JP3098118B2 - Manufacturing method of ceramic electronic components - Google Patents

Manufacturing method of ceramic electronic components

Info

Publication number
JP3098118B2
JP3098118B2 JP04296248A JP29624892A JP3098118B2 JP 3098118 B2 JP3098118 B2 JP 3098118B2 JP 04296248 A JP04296248 A JP 04296248A JP 29624892 A JP29624892 A JP 29624892A JP 3098118 B2 JP3098118 B2 JP 3098118B2
Authority
JP
Japan
Prior art keywords
atmosphere
firing
ceramic
temperature range
ceramic electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04296248A
Other languages
Japanese (ja)
Other versions
JPH06151237A (en
Inventor
渉 坂本
恵美子 井垣
正和 棚橋
隆 井口
庸一 沖中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP04296248A priority Critical patent/JP3098118B2/en
Publication of JPH06151237A publication Critical patent/JPH06151237A/en
Application granted granted Critical
Publication of JP3098118B2 publication Critical patent/JP3098118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は主として積層セラミック
コンデンサなどのセラミック電子部品の、電極とセラミ
ックの一体焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a sintered body of an electrode and a ceramic for a ceramic electronic component such as a multilayer ceramic capacitor.

【0002】[0002]

【従来の技術】従来、PdあるいはPdを主要金属とす
る合金を電極とする一体焼結タイプのセラミック電子部
品は大気中で焼成されていた。前記大気中で焼成した場
合、Pdは820℃までの温度で酸化が進行して酸化物
になるが、820℃以上の温度になると分解し、Pd金
属に変わるため、820℃以上の温度で焼成されるセラ
ミックと同時焼成を行ってもPd金属あるいはPd合金
電極として形成される。このことから、たとえば、積層
セラミックコンデンサの場合、内部電極にPdが多く用
いられているが、この場合、セラミックシートと電極ペ
ーストを交互に積み重ねたグリーンチップを作り、脱バ
インダーを行った後に大気中で焼成を行い、内部にPd
電極を形成する方法がとられていた。
2. Description of the Related Art Conventionally, an integrally sintered type ceramic electronic component using Pd or an alloy containing Pd as a main metal as an electrode has been fired in the atmosphere. When calcined in the atmosphere, Pd oxidizes at temperatures up to 820 ° C. to form oxides, but decomposes at 820 ° C. or more and turns into Pd metal, so that it is calcined at 820 ° C. or more. Even if co-firing with the ceramic to be performed, it is formed as a Pd metal or Pd alloy electrode. For this reason, for example, in the case of a multilayer ceramic capacitor, Pd is often used for an internal electrode. In this case, a green chip is formed by alternately stacking ceramic sheets and electrode pastes, and after debinding, a green chip is formed. Baking with Pd inside
A method of forming an electrode has been used.

【0003】[0003]

【発明が解決しようとする課題】ところでPdあるいは
Pdを主要金属とする合金電極を有するセラミック電子
部品の1つである積層セラミックコンデンサのグリーン
チップを焼成する場合、内部電極のPdは焼成過程の中
で酸化されて体積が膨張し、内部電極部分の体積が増加
する。そのため、焼成後に内部構造欠陥を発生すること
が多く、Pdの酸化される温度域では不活性雰囲気中あ
るいは真空中で焼成し、PdOの分解温度以上の温度域
では大気中で焼成するという方法もとられてきたが、不
活性雰囲気中の焼成では処理量あるいは処理方法によっ
て脱バインダが十分に行われず、チップ中に残存C分が
高温域(セラミックの焼結温度域)まで残存し、内部構
造欠陥および絶縁抵抗をはじめとした電気的諸特性の変
動を引き起こし易くなるという問題点を有していた。
When firing a green chip of a multilayer ceramic capacitor, which is one of the ceramic electronic components having Pd or an alloy electrode containing Pd as a main metal, the Pd of the internal electrode is reduced during the firing process. And the volume expands, and the volume of the internal electrode portion increases. For this reason, internal structural defects often occur after firing, and firing in an inert atmosphere or in a vacuum in a temperature range where Pd is oxidized, and firing in the air in a temperature range equal to or higher than the decomposition temperature of PdO may be performed. However, in the sintering in an inert atmosphere, the binder removal is not sufficiently performed depending on the treatment amount or the treatment method, and the residual C component remains in the chip up to a high temperature region (ceramic sintering temperature region). There has been a problem that electrical characteristics such as defects and insulation resistance tend to fluctuate.

