crystallization into the Perovskite Structure
KR100453416B1 (en) Ferroelectric thin films and solutions: compositions and processing
EP2876666A1 (en) Method for producing ferroelectric thin film
US5384294A (en) Sol-gel derived lead oxide containing ceramics
JP4329287B2 (en) PLZT or PZT ferroelectric thin film, composition for forming the same and method for forming the same
JPH04506791A (en) Production of thin film ceramics by sol-gel processing
WO1990013149A1 (en) SOL GEL PROCESS FOR PREPARING Pb(Zr,Ti)O3 THIN FILMS
EP1434259B1 (en) Ferroelectric thin film and method for forming the same
JPH05124817A (en) Formation of thin barium titanate film
JP3099567B2 (en) Method for producing lead zirconate titanate thin film
Selvaraj et al. Sol-gel processing of oriented PbTiO3 thin films with lead acetylacetonate as the lead precursor
US5451426A (en) Method for formation of barium titanate film
JP5655272B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
EP0607967B1 (en) Production of thin films of a lead titanate system
JP3099568B2 (en) Method for producing lead titanate thin film
JP3164849B2 (en) Method for producing lead zirconate titanate thin film
JPH0891841A (en) Production of ferroelectric film
JP4329289B2 (en) SBT ferroelectric thin film, composition for forming the same, and method for forming the same
JP2000016812A (en) Production of metal oxide film
JP3449617B2 (en) Metal oxide thin film and method for forming the same
Pardo et al. Ferroelectric materials based on lead titanate
JP2003002649A (en) Blt ferroelectric thin film, composition for forming the same, and producing method for the same
KR101138239B1 (en) A fabrication method of thin piezoelectric films with high piezoelectric constant
JP3198552B2 (en) Method of forming composite oxide thin film
JP3191345B2 (en) Method of forming composite oxide thin film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 13