JPH0294618A - Manufacture of laminated ceramic capacitor - Google Patents

Manufacture of laminated ceramic capacitor

Info

Publication number
JPH0294618A
JPH0294618A JP63247184A JP24718488A JPH0294618A JP H0294618 A JPH0294618 A JP H0294618A JP 63247184 A JP63247184 A JP 63247184A JP 24718488 A JP24718488 A JP 24718488A JP H0294618 A JPH0294618 A JP H0294618A
Authority
JP
Japan
Prior art keywords
internal electrode
carbon
internal
ceramic capacitor
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63247184A
Other languages
Japanese (ja)
Inventor
Osamu Furukawa
修 古川
Yohachi Yamashita
洋八 山下
Motomasa Imai
今井 基真
Mitsuo Harada
光雄 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63247184A priority Critical patent/JPH0294618A/en
Publication of JPH0294618A publication Critical patent/JPH0294618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To prevent an internal-electrode paste from being oxidized during a binder-removing process and to prevent an organic substance such as carbon or the like from remaining inside a ceramic green sheet by a method wherein carbon is contained in an internal electrode containing a base metal as a main constituent. CONSTITUTION:When an internal-electrode paste containing carbon, preferably carbon black or a graphite powder, is used for an internal electrode, this carbon locally forms a reducing atmosphere with reference to a base metal to be used as the internal electrode at a temperature and at an oxygen concentration of a binder-removing process for a laminated substance. As a result, even in state that an organic binder inside a ceramic green sheet is decomposed, the internal electrode is kept in the reducing atmosphere and its oxidation is suppressed; accordingly, a goodquality internal electrode is formed after a baking operation. Thereby, it is possible to obtain a laminated ceramic capacitor which is composed mainly of the base metal, where the internal-electrode paste is not oxidized during a binder-removing process, which is provided with the excellent internal electrode and where an organic substance such as carbon or the like does not remain inside the ceramic green sheet.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は積層セラミックコンデンサに係わり。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a multilayer ceramic capacitor.

特に、積層セラミックコンデンサの内部電極の製造方法
に関する。
In particular, the present invention relates to a method of manufacturing internal electrodes of multilayer ceramic capacitors.

(従来の技術) 一般に積層セラミックコンデンサは、セラミックグリー
ンシートならびにセラミックシート上に内部電極を印刷
したシートを交互に重ね、その後加圧して一体化して積
層体とし、この積層体を脱バインダ後焼成して得られる
(Prior Technology) Generally, multilayer ceramic capacitors are manufactured by alternately stacking ceramic green sheets and ceramic sheets with internal electrodes printed on them, then pressuring them to integrate them into a laminate, which is then fired after removing the binder. can be obtained.

この積層セラミックコンデンサの内部電極は焼成により
セラミック誘電体と一体化されるために、セラミック誘
電体と反応しないようにその材料を選択する必要があり
、従来は、この電極材料として、Au、Pt、Pb、A
g等の様な貴金属が主体として用いられてきた。近年、
低いコスト化を目的として、Cu、Ni等の卑金属が積
層セラミックコンデンサの内部電極として検討される様
になってきた。しかし、これらのCu、Niは容易に酸
化され易いので、積層セラミックコンデンサの内部電極
として用いる場合は、酸素濃度を充分に低くして焼成す
る必要がある。
Since the internal electrodes of this multilayer ceramic capacitor are integrated with the ceramic dielectric by firing, the material must be selected so as not to react with the ceramic dielectric. Conventionally, the electrode materials have been Au, Pt, Pb,A
Precious metals such as G and the like have been mainly used. recent years,
In order to reduce costs, base metals such as Cu and Ni are being considered as internal electrodes of multilayer ceramic capacitors. However, since these Cu and Ni are easily oxidized, when used as an internal electrode of a multilayer ceramic capacitor, it is necessary to perform firing with a sufficiently low oxygen concentration.

