JP3643873B2 - Heavy metal ion adsorbent, method for producing the same, and method for removing heavy metal ions using the same - Google Patents

Heavy metal ion adsorbent, method for producing the same, and method for removing heavy metal ions using the same Download PDF

Info

Publication number
JP3643873B2
JP3643873B2 JP2002178665A JP2002178665A JP3643873B2 JP 3643873 B2 JP3643873 B2 JP 3643873B2 JP 2002178665 A JP2002178665 A JP 2002178665A JP 2002178665 A JP2002178665 A JP 2002178665A JP 3643873 B2 JP3643873 B2 JP 3643873B2
Authority
JP
Japan
Prior art keywords
heavy metal
metal ion
porous material
ion adsorbent
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002178665A
Other languages
Japanese (ja)
Other versions
JP2004016994A (en
Inventor
敏重 鈴木
嘉郎 小野寺
セツ 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002178665A priority Critical patent/JP3643873B2/en
Publication of JP2004016994A publication Critical patent/JP2004016994A/en
Application granted granted Critical
Publication of JP3643873B2 publication Critical patent/JP3643873B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規な重金属イオン吸着材、その製造方法及びそれを用いた重金属イオン除去方法に関するものである。
【0002】
【従来の技術】
固体材料を用いる吸着法は、微量物質の分離に適していると共に、カラムへの通液のような簡便な操作によって大量の溶液の処理が可能である。α‐リン酸ジルコニウム結晶は化学的に安定な層状無機イオン交換体としてよく知られ、微量イオンの分離濃縮や化学反応触媒として用いられてきた。
【0003】
しかしながら、α‐リン酸ジルコニウム結晶は、通常微粉体であるため、吸着、溶離、再生などの分離操作を行う上で、取り扱いにくい欠点がある。このような微粉体にバインダーを加えて造粒する方法が知られているが、本来の吸着特性が損なわれたり多孔質体を作り難いという欠点がある。また、重金属イオン吸着材としては、重金属イオンが吸着活性部位に容易に到達しうる十分な孔径や高比表面積等の優れた多孔性のものが望ましいが、α‐リン酸ジルコニウム結晶自体は孔径や比表面積が必ずしも十分ではない。
【0004】
【発明が解決しようとする課題】
本発明の課題は、このような事情の下、α‐リン酸ジルコニウム結晶の欠点を克服し、所定重金属イオンの分離操作に適した多孔性と材料形態を有し、再生により繰り返し使用できるα‐リン酸ジルコニウム結晶系重金属イオン吸着材を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、工業排水などの溶液中に含まれる所定重金属イオンを効率よく吸着分離し、しかも再生して繰り返し使用可能な吸着材を開発するために種々研究を重ねた結果、可溶性ジルコニウム化合物を含浸した多孔質材にリン酸水溶液を加えたのち、水熱処理すると、α‐リン酸ジルコニウム結晶が多孔質材に担持され、それにより、多孔質材の特性、例えば多数の細孔による高比表面積等の優れた多孔性が十分保持され、良好な所定重金属イオン吸着能を示すことを見出し、この知見に基づいて本発明を完成するに至った。
【0006】
すなわち、本発明は、(1)α‐リン酸ジルコニウム結晶を多孔質材に担持してなる、Pb、Cu、Hg用重金属イオン吸着材、及び(2)多孔質材に可溶性ジルコニウム化合物を含浸したのち、リン酸水溶液を加え、次いで水熱処理して、α‐リン酸ジルコニウム結晶を析出させ、多孔質材に担持することを特徴とする、Pb、Cu、Hg用重金属イオン吸着材の製造方法を提供するものである。
本発明において、重金属イオンや、重金属イオン含有液とは重金属がPb、Cu、Hgからなるものを意味する。
【0007】
【発明の実施の形態】
本発明の好ましい態様としては、以下のものが挙げられる。
(3)担持量が多孔質材に対し1〜90質量%の範囲である前記(1)記載の重金属イオン吸着材。
)多孔質材がイオン交換樹脂、樹脂フォーム、架橋樹脂、易溶性フィラー溶出多孔化樹脂成形体、多孔質セラミックス、活性炭、シリカゲル及びアルミナゲルの中から選ばれた少なくとも1種のものである前記(1)又は(3)記載の重金属イオン吸着材。
)多孔質材が粒子、ビーズ、シート、筒、膜の形状のものである前記(1)、(3)又は(4)記載の重金属イオン吸着材。
) 可溶性ジルコニウム化合物がオキシハロゲン化物、オキシ硝酸塩、アルコキシドである前記(2)記載の方法。