【0004】本発明は、上述の問題点を解決し、積層セ
ラミックコンデンサ等のセラミック電子部品の内部構造
欠陥および電気的な特性の変動を抑制し得るセラミック
電子部品の製造方法を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems and to provide a method of manufacturing a ceramic electronic component capable of suppressing internal structural defects and variations in electrical characteristics of a ceramic electronic component such as a multilayer ceramic capacitor. And

【0005】[0005]

【課題を解決するための手段】本発明の製造方法は、上
記目的を達成するために、セラミックと電極の一体焼結
の際にPdが酸化する温度域はPdが酸化しない雰囲気
中で焼成し、その後大気雰囲気でPdOがPdへと還元
する温度域で大気へ置換し、残存C分が完全に除去され
たことを確認した後に昇温し、セラミックを焼結させる
ことを特徴とするものである。
In order to achieve the above-mentioned object, the manufacturing method of the present invention is characterized in that the temperature range in which Pd is oxidized when the ceramic and the electrode are integrally sintered is fired in an atmosphere in which Pd is not oxidized. , Then PdO reduced to Pd in air
The atmosphere is replaced with air in a temperature range in which the residual C content is completely removed, the temperature is raised, and the ceramic is sintered.

【0006】[0006]

【作用】電極とセラミックの一体成形品は、焼成前には
各種有機バインダを成分として含んでいるが、不活性雰
囲気中の焼成では高温域まで成形体内に残留C分が残存
する。実験的には次のようにして確認することができ
る。通常のグリーンチップを熱重量分析および示差熱分
析装置(TG−DTA)で、Pdが酸化される温度域で
は窒素中、PdOがPdへと還元する温度域(900
℃)以上では大気中で測定を行うと、(図1)のDTA
曲線に示すように窒素雰囲気から大気雰囲気へと変換す
る際に残留C分の燃焼による発熱ピークが観察されるこ
とを本発明者は実験的に確認した。このようにして観察
される残留C分が完全に除去されずにセラミックの焼結
温度域まで残存すると、製品の絶縁性など電気的特性変
動の原因となる。したがって、大気中でPdが酸化され
る温度域では不活性ガス中あるいは真空中などPdの酸
化が起こらない雰囲気で焼成し、PdOがPdへと還元
する温度以上の温度域では大気中で焼成する場合に、熱
処理を行うサヤの内部にたとえば熱電対あるいは熱処理
を行う炉の内部に各種ガスセンサを設定し、これによ
り、不活性雰囲気より大気中へと雰囲気を変換する温度
域で、残留C分の除去管理が各センサにより徹底できる
ため、処理量に関係なく完全にしかも均一に残留C分の
存在しない状態を確認した後に焼成でき、絶縁性など電
気的な諸特性が均一な優れたセラミック電子部品を再現
性よく製造することができる。
The integrated molded product of the electrode and the ceramic contains various organic binders as components before firing, but when firing in an inert atmosphere, residual C remains in the molded body up to a high temperature range. It can be confirmed experimentally as follows. In a temperature range where Pd is oxidized, a temperature range where PdO is reduced to Pd in nitrogen (900) is measured by a thermogravimetric analysis and a differential thermal analyzer (TG-DTA).
(° C) and above, when measurement is performed in the atmosphere, the DTA of (Fig. 1)
The inventor experimentally confirmed that an exothermic peak due to combustion of the residual C was observed when converting from a nitrogen atmosphere to an atmospheric atmosphere as shown by the curve. If the residual C content thus observed is not completely removed but remains up to the sintering temperature range of the ceramic, it causes a change in electrical characteristics such as insulating properties of the product. Therefore, in the temperature range where Pd is oxidized in the atmosphere, firing is performed in an atmosphere in which Pd is not oxidized, such as in an inert gas or in a vacuum, and in the temperature range above the temperature at which PdO is reduced to Pd, firing is performed in the air. In this case, for example, various gas sensors are set inside the sheath for performing the heat treatment, for example, inside the thermocouple or the furnace for performing the heat treatment, so that the temperature of the atmosphere is changed from the inert atmosphere to the atmosphere. Excellent ceramic electronic components with uniform electrical properties such as insulation, because removal control can be thoroughly performed by each sensor, and firing can be performed completely and uniformly after confirming the absence of residual C, regardless of the processing amount. Can be manufactured with good reproducibility.