一方、セラミック誘電体グリーンシートは、例えば、誘
電体粉末に有機バインダ、溶剤、可塑剤等を加えてセラ
ミックのスラリーを調合し、これを一定の厚みを持った
ドクターブレードでキャリアフィルム上にシート引きし
、同化乾燥して作成されている。このために、グリーン
シート中には多数の有機物が含まれている。
On the other hand, ceramic dielectric green sheets are produced by, for example, adding organic binders, solvents, plasticizers, etc. to dielectric powder to form a ceramic slurry, and then drawing the slurry onto a carrier film using a doctor blade with a certain thickness. It is created by drying and assimilating it. For this reason, green sheets contain many organic substances.

通常、セラミックグリーンシートと内部電極からなる積
層体は脱バインダとよばれる工程、即ち、グリーンシー
ト中の有機物、主としてカーボンを加熱して分解し、シ
ート外に飛散させる工程を経た後、焼成される。しかし
ながら、CuやNi等の卑金属を用いていると、この脱
パインダニ程時にCu ’b N iが酸化されてしま
い、脱パインダニ程の後の焼成工程の際には、内部電極
としての機能を果たさなくなってしまう。
Normally, a laminate consisting of ceramic green sheets and internal electrodes is fired after going through a process called debinding, in which the organic matter, mainly carbon, in the green sheets is heated to decompose and scatter out of the sheets. . However, if base metals such as Cu and Ni are used, Cu'bNi will be oxidized during this depinemization process, and will not function as an internal electrode during the firing process after the depinemization process. It's gone.

一方、脱バインダ時の酸素濃度をCuやNiが酸化され
ない酸素濃度まで低下させると、セラミックグリーンシ
ート中の有機物が完全に飛散せずに炭化してしまい、焼
成工程時にセラミックの焼結を阻害してしまう。
On the other hand, if the oxygen concentration during binder removal is lowered to an oxygen concentration that does not oxidize Cu or Ni, the organic matter in the ceramic green sheet will not be completely scattered and will be carbonized, which will inhibit the sintering of the ceramic during the firing process. It ends up.

この問題点を解決するために、例えばCu、O。In order to solve this problem, for example, Cu, O.

CuO*NiO等の酸化物を主体とする内部電極ペース
トを用い、脱バインダ後焼成に、水素雰囲気中で還元熱
処理を行うことが提案されている。しかし、この方法で
は、特に鉛化合物を主体とするセラミック誘電体材料か
ら成る積層セラミックコンデンサでは、セラミック誘電
体自身が同時に還元されてしまうという欠点がある。
It has been proposed to use an internal electrode paste mainly composed of oxides such as CuO*NiO, and to perform reduction heat treatment in a hydrogen atmosphere for firing after binder removal. However, this method has the disadvantage that the ceramic dielectric itself is reduced at the same time, especially in multilayer ceramic capacitors made of ceramic dielectric materials mainly containing lead compounds.

(発明が解決しようとする課題) 前述した様に、従来のCuやNi等の卑金属を主成分と
する内部電極ペーストを用いた積層セラミックコンデン
サの製造方法においては、脱パインダニ程時の内部電極
ペースト中の卑金属の酸化やセラミックグリーンシート
中のカーボン等の有機物の残留および水素雰囲気による
還元処理時のセラミック誘電体自身の還元、という問題
点があつた。
(Problems to be Solved by the Invention) As mentioned above, in the conventional manufacturing method of a multilayer ceramic capacitor using an internal electrode paste mainly composed of base metals such as Cu and Ni, the internal electrode paste is There were problems such as oxidation of base metals in the ceramic green sheets, residual organic substances such as carbon in the ceramic green sheets, and reduction of the ceramic dielectric itself during reduction treatment in a hydrogen atmosphere.