)前記(1)、(3)、(4)又は(5)記載の重金属イオン吸着材に重金属がPb、Cu、Hgからなる重金属イオン含有液を接触させ、重金属イオンを吸着させることを特徴とする重金属イオン除去方法。
【0008】
本発明の重金属イオン吸着材は、α‐リン酸ジルコニウム結晶を多孔質材に担持したものであって、α‐リン酸ジルコニウム結晶は、非晶質のリン酸ジルコニウムに対し、結晶質のものであって、通常一水和物であり、その多孔質材に対する担持量については、所期の効果が得られる限り、特に制限されないが、好ましくは、1〜90質量%、中でも5〜80質量%の範囲で選ばれる。
【0009】
α‐リン酸ジルコニウム結晶を担持する多孔質材については、重金属イオン吸着物質の担体として通常用いられているものであれば特に制限されず、それらの中から任意に選ばれ、例えば、イオン交換樹脂、樹脂フォーム、架橋樹脂、易溶性フィラー溶出多孔化樹脂成形体、多孔質セラミックス、活性炭、シリカゲル、アルミナゲルなどが挙げられ、この樹脂フォームの例にはポリスチレン発泡体、ポリウレタン発泡体、フェノール樹脂発泡体などが、架橋樹脂の例には架橋ポリアクリル酸系樹脂、架橋ポリスチレン系樹脂などが、多孔質セラミックスの例には酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化ケイ素、酸化イットリウム、コランダム、ムライト、コージライト、ケイ酸カルシウム、ケイ酸アルミニウム、窒化ケイ素、炭化ケイ素などがそれぞれ挙げられ、中でも架橋ポリアクリル酸系樹脂及び架橋ポリスチレン系樹脂が好適である。上記架橋ポリアクリル酸系樹脂は、エステル、アミドなどのカルボン酸誘導体を有する樹脂、例えば架橋ポリアクリル酸エステル樹脂なども包含するものである。また、易溶性フィラー溶出多孔化樹脂成形体は、易溶性フィラーを含有する樹脂成形体から、該フィラーを溶出させて得た多孔質樹脂である。
これらの多孔質材は、1種用いてもよいし、また2種以上を組み合わせて用いてもよい。
【0010】
この多孔質材の形態や形状については特に制限はなく、例えば粒子、ビーズ、シート、筒、膜などとして、粒状、板状、筒状などの形状のものが用いられるが、好ましくは粒子やビーズである。
【0011】
本発明の重金属イオン吸着材として好適には、比表面積50〜800m2/g、平均孔径10〜500Å及び粒度20〜200メッシュの範囲の粒状体、中でもビーズのような球状体が用いられる。
【0012】
また、本発明の重金属イオン吸着材は、Pb、Cu、Hg用として、そのイオンの吸着分離に用いる。
【0013】
本発明方法においては、先ず多孔質材に可溶性ジルコニウム化合物を含浸する。この際に用いられる可溶性ジルコニウム化合物としては、例えばZrOCl2などのオキシハロゲン化物、ZrO(NO3)2などのオキシ硝酸塩、ジルコニウムエトキシドなどのアルコキシドなどが挙げられる。
【0014】
この含浸処理は、可溶性ジルコニウム化合物を適当な溶媒に溶解し、この溶液と、多孔質材、好ましくは可溶性ジルコニウム化合物を溶解する溶媒と同様の溶媒で湿潤させ、さらには場合により膨潤させた多孔質材とを混合したのち、溶媒を留去することにより、行われる。上記溶液としては、可溶性ジルコニウム化合物の高濃度溶液を使用するほど、担持量が多くなるので、飽和に近い濃度で用いるのが有利である。
【0015】
この含浸処理の際に用いられる溶媒としては、可溶性ジルコニウム化合物に対する溶解性が良好で、かつ留去しやすいものであればよく、特に制限はないが、可溶性ジルコニウム化合物がオキシハロゲン化物やオキシ硝酸塩の場合には、メタノール、エタノール、プロパノールなどの低級アルコール、水などが好ましく、中でも可溶性ジルコニウム化合物を極めて良く溶解し、かつ低沸点で留去しやすい点から、メタノールが好ましいし、また、ジルコニウムアルコキシドの場合には、ベンゼンなどの炭化水素溶媒、アセトン、アルコールなどが好ましい。
また、含浸処理において用いられる多孔質材は前記したとおりのものである。
【0016】
本発明方法においては、次いで、上記含浸後、リン酸水溶液を加えたのち、水熱処理する。すなわち、上記のようにして得られた可溶性ジルコニウム化合物を含浸させた多孔質材をリン酸水溶液とともに水熱処理する。この水熱処理により、ジルコニウム成分をα‐リン酸ジルコニウム結晶として析出させ、これを多孔質材に担持することができる。
【0017】
この水熱処理に用いるリン酸については、高濃度の方が反応が速やかであるため、80%以上の水溶液とするのが好ましい。また、水熱処理は、100〜180℃の範囲の高温で8〜20時間、好ましくは130〜170℃の範囲の温度で10〜17時間加熱することによって行われる。このように、100℃以上の温度で水熱処理を行うため、反応容器としては、耐圧性のもの、好ましくはオートクレーブ、中でもポリテトラフルオロエチレン製などの耐食性オートクレーブを用いるのがよい。
【0018】
このようにして得られた重金属イオン吸着材は多孔質であり、一般のイオン交換樹脂と全く同等に取り扱うことができる。また、多孔質材内部に析出したα‐リン酸ジルコニウム結晶の特性を反映して、Pb、Cu、Hg用として、それらのイオンを効率的に吸着分離することができる。
【0019】
重金属イオンの吸着分離は、重金属イオン含有液中に重金属イオン吸着材を投入し混合するバッチ法、重金属イオン吸着材を充填したカラムに重金属イオン含有液を通液する連続法等によって行われるが、処理操作が簡単であり、処理能に優れる点から、連続法によるのが好ましい。
【0020】
【発明の効果】
