JP3079257B2 - Arsenic ion adsorption removal method - Google Patents

Arsenic ion adsorption removal method

Info

Publication number
JP3079257B2
JP3079257B2 JP09225746A JP22574697A JP3079257B2 JP 3079257 B2 JP3079257 B2 JP 3079257B2 JP 09225746 A JP09225746 A JP 09225746A JP 22574697 A JP22574697 A JP 22574697A JP 3079257 B2 JP3079257 B2 JP 3079257B2
Authority
JP
Japan
Prior art keywords
arsenic
adsorbent
aqueous solution
zirconium
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09225746A
Other languages
Japanese (ja)
Other versions
JPH1147505A (en
Inventor
敏重 鈴木
英之 松永
敏郎 横山
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP09225746A priority Critical patent/JP3079257B2/en
Publication of JPH1147505A publication Critical patent/JPH1147505A/en
Application granted granted Critical
Publication of JP3079257B2 publication Critical patent/JP3079257B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水溶液例えば水道水、
環境河川水、メッキ廃液、金属表面処理液水中に含まれ
るヒ素イオンを簡便に除去する方法に関するものであ
る。さらに詳しくいえば、本発明は、ジルコニウムの含
水酸化物を、細孔内に担持させた多孔質材料を用い、水
溶液中に含まれるヒ素イオンを効率よく吸着除去する新
規な方法に関するものである。
The present invention relates to an aqueous solution such as tap water,
The present invention relates to a method for easily removing arsenic ions contained in environmental river water, plating waste liquid, and metal surface treatment liquid water. More specifically, the present invention relates to a novel method for efficiently adsorbing and removing arsenic ions contained in an aqueous solution using a porous material in which a hydrated zirconium oxide is supported in pores.

【0002】[0002]

【従来の技術】近年、環境汚染などの問題から、工業廃
水、環境水あるいは水道水中のヒ素イオンの除去が重要
な課題となっている。それに伴い、水道水質基準(0.
01ppm)、水道環境基準(0.01ppm)、排水
基準(0.1ppm)が相次いで強化され、微量のヒ素
イオン含有水の有効な処理技術が求められている。ヒ素
イオンの処理では、鉄塩、アルミニウム塩を添加した
後、アルカリ性にすることにより水に不溶な水酸化鉄、
あるいは水酸化アルミニウムを生成させ、ヒ素イオンと
ともに難溶性物質に変る凝集沈殿が行なわれているが、
溶解度積の制約により希薄なヒ素イオンが溶液中に残留
する事が避けられない。従って、一次処理後に、更に効
率の良い高次処理が必要とされている。
2. Description of the Related Art In recent years, removal of arsenic ions from industrial wastewater, environmental water or tap water has become an important issue due to problems such as environmental pollution. Accordingly, tap water quality standards (0.
01 ppm), water supply environment standards (0.01 ppm), and wastewater standards (0.1 ppm) are successively strengthened, and effective treatment techniques for trace amounts of arsenic ion-containing water are required. In the treatment of arsenic ions, iron salts and aluminum salts are added and then alkalized to make the water insoluble iron hydroxide,
Alternatively, aluminum hydroxide is generated and coagulated and precipitated to change to a hardly soluble substance together with arsenic ions.
It is inevitable that dilute arsenic ions remain in the solution due to the limitation of the solubility product. Therefore, there is a need for more efficient higher-order processing after the primary processing.

【0003】ヒ素は水溶液中でオキソアニオン種の形態
を取ることから、陰イオン交換樹脂が高次処理技術の一
つに用いられているが、選択性において問題が残る。ま
た、セリウムの含水酸化物(今井、日本化学会誌、80
7頁、1987年)あるいは活性アルミナ(USPa
t、US4824576A、890425、22頁)
が、ヒ素イオンの選択吸着材として有望であることが報
告されている。しかしながら、これらの含水金属酸化物
は微粉体であるため、吸着、溶離、再生の操作を行う上
で取り扱い上に問題がある。このうちセリウムの場合、
+3、+4の酸化数の変化があるため、酸化還元剤の影
響を受けて劣化し易いといった問題点がある。また、ジ
ルコニウムをキレート樹脂に錯形成により担持したヒ
素、リン吸着樹脂が市販されているが、酸、アルカリを
用いた再生過程で樹脂からジルコニウムが脱離しやすい
という問題がある。
[0003] Since arsenic takes the form of an oxoanion species in an aqueous solution, anion exchange resins have been used as one of the higher-order processing techniques, but problems remain in selectivity. In addition, hydrated oxides of cerium (Imai, Journal of the Chemical Society of Japan, 80
7, 1987) or activated alumina (USPa)
t, US Pat. No. 4,824,576 A, 890425, p. 22)
Has been reported to be promising as a selective adsorbent for arsenic ions. However, since these hydrated metal oxides are fine powder, there is a problem in handling when performing operations of adsorption, elution, and regeneration. Of these, in the case of cerium,
Since there is a change in the oxidation number of +3 and +4, there is a problem that the oxidation number is easily affected and deteriorated. In addition, arsenic and phosphorus adsorption resins in which zirconium is supported on a chelate resin by complex formation are commercially available, but there is a problem that zirconium is easily desorbed from the resin in a regeneration process using an acid or an alkali.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
従来のヒ素イオン吸着材のもつ欠点を克服し、工業排水
や水道水中に含まれるヒ素イオンを多孔質吸着材に選択
的かつ効率的に吸着させ、しかも繰り返し再現性よく吸
着除去する方法を提供することを目的とする。すなわ
ち、多孔質材料表面に含水酸化ジルコニウムを分散担持
した後、加熱処理をして結晶化し、ヒ素イオン吸着能力
を持たせると同時に、ジルコニウムが脱離しにくい結晶
形態に変換した吸着材を用いるヒ素の吸着除去方法を提
供するものである。
SUMMARY OF THE INVENTION The present invention overcomes the drawbacks of the conventional arsenic ion adsorbent and selectively and efficiently removes arsenic ions contained in industrial wastewater or tap water to the porous adsorbent. It is an object of the present invention to provide a method for adsorbing and removing the same with good reproducibility. That is, after the hydrous zirconium oxide is dispersed and supported on the surface of the porous material, it is heated and crystallized to have the arsenic ion adsorption ability, and at the same time, the arsenic is converted to a crystalline form in which zirconium is hardly desorbed. It is intended to provide a method for adsorption removal.