本発明の目的は、卑金属を主体とし、脱パインダニ程時
に内部電極ペーストが酸化されることがないので、優れ
た内部電極を備え、しかも、セラミックグリーンシート
中のカーボン等の有機物の残留がない積層セラミックコ
ンデンサの製造方法を提供することにある。
The purpose of the present invention is to provide a laminated layer that is mainly made of base metals and has excellent internal electrodes because the internal electrode paste is not oxidized during the removal process, and that there is no residual organic matter such as carbon in the ceramic green sheet. An object of the present invention is to provide a method for manufacturing a ceramic capacitor.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段および作用)本発明は、セ
ラミックグリーンシート上に卑金属を主成分として含有
する内部電極ペーストを印刷したシートを交互に積重ね
て加圧して一体化した積層体を脱バインダ後焼成する積
層セラミックコンデンサの製造方法において、前記内部
電極が炭素を含むことを特徴とする積層セラミックコン
デンサの製造方法である。
(Means and Effects for Solving the Problems) The present invention provides a laminate in which sheets printed with internal electrode paste containing base metal as a main component are stacked alternately on ceramic green sheets and integrated by applying pressure, and the binder is removed. A method for manufacturing a multilayer ceramic capacitor that involves post-firing, wherein the internal electrodes contain carbon.

本発明の製造方法では、炭素、好ましくは、カ−ボブラ
ックもしくはグラファイト粉末を含有する内部電極ペー
ストを用いることにより、この炭素が積層体の脱パイン
ダニ程の温度と酸素濃度下において、内部電極となる卑
金属に対して、還元性の雰囲気を局所的に作る。このた
めに、セラミックグリーンシート中の有機バインダが分
解する状態においても、内部電極は還元性雰囲気に保た
れ酸化が抑制されるので、焼成後、良好な内部電極が形
成される。なお、本発明では、内部電極の酸化が抑制さ
れるので、脱パインダニ程の後の水素による還元処理工
程は、不要か、もしくは。
In the manufacturing method of the present invention, by using an internal electrode paste containing carbon, preferably carbon black or graphite powder, this carbon can be bonded to the internal electrode at a temperature and oxygen concentration comparable to depine mites in the laminate. Creates a locally reducing atmosphere for base metals. Therefore, even when the organic binder in the ceramic green sheet decomposes, the internal electrodes are kept in a reducing atmosphere and oxidation is suppressed, so that good internal electrodes are formed after firing. In addition, in the present invention, since the oxidation of the internal electrode is suppressed, the reduction treatment step with hydrogen after the removal of pine mites is unnecessary.

ごく弱いもので良い。It's fine if it's very weak.

ここで、内部電極ペーストに含まれる炭素とは、カーボ
ンブラックやグラファイト等の炭素単体、あるいはセラ
ミックグリーンシートの脱パインダニ程の温度より高い
温度で、実用上は脱パインダニ程の温度より200〜3
00℃高い温度で、分解する炭素を含有する有機化合物
および無機化合物でも良い。
Here, the carbon contained in the internal electrode paste is a temperature higher than the temperature of simple carbon such as carbon black or graphite, or the temperature of removing mites from ceramic green sheets, and in practical terms, the temperature is 200 to 3
Organic compounds and inorganic compounds containing carbon that decompose at temperatures higher than 00°C may also be used.

内部電極ペーストにおいて、この炭素の卑金属に対する
添加量は、2〜100重量%が好ましい。この添加量が
2重量%未満では、酸化を抑制する際立った効果がみら
れず、また、10重量%を超えて添加すると、内部電極
の膜に亀裂が生じ、実質的な容量の低下を伴ない、もし
くは、セラミックコンデンサのtanδ (誘電体損失
)の増加、ESR(等価直列抵抗)の上昇を引起こす。
In the internal electrode paste, the amount of carbon added to the base metal is preferably 2 to 100% by weight. If the amount added is less than 2% by weight, there will be no noticeable effect in suppressing oxidation, and if it is added more than 10% by weight, cracks will occur in the internal electrode film, resulting in a substantial decrease in capacity. Otherwise, it causes an increase in tan δ (dielectric loss) and ESR (equivalent series resistance) of the ceramic capacitor.