本発明の重金属イオン吸着材は、多孔質材の特性、例えば多数の細孔による高比表面積等の優れた多孔性を十分保持しており、吸着材の細孔での重金属イオンの出入りを速やかに行え、重金属イオン吸着能に優れているし、また、凝集沈殿剤などを用いずに微量の重金属イオンを捕集でき、化学的安定性に優れ、無害である点で従来のキレート樹脂に比べて優れ、さらに多孔質材を担体として、その形状や大きさを選択することにより、利用目的に応じた形態、例えば、直径1mm前後の粒子やビーズ、また10μm程度の微細な球形とすることができ、それぞれ水処理用や超微量重金属イオンのクロマト分離用として、カートリッジやカラムの充填材に利用することができる。
本発明の重金属イオン吸着材は、Pb、Cu、Hg用として、それらのイオンの除去処理に適している。
また、本発明方法によれば、簡単に効率よく重金属イオン吸着材を製造することができる。
【0021】
【実施例】
次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
【0022】
実施例1
ZrOCl2・8H2O10gをメタノール100mlに溶解した溶液に、あらかじめメタノールで膨潤させたAmberlite社製XAD-7(架橋ポリアクリル酸エステル系樹脂ビーズ)20gを加え、1時間放置したのち、これに85%リン酸水溶液60gを加えて撹拌し、ロータリーエバポレーターでメタノールを留去した。一夜放置後、ポリテトラフルオロエチレン製オートクレーブに移し150℃で10時間加熱したのち、蒸留水で白濁がなくなるまでデカンテーションを繰り返し、1モル/リットルの濃度の硝酸アンモニウム水溶液を加えて一夜放置して過剰分のリン酸を溶離し、固液分離して処理樹脂ビーズを得た。次いで、この樹脂ビーズを純水で洗浄後、さらにアセトンで洗浄し、減圧乾燥して重金属イオン吸着材を得た。この吸着材のX線回折チャートを図1に示す。これより、α‐リン酸ジルコニウム結晶の結晶ピークが明確に認められる。この吸着材及び多孔質材のXAD-7樹脂について、細孔分布曲線を図2にそれぞれ(−●−)及び(−▲−)で示し、また比表面積、細孔容積、平均孔径を表1に示す。
【0023】
【表1】

Figure 0003643873
【0024】
表1より、この多孔質材にα‐リン酸ジルコニウム結晶を担持して吸着材とした後も十分な比表面積と平均孔径を有し、吸着材の細孔内をほとんどの水和イオンが自由に出入りしうることが分る。
【0025】
実施例2
実施例1で得た重金属イオン吸着材5g(湿潤体積14.5ml)を内径1cmのカラムに充填し、pH3.0の酢酸緩衝液で洗ったのち、充填カラムに、鉛イオンを10ppm含有するpH3.0の水溶液を1ml/分で通液し、充填カラムからの流出液中の鉛イオン[Pb(II)]濃度を測定する試験を行った。また、この測定試験後、充填カラムに1モル/リットルの硝酸水溶液を2ml/分で10分通液して、充填カラムから吸着材に吸着された鉛イオンを溶離し、こうして再生した充填カラムを用いて、最初の測定試験と同様にして、再生初回目の測定試験を行った。
さらに、この測定試験後、上記と同様にして再度再生した充填カラムを用いて、上記と同様にして、再生2回目の測定試験を行った。
これら測定試験における、通液に伴う充填カラムからの流出液中の鉛イオン[Pb(II)]濃度と、充填カラム内の吸着材量に対する通液量の体積比との関係をグラフで表わし、このグラフを通液に伴う充填カラムからの鉛イオン溶出度線図として図3に示す。(●)は最初の測定試験、(○)は再生初回目の測定試験、(▲)は再生2回目の測定試験にそれぞれよるものである。
【図面の簡単な説明】
【図1】 実施例1で得られた重金属イオン吸着材のX線回折チャート。
【図2】 実施例1で得られた重金属イオン吸着材(●)と多孔質材(▲)の細孔分布曲線。
【図3】 通液に伴う充填カラムからの鉛イオン溶出度線図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel heavy metal ion adsorbent, a production method thereof, and a heavy metal ion removal method using the same.
[0002]
[Prior art]
The adsorption method using a solid material is suitable for separation of a trace amount substance, and can process a large amount of solution by a simple operation such as passing through a column. α-Zirconium phosphate crystals are well known as chemically stable layered inorganic ion exchangers, and have been used as separation and concentration of trace ions and as chemical reaction catalysts.
[0003]
