JPH0217220B2 - - Google Patents

Info

Publication number
JPH0217220B2
JPH0217220B2 JP60031625A JP3162585A JPH0217220B2 JP H0217220 B2 JPH0217220 B2 JP H0217220B2 JP 60031625 A JP60031625 A JP 60031625A JP 3162585 A JP3162585 A JP 3162585A JP H0217220 B2 JPH0217220 B2 JP H0217220B2
Authority
JP
Japan
Prior art keywords
fluorine
ions
adsorbent
adsorption
hydrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60031625A
Other languages
Japanese (ja)
Other versions
JPS61192340A (en
Inventor
Hideaki Imai
Yuzuru Ishibashi
Junji Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP60031625A priority Critical patent/JPS61192340A/en
Priority to AU44552/85A priority patent/AU579647B2/en
Priority to EP85109041A priority patent/EP0191893B1/en
Priority to DE8585109041T priority patent/DE3584627D1/en
Priority to CN85105637A priority patent/CN85105637B/en
Priority to US06/758,805 priority patent/US4717554A/en
Priority to KR1019850005342A priority patent/KR890003882B1/en
Publication of JPS61192340A publication Critical patent/JPS61192340A/en
Publication of JPH0217220B2 publication Critical patent/JPH0217220B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、水中に低濃度に溶存する弗素錯イオ
ンを高い効率で選択的に除去することのできる吸
着剤に関する。さらに、本発明は、飲料水の原水
または産業排水中に溶存する弗素錯イオンを吸着
除去し、該吸着剤は簡単な操作で吸着イオンを脱
着、再生し、繰り返し使用可能な、操作性、経済
性の高い吸着剤に関する。 (従来の技術) 元来、自然界において弗素は極く微量、例えば
海水中に1.2〜1.4ppm、河川水中に通常0.1〜
0.3ppm程度溶存するが、この程度の量は生態学
的環境として支障がない。しかし、火山活動によ
る弗化水素の排出により、地下水中の弗素イオン
濃度が10ppmを越えることが知られており、ま
た、産業排水、特に金属精練、金属表面処理、ガ
ラス、窯業工業、電子工業、化学工業等から排出
される弗素排水は濃度が高く、かつ近年の弗素化
学の進歩により、これら工業からの弗素の排出は
日々増加している。 このような高濃度の弗素含有水は、環境水とし
て人体および動植物に種々の悪影響をおよぼすこ
とから、できるだけ低水準に維持、管理されなけ
ればならず、このような見地より水質基準とし
て、飲料水の場合には0.8ppm以下、また、産業
排水の場合15ppm以下にしなければならないこと
が規定されている。 水中に溶存する弗素の除去方法として、弗素を