【0005】[0005]

【課題を解決するための手段】本発明者らは、水中など
に含まれるヒ素イオンを簡便なカラム操作により効率良
く除去し、しかも繰り返し用いることが可能な方法を開
発するために種々研究を重ねた結果、多孔質材料の細孔
内表面にジルコニウムの含水酸化物を分散担持した後、
加熱し、含水酸化ジルコニウムを結晶化させた吸着材を
用いれば、水溶液中に含まれるヒ素イオンを選択的に、
かつ効率よく吸着除去することができ、しかもこの吸着
材はアルカリで洗浄するだけで吸着したヒ素イオンを溶
出でき、さらにpH2〜6の緩衝液と水で洗浄すること
により再生され、繰り返し用いられることを見出し、こ
の知見に基づいて本発明を完成するに到った。
Means for Solving the Problems The present inventors have conducted various studies in order to develop a method capable of efficiently removing arsenic ions contained in water or the like by a simple column operation and using the same repeatedly. As a result, after dispersing and supporting the hydrated zirconium oxide on the inner surface of the pores of the porous material,
By heating and using an adsorbent that has crystallized hydrous zirconium oxide, arsenic ions contained in the aqueous solution can be selectively removed.
It can be efficiently adsorbed and removed, and this adsorbent can elute adsorbed arsenic ions only by washing with alkali, and can be regenerated by washing with a buffer solution of pH 2 to 6 and water and used repeatedly. And completed the present invention based on this finding.

【0006】すなわち、本発明は、一般式MO2・nH2
O(式中のMはジルコニウム、nは1〜6の整数)で示
されるジルコニウムの含水酸化物を、多孔質高分子のビ
ーズや活性炭などの多孔質材料に高分散で担持した後、
加熱処理により結晶化せしめた吸着材料により、ヒ素イ
オンを選択的に吸着させることを特徴とするヒ素イオン
の除去方法を提供するものである。
That is, the present invention provides a compound represented by the general formula MO 2 .nH 2
After supporting a hydrated oxide of zirconium represented by O (M in the formula, M is zirconium, n is an integer of 1 to 6) on a porous material such as beads of a porous polymer or activated carbon in a highly dispersed manner,
It is an object of the present invention to provide a method for removing arsenic ions, wherein arsenic ions are selectively adsorbed by an adsorbent material crystallized by a heat treatment.

【0007】本発明において用いる吸着材は、多孔質材
料にZrOX2 (X=Cl,Br,NO3)あるいはジ
ルコニウムアルコキシドを含浸した後、該試剤をアルカ
リにより加水分解し、多孔質材料表面にジルコニウムの
含水酸化物を担持させることによって製造することが出
来る。吸着材の母材としては特に制限はないが、例えば
易溶性フィラーを材料に混在させ形成したのち、溶出す
ることによって得られる多孔体、多孔質陽イオン交換樹
脂、陰イオン交換樹脂、ポリスチレンフォーム、ポリウ
レタンフォーム、ポリエチレンフォーム、ポリ塩化ビニ
ルフォーム、ポリプロピレンフォーム、フェノール樹脂
フォームのような発砲体、活性炭などが挙げられ、特に
架橋ポリアクリル酸エステル、架橋ポリスチレン等が好
ましい。また、この多孔質材料の形状については、比表
面積50〜800m2/g、平均孔径10〜100Å、
粒度20〜200メッシュの範囲のものが好ましく用い
られる。
The adsorbent used in the present invention is such that after impregnating a porous material with ZrOX 2 (X = Cl, Br, NO 3 ) or zirconium alkoxide, the reagent is hydrolyzed with an alkali and the surface of the porous material is zirconium. Can be produced by supporting a hydrated oxide. Although there is no particular limitation on the base material of the adsorbent, for example, a porous body, a porous cation exchange resin, an anion exchange resin, a polystyrene foam obtained by mixing and forming an easily soluble filler in a material, and eluted therefrom, Foams such as polyurethane foams, polyethylene foams, polyvinyl chloride foams, polypropylene foams, and phenolic resin foams, activated carbon, and the like are preferable, and cross-linked polyacrylates and cross-linked polystyrenes are particularly preferable. The porous material has a specific surface area of 50 to 800 m 2 / g, an average pore diameter of 10 to 100 °,
Those having a particle size in the range of 20 to 200 mesh are preferably used.