【0007】[0007]

【実施例】以下、本発明の実施例について詳細に述べ
る。 (実施例1)チタン酸バリウムを主成分とする誘電体粉
末と有機バインダーよりなる30μm厚みのグリーンシ
ートを作製し、金属成分として平均粒径0.4μmのP
d粉を用いた電極ペーストを3μm厚みに印刷し、有効
層30層からなるグリーンチップを作製した。このグリ
ーンチップを窒素中100℃/hrで昇温し、400℃
で脱バインダを行った後、次の2種類の方法で1320
℃まで焼成を行い、絶縁抵抗値の測定を行った。
Embodiments of the present invention will be described below in detail. Example 1 A 30 μm-thick green sheet made of a dielectric powder containing barium titanate as a main component and an organic binder was prepared, and P having an average particle diameter of 0.4 μm was used as a metal component.
The electrode paste using the d powder was printed to a thickness of 3 μm to produce a green chip including 30 effective layers. The temperature of this green chip was increased in nitrogen at 100 ° C./hr,
After debinding, the following two methods are used to
C., and the insulation resistance was measured.

【0008】(1)900℃まで窒素中焼成。900℃
で大気に切り替え、そのまま900℃から1320℃ま
で大気中焼成。 (2)900℃まで窒素中焼成。900℃で保持しなが
ら減圧した後に大気へ置換、(図2)に示すように焼成
炉3内の焼成サヤ4に設定した熱電対7により残留C分
の燃焼による発熱が確認されなくなるまでこの操作を繰
り返した後、900℃から1320℃まで大気中焼成。
(1) Firing in nitrogen to 900 ° C. 900 ° C
Then, it is fired in air from 900 ° C to 1320 ° C. (2) Firing in nitrogen to 900 ° C. After reducing the pressure while maintaining the temperature at 900 ° C., the atmosphere is replaced with the atmosphere. As shown in FIG. 2, this operation is performed until the heat generated by the combustion of the residual C is no longer confirmed by the thermocouple 7 set in the firing sheath 4 in the firing furnace 3. , And then fired in the air from 900 ° C to 1320 ° C.

【0009】なお、図2中の5はガス弁、6はCO,C
2 等のセンサーである。これらの実験では、いずれの
場合も昇温速度は200℃/hrとした。この結果、
(1)の焼成法では絶縁抵抗の測定値の平均値が8×1
9 Ω(500個の平均)となったのに対し、本実施例
の方法である(2)の焼成法では1×1011Ω(500
個の平均)とセラミック誘電体層の絶縁性が向上した。
In FIG. 2, 5 is a gas valve, 6 is CO, C
It is a sensor such as O 2 . In these experiments, the heating rate was 200 ° C./hr in each case. As a result,
In the firing method (1), the average value of the measured insulation resistance is 8 × 1.
0 9 Omega contrast became (500 average) and, at the firing method of a method of this Example (2) 1 × 10 11 Ω (500
And the insulating properties of the ceramic dielectric layer were improved.

【0010】(実施例2)実施例1と同様のグリーンチ
ップを、実施例1と同様の脱バインダーを行った後、次
の2種類の方法で1320℃まで焼成を行い、絶縁抵抗
値の測定を行った。
(Embodiment 2) The same green chip as in Embodiment 1 was subjected to binder removal in the same manner as in Embodiment 1, and then fired to 1320 ° C. by the following two methods to measure the insulation resistance value. Was done.

【0011】(1)900℃まで窒素中焼成。900℃
で大気に切り替え、そのまま900℃から1320℃ま
で大気中焼成。 (2)900℃まで窒素中焼成。900℃で保持しなが
ら大気に置換、雰囲気ガス中のCOおよびCO2を検知
するCO,CO2 センサによりCO,CO2 濃度が検出
限界以下になった後、900℃から1320℃まで大気
中焼成。
(1) Firing in nitrogen to 900 ° C. 900 ° C
Then, it is fired in air from 900 ° C to 1320 ° C. (2) Firing in nitrogen to 900 ° C. Substituted atmosphere while maintained at 900 ° C., after CO for detecting the CO and CO 2 in the atmospheric gas, the CO by CO 2 sensor, CO 2 concentration decreased below the detection limit in air firing to 1320 ° C. from 900 ° C. .