0.8ppm以上含む飲料水の原水に対しては、従来
活性アルミナ吸着法またはイオン交換樹脂と活性
アルミナの併用処理等が行なわれている。しか
し、活性アルミナ吸着法においては、活性アルミ
ナの弗素イオン吸着量が低い上に、炭酸イオン等
の共存イオンの影響を受け、期待する除去効果が
得られない欠点がある。この点に関して、予め他
の共存イオンをイオン交換樹脂で吸着除去した液
を活性アルミナで処理して弗素イオンを除去する
試みがあるが、この場合は、必要以上の無害イオ
ンをも除去してしまうため、飲料水としての望ま
しい水質でなくなり、また、処理に多大の費用を
要するなどの問題がある。 一方、産業排液中の弗素イオンおよび弗素錯イ
オンを除去する方法としては、消石灰や塩化カル
シウム等のカルシウム塩を用い、溶解度の小さな
弗化カルシウムとして沈でん分離させる方法が一
般的に行なわれている。しかし、弗化カルシウム
は水に溶解性を有し、理想的な処理においても、
弗素濃度を8ppm以下にすることができない。ま
た、弗素イオンは排水中のケイ素、鉄やアルミニ
ウム等と錯イオンを形成する傾向が大きく、それ
らのカルシウム塩の溶解度は大きいため、沈でん
分離による処理は非常に困難なものとなる。 また、活性アルミナや金属担持キレート吸着剤
(特開昭58−36632)により、弗素イオンを吸着処
理する方法が提案されているが、弗素錯イオンに
対する吸着性能は不明であり、実用上の問題点が
残る。さらに、弗素イオンをケイ素(特開昭58−
8582)や鉄、アルミニウムやジルコニウム(特開
昭58−64181)と反応させて弗素錯イオンとし選
択吸着性を高めてから、アニオン交換樹脂を用い
て吸着処理する方法が提案されているが、この方
法では吸着前処理が必要となることにより、工程
が複雑になつたり、弗素錯イオンは解離定数を有
するため、排水中には弗素イオンが残存するの
で、弗素イオン濃度を1ppm以下にする高度処理
の条件設定が難しいものと考えられる。 (発明が解決しようとする問題点) 現在、環境保全、公害防止の観点から、公共水
域に放出される排水中の弗素濃度は15ppm以下に
規制されており、一方では排水基準をさらに厳し
く規制しようとする自治体もあり、さらに効率的
な高度処理技術の確立が望まれている。 (問題点を解決するための手段) 本発明者らは、このような問題を解決するた
め、水中に溶存する弗素錯イオンを選択的かつ効
率的に分離除去する方法を鋭意検討した結果、本
発明に到達した。 したがつて、本発明の目的は、低濃度で溶存す
る弗素錯イオンを効率的に除去する吸着剤を提供
することにあり、さらに、本発明の目的は、弗素
錯イオンを規制値以上に溶存する水または排水か
ら効率的に弗素錯イオンを除去し、弗素濃度が規
制値以下の飲料水または排水に処理するととも
に、該吸着剤の吸着弗素を経済的に脱着、再生す
ることにより、循環使用を可能とする吸着剤を提
供することにある。 すなわち、本発明の吸着剤は、希土類元素、
ZrおよびThの元素群から選ばれた一種以上の金
属水和酸化物または金属水和弗化物からなること
を特徴とする。 本発明の吸着剤は、PH7以下の範囲の弗素溶存
水と接触させることで選択的かつ高効率で弗素錯
イオンを吸着し、また、該吸着剤の吸着弗素は、
PH8〜14のアルカリ水溶液と接触させることで容
易に脱着再生でき、再使用が可能となる。 以下、本発明の吸着剤につき詳細に説明する。 本発明の希土類元素とは、Y、La、Ce、Pr、
Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、
Tm、YbおよびLuである。本発明においては、
さらにZrおよびThが用いられるが、これらの金
属は、一種類でもよいし、二種類以上の混合物で
もよい。 これらの金属元素の水和酸化物および水和弗化
物とは、以下に詳述する含水酸化物、水酸化物、
ゲル状酸化物および弗化物の水和物である。これ