However, since α-zirconium phosphate crystals are usually fine powder, they have a drawback that they are difficult to handle in performing separation operations such as adsorption, elution, and regeneration. A method of adding a binder to such a fine powder and granulating is known, but there are drawbacks in that the original adsorption characteristics are impaired and it is difficult to make a porous body. Further, as the heavy metal ion adsorbent, an excellent porous material such as a sufficient pore size and a high specific surface area that allow heavy metal ions to easily reach the adsorption active site is desirable, but α-zirconium phosphate crystal itself has a pore size and The specific surface area is not always sufficient.
[0004]
[Problems to be solved by the invention]
Under such circumstances, the object of the present invention is to overcome the drawbacks of α-zirconium phosphate crystals, have a porosity and a material form suitable for the separation operation of predetermined heavy metal ions, and can be repeatedly used by regeneration. The object is to provide a zirconium phosphate crystalline heavy metal ion adsorbent.
[0005]
[Means for Solving the Problems]
As a result of various studies to develop an adsorbent that can efficiently adsorb and separate a predetermined heavy metal ion contained in a solution such as industrial wastewater and regenerate and repeatedly use it, a soluble zirconium compound When an aqueous solution of phosphoric acid is added to a porous material impregnated with, and then hydrothermally treated, α-zirconium phosphate crystals are supported on the porous material, which makes it possible to obtain characteristics of the porous material, such as a high ratio due to a large number of pores It has been found that excellent porosity such as surface area is sufficiently retained and exhibits a good predetermined heavy metal ion adsorption ability, and the present invention has been completed based on this finding.
[0006]
That is, the present invention includes (1) a heavy metal ion adsorbent for Pb, Cu, Hg formed by supporting α-zirconium phosphate crystals on a porous material, and (2) a porous material impregnated with a soluble zirconium compound. A method for producing a heavy metal ion adsorbent for Pb, Cu, and Hg, characterized in that an aqueous phosphoric acid solution is added and then hydrothermally treated to precipitate α-zirconium phosphate crystals and supported on a porous material. It is to provide.
In the present invention, heavy metal ions and heavy metal ion-containing liquids mean those in which heavy metals are composed of Pb, Cu, and Hg.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The following are mentioned as a preferable aspect of this invention.
(3) The heavy metal ion adsorbent according to (1), wherein the supported amount is in the range of 1 to 90% by mass with respect to the porous material.
( 4 ) The porous material is at least one selected from an ion exchange resin, a resin foam, a crosslinked resin, a readily soluble filler-eluting porous resin molding, a porous ceramic, activated carbon, silica gel, and alumina gel. The heavy metal ion adsorbent according to (1) or (3) .
( 5 ) The heavy metal ion adsorbent according to (1), (3) or (4) , wherein the porous material is in the form of particles, beads, sheets, cylinders, and membranes.
( 6 ) The method according to (2) above, wherein the soluble zirconium compound is an oxyhalide, oxynitrate or alkoxide.
( 7 ) The heavy metal ion-adsorbing material according to (1), (3), (4) or (5) is contacted with a heavy metal ion-containing liquid containing heavy metal Pb, Cu, or Hg to adsorb heavy metal ions. A feature of removing heavy metal ions.
[0008]
The heavy metal ion adsorbent of the present invention is one in which an α-zirconium phosphate crystal is supported on a porous material, and the α-zirconium phosphate crystal is crystalline with respect to amorphous zirconium phosphate. In general, it is a monohydrate, and the amount supported on the porous material is not particularly limited as long as the desired effect is obtained, but is preferably 1 to 90% by mass, and more preferably 5 to 80% by mass. Is selected within the range.
[0009]
The porous material supporting the α-zirconium phosphate crystal is not particularly limited as long as it is usually used as a carrier for a heavy metal ion adsorbing substance, and is arbitrarily selected from, for example, an ion exchange resin. Resin foam, cross-linked resin, readily soluble filler-eluting porous resin molding, porous ceramics, activated carbon, silica gel, alumina gel, etc. Examples of this resin foam include polystyrene foam, polyurethane foam, phenol resin foam The body is an example of a crosslinked resin, such as a crosslinked polyacrylic acid resin, a crosslinked polystyrene resin, etc., and examples of porous ceramics are aluminum oxide, zirconium oxide, titanium oxide, silicon oxide, yttrium oxide, corundum, mullite, Cordierite, calcium silicate, aluminum silicate, silicon nitride Such as silicon carbide can be mentioned, respectively, with preference crosslinked polyacrylic acid resin and crosslinked polystyrene resin. The cross-linked polyacrylic acid resin includes a resin having a carboxylic acid derivative such as ester or amide, for example, a cross-linked polyacrylic ester resin. Moreover, the easily soluble filler-eluting porous resin molded article is a porous resin obtained by eluting the filler from a resin molded article containing an easily soluble filler.
One type of these porous materials may be used, or two or more types may be used in combination.
[0010]
The form and shape of the porous material are not particularly limited, and for example, particles, beads, sheets, cylinders, membranes, and the like may be used in the form of particles, plates, cylinders, etc. It is.
[0011]
As the heavy metal ion adsorbent of the present invention, a granular material having a specific surface area of 50 to 800 m 2 / g, an average pore diameter of 10 to 500 mm and a particle size of 20 to 200 mesh, especially a spherical body such as a bead, is used.
[0012]
Also, heavy metal ion adsorbent of the present invention, P b, Cu, for the Hg, Ru used for the adsorptive separation of the ions.
[0013]
In the method of the present invention, a porous material is first impregnated with a soluble zirconium compound. Examples of the soluble zirconium compound used in this case include oxyhalides such as ZrOCl 2 , oxynitrates such as ZrO (NO 3 ) 2, and alkoxides such as zirconium ethoxide.
[0014]
This impregnation treatment involves dissolving a soluble zirconium compound in a suitable solvent, wetting the solution with a porous material, preferably the same solvent as that for dissolving the soluble zirconium compound, and further optionally swelling a porous material. After mixing the material, the solvent is distilled off. As the above solution, the higher the concentration of the soluble zirconium compound used, the larger the supported amount. Therefore, it is advantageous to use the solution at a concentration close to saturation.
[0015]
The solvent used in the impregnation treatment is not particularly limited as long as it has good solubility in the soluble zirconium compound and can be easily distilled off, but the soluble zirconium compound is not limited to oxyhalide or oxynitrate. In this case, lower alcohols such as methanol, ethanol and propanol, water and the like are preferable. Among them, methanol is preferable because it dissolves the soluble zirconium compound very well and is easy to distill off at a low boiling point. In some cases, hydrocarbon solvents such as benzene, acetone, alcohol and the like are preferable.
The porous material used in the impregnation treatment is as described above.
[0016]
In the method of the present invention, after the impregnation, a phosphoric acid aqueous solution is added and then hydrothermal treatment is performed. That is, the porous material impregnated with the soluble zirconium compound obtained as described above is hydrothermally treated with an aqueous phosphoric acid solution. By this hydrothermal treatment, the zirconium component can be precipitated as α-zirconium phosphate crystals and supported on the porous material.
[0017]
About the phosphoric acid used for this hydrothermal treatment, since reaction is quicker at a high concentration, it is preferable to make an aqueous solution of 80% or more. The hydrothermal treatment is performed by heating at a high temperature in the range of 100 to 180 ° C. for 8 to 20 hours, preferably at a temperature in the range of 130 to 170 ° C. for 10 to 17 hours. Thus, since hydrothermal treatment is performed at a temperature of 100 ° C. or higher, it is preferable to use a pressure resistant, preferably autoclave, particularly a corrosion resistant autoclave such as made of polytetrafluoroethylene as the reaction vessel.
[0018]
The heavy metal ion adsorbent thus obtained is porous and can be handled exactly the same as a general ion exchange resin. Further, it is possible to reflect the characteristics of the deposited within the porous material α- zirconium phosphate crystals, P b, Cu, for the Hg, to adsorptive separation of these ions efficiently.
[0019]
The adsorption separation of heavy metal ions is performed by a batch method in which a heavy metal ion adsorbent is introduced and mixed in a heavy metal ion-containing liquid, a continuous method in which a heavy metal ion-containing liquid is passed through a column packed with a heavy metal ion adsorbent, and the like. From the viewpoint of simple processing operation and excellent processing ability, it is preferable to use a continuous method.
[0020]
【The invention's effect】
The heavy metal ion adsorbent of the present invention sufficiently retains the characteristics of the porous material, for example, excellent porosity such as a high specific surface area due to a large number of pores, and allows rapid entry and exit of heavy metal ions through the pores of the adsorbent. Compared to conventional chelating resins in that they are excellent in heavy metal ion adsorption ability, can collect a small amount of heavy metal ions without using a coagulating precipitant, etc., are excellent in chemical stability and are harmless. By selecting a shape and size using a porous material as a carrier, it is possible to obtain a shape according to the purpose of use, for example, particles and beads having a diameter of about 1 mm, and a fine spherical shape of about 10 μm. It can be used as a packing material for cartridges and columns for water treatment and chromatographic separation of ultra-trace heavy metal ions, respectively.
Heavy metal ion adsorbent of the present invention, P b, Cu, for the Hg, as appropriate for the removal processing of those ions.
Further, according to the present invention, it is possible to easily and efficiently produce the heavy metal ion adsorbent.
[0021]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
[0022]
Example 1
The ZrOCl 2 · 8H 2 O10g in solution in methanol 100 ml, previously methanol was swollen Amberlite Co. XAD-7 (crosslinking polyacrylate resin beads) 20 g was added, after standing for 1 hour, thereto 85 A 60% aqueous solution of phosphoric acid was added and stirred, and methanol was distilled off using a rotary evaporator. After being left overnight, transferred to an autoclave made of polytetrafluoroethylene, heated at 150 ° C. for 10 hours, repeated decantation with distilled water until no turbidity disappeared, added with an aqueous ammonium nitrate solution having a concentration of 1 mol / liter, and left overnight to be excessive. Mineral phosphoric acid was eluted, and solid-liquid separation was performed to obtain treated resin beads. Next, the resin beads were washed with pure water, further washed with acetone, and dried under reduced pressure to obtain a heavy metal ion adsorbent. An X-ray diffraction chart of this adsorbent is shown in FIG. From this, the crystal peak of the α-zirconium phosphate crystal is clearly recognized. For this adsorbent and porous XAD-7 resin, the pore distribution curves are shown in FIG. 2 as (-●-) and (-▲-), respectively, and the specific surface area, pore volume, and average pore diameter are shown in Table 1. Shown in
[0023]
[Table 1]
Figure 0003643873
[0024]
Table 1 shows that this porous material has an α-zirconium phosphate crystal and adsorbent, and has a sufficient specific surface area and average pore size, and most hydrated ions are free in the pores of the adsorbent. I can see that I can go in and out.
[0025]
Example 2
5 g of the heavy metal ion adsorbent obtained in Example 1 (wet volume 14.5 ml) is packed in a column having an inner diameter of 1 cm, washed with a pH 3.0 acetate buffer, and then the packed column is pH 3 containing 10 ppm of lead ions. 0.0 aqueous solution was passed through at a rate of 1 ml / min, and a test was conducted to measure the lead ion [Pb (II)] concentration in the effluent from the packed column. After this measurement test, a 1 mol / liter nitric acid aqueous solution was passed through the packed column at 2 ml / min for 10 minutes to elute the lead ions adsorbed on the adsorbent from the packed column. In the same manner as the first measurement test, the first measurement test for regeneration was performed.
Further, after this measurement test, a second measurement test for regeneration was performed in the same manner as described above using a packed column regenerated again in the same manner as described above.
In these measurement tests, the relationship between the lead ion [Pb (II)] concentration in the effluent from the packed column accompanying liquid flow and the volume ratio of the flow rate to the amount of adsorbent in the packed column is represented by a graph. This graph is shown in FIG. 3 as a lead ion elution degree diagram from the packed column accompanying liquid passing. (●) represents the first measurement test, (◯) represents the first measurement test, and (▲) represents the second measurement test.
[Brief description of the drawings]
1 is an X-ray diffraction chart of a heavy metal ion adsorbent obtained in Example 1. FIG.
2 is a pore distribution curve of a heavy metal ion adsorbent (●) and a porous material (▲) obtained in Example 1. FIG.
FIG. 3 is a graph showing the elution degree of lead ions from a packed column accompanying liquid flow.

Claims (7)

α‐リン酸ジルコニウム結晶を多孔質材に担持してなる、Pb、Cu、Hg用重金属イオン吸着材。A heavy metal ion adsorbent for Pb, Cu, and Hg, comprising an α-zirconium phosphate crystal supported on a porous material. 担持量が多孔質材に対し1〜90質量%の範囲である請求項1記載の重金属イオン吸着材。  The heavy metal ion adsorbent according to claim 1, wherein the supported amount is in the range of 1 to 90 mass% with respect to the porous material. 多孔質材がイオン交換樹脂、樹脂フォーム、架橋樹脂、易溶性フィラー溶出多孔化樹脂成形体、多孔質セラミックス、活性炭、シリカゲル及びアルミナゲルの中から選ばれた少なくとも1種のものである請求項1又は2記載の重金属イオン吸着材。2. The porous material is at least one selected from an ion exchange resin, a resin foam, a crosslinked resin, a readily soluble filler-eluting porous resin molding, a porous ceramic, activated carbon, silica gel, and alumina gel. Or the heavy metal ion adsorption material of 2. 多孔質材が粒子、ビーズ、シート、筒、膜の形状のものである請求項1、2又は3記載の重金属イオン吸着材。The heavy metal ion adsorbent according to claim 1 , 2 or 3, wherein the porous material is in the form of particles, beads, sheets, cylinders and membranes. 多孔質材に可溶性ジルコニウム化合物を含浸したのち、リン酸水溶液を加え、次いで水熱処理して、α‐リン酸ジルコニウム結晶を析出させ、多孔質材に担持することを特徴とする、Pb、Cu、Hg用重金属イオン吸着材の製造方法。The porous material is impregnated with a soluble zirconium compound, and then an aqueous phosphoric acid solution is added, followed by hydrothermal treatment to precipitate α-zirconium phosphate crystals, which are supported on the porous material , Pb, Cu, Manufacturing method of heavy metal ion adsorbent for Hg . 可溶性ジルコニウム化合物がオキシハロゲン化物、オキシ硝酸塩、アルコキシドである請求項記載の方法。6. The method according to claim 5 , wherein the soluble zirconium compound is an oxyhalide, oxynitrate or alkoxide. 請求項1ないしのいずれかに記載の重金属イオン吸着材に重金属がPb、Cu、Hgからなる重金属イオン含有液を接触させ、重金属イオンを吸着させることを特徴とする重金属イオン除去方法。A heavy metal ion removing method, wherein the heavy metal ion adsorbent according to any one of claims 1 to 4 is brought into contact with a heavy metal ion-containing liquid containing heavy metals Pb, Cu, and Hg to adsorb heavy metal ions.