【0012】これらの実験では、いずれも昇温速度は2
00℃−hrとした。この結果、(1)の焼成法は実施
例1と同じく8×109 Ω(500個の平均)となった
のに対し、本実施例の方法である(2)の焼成法では9
×1010Ω(500個の平均)となり実施例1と同じ効
果が確認された。
In each of these experiments, the heating rate was 2
00 ° C-hr. As a result, the firing method of (1) was 8 × 10 9 Ω (average of 500 pieces) as in Example 1, whereas the firing method of (2), which is the method of this example, was 9 × 10 9 Ω.
× 10 10 Ω (average of 500 pieces), and the same effect as in Example 1 was confirmed.

【0013】すなわち不活性雰囲気より大気中へと雰囲
気を変換する温度域で、完全にしかも均一に残留C分を
除去するための炉内管理が各センサにより徹底できるた
め、電気的な諸特性を均一にすることができ、このよう
な結果が得られることになる。
That is, in the temperature range where the atmosphere is converted from the inert atmosphere to the atmosphere, the inside of the furnace for completely and evenly removing the residual C content can be thoroughly controlled by each sensor. Such a result can be obtained.

【0014】上述の実施例において、Pd電極のかわり
に、Pdを主要金属とする合金電極を用いても同様の結
果が得られることはいうまでもない。
In the above-described embodiment, it goes without saying that the same result can be obtained by using an alloy electrode containing Pd as a main metal instead of the Pd electrode.

【0015】[0015]

【発明の効果】以上の実施例の説明より明らかなように
本発明による製造方法は、PdあるいはPdを主要金属
とする合金の電極とセラミックを一体焼結を行う方法で
あって、Pdが大気雰囲気で酸化される温度域はPdが
酸化しない雰囲気中で焼成し、その後大気雰囲気でPd
OがPdへと還元する温度域で大気へ置換し、残存Cが
完全に燃焼した後に昇温し、セラミックを焼結させるの
で、不活性雰囲気から大気中へと雰囲気を変換する温度
域で処理量に関係なく、完全にしかも均一に残存C分を
除去するための管理が各センサにより徹底できるため、
内部構造欠陥がなく、電気的な諸特性が均一な優れたセ
ラミック電子部品を再現性よく製造することを可能にす
るものである。
As is apparent from the above description of the embodiment, the manufacturing method according to the present invention is a method of integrally sintering an electrode of Pd or an alloy containing Pd as a main metal and a ceramic.
The temperature range in which Pd is oxidized in the atmosphere is Pd
Firing in an atmosphere that does not oxidize, and then Pd in air
Atmosphere is replaced in the temperature range where O reduces to Pd, and residual C
After it is completely burned, it heats up and sinters the ceramic.
In the temperature range where the atmosphere is converted from the inert atmosphere to the atmosphere, regardless of the processing amount, the sensor can completely and uniformly manage the removal of the residual C component by each sensor.
An object of the present invention is to make it possible to produce a ceramic electronic component excellent in reproducibility, which has no internal structural defects and uniform electric characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】積層セラミックコンデンサのグリーンチップの
熱重量分析(TG)−示差熱分析(DTA)測定結果を
示す図
FIG. 1 is a diagram showing a thermogravimetric analysis (TG) -differential thermal analysis (DTA) measurement result of a green chip of a multilayer ceramic capacitor.

【図2】焼成炉および焼成用サヤを示す断面図FIG. 2 is a sectional view showing a firing furnace and a firing sheath.

【符号の説明】[Explanation of symbols]

1 DTA曲線 2 TG曲線 3 焼成炉 4 焼成サヤ 5 ガス弁 6 CO,CO2 センサー 7 熱電対DESCRIPTION OF SYMBOLS 1 DTA curve 2 TG curve 3 Firing furnace 4 Firing sheath 5 Gas valve 6 CO, CO 2 sensor 7 Thermocouple

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井口 隆 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 沖中 庸一 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭62−106612(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01G 4/00 - 4/40 H01G 13/00 - 13/06 ──────────────────────────────────────────────────の Continuing on the front page (72) Takashi Iguchi 1006 Kadoma Kadoma, Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-62-106612 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01G 4/00-4/40 H01G 13/00-13 / 06