【0008】多孔質材料へのジルコニウム化合物の含浸
では、一般式ZrOX2 (X=Cl、Br、NO3)で
表されるジルコニウム化合物を適当な溶媒に溶解し、こ
の溶液と好ましくは乾燥した多孔質材料とを混合した
後、該溶媒を留去することにより行われる。この際に用
いられる溶媒としては、メタノール、エタノール、水が
挙げられる。また多孔質材料へのジルコニウムアルコキ
シドの含浸は、一般式M(OR)4 (式中のMはジルコ
ニウムを示し、Rは低級アルキル基を示す)で表わされ
るジルコニウムアルコキシドを、適当な有機溶媒に溶解
し、この溶液と好ましくは乾燥した多孔質材料とを混合
したのち、該溶媒を留去することによっても行われる。
この際に用いられるジルコニウムアルコキシドのアルキ
ル基としては、低級アルキル基であるメチル、エチル、
n−プロピル、イソプロピル、n−ブチル、イソブチ
ル、tert−ブチルなどが好ましい。また、この際に
用いられる溶媒としては、例えばベンゼン、アセトン、
エタノールなどの低沸点のものが挙げられる。
In the impregnation of a porous material with a zirconium compound, a zirconium compound represented by the general formula ZrOX 2 (X = Cl, Br, NO 3 ) is dissolved in a suitable solvent, and this solution is mixed with a preferably dried porous material. After that, the solvent is removed by distillation. The solvent used at this time includes methanol, ethanol, and water. The impregnation of the porous material with the zirconium alkoxide is performed by dissolving the zirconium alkoxide represented by the general formula M (OR) 4 (wherein M represents zirconium and R represents a lower alkyl group) in a suitable organic solvent. After the solution is mixed with a preferably dried porous material, the solvent is distilled off.
As the alkyl group of the zirconium alkoxide used at this time, lower alkyl groups methyl, ethyl,
Preferred are n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl and the like. In addition, as a solvent used at this time, for example, benzene, acetone,
Examples thereof include those having a low boiling point such as ethanol.

【0009】次ぎに、このようにして多孔質材料に担持
されたジルコニウム化合物ZrOX2やジルコニウムア
ルコキシドを水や水性媒体などで処理することにより、
多孔質材料の細孔内に含浸されたZrOX2やジルコニ
ウムアルコキシドを加水分解する。これによって含水ジ
ルコニウム酸化物を形成させ、含水ジルコニウム酸化物
が多孔質材料に担持されるようになる。この際のpHに
は特に制限はないが、pH1〜2の酸性水溶液やpH1
1〜14のアルカリ水溶液が好適に用いられる。上記の
ようにして担持した含水ジルコニウム酸化物を、水熱処
理により結晶化させ、樹脂内に安定に固定化する。水熱
処理温度は100℃〜180℃が好ましい。また、加熱
処理時間は5時間以上、好ましくは12〜20時間であ
る。このような水熱処理により、含水酸化ジルコニウム
は結晶化し、樹脂に強固に担持され、脱離しにくくな
る。水熱処理の際に、pH1〜4の範囲の水溶液を用い
ると単斜晶が、0.1〜5モルのアルカリ水溶液を用い
ると立方晶の含水酸化ジルコニウムが得られる。
Next, the zirconium compound ZrOX 2 or zirconium alkoxide thus supported on the porous material is treated with water, an aqueous medium, etc.
It hydrolyzes ZrOX 2 and zirconium alkoxide impregnated in the pores of the porous material. As a result, hydrous zirconium oxide is formed, and the hydrous zirconium oxide is supported on the porous material. The pH at this time is not particularly limited.
Alkaline aqueous solutions of 1 to 14 are preferably used. The hydrous zirconium oxide supported as described above is crystallized by hydrothermal treatment and is stably immobilized in the resin. The hydrothermal treatment temperature is preferably from 100C to 180C. The heat treatment time is 5 hours or more, preferably 12 to 20 hours. By such a hydrothermal treatment, the hydrous zirconium oxide crystallizes and is firmly supported by the resin, making it difficult to be desorbed. In the hydrothermal treatment, monoclinic crystals are obtained when an aqueous solution having a pH of 1 to 4 is used, and cubic hydrous zirconium oxide is obtained when an aqueous solution of 0.1 to 5 mol is used.