らの水和酸化物および水和弗化物は、単独で用い
てもよいし、二種類以上の混合物として用いても
よい。また、他の吸着剤、例えば、活性炭、活性
アルミナ、含水酸化チタン等と共に用いてもよ
い。 本発明の該金属水和酸化物は、例えば、該金属
塩酸塩、硫酸塩、硝酸塩等の塩類水溶液中にアル
カリ溶液を添加し、上記塩類水溶液のPHを調整す
ることによつて、容易に沈殿物として得られる。
調整に当つて、金属およびその塩の種類と溶液濃
度、アルカリの種類と濃度、金属塩水溶液とアル
カリ溶液の混合法と混合速度、および反応温度等
の沈殿の生成条件を選択することによつて、含水
酸化物、水酸化物またはゲル状酸化物が生成でき
る。後述するように、含水酸化物とゲル状酸化物
は構造上、似て非なるものであるが、例えば、ゲ
ル状酸化物を比較的低温である100〜300℃で加熱
するか、または水熱反応することによつて、含水
酸化物に変化させることもできる。 また、該金属水和弗化物は、上記方法によつて
調製された水和酸化物に弗酸を反応させるか、ま
たは該金属水和酸化物と同様に、該金属塩類水溶
液に弗酸または易溶性弗化物水溶液を反応させて
該金属弗化物を調製した後、水酸化ナトリウム水
溶液等アルカリ水溶液を該金属弗化物に作用させ
て得られる。 また、上記調製法によつて該金属水和酸化物お
よび該金属水和弗化物を調製するに際し、各種の
金属イオンを共存させて生成される複合金属水和
酸化物および複合金属水和弗化物であつてもよ
い。共存できる金属元素の例としては、Al、Cr、
Co、Ga、Fe、Mn、Ni、Ti、V、Sn、Ge、
Nb、Ta等が挙げられる。これらの共存できる金
属元素の共存量は、本発明の金属元素に対し
40mol%以下、さらに好ましくは20mol%以下で
ある。 また、上記の調整に使用する陽イオンおよび陰
イオンが、本発明の水和酸化物または水和弗化物
の構造の一部として存在してもよい。これらの共
存できる陽イオンおよび陰イオンは、例えば、
NH4、Na、K、Ca、およびSO4、NO3、Cl、
PO4等である。 上記製法によつて調製された該金属水和酸化物
および該金属水和弗化物の構造的特徴を以下に詳
細に説明する。 水和酸化物のうち含水酸化物とは、X線回折で
は該当する金属酸化物と同じ回折パターンを示す
が、結晶性が悪いため回析線幅が広い、熱的には
特定の転移点を持たず、温度上昇と共に徐々に熱
減量を生じ、最終的には結晶性のよい酸化物とな
るものであり、その時の熱減量は5〜30重量%を
有する。赤外吸収スペクトルでは、3400cm-1付近
に水酸基の伸縮振動に基づく幅広い吸収帯、およ
び1700〜1300cm-1に水酸基の変角振動に基づく2
〜3本の吸収帯を示す。 また、水酸化物とは、X線回折では該当する金
属水酸化物の回折パターンを示し、熱的には特定
の温度で酸化物への転移を生じる。赤外吸収スペ
クトルでは金属水酸化物特有の3500〜3700cm-1
酸基の伸縮振動に基づく鋭い吸収帯と、3400cm-1
付近に水酸基の伸縮振動に基づく幅広い吸収帯、
および1700〜1300cm-1に水酸基の変角振動に基づ
く2〜3本の吸収帯を示す。 さらに、ゲル状酸化物とは、X線回折では特定
の回折線を示さず緩慢な散乱線のみが検出され、
熱的には含水酸化物と同様の熱減量挙動を示す
が、その熱減量は、10〜70重量%と含水酸化物に
比べ大きい。 また、赤外吸収スペクトルでは、含水酸化物と
同様3400cm-1付近に水酸基の振縮振動に基づく幅
広い吸収帯、および1700〜1300cm-1に水酸基の変
角振動に基づく2〜3本の吸収帯を示す。 一方、水和弗化物とは、X線回折では該当する
金属弗化物と同一のパターンを示すが、結晶性が
悪く回折線幅が広い。熱的には特定の転移点を持
たずに高温、例えば500℃までに金属弗化物とな
り、その際の熱減量は2〜20重量%である。赤外
吸収スペクトルでは、3400cm-1付近に水酸基の伸
縮振動に基づく幅広い吸収帯、および1700〜1300