JP2002178665A 2002-06-19 2002-06-19 Heavy metal ion adsorbent, method for producing the same, and method for removing heavy metal ions using the same Expired - Lifetime JP3643873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178665A JP3643873B2 (en) 2002-06-19 2002-06-19 Heavy metal ion adsorbent, method for producing the same, and method for removing heavy metal ions using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178665A JP3643873B2 (en) 2002-06-19 2002-06-19 Heavy metal ion adsorbent, method for producing the same, and method for removing heavy metal ions using the same

Publications (2)

Publication Number Publication Date
JP2004016994A JP2004016994A (en) 2004-01-22
JP3643873B2 true JP3643873B2 (en) 2005-04-27

Family

ID=31176321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178665A Expired - Lifetime JP3643873B2 (en) 2002-06-19 2002-06-19 Heavy metal ion adsorbent, method for producing the same, and method for removing heavy metal ions using the same

Country Status (1)

Country Link
JP (1) JP3643873B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120598A (en) * 2004-09-21 2006-05-11 Toshiba Corp Fuel cell system
CN103285829B (en) * 2013-05-21 2016-01-06 燕山大学 The method of trace amounts of phosphorus in waste water removed by application zirconium based phosphates hydridization function adsorbent
CN103623770B (en) * 2013-12-18 2015-05-27 哈尔滨工业大学 Core-shell type amorphous metal oxide adsorbent, as well as preparation method and application thereof
JP2015224225A (en) * 2014-05-28 2015-12-14 京セラ株式会社 Metallic compound adsorbent and recovery method for metallic compound using the same
JP6716382B2 (en) * 2016-07-22 2020-07-01 旭化成株式会社 Iodic acid and/or antimony adsorbent
CN111632579A (en) * 2020-05-11 2020-09-08 高陵蓝晓科技新材料有限公司 Defluorination resin and preparation method thereof
CN115057548B (en) * 2022-05-26 2023-09-22 杭州特种纸业有限公司 Steel paper production wastewater treatment and reuse method
CN116272855B (en) * 2022-12-21 2023-12-29 华南理工大学 Wood pulp derived carbon and zirconium hydrogen phosphate mixed adsorption material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2004016994A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP3044293B2 (en) Method for producing crystalline hydrous zirconium hydroxide-supported porous adsorbent
US4648975A (en) Process of using improved silica-based chromatographic supports containing additives
Qiusheng et al. Porous zirconium alginate beads adsorbent for fluoride adsorption from aqueous solutions
TW442328B (en) An adsorbent for the removal of trace quantities from a hydrocarbon stream and process for its use
JP6625167B2 (en) How to make hybrid ion exchange material
Jinfang et al. Synthesis of a novel Ce (III)-incorporated cross-linked chitosan and its effective removal of fluoride from aqueous solution
JPH0445213B2 (en)
KR20140014217A (en) Filtration media
JP3643873B2 (en) Heavy metal ion adsorbent, method for producing the same, and method for removing heavy metal ions using the same
JP3932797B2 (en) Method for producing harmful anion adsorption particles
JP4203598B2 (en) Anion adsorbent, anion removal method, anion adsorbent regeneration method and element recovery method
JP2004066161A (en) Water treatment method
JPH022612B2 (en)
Wang et al. An effective and selective stable metal-organic framework adsorbent (Al-MOF-5) for the removal of fluoride from water
JP3079257B2 (en) Arsenic ion adsorption removal method
JPH0568969A (en) Adsorption and removal of phosphate ion
JP2005205368A (en) Adsorbent and water treatment method
JPS6259973B2 (en)
JP2004526126A (en) Chromatography and other absorption methods using modified carbon-clad metal oxide particles
JP3291994B2 (en) How to remove arsenate ions
Derylo-Marczewska et al. Changes in the surface chemistry and adsorptive properties of active carbon previously oxidized and heat-treated at various temperatures. III. Studies of the adsorption of organic solutes from aqueous solutions
JPH0217220B2 (en)
JP3256740B2 (en) Selenium (IV) adsorption removal method
JP2015158004A (en) Method of recovering precious metal
JPH09141262A (en) Use point filter system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041224

R150 Certificate of patent or registration of utility model

Ref document number: 3643873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term