【0010】本発明において、該吸着材によるヒ素イオ
ンの吸着は、例えばカラム法やバッチ法を用いることが
できるが、操作が簡単で、かつ処理能力に優れたカラム
法が有利である。カラムに通液するヒ素イオン含有水溶
液のpHは、通常2.0〜10.0の範囲で選ばれる。
pHが2.0未満、10.0以上ではヒ素イオン吸着量
が著しく低下する傾向がある。ヒ素には3価(As(II
I))と5価(As(V))が存在するが、吸着に際してA
s(III)はpH7〜10の範囲で、As(V)はpH3〜8
の範囲が最も良好である。また、通液の際の速度は被処
理液中のヒ素イオンの濃度にもよるが、通常空塔速度5
〜20h-1の範囲で選ばれる。
In the present invention, for the adsorption of arsenic ions by the adsorbent, for example, a column method or a batch method can be used, but a column method which is simple in operation and excellent in processing capacity is advantageous. The pH of the arsenic ion-containing aqueous solution passed through the column is usually selected in the range of 2.0 to 10.0.
If the pH is less than 2.0 and 10.0 or more, the arsenic ion adsorption amount tends to be significantly reduced. Arsenic contains trivalent (As (II
I)) and pentavalent (As (V)) exist.
s (III) is in the range of pH 7 to 10, and As (V) is in the range of pH 3 to 8.
Is the best. In addition, the speed at the time of passing the liquid depends on the concentration of arsenic ions in the liquid to be treated, but usually the superficial velocity is 5%.
It is selected in the range of 2020 h −1 .

【0011】このようにして、被処理液中のヒ素イオン
を吸着除去した後、本発明においては、該ヒ素イオンを
吸着した吸着材に、アルカリ性水溶液を通液することに
よって、吸着材からAs(III)、As(V)ともに定量的に
溶離する。この溶離は、結合された金属イオン上のヒ素
イオンとアルカリ性水溶液中のOH-とがイオン交換を
行うことによって起こり、従って、通液するアルカリ性
水溶液の種類については、OH-を含むものであればよ
く、特に制限はないが、通常水酸化ナトリウム水溶液、
水酸化カリウム水溶液、アンモニア水などが好適に用い
られる。また、該アルカリ性水溶液の濃度については、
ヒ素イオンの溶離が定量的に起こる範囲として0.1〜
3モルが好ましい。この濃度が0.1モル未満ではOH
-の濃度が低すぎてヒ素イオン全てを溶離するのが困難
であり、一方3モルを超えるとアルカリの溶解度の点や
アルカリ性水溶液の取り扱いなどの点で問題が生じるお
それがあり、好ましくない。このような0.1〜3モル
濃度のアルカリ性水溶液を通液しても、結合したジルコ
ニウムの脱離は全く認められず、従って、ヒ素イオンを
吸着した樹脂の再生において、アルカリ性水溶液を通液
することにより、該吸着材からジルコニウムを脱離させ
ることなく、ヒ素イオンのみを溶離することが可能であ
る。また、アルカリ性水溶液の通液速度は、通常空塔速
度5〜20h-1の範囲で選ばれる。
After the arsenic ions in the liquid to be treated are adsorbed and removed in this way, in the present invention, the alkaline solution is passed through the adsorbent to which the arsenic ions have been adsorbed, so that As ( III) and As (V) are eluted quantitatively. This elution occurs due to ion exchange between arsenic ions on the bound metal ions and OH in the alkaline aqueous solution.Therefore, for the type of alkaline aqueous solution to be passed, if OH is contained, Well, there is no particular limitation, but usually sodium hydroxide aqueous solution,
An aqueous solution of potassium hydroxide, aqueous ammonia or the like is preferably used. Further, regarding the concentration of the alkaline aqueous solution,
The range in which arsenic ion elution quantitatively occurs is 0.1 to
3 moles are preferred. If this concentration is less than 0.1 molar, OH
It is difficult to elute all the arsenic ions because the concentration of-is too low. On the other hand, if it exceeds 3 mol, problems may occur in terms of alkali solubility and handling of alkaline aqueous solution, which is not preferable. Even when the alkaline aqueous solution having a concentration of 0.1 to 3 mol is passed, no desorption of the bound zirconium is recognized. Therefore, in the regeneration of the resin to which arsenic ions are adsorbed, the alkaline aqueous solution is passed. This makes it possible to elute only arsenic ions without desorbing zirconium from the adsorbent. The flow rate of the alkaline aqueous solution is usually selected in the range of a superficial velocity of 5 to 20 h -1 .

【0012】アルカリ性水溶液通液後の吸着材を、再度
ヒ素イオンの吸着除去に用いるためには、ヒ素イオンと
交換した水酸イオンを酸型に戻すために、該樹脂を弱酸
性緩衝液でコンディショニングする必要がある。なお、
この際の通液速度は、通常空塔速度5〜20h-1の範囲
で選ばれる。該樹脂のコンディショニングに用いる緩衝
液は、pH2〜6の範囲のものであればリン酸系を除き
特に制限はなく、酢酸ー酢酸ナトリウム、フタル酸、ク
エン酸等が好ましく用いられる。また、その濃度は、
0.1〜2モルが好ましい。pHが2.0以上であれば
コンディショニングの際の金属の溶出は認められず、コ
ンディショニングを終えた吸着材は、水洗後再び使用で
き、ヒ素イオンの吸着能力において、なんら低下が認め
られない。
In order to use the adsorbent after passing the alkaline aqueous solution again for adsorption and removal of arsenic ions, the resin is conditioned with a weakly acidic buffer to return the hydroxide ions exchanged for arsenic ions to the acid form. There is a need to. In addition,
The liquid passing speed at this time is usually selected in the range of a superficial superficial speed of 5 to 20 h -1 . The buffer used for conditioning the resin is not particularly limited, except for the phosphoric acid type, as long as it has a pH of 2 to 6, and acetic acid-sodium acetate, phthalic acid, citric acid and the like are preferably used. The concentration is
0.1 to 2 mol is preferred. If the pH is 2.0 or more, no metal is eluted during conditioning, and the conditioned adsorbent can be used again after washing with water, and no decrease in arsenic ion adsorption capacity is observed.

【0013】また、この吸着材は、ヒ素イオンの吸着除
去において、他の陰イオン、例えばCl-、NO3 -、S
4 2-などがヒ素イオンの100倍以上の量で共存する
条件下でも、その影響をほとんど受けず、ヒ素イオンの
選択吸着性が極めて優れている。
In addition, this adsorbent can remove other anions, such as Cl , NO 3 , S, in the adsorption removal of arsenic ions.
Even under the condition that O 4 2- and the like coexist in an amount of 100 times or more as large as arsenic ion, it is hardly affected by the influence, and the selective adsorption of arsenic ion is extremely excellent.

【0014】[0014]

【実施例】次に実施例によって本発明をさらに詳細に説
明する。
Next, the present invention will be described in more detail by way of examples.

【0015】製造例1 44gのZrOCl2・8H2O(0.13モル)を、2
50mlのメタノールに溶解し、この溶液にあらかじめ
洗浄、乾燥した架橋ポリアクリル酸樹脂ビーズ(50〜
100メッシュ、比表面積390m2-1)35gを加
え、混合物を30分間減圧下に置いたのち、メタノール
を減圧蒸留により除去し、乾燥状態の樹脂ビーズを得
た。これをビーカーに移し、150mlの10%アンモ
ニア水を加え、30分間かくはんした。上澄みを2〜3
回のデカンテーションで除いた後、100mlの水を加
え、塩酸でpH2.0とする。樹脂ならびに水溶液を耐
圧反応器(オートクレーブ)に移し、150℃で15時
間加熱した。次いで樹脂ビーズをろ過し、水、エタノー
ルで順次洗い、50℃で真空乾燥して、48gの樹脂を
得た。得られた樹脂のX線回折において単斜晶系のZr
2の明確な結晶ピークが認められた。
[0015] ZrOCl 2 · 8H 2 O in Production Example 1 44 g of (0.13 mol), 2
The crosslinked polyacrylic acid resin beads (50 to 50 ml) dissolved in 50 ml of methanol and washed and dried in advance
After adding 35 g of 100 mesh and a specific surface area of 390 m 2 g -1 ), the mixture was placed under reduced pressure for 30 minutes, and then methanol was removed by distillation under reduced pressure to obtain dry resin beads. This was transferred to a beaker, 150 ml of 10% aqueous ammonia was added, and the mixture was stirred for 30 minutes. 2-3 supernatant
After removal by repeated decantation, 100 ml of water is added, and the pH is adjusted to 2.0 with hydrochloric acid. The resin and the aqueous solution were transferred to a pressure-resistant reactor (autoclave) and heated at 150 ° C. for 15 hours. Next, the resin beads were filtered, washed sequentially with water and ethanol, and vacuum dried at 50 ° C. to obtain 48 g of a resin. In the X-ray diffraction of the obtained resin, monoclinic Zr
A clear crystal peak of O 2 was observed.