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 PdあるいはPdを主要金属とする合金
の電極とセラミックを一体焼結を行う方法であって、P
dが大気雰囲気で酸化される温度域はPdが酸化しない
雰囲気中で焼成し、その後大気雰囲気でPdOがPdへ
と還元する温度域で大気へ置換し、残存Cが完全に燃焼
した後に昇温し、セラミックを焼結させるセラミック電
子部品の製造方法。
1. A method for integrally sintering an electrode of Pd or an alloy containing Pd as a main metal and a ceramic,
In the temperature range where d is oxidized in an air atmosphere, firing is performed in an atmosphere in which Pd is not oxidized, and then PdO is converted to Pd in an air atmosphere.
A method for producing a ceramic electronic component in which the atmosphere is replaced with air in a temperature range in which the residual C is completely burned, and after the residual C is completely burned, the temperature is raised and the ceramic is sintered.
【請求項2】 セラミック電子部品が積層セラミックコ
ンデンサである請求項1記載のセラミック電子部品の製
造方法。
2. The method according to claim 1, wherein the ceramic electronic component is a multilayer ceramic capacitor.
【請求項3】 Pdが酸化しない雰囲気が不活性ガスあ
るいは真空である請求項1記載のセラミック電子部品の
製造方法。
3. The method according to claim 1, wherein the atmosphere in which Pd is not oxidized is an inert gas or a vacuum.
JP04296248A 1992-11-06 1992-11-06 Manufacturing method of ceramic electronic components Expired - Fee Related JP3098118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04296248A JP3098118B2 (en) 1992-11-06 1992-11-06 Manufacturing method of ceramic electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04296248A JP3098118B2 (en) 1992-11-06 1992-11-06 Manufacturing method of ceramic electronic components

Publications (2)

Publication Number Publication Date
JPH06151237A JPH06151237A (en) 1994-05-31
JP3098118B2 true JP3098118B2 (en) 2000-10-16

Family

ID=17831113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04296248A Expired - Fee Related JP3098118B2 (en) 1992-11-06 1992-11-06 Manufacturing method of ceramic electronic components

Country Status (1)

Country Link
JP (1) JP3098118B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200488524Y1 (en) 2013-04-18 2019-02-15 (주)엘지하우시스 Rotating exhibitions stands

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200488524Y1 (en) 2013-04-18 2019-02-15 (주)엘지하우시스 Rotating exhibitions stands

Also Published As

Publication number Publication date
JPH06151237A (en) 1994-05-31

Similar Documents

Publication Publication Date Title
US4189760A (en) Monolithic capacitor with non-noble metal electrodes and method of making the same
JPH08245270A (en) Method for calcining and sintering of ceramic electronic part
JP3098118B2 (en) Manufacturing method of ceramic electronic components
JP3102139B2 (en) Manufacturing method of multilayer electronic component
Shoji et al. Effect of heat treatment on dielectric properties of X7R designated MLCs with Ni internal electrodes
JP2970781B2 (en) Manufacturing method of multilayer capacitor
JP3239718B2 (en) Manufacturing method of multilayer ceramic electronic component
JP5574343B2 (en) DIELECTRIC CERAMIC COMPOSITION, DIELECTRIC, CERAMIC SUBSTRATE AND ELECTRONIC COMPONENT, AND METHOD FOR PRODUCING DIELECTRIC
JP3336776B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3196524B2 (en) Electronic component manufacturing method
JP2000290077A (en) Production of multilayer ceramic electronic component
JPH07335477A (en) Manufacture of ceramic electronic component
JP3873928B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2003124054A (en) Method of manufacturing laminated ceramic electronic part
JP3082532B2 (en) Manufacturing method of ceramic electronic components
JP3548818B2 (en) Manufacturing method of multilayer ceramic capacitor and multilayer ceramic capacitor
JPH05275273A (en) Manufacture of multilayer ceramic electronic component
JP3250400B2 (en) Manufacturing method of ceramic electronic components
JP3640554B2 (en) Method for firing ceramic electronic components
JPH07111899B2 (en) Heater element manufacturing method
JPH07169644A (en) Manufacture of ceramic electronic component
JP3780798B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3523399B2 (en) Manufacturing method of ceramic electronic components
JP4003437B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3322027B2 (en) Manufacturing method of multilayer ceramic electronic component

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees