JP3548818B2 - Manufacturing method of multilayer ceramic capacitor and multilayer ceramic capacitor - Google Patents

Manufacturing method of multilayer ceramic capacitor and multilayer ceramic capacitor Download PDF

Info

Publication number
JP3548818B2
JP3548818B2 JP11453599A JP11453599A JP3548818B2 JP 3548818 B2 JP3548818 B2 JP 3548818B2 JP 11453599 A JP11453599 A JP 11453599A JP 11453599 A JP11453599 A JP 11453599A JP 3548818 B2 JP3548818 B2 JP 3548818B2
Authority
JP
Japan
Prior art keywords
electronic component
conductive paste
multilayer ceramic
ceramic capacitor
internal conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11453599A
Other languages
Japanese (ja)
Other versions
JP2000306760A (en
Inventor
浩昭 高島
康信 米田
日出夫 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP11453599A priority Critical patent/JP3548818B2/en
Publication of JP2000306760A publication Critical patent/JP2000306760A/en
Application granted granted Critical
Publication of JP3548818B2 publication Critical patent/JP3548818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、積層セラミックコンデンサの製造方法および積層セラミックコンデンサに関するもので、特に、銅を主成分とする内部導体を備える積層セラミックコンデンサの製造方法、およびこの製造方法によって得られた積層セラミックコンデンサに関するものである。
【0002】
【従来の技術】
たとえば積層セラミックコンデンサやLC複合部品のような多層複合部品のように、セラミックをもって構成される電子部品本体と、この電子部品本体の内部に形成される内部導体とを備える、セラミック電子部品を製造する場合、典型的には、セラミックグリーンシートを用意するとともに、内部導体を形成するための導電性ペーストを用意し、その後、形成しようとする内部導体のパターンをもって導電性ペーストをセラミックグリーンシート上に印刷し、これらセラミックグリーンシートを積み重ね、プレスし、カットすることによって、生の電子部品本体を作製し、この生の電子部品本体を、次いで、焼成することによって、電子部品本体を得る、各工程が実施される。
【0003】
上述した焼成工程は、脱バインダ工程と本焼成工程とを備えており、脱バインダ工程では、セラミックグリーンシートすなわち生の電子部品本体中のバインダおよび導電性ペースト中のバインダを燃焼させることが行なわれ、次いで、本焼成工程では、生の電子部品本体に含まれるセラミックを焼結させることが行なわれる。脱バインダ工程では、バインダを燃焼させて除去する必要があるため、たとえば、空気またはある程度の酸化性雰囲気といった酸素含有雰囲気中において実施される。
【0004】
他方、積層セラミックコンデンサやLC複合部品のような多層複合部品において、Q特性を向上させるため、内部導体として、導電性の良好な銅を使用することが行なわれている。このように、銅を用いて内部導体を形成する場合には、銅粉末を導電性成分として含む導電性ペーストが用いられる。
【0005】
【発明が解決しようとする課題】
しかしながら、銅は酸化されやすいので、内部導体を形成するために銅粉末を含む導電性ペーストを用いる場合、特に脱バインダ工程での酸素含有雰囲気が問題となる。たとえば、銀粉末を含む導電性ペーストを内部導体の形成のために用いる場合と同様の酸素含有雰囲気中で脱バインダ処理を行なった場合、約150℃の温度から生じる銅の酸化膨張が原因となって、電子部品本体において、剥がれ、デラミネーションあるいはクラック等の内部構造欠陥を招くことが知られている。
【0006】
したがって、このような銅の不所望な酸化を防止または抑制するため、脱バインダ工程では、雰囲気中に窒素ガスのみを供給したりして、酸素濃度を厳しく制限する必要がある。しかし、このように雰囲気中の酸素濃度を厳しく制限すると、脱バインダ処理の本来の目的であるバインダの燃焼が進みにくくなり、そのため、脱バインダ処理に、たとえば銀粉末を含む導電性ペーストを用いた場合に比べて2倍以上の時間を費やしてしまうという問題に遭遇する。
【0007】
そこで、この発明の目的は、上述したような問題を解決し得る、積層セラミックコンデンサの製造方法およびこの製造方法によって得られた積層セラミックコンデンサを提供しようとすることである。
【0009】
【課題を解決するための手段】
この発明は、セラミックをもって構成される電子部品本体と、この電子部品本体の内部に形成される内部導体とを備える、積層セラミックコンデンサの製造方法にまず向けられる。この製造方法においては、導電性成分として、銅粉末およびニッケル粉末を含み、ニッケル粉末の含有量が、銅粉末およびニッケル粉末の合計量に対して2重量%以上50重量%未満となるように選ばれた、導電性ペーストを用意する工程と、内部導体が形成されるべき部分にこの導電性ペーストを位置させた、生の電子部品本体を用意する工程と、生の電子部品本体を酸素含有雰囲気中で脱バインダ処理し、それによって、導電性ペーストに含まれるニッケル粉末を酸化させることによって銅粉末の酸化を抑制しながら、生の電子部品本体中のバインダおよび導電性ペースト中のバインダを燃焼させる工程と、次いで、脱バインダ処理された電子部品本体および導電性ペーストを本焼成する工程とが実施される。
【0010】
この発明は、セラミックをもって構成される電子部品本体と、この電子部品本体の内部に形成される内部導体とを備え、内部導体が電子部品本体を得るための焼成と同時に導電性ペーストを焼成することによって形成されたものであり、上述した製造方法によって得られた、積層セラミックコンデンサにも向けられ、内部導体が、銅を主成分としながら、ニッケルの酸化物を含むことを特徴としている。
【0012】
【実施例】
以下のようにして、積層セラミックコンデンサを作製した。
【0013】
まず、CaZrO3 を主成分とするセラミックを用いて、厚み13μmのセラミックグリーンシートを用意した。
【0014】
他方、内部導体を形成するための導電性ペーストとして、導電性成分、バインダおよび溶剤を含み、導電性成分において、銅粉末およびニッケル粉末を含み、銅粉末およびニッケル粉末の合計量に対するニッケル粉末の含有量を、表1の「Ni/Cu+Niの割合」で示すように、0〜50重量%の範囲内で種々に変えた試料1〜6を用意した。ここで、銅粉末およびニッケル粉末として、走査型電子顕微鏡による測定で平均粒径0.3μmのものをそれぞれ使用した。
【0015】
次に、各試料に係る導電性ペーストをスクリーン印刷によってセラミックグリーンシート上に印刷し、これらセラミックグリーンシートを積み重ねかつプレスした後、カット工程を実施し、生の電子部品本体を作製した。
【0016】
次に、各試料に係る生の電子部品本体を、300℃の温度で5時間保持する条件で脱バインダ処理した。ここで、焼成炉において、窒素ガスおよび空気を容量比で35:5となるように供給した。
【0017】
このような脱バインダ後の残留炭素量は、すべての試料について、0.2重量%であった。また、脱バインダ後において、各試料の外観を観察し、剥がれなどの外観不良の有無を評価した。表1の「脱バインダ後の外観不良率」は、全試料数に対する外観不良が生じた試料数の割合を示している。
【0018】
次に、上述のように脱バインダ処理された各試料に係る電子部品本体および導電性ペーストを本焼成した。この本焼成工程では、焼成炉において、主として窒素ガスと少量の水素ガスを供給し、950℃の温度で2時間保持するようにした。
【0019】
このようにして得られた焼成後の電子部品本体について、超音波探傷によって構造欠陥の有無を評価した。表1の「超音波探傷による不良率」は、超音波探傷によって不良と判定された試料数の全試料数に対する比率を示している。
【0020】
次いで、各試料に係る電子部品本体に外部電極を形成することによって、積層セラミックコンデンサを得、これら積層セラミックコンデンサについて、1kHzでの静電容量、ならびに1kHzおよび1GHzの各々におけるQ値を測定した。これらの結果も、表1に示されている。
【0021】
【表1】

Figure 0003548818
【0022】
表1からわかるように、内部導体の形成のために用いる導電性ペーストにおいて、ニッケル粉末の含有量を銅粉末およびニッケル粉末の合計量に対して2重量%以上とすることにより、脱バインダ後の外観不良を生じなくすることができる。
【0023】
しかしながら、このニッケル粉末の含有量が50重量%以上となると、Q値の低下、特に1GHzでのQ値の顕著な低下が生じる。
【0024】
このことから、ニッケル粉末の含有量は、銅粉末およびニッケル粉末の合計量に対して2重量%以上50重量%未満であることが好ましいことがわかる。
【0025】
【発明の効果】
以上のように、この発明によれば、内部導体を形成するため、銅粉末およびニッケル粉末を含み、ニッケル粉末の含有量が、銅粉末およびニッケル粉末の合計量に対して2重量%以上とされた、導電性ペーストが用いられるので、内部導体が形成されるべき部分に導電性ペーストを位置させた、生の電子部品本体を脱バインダ処理するとき、酸素含有雰囲気中でこれを行なっても、ニッケル粉末が酸化されることによって銅粉末の酸化を抑制することができる。
【0026】
したがって、内部導体に含まれる銅の酸化膨張を生じにくくすることができるとともに、ニッケルによって銅の焼結を抑制できるので、剥がれ、デラミネーション、クラック等の内部構造欠陥が電子部品本体に生じにくくすることができる。
【0027】
また、脱バインダ処理を酸化含有雰囲気中で行なうことができるので、脱バインダ工程に要する時間を、窒素のみを供給する雰囲気中で脱バインダ処理を行なう場合に比べて、1/2以下に短縮することができる。
【0028】
た、この発明によれば、ニッケル粉末の含有量が、銅粉末およびニッケル粉末の合計量に対して50重量%未満であるので、Q値の低下を防ぐことができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a multilayer ceramic capacitor and a multilayer ceramic capacitor , and more particularly to a method for manufacturing a multilayer ceramic capacitor having an internal conductor containing copper as a main component, and a multilayer ceramic capacitor obtained by this manufacturing method. It is.
[0002]
[Prior art]
For example, a ceramic electronic component including an electronic component main body made of ceramic and an internal conductor formed inside the electronic component main body, such as a multilayer composite component such as a multilayer ceramic capacitor or an LC composite component, is manufactured. In the case, typically, a ceramic green sheet is prepared, a conductive paste for forming an internal conductor is prepared, and then, a conductive paste is printed on the ceramic green sheet with a pattern of the internal conductor to be formed. Then, these ceramic green sheets are stacked, pressed, and cut to produce a raw electronic component body, and the raw electronic component body is then fired to obtain an electronic component body. Will be implemented.
[0003]
The firing step described above includes a binder removing step and a main firing step. In the binder removing step, the ceramic green sheet, that is, the binder in the raw electronic component body and the binder in the conductive paste are burned. Then, in the firing step, the ceramic contained in the raw electronic component body is sintered. Since the binder needs to be burned and removed in the binder removal step, the binder removal step is performed in an oxygen-containing atmosphere such as air or a somewhat oxidizing atmosphere.
[0004]
On the other hand, in a multilayer composite component such as a multilayer ceramic capacitor or an LC composite component, copper having good conductivity is used as an internal conductor in order to improve the Q characteristic. When the internal conductor is formed using copper as described above, a conductive paste containing copper powder as a conductive component is used.
[0005]
[Problems to be solved by the invention]
However, since copper is easily oxidized, when a conductive paste containing copper powder is used to form the internal conductor, an oxygen-containing atmosphere in the binder removal step becomes a problem. For example, when a binder removal treatment is performed in an oxygen-containing atmosphere similar to the case where a conductive paste containing silver powder is used for forming an internal conductor, oxidative expansion of copper generated from a temperature of about 150 ° C. is a cause. Therefore, it is known that in the electronic component body, internal structural defects such as peeling, delamination, and cracks are caused.
[0006]
Therefore, in order to prevent or suppress such undesired oxidation of copper, in the binder removal process, it is necessary to strictly limit the oxygen concentration by supplying only nitrogen gas into the atmosphere. However, when the oxygen concentration in the atmosphere is strictly limited in this way, the combustion of the binder, which is the original purpose of the binder removal processing, becomes difficult to proceed. The problem of spending more than twice as much time as in the case is encountered.
[0007]
Accordingly, an object of the present invention can solve the problems as described above, is to try to provide a multilayer ceramic capacitor obtained by the manufacturing method and the manufacturing method of the multilayer ceramic capacitor.
[0009]
[Means for Solving the Problems]
The present invention is first directed to a method for manufacturing a multilayer ceramic capacitor including an electronic component main body made of ceramic and an internal conductor formed inside the electronic component main body. In this production method, copper powder and nickel powder are contained as conductive components, and the content of nickel powder is selected so as to be 2% by weight or more and less than 50% by weight based on the total amount of copper powder and nickel powder. A step of preparing a conductive electronic paste, a step of preparing a raw electronic component main body in which the conductive paste is positioned in a portion where an internal conductor is to be formed, and a step of preparing the raw electronic component main body in an oxygen-containing atmosphere. Binder in the conductive paste, thereby burning the binder in the raw electronic component body and the binder in the conductive paste while suppressing the oxidation of the copper powder by oxidizing the nickel powder contained in the conductive paste. The step and then the step of main firing the electronic component body and the conductive paste that have been subjected to the binder removal processing are performed.
[0010]
The present invention includes an electronic component main body made of ceramic and an internal conductor formed inside the electronic component main body, wherein the internal conductor is fired at the same time as firing for obtaining the electronic component main body. The present invention is also directed to a multilayer ceramic capacitor obtained by the above-described manufacturing method, wherein the internal conductor contains nickel as the main component while containing copper as the main component.
[0012]
【Example】
As it follows, to produce a multilayer ceramic capacitor.
[0013]
First, a ceramic green sheet having a thickness of 13 μm was prepared using a ceramic containing CaZrO 3 as a main component.
[0014]
On the other hand, as a conductive paste for forming an internal conductor, a conductive component, a binder and a solvent are included, and in the conductive component, a copper powder and a nickel powder are included, and the content of the nickel powder with respect to the total amount of the copper powder and the nickel powder is included. Samples 1 to 6 were prepared in which the amount was variously changed within the range of 0 to 50% by weight, as shown by “Ratio of Ni / Cu + Ni” in Table 1. Here, as the copper powder and the nickel powder, those having an average particle diameter of 0.3 μm as measured by a scanning electron microscope were used.
[0015]
Next, the conductive paste for each sample was printed on the ceramic green sheets by screen printing, and after stacking and pressing these ceramic green sheets, a cutting step was performed to produce a raw electronic component body.
[0016]
Next, the raw electronic component body relating to each sample was subjected to a binder removal treatment under the condition of being maintained at a temperature of 300 ° C. for 5 hours. Here, in the firing furnace, nitrogen gas and air were supplied at a volume ratio of 35: 5.
[0017]
The residual carbon content after such binder removal was 0.2% by weight for all the samples. After the binder was removed, the appearance of each sample was observed, and the presence or absence of appearance defects such as peeling was evaluated. "Appearance defect rate after binder removal" in Table 1 shows the ratio of the number of samples having appearance defects to the total number of samples.
[0018]
Next, the electronic component main body and the conductive paste relating to each sample subjected to the binder removal processing as described above were main-baked. In the main firing step, nitrogen gas and a small amount of hydrogen gas were mainly supplied in the firing furnace, and the temperature was maintained at 950 ° C. for 2 hours.
[0019]
The fired electronic component body thus obtained was evaluated for the presence or absence of structural defects by ultrasonic flaw detection. “Defective rate by ultrasonic inspection” in Table 1 indicates the ratio of the number of samples determined to be defective by ultrasonic inspection to the total number of samples.
[0020]
Next, a multilayer ceramic capacitor was obtained by forming an external electrode on the electronic component body relating to each sample, and the capacitance at 1 kHz and the Q value at 1 kHz and 1 GHz were measured for these multilayer ceramic capacitors. These results are also shown in Table 1.
[0021]
[Table 1]
Figure 0003548818
[0022]
As can be seen from Table 1, in the conductive paste used for forming the internal conductor, the content of the nickel powder is set to 2% by weight or more based on the total amount of the copper powder and the nickel powder, so that the content after the binder removal is reduced. Appearance defects can be prevented.
[0023]
However, when the content of the nickel powder is 50% by weight or more, a decrease in the Q value, particularly a remarkable decrease in the Q value at 1 GHz occurs.
[0024]
This indicates that the content of the nickel powder is preferably 2% by weight or more and less than 50% by weight based on the total amount of the copper powder and the nickel powder.
[0025]
【The invention's effect】
As described above, according to the present invention, for forming the inner conductor, see containing copper powder and nickel powder, the content of nickel powder is 2% or more by weight for the total amount of copper powder and nickel powder and Since the conductive paste is used, the conductive paste is positioned in the portion where the internal conductor is to be formed.When performing the binder removal process on the raw electronic component body, even if this is performed in an oxygen-containing atmosphere, By oxidizing the nickel powder, the oxidation of the copper powder can be suppressed.
[0026]
Therefore, the oxidative expansion of copper contained in the internal conductor can be made less likely to occur, and sintering of copper can be suppressed by nickel. be able to.
[0027]
In addition, since the binder removal process can be performed in an oxidizing-containing atmosphere, the time required for the binder removal process is reduced to half or less as compared with the case where the binder removal process is performed in an atmosphere in which only nitrogen is supplied. be able to.
[0028]
Also, according to the present invention, the content of nickel powder, because the total amount of copper powder and nickel powder is less than 50 wt%, it is possible to prevent a decrease in Q value.