また、その粒径は内部電極に用いられる卑金属の粒径と
同じ程度の0.01〜10−の範囲が望ましく、0.5
〜lOμsの範囲が好ましい。
In addition, the particle size is preferably in the range of 0.01 to 10-1, which is about the same as the particle size of the base metal used for the internal electrode, and 0.5
A range of ˜10 μs is preferred.

(実施例) 以下1本発明の実施例について説明する。積層セラミッ
クコンデンサの内部電極ペーストとして、粒径約1.1
μのCu粉末100重量部に対して1粒径が約2/jf
flのグラファイト粉末を0〜20部、エチルセルロー
ス30部、ブチルカルピトール60部、石油系シンナー
10部を加えて、均一混合した。
(Example) An example of the present invention will be described below. As an internal electrode paste for multilayer ceramic capacitors, the particle size is approximately 1.1.
The particle size per 100 parts by weight of μ Cu powder is approximately 2/jf
0 to 20 parts of fl graphite powder, 30 parts of ethyl cellulose, 60 parts of butylcarpitol, and 10 parts of petroleum thinner were added and mixed uniformly.

セラミック誘電体として、(Pbo、5Cao、1)t
、o3(Zn1zsNbzzs)o、a (Mg1za
Nbz、za)o、15Tio、zMno、ootOa
の組成となる様に、PbO,CaC0゜ZnO,Nb、
05.MgC0J、TiO2,MnC0,を秤量、混合
し、880℃で2時間仮焼した後、粉砕して、粉末を製
造した。
As a ceramic dielectric, (Pbo, 5Cao, 1)t
, o3 (Zn1zsNbzzs) o, a (Mg1za
Nbz, za)o, 15Tio, zMno, ootOa
PbO, CaC0゜ZnO, Nb,
05. MgC0J, TiO2, and MnC0 were weighed and mixed, calcined at 880°C for 2 hours, and then ground to produce a powder.

粉砕した仮焼粉末を有機バインダ、溶剤、可塑剤を加え
て混合し、ドクターブレード装置を用いてキャスティン
グし、シート成形した。このシート上に、前述の内部電
極ペーストを印刷し、内部電極が交互に引出せる様に1
0枚積層し、切断して。
The pulverized calcined powder was mixed with an organic binder, a solvent, and a plasticizer, and then cast using a doctor blade device to form a sheet. On this sheet, print the internal electrode paste described above, and make sure that the internal electrodes are pulled out alternately.
Laminate 0 sheets and cut.

積層体とした。It was made into a laminate.

この積層体を020.5%を含むN2ガスを流し、42
0℃で数時間保持して、脱バインダを行った。
This laminate was passed through N2 gas containing 020.5%, and
The binder was removed by holding at 0° C. for several hours.

この脱バインダした積層体をN!索分圧10−a〜10
′−9atmのN2雰囲気中で、950℃1時間の条件
で焼結した。焼成した積層体に内部電極を接続する外部
電極として、無機バインダを加えた銅ペーストを印刷し
て形成し、前述の雰囲気下で750℃で焼付けて、積層
セラミックコンデンサを得た。
This binder-removed laminate is N! Cable partial pressure 10-a to 10
Sintering was carried out at 950° C. for 1 hour in a N2 atmosphere at −9 atm. Copper paste added with an inorganic binder was printed as an external electrode for connecting the internal electrode to the fired laminate, and baked at 750° C. in the above-mentioned atmosphere to obtain a multilayer ceramic capacitor.