cm-1に水酸基の変角振動に基づく2〜3本の吸収
帯を示す。 上記の如く、本発明の金属水和酸化物および金
属水和弗化物は、X線回折、赤外吸収スペクト
ル、熱的性質において、各々固有の特性を有する
が、特に吸着性能に関係する共通的特徴は、赤外
吸収スペクトルにおける1500cm-1付近と1350cm-1
付近に吸収帯を有することであり、該吸収帯を有
する構造が、本発明の効果を奏する上で極めて重
要である。 該吸収帯は、本発明の吸着に作用する水酸基に
基づくものであり、弗素イオン等水酸基以外の陰
イオンと該水酸基が交換した場合には、該吸収帯
は減少あるいは消失する特徴を有する。 なお、本発明で云う熱減量とは、試料を室温か
ら水和酸化物の場合800℃まで、水和弗化物の場
合500℃まで、10℃/minの速度で加熱した時の
元の重量に対する減少百分率である。 本発明の吸着剤は、前述の調製法等による該金
属水和酸化物または該金属水和弗化物を過して
得られるケーキ、または乾燥した粉体およびこれ
を適当な多孔質担体に担持させる等の方法で粒
状、糸状、紐状、帯状、板状等任意の形状に成形
された成形体である。該成形体は吸着操作の実用
性を高める上で極めて有効である。 担体に用いる材料は、本発明の効果を奏しうる
無機、有機の種々の材料が使用できるが、担持加
工性、担持体強度、化学的耐久性等の面から各種
の有機高分子材料が好ましい。 有機高分子材料としては、フエノール樹脂、ユ
リア樹脂、メラミン樹脂、ポリエステル樹脂、ジ
アリルフタレート樹脂、キシレン樹脂、アルキル
ベンゼン樹脂、エポキシ樹脂、エポキシアクリレ
ート樹脂、ケイ素樹脂、ウレタン樹脂、フツ素樹
脂、塩化ビニル樹脂、塩化ビニリデン樹脂、ポリ
エチレン、塩素化ポリオレフイン、ポリプロピレ
ン、ポリスチレン、ABS樹脂、ポリアミド、メ
タクリル樹脂、ポリアセタール、ポリカーボネー
ト、セルロース系樹脂、ポリビニルアルコール、
ポリイミド、ポリスルホン、ポリアクリロニトリ
ル等および上記の共重合体が使用できるが、適当
な耐水性、耐薬品をもち、かつ親水性が大きく、
多孔質な構造を形成し得るものが好ましく、ポリ
アミド、セルロース系樹脂、ポリスルホン、ポリ
アクリロニトリル、塩化ビニル、ビニルアルコー
ル共重合体等が特に好ましい。 上記の有機高分子材料による担持方法は、公知
の種々の方法が適用できる。例えば、適当な高分
子重合体を溶解した溶液に、該金属水和酸化物ま
たは水和弗化物の粒子を懸濁分散させ、粒状、糸
状、紐状、帯状に成形する方法、または適当な高
分子単量体を、該金属水和酸化物または水和弗化
物の粒子の存在下で、乳化または懸濁重合法で重
合させて粒状に成形する方法、あるいは適当な高
分子重合体と該金属水和酸化物または水和弗化物
および種々の抽出剤を混練し成形した後、適当な
溶媒で抽出剤を抽出し多孔化する等の方法が採用
できる。いずれの場合も多孔質な構造を持ち、該
金属水和酸化物または水和弗化物が成形体に十分
量担持され、漏失し難い構造体である必要があ
り、このような目的が達成できる方法であれば、
いかなる方法であつてもよい。 これらのうち特に好ましい方法は、上記のポリ
アミド、セルロース系樹脂、ポリスチレン、ポリ
アクリロニトリル、塩化ビニル、ビニルアルコー
ル共重合体等の親水性重合体を適当な溶媒に溶解
し、これに該金属水和酸化物または水和弗化物を
懸濁させ、水を凝固浴として粒子状に成形する方
法である。 この方法により得られる粒状体は、多孔質な構
造をもち、十分な吸着速度と物理的強度を有し、
固定床または流動床等の工学的方法により、吸着
および脱着再生操作を行なうのに適している。 特に、使用する重合体の量は、該金属水和酸化
物または水和弗化物の5〜50重量%、特に好まし
くは10〜30重量%である。5重量%以下では十分
な担持効果が発揮されず、強度面でも不十分であ
り、一方、50重量%を超えると吸着速度が著しく