Claims (2)

セラミックをもって構成される電子部品本体と、前記電子部品本体の内部に形成される内部導体とを備える、積層セラミックコンデンサの製造方法であって、
導電性成分として、銅粉末およびニッケル粉末を含み、ニッケル粉末の含有量が、銅粉末およびニッケル粉末の合計量に対して2重量%以上50重量%未満となるように選ばれた、導電性ペーストを用意し、
前記内部導体が形成されるべき部分に前記導電性ペーストを位置させた、生の前記電子部品本体を用意し、
生の前記電子部品本体を酸素含有雰囲気中で脱バインダ処理し、それによって、前記導電性ペーストに含まれるニッケル粉末を酸化させることによって銅粉末の酸化を抑制しながら、生の前記電子部品本体中のバインダおよび前記導電性ペースト中のバインダを燃焼させ、次いで、
脱バインダ処理された前記電子部品本体および前記導電性ペーストを本焼成する、
各工程を備える、積層セラミックコンデンサの製造方法。
An electronic component body made of ceramic, and an internal conductor formed inside the electronic component body, a method for manufacturing a multilayer ceramic capacitor ,
A conductive paste containing copper powder and nickel powder as conductive components, wherein the content of nickel powder is selected to be 2% by weight or more and less than 50% by weight based on the total amount of copper powder and nickel powder. Prepare
Preparing the raw electronic component body, in which the conductive paste is located in a portion where the internal conductor is to be formed,
The raw electronic component body is subjected to a binder removal treatment in an oxygen-containing atmosphere, thereby oxidizing nickel powder contained in the conductive paste, thereby suppressing oxidation of the copper powder while maintaining the raw electronic component body. Burning the binder and the binder in the conductive paste,
Main firing the electronic component body and the conductive paste subjected to the binder removal processing,
A method for manufacturing a multilayer ceramic capacitor , comprising:
セラミックをもって構成される電子部品本体と、前記電子部品本体の内部に形成される内部導体とを備え、前記内部導体が前記電子部品本体を得るための焼成と同時に導電性ペーストを焼成することによって形成されたものであり、請求項1に記載の製造方法によって得られた、積層セラミックコンデンサであって、
前記内部導体は、銅を主成分としながら、ニッケルの酸化物を含むことを特徴とする、積層セラミックコンデンサ
An electronic component main body made of ceramic and an internal conductor formed inside the electronic component main body, wherein the internal conductor is formed by firing a conductive paste at the same time as firing for obtaining the electronic component main body. A multilayer ceramic capacitor obtained by the manufacturing method according to claim 1, wherein:
The multilayer ceramic capacitor according to claim 1, wherein the inner conductor contains copper as a main component and contains nickel oxide.
JP11453599A 1999-04-22 1999-04-22 Manufacturing method of multilayer ceramic capacitor and multilayer ceramic capacitor Expired - Lifetime JP3548818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11453599A JP3548818B2 (en) 1999-04-22 1999-04-22 Manufacturing method of multilayer ceramic capacitor and multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11453599A JP3548818B2 (en) 1999-04-22 1999-04-22 Manufacturing method of multilayer ceramic capacitor and multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2000306760A JP2000306760A (en) 2000-11-02
JP3548818B2 true JP3548818B2 (en) 2004-07-28

Family

ID=14640200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11453599A Expired - Lifetime JP3548818B2 (en) 1999-04-22 1999-04-22 Manufacturing method of multilayer ceramic capacitor and multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP3548818B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101288151B1 (en) * 2011-11-25 2013-07-19 삼성전기주식회사 Multi-Layered Ceramic Electronic Component and Manufacturing Method of the Same
JP7427460B2 (en) * 2019-04-22 2024-02-05 太陽誘電株式会社 Ceramic electronic components, circuit boards, and methods of manufacturing ceramic electronic components

Also Published As

Publication number Publication date
JP2000306760A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
JPWO2007007518A1 (en) Conductive powder, conductive paste, and method for manufacturing multilayer ceramic electronic component
JP4998222B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP3527854B2 (en) Conductive paste composition, method for manufacturing multilayer ceramic capacitor using the same, and multilayer ceramic capacitor
JP3548818B2 (en) Manufacturing method of multilayer ceramic capacitor and multilayer ceramic capacitor
JP2007234330A (en) Conductor paste and electronic part
JPH11243029A (en) Conducting paste for terminal and laminated ceramic capacitor
JPH1121644A (en) Ni powder, and ni paste using the same
JP2005228610A (en) Conductive paste and ceramic electronic component
JP3720550B2 (en) Manufacturing method of multilayer ceramic capacitor
JP6015221B2 (en) Manufacturing method of ceramic electronic component
JP3678761B2 (en) Degreasing method of ceramic molded body
JP2002216540A (en) Electrode paste and method for manufacturing electronic part using it
JP4789392B2 (en) Manufacturing method of ceramic laminate
JP2000290077A (en) Production of multilayer ceramic electronic component
JP2016115876A (en) Multilayer ceramic capacitor
JPH07106187A (en) Manufacture of laminated ceramic electronic component
JPH0294618A (en) Manufacture of laminated ceramic capacitor
JP3239718B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4387150B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP2000049031A (en) Electrode composition of capacitor and electrode paste using it
JPH07335477A (en) Manufacture of ceramic electronic component
JPH11185527A (en) Electroconductive paste and electronic component
JP3082532B2 (en) Manufacturing method of ceramic electronic components
JP3545287B2 (en) Method for manufacturing ceramic electronic component and method for removing binder
JP3873928B2 (en) Manufacturing method of multilayer ceramic electronic component

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 10

EXPY Cancellation because of completion of term