この様に得られた積層セラミックコンデンサは外形7圃
X 5 nin X 1 onの」法を有し、有効層数
9層、誘電体の厚み約35μsであった。このコンデン
サの電気的特性を測定した結果を表に示す。
The multilayer ceramic capacitor thus obtained had an outer diameter of 7 x 5 nin x 1 on, an effective number of layers of 9, and a dielectric thickness of about 35 μs. The results of measuring the electrical characteristics of this capacitor are shown in the table.

(以下余白) とにより、Cuの場合と同じ様に、顕著な改善効果が認
められた。
(Hereinafter in the margin) As in the case of Cu, a remarkable improvement effect was observed.

C発明の効果〕 以上の様に9本発明によれば、卑金属を主体とし、脱パ
インダニ程時に内部電極ペーストが酸化されない優れた
内部電極を偉え、しかも、セラミックグリーンシート中
のカーボン等の有機物の残留がない積層セラミックコン
デンサの製造方法を提供することができる。
C. Effects of the invention] As described above, according to the present invention, an excellent internal electrode is provided which is mainly made of base metal and whose internal electrode paste is not oxidized during the removal of pine mites, and in addition, organic matter such as carbon in the ceramic green sheet is It is possible to provide a method for manufacturing a multilayer ceramic capacitor that does not leave any residue.

この表から明らかな様に、本実施例の積層セラミックコ
ンデンサは脱パインダニ程時の内部電極ペースト内の卑
金属の酸化が抑制され、セラミックとしても充分に焼結
でき、電気的特性も改善されていることが分る。
As is clear from this table, the multilayer ceramic capacitor of this example suppresses the oxidation of the base metal in the internal electrode paste during the depine removal process, can be sufficiently sintered as a ceramic, and has improved electrical characteristics. I understand.

なお、内部電極の卑金属として、Niを用いた場合、お
よびCu40/ N i60の合金粉を用いた場合にも
、カーボンブラックもしくはグラファイト等の炭素を内
部電極ペースト中に含有させておくこ代理人 弁理士 
大 胡 典 夫
Note that even when Ni is used as the base metal of the internal electrode, or when Cu40/Ni60 alloy powder is used, carbon such as carbon black or graphite must be included in the internal electrode paste. scholar
Norio Ogo

Claims (3)

【特許請求の範囲】[Claims] (1) セラミックグリーンシート上に卑金属を主成分
として含有する内部電極ペーストを印刷したシートを交
互に積重ねて加圧して一体化した積層体を脱バインダ後
焼成する積層セラミックコンデンサの製造方法において
、前記内部電極が炭素を含むことを特徴とする積層セラ
ミックコンデンサの製造方法。
(1) In a method for manufacturing a multilayer ceramic capacitor, the method of manufacturing a multilayer ceramic capacitor comprises alternately stacking sheets of ceramic green sheets with internal electrode paste containing base metals as a main component and pressurizing them to integrate them. After removing the binder, the multilayer ceramic capacitor is fired. A method for manufacturing a multilayer ceramic capacitor, the internal electrodes of which contain carbon.
(2) 前記内部電極ペーストに含まれる炭素がカーボ
ンブラックもしくはグラファイト粉末からなることを特
徴とする請求項1記載の積層セラミックコンデンサの製
造方法。
(2) The method for manufacturing a multilayer ceramic capacitor according to claim 1, wherein the carbon contained in the internal electrode paste is carbon black or graphite powder.
(3) 前記内部電極ペースト中に、炭素が卑金属10
0重量部に対して2〜10重量部含まれることを特徴と
する請求項1記載の積層セラミックコンデンサの製造方
法。
(3) In the internal electrode paste, carbon is a base metal of 10
2. The method for manufacturing a multilayer ceramic capacitor according to claim 1, wherein the amount is 2 to 10 parts by weight relative to 0 parts by weight.
JP63247184A 1988-09-30 1988-09-30 Manufacture of laminated ceramic capacitor Pending JPH0294618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63247184A JPH0294618A (en) 1988-09-30 1988-09-30 Manufacture of laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63247184A JPH0294618A (en) 1988-09-30 1988-09-30 Manufacture of laminated ceramic capacitor