【0016】製造例2 テトラ(n−ブトキシ)ジルコニウム120gを300
mlの乾燥ベンゼンに溶解し、この溶液にあらかじめ洗
浄、乾燥した架橋ポリアクリル酸樹脂ビーズ(50〜1
00 メッシュ、比表面積390m2-1)110gを
加え、混合物を約1時間減圧下に置いたのち、ベンゼン
を減圧蒸留により除去し、乾燥状態の樹脂ビーズを得
た。これをビーカーに移し、pH2.0の水500ml
を加え、2時間静置したのち、上澄みを捨て、この中に
再びpH2.0の水500mlを加え、24時間加熱還
流した。次いで、樹脂ビーズをろ過し、水、エタノール
及びエーテルで順次洗い、50℃で真空乾燥して、12
0gの目的物を得た。このもののジルコニウム含量は
1.7mmol g-1、比表面積は280m2-1であ
った。この場合、X線回析では明確なピークを有せず、
含水酸化物は非晶質ゲルと推測される。ただし熱水溶液
中で長時間煮沸する事により、担持された含水酸化ジル
コニウムは、結晶化した。
Production Example 2 120 g of tetra (n-butoxy) zirconium was added to 300
The crosslinked polyacrylic acid resin beads (50 to 1) which were dissolved in
After adding 110 g of 00 mesh and a specific surface area of 390 m 2 g -1 ), the mixture was placed under reduced pressure for about 1 hour, and then benzene was removed by distillation under reduced pressure to obtain dry resin beads. Transfer this to a beaker and add 500 ml of pH 2.0 water
Was added, and the mixture was allowed to stand for 2 hours. Thereafter, the supernatant was discarded, and 500 ml of water having a pH of 2.0 was again added thereto, followed by heating under reflux for 24 hours. Next, the resin beads were filtered, washed sequentially with water, ethanol and ether, and dried in vacuum at 50 ° C.
0 g of the desired product was obtained. This had a zirconium content of 1.7 mmol g -1 and a specific surface area of 280 m 2 g -1 . In this case, the X-ray diffraction has no clear peak,
The hydrated oxide is assumed to be an amorphous gel. However, by boiling for a long time in a hot aqueous solution, the supported hydrous zirconium oxide crystallized.

【0017】実施例1 製造例1で得た吸着材2g(湿潤体積5.8ml)を内
径1cmのカラムに充填し、ヒ素イオン(As(V))を
10ppm含有するpH5.0の水溶液を0.5ml
min-1で通液し、樹脂塔通液後のヒ素濃度を測定し
た。その結果、樹脂体積の1000倍の通液点でヒ素濃
度は0.1ppm以下であった。カラム流出液中のAs
(V)の溶出濃度を図1に示す。
Example 1 2 g (wet volume: 5.8 ml) of the adsorbent obtained in Production Example 1 was packed in a column having an inner diameter of 1 cm, and an aqueous solution having a pH of 5.0 containing 10 ppm of arsenic ion (As (V)) was added to a column. .5ml
The solution was passed at min -1 and the arsenic concentration after passing through the resin tower was measured. As a result, the arsenic concentration was 0.1 ppm or less at the passage point of 1000 times the resin volume. As in column effluent
The elution concentration of (V) is shown in FIG.

【0018】実施例2 製造例1で得た吸着材2g(湿潤体積5.8ml)を内
径1cmのカラムに充填し、ヒ素イオン(As(III))
を10ppm含有するpH8.0の水溶液を0.5ml
min-1で通液し、樹脂塔通液後のヒ素濃度を測定し
た。その結果、樹脂体積の400倍の通液点でヒ素濃度
は0.1ppm以下であった。カラム流出液中のAs(I
II)の溶出濃度を図2に示す。
Example 2 2 g (wet volume: 5.8 ml) of the adsorbent obtained in Production Example 1 was packed in a column having an inner diameter of 1 cm, and arsenic ions (As (III))
0.5 ml of an aqueous solution of pH 8.0 containing 10 ppm of
The solution was passed at min -1 and the arsenic concentration after passing through the resin tower was measured. As a result, the arsenic concentration was 0.1 ppm or less at the passage point of 400 times the resin volume. As (I in the column effluent
FIG. 2 shows the elution concentration of II).

【0019】実施例3 実施例1でヒ素イオンを吸着したカラムに、2モル水酸
化ナトリウム水溶液120mlを2ml min-1で通
液し、ヒ素イオンの溶離を行った。カラム通液後の水溶
液中には、実施例1で吸着したヒ素イオンの99%が含
まれており、またジルコニウムは全く検出されなかっ
た。
Example 3 Arsenic ions were eluted by passing 120 ml of a 2 molar aqueous sodium hydroxide solution at 2 ml min -1 through the column to which arsenic ions were adsorbed in Example 1. The aqueous solution after passing through the column contained 99% of the arsenic ions adsorbed in Example 1, and no zirconium was detected.

【0020】実施例4 次に0.2モルの酢酸−酢酸ナトリウム溶液(pH4.
0)を、漏出液のpHが4.0になるまで通液し、更に
カラムを水洗した後、実施例1と同組成のヒ素イオン溶
液を通液し、カラム通液後のヒ素イオン濃度を測定し
た。その結果カラムは実施例1とほぼ同様の吸着能力を
示した。
Example 4 Next, a 0.2 mol acetic acid-sodium acetate solution (pH 4.
0) was passed until the pH of the leaked liquid reached 4.0, and further the column was washed with water. Then, an arsenic ion solution having the same composition as in Example 1 was passed. It was measured. As a result, the column showed almost the same adsorption capacity as in Example 1.

【0021】参考例 0.02モルのヒ素イオンを含有する、所定pHの水溶
液100ml中に、1gの吸着材を加え、室温で24時
間振とうした後、溶液中に残留するヒ素イオン濃度を測
定し、該吸着材1g当りに吸着されたヒ素イオンの量と
pHとの関係を求めた。その結果を第3図にグラフで示
す。
REFERENCE EXAMPLE 1 g of an adsorbent is added to 100 ml of an aqueous solution containing 0.02 mol of arsenic ions at a predetermined pH, shaken at room temperature for 24 hours, and then the concentration of arsenic ions remaining in the solution is measured. Then, the relationship between the amount of arsenic ions adsorbed per 1 g of the adsorbent and the pH was determined. The results are shown graphically in FIG.

【0022】[0022]

【発明の効果】本発明方法に用いられるヒ素イオン吸着
材は、多孔質な特性を保持しており、吸着体内部へのヒ
素イオンの拡散が速く、極めて速やかな吸着が達成され
る。さらに、この吸着材は、吸着されたヒ素イオンを1
〜3モル程度のアルカリ性水溶液等で処理することによ
り定量的に溶離させ、コンディショニング、水洗後、再
び繰り返し再現性よく使用することができるという利点
がある。また、この吸着材では、担持されたジルコニウ
ムの含水酸化物が酸やアルカリへの溶解度が極めて小さ
いため、ヒ素イオンの溶出と吸着材の再生を行う際の金
属の溶解は無視しうる程小さく、この点からも繰り返し
再現性よく用いることが可能である。
As described above, the arsenic ion adsorbent used in the method of the present invention has a porous property, and the arsenic ion is rapidly diffused into the adsorbent, so that very quick adsorption is achieved. Further, this adsorbent reduces the amount of arsenic ions adsorbed by one.
There is an advantage that it can be quantitatively eluted by treating with about 3 mol of an alkaline aqueous solution or the like, and can be used again with good reproducibility after conditioning and washing with water. Also, in this adsorbent, the hydrated oxide of the supported zirconium has extremely low solubility in acids and alkalis, so the dissolution of metal during elution of arsenic ions and regeneration of the adsorbent is negligibly small, From this point, it can be used with good reproducibility.

【0023】従って、本発明の方法は極めて簡単な操作
かつ低い処理コストで工業廃水などに含まれるヒ素イオ
ンを効率よく繰り返し吸着除去することができ、極めて
工業的価値の高い方法と言える。
Accordingly, the method of the present invention can efficiently and repeatedly adsorb and remove arsenic ions contained in industrial wastewater and the like with extremely simple operation and low treatment cost, and can be said to be a method of extremely high industrial value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1図は、本発明にかかる吸着材料をカラム固
定相として、As(V)の吸着を行った場合におけるカラ
ム溶出液体積とカラム溶出液中のAs(V)イオンの濃度
を示す。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing the relationship between the volume of a column eluate and the concentration of As (V) ions in a column eluate when As (V) is adsorbed using the adsorbent according to the present invention as a column stationary phase. Show.

【図2】第2図は、本発明にかかる吸着材料をカラム固
定相として、As(III)の吸着を行った場合におけるカ
ラム溶出液体積とカラム溶出液中のAs(III)イオンの
濃度を示す。
FIG. 2 shows the column eluate volume and the concentration of As (III) ions in the column eluate when As (III) was adsorbed using the adsorbent according to the present invention as a column stationary phase. Show.

【図3】第3図は、本発明に用いられる吸着材料のヒ素
イオン吸着容量とpHの関係を示した説明図である。
FIG. 3 is an explanatory diagram showing the relationship between arsenic ion adsorption capacity and pH of the adsorbent used in the present invention.

【符号の説明】[Explanation of symbols]

横軸は溶液のpHを、縦軸はヒ素イオンの吸着量(吸着
材1g当りに吸着されたヒ素イオンのミリモル数)を表
わす。図中、白丸はAs(III)イオンの吸着容量、黒丸
はAs(V)イオンの吸着容量を示す。
The horizontal axis represents the pH of the solution, and the vertical axis represents the amount of arsenic ion adsorbed (mmol of arsenic ion adsorbed per gram of adsorbent). In the figure, white circles indicate the adsorption capacity of As (III) ions, and black circles indicate the adsorption capacity of As (V) ions.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−165948(JP,A) 特開 平5−68969(JP,A) 特開 平2−191543(JP,A) 特開 昭61−187931(JP,A) 特開 昭58−34039(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 15/00 B01J 20/06 B01J 20/28 - 20/34 C02F 1/28 C02F 1/62 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-10-165948 (JP, A) JP-A-5-68969 (JP, A) JP-A-2-191543 (JP, A) JP-A-61- 187931 (JP, A) JP-A-58-34039 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 15/00 B01J 20/06 B01J 20/28-20/34 C02F 1/28 C02F 1/62