Publications (1)

Publication Number Publication Date
JPH0294618A true JPH0294618A (en) 1990-04-05

Family

ID=17159690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63247184A Pending JPH0294618A (en) 1988-09-30 1988-09-30 Manufacture of laminated ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH0294618A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284161A (en) * 2000-03-30 2001-10-12 Tdk Corp Method for manufacturing nickel powder, paste for electrode and electronic component
US6493207B2 (en) 1999-11-02 2002-12-10 Tdk Corporation Multilayer ceramic capacitor
JP2015216338A (en) * 2014-05-07 2015-12-03 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer electronic component and method of manufacturing the same
JP2020141017A (en) * 2019-02-27 2020-09-03 京セラ株式会社 Laminated ceramic electronic component
JP2023079976A (en) * 2021-11-29 2023-06-08 サムソン エレクトロ-メカニックス カンパニーリミテッド. Ceramic electronic component

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493207B2 (en) 1999-11-02 2002-12-10 Tdk Corporation Multilayer ceramic capacitor
JP2001284161A (en) * 2000-03-30 2001-10-12 Tdk Corp Method for manufacturing nickel powder, paste for electrode and electronic component
JP4552260B2 (en) * 2000-03-30 2010-09-29 Tdk株式会社 Nickel powder, electrode paste, and electronic component manufacturing method
JP2015216338A (en) * 2014-05-07 2015-12-03 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer electronic component and method of manufacturing the same
JP2020141017A (en) * 2019-02-27 2020-09-03 京セラ株式会社 Laminated ceramic electronic component
US11881354B2 (en) 2019-02-27 2024-01-23 Kyocera Corporation Laminated ceramic electronic component
JP2023079976A (en) * 2021-11-29 2023-06-08 サムソン エレクトロ-メカニックス カンパニーリミテッド. Ceramic electronic component
US11984269B2 (en) 2021-11-29 2024-05-14 Samsung Electro-Mechanics Co., Ltd. Ceramic electronic component

Similar Documents

Publication Publication Date Title
JP2019201161A (en) Multilayer ceramic capacitor and manufacturing method thereof
JPH0294618A (en) Manufacture of laminated ceramic capacitor
JP2007234330A (en) Conductor paste and electronic part
JPH10106351A (en) Conductive paste
JPH1145617A (en) Conductive paste and multilayer ceramic capacitor
JP3142014B2 (en) Manufacturing method of multilayer ceramic capacitor
JP4552260B2 (en) Nickel powder, electrode paste, and electronic component manufacturing method
JP2013197447A (en) Manufacturing method of multilayer varistor
JPH05299286A (en) Laminated ceramic element and manufacture thereof
JPH0348415A (en) Paste composition and manufacture of laminated ceramic capacitor
JPH07106187A (en) Manufacture of laminated ceramic electronic component
JP3142013B2 (en) Multilayer electronic components
JP3523399B2 (en) Manufacturing method of ceramic electronic components
JPH07335477A (en) Manufacture of ceramic electronic component
JPS62211890A (en) Heater element and manufacture of the same
JP2825813B2 (en) Manufacturing method of multilayer ceramic body
JP3545287B2 (en) Method for manufacturing ceramic electronic component and method for removing binder
JP2004134808A (en) Manufacturing method and binder removal method of ceramic electronic component
JPH0714420A (en) Paste for ceramic inner electrode
JP2752100B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH07105306B2 (en) Method for manufacturing monolithic ceramic capacitor
JP2003068565A (en) Manufacturing method for laminated ceramic electronic component and laminated ceramic electronic component
JPH05275273A (en) Manufacture of multilayer ceramic electronic component
JPH0260046B2 (en)
JPH09134842A (en) Manufacture of laminated ceramic electronic component