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ヒ素イオン含有溶液を、一般式MO2
nH2O(式中のMはジルコニウムを表し、nは1〜6
の整数)で表されるジルコニウムの含水酸化物結晶を多
孔質材料表面に5〜60重量%担持してなる吸着材料に
接触させることにより、該ヒ素イオンを吸着させた後、
0.1〜3モルアルカリ水溶液で吸着イオンを溶離し、
さらにpH2〜6の緩衝液及び水で該吸着材を再生させ
ることを特徴とする、水溶液中のヒ素イオン吸着除去方
法。
An arsenic ion-containing solution is represented by the general formula MO 2.
nH 2 O (wherein M represents zirconium, n is 1 to 6)
By contacting the zirconium hydrate crystal represented by the formula (1) with an adsorbent material having 5 to 60% by weight supported on the porous material surface, thereby adsorbing the arsenic ion.
The adsorbed ions are eluted with a 0.1 to 3 molar aqueous alkali solution,
A method for adsorbing and removing arsenic ions in an aqueous solution, further comprising regenerating the adsorbent with a buffer having a pH of 2 to 6 and water.
【請求項2】 ヒ素イオン含有水溶液のpHが2〜10
の範囲である請求項1に記載の方法。
2. The pH of the arsenic ion-containing aqueous solution is 2 to 10.
2. The method of claim 1, wherein
JP09225746A 1997-08-07 1997-08-07 Arsenic ion adsorption removal method Expired - Lifetime JP3079257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09225746A JP3079257B2 (en) 1997-08-07 1997-08-07 Arsenic ion adsorption removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09225746A JP3079257B2 (en) 1997-08-07 1997-08-07 Arsenic ion adsorption removal method

Publications (2)

Publication Number Publication Date
JPH1147505A JPH1147505A (en) 1999-02-23
JP3079257B2 true JP3079257B2 (en) 2000-08-21

Family

ID=16834194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09225746A Expired - Lifetime JP3079257B2 (en) 1997-08-07 1997-08-07 Arsenic ion adsorption removal method

Country Status (1)

Country Link
JP (1) JP3079257B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232091A (en) * 2013-04-25 2013-08-07 滨州学院 Method for removing arsenium from water body by macroporous resin adsorption process

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120104719A (en) 2011-03-14 2012-09-24 삼성전자주식회사 Regenerable filter unit, regenerable filter system including the same and method of operating regenerable filter system
KR101419167B1 (en) * 2013-01-04 2014-07-15 박송범 Apparatus for culturing oyster
JP7021868B2 (en) * 2017-06-02 2022-02-17 株式会社ディスコ Processing waste liquid treatment equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232091A (en) * 2013-04-25 2013-08-07 滨州学院 Method for removing arsenium from water body by macroporous resin adsorption process

Also Published As

Publication number Publication date
JPH1147505A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
JP3044293B2 (en) Method for producing crystalline hydrous zirconium hydroxide-supported porous adsorbent
Suzuki et al. Preparation of porous resin loaded with crystalline hydrous zirconium oxide and its application to the removal of arsenic
US4615806A (en) Removal of iodide compounds from non-aqueous organic media
JPH0445213B2 (en)
Chanda et al. Ligand exchange sorption of arsenate and arsenite anions by chelating resins in ferric ion form: II. Iminodiacetic chelating resin Chelex 100
WO2018129773A1 (en) Pertechnetate adsorbent and synthesis process thereof and use thereof in treatment of radioactive wastewater
US4234456A (en) Iodine adsorbent
KR100390321B1 (en) The selective adsorption of heavy metal ions using molecular-imprinted adsorbents synthesized with low cost silica sources
JP3079257B2 (en) Arsenic ion adsorption removal method
JP3643873B2 (en) Heavy metal ion adsorbent, method for producing the same, and method for removing heavy metal ions using the same
JPH0568969A (en) Adsorption and removal of phosphate ion
JP2004066161A (en) Water treatment method
JP3932797B2 (en) Method for producing harmful anion adsorption particles
JP3256740B2 (en) Selenium (IV) adsorption removal method
RU2345833C1 (en) Method for preparation of ferrocyanide sorbates
JP2000342962A (en) Heavy metal adsorbent and production thereof
JP4041202B2 (en) Sr ion adsorbent, method for producing the same, and method for treating Sr ion-containing water using the same
JPH0217220B2 (en)
RU2616064C1 (en) Method for sorbent production based on polymer hydrogel
JPH0724764B2 (en) Composite adsorbent and method for producing the same
JPH04317738A (en) Production of fluoride ion adsorbing material
JPH02211244A (en) Preparation of fluoride ion adsorbing material
JP3291994B2 (en) How to remove arsenate ions
JP3831107B2 (en) Radium adsorbent, method for producing the same, and method for treating radium-containing wastewater using the same
JP4547528B2 (en) Nitrate ion selective adsorbent, production method thereof, nitrate ion removal method and nitrate ion recovery method using the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term