低下する。 また、該造粒体の粒子径および体積空隙率は、
本発明の吸着作用、特に速度に影響を与える。粒
子径は平均粒径で0.1〜5mm、または体積空隙率
は0.5〜0.85が好適である。 本発明でいう体積空隙率とは、該粒状体の乾燥
状態での見掛け体積(VI)に対する、加圧圧縮
時の圧縮体積(VO)への体積変化量(VI−VO
の値、すなわち、(VI−VO)/VIで表わされる。
ここで、見掛け体積(VI)は一定重量の粒状体
の水銀ピクノメーター法で測定される体積であ
り、一方、圧縮体積(VO)は同重量の試料をプ
レス板間で100℃で50Kg/cm2の圧力で加圧成型し
たものの体積である。体積空隙率が0.5以下では
吸着速度が遅すぎ、また、0.85以上では強度面が
不十分である。 また、該金属水和酸化物および金属水和弗化物
の粒子の性状および表面状態が、本発明の効果を
奏する上で極めて重要であり、該粒子の構造水ま
たは付着水量および粒子の粒子径、凝集度を調整
することが好ましく、粒子径については、可能な
限り微粒子であることが好ましく、平均粒子径と
して一次粒子径は0.01μ〜〜1μ、特に好ましくは
0.01〜0.5μであり、かつ凝集度の低い凝集粒子と
して0.05〜5μ程度の微粒子であることが好まし
い。 該吸着剤に弗素錯イオンを吸着させる方法は、
該金属水和酸化物または該金属水和弗化物を、弗
素イオンを溶存する水と接触させる方法であれば
どのような方法でもよい。例えば、該金属水和酸
化物または該金属弗化物のケーキ、粉体あるいは
前述の成形体を該水に加え分散させて接触させる
方法、成形体または粉体を充填した塔に該水を通
水して接触させる方法等が有効である。 本発明の弗素吸着剤である周期律表第族B、
ZrおよびHfの金属水和酸化物および金属水和弗
化物は、水中における弗素が弗素錯イオンという
形で存在していても優れた吸着性能を有するもの
であり、従来にない全く新しい吸着剤である。水
中に存在する弗素錯イオンとしては、ヘキサフル
オロケイ酸イオン、ホウフツ化イオン、ヘキサフ
ルオロアルミニウムイオン、ヘキサフルオロ鉄イ
オン、ヘキサフルオロチタニウムイオンやヘキサ
フルオロジルコニウムイオン等があり、これらが
単独あるいは2種以上が水中に溶存していてもよ
い。なかでも、弗素はヘキサフルオロケイ酸イオ
ンとして存在する場合が多いが、例えば、本発明
の含水酸化セリウムを用いれば、PH7以下におい
て優れた吸着性能を示す。 しかし、ヘキサフルオロアルミニウムイオンや
ヘキサフルオロチタニウムイオン等は、PHの変化
によつて解離したり、場合によつては沈でんが生
じたりするため、各錯イオンの正確な吸着量を求
めることは困難である。本発明の吸着剤は、弗素
イオンおよび弗素錯イオンが共存していても優れ
た吸着性能を有するため、上記のような弗素錯イ
オンの吸着処理に対しても優れた有効性を発揮す
ることができる。 本発明の弗素錯イオン吸着剤である周期律表第
希土類元素、ZrおよびThの金属水和酸化物およ
び金属水和弗化物が弗素錯イオンを吸着する機構
は、該弗素錯イオン吸着体表面に存在する水酸基
が溶存する弗素錯イオンとイオン交換する陰イオ
ン交換である。該弗素錯イオン吸着体表面に存在
する水酸基は活性に富み、水溶液のPHが低い場合
には、溶存する各種陰イオン、例えば、弗素イオ
ン、弗素錯イオン、塩素イオン、硝酸イオン、硫
酸イオン等と交換し、PHが高い場合には、水酸基
として保持される。すなわち、各種陰イオンが溶
存する水溶液のPHが低い場合には、各種陰イオン
が該吸着体に固定され、PHが高い場合には、該吸
着体に固定された該陰イオンは水溶液中に溶出さ
れる。 例えば、本発明の含水酸化セリウムを用いて、
該吸着体の弗素イオン、ヘキサフルオロケイ酸、
塩素イオン、硝酸イオンおよび硫酸イオンに対す
る吸着性能と、吸着時における溶液のPHの関係
は、第1図のように、各イオンとも酸性側での吸
着能が大きい。特に弗素イオンの場合には、溶液
のPHが7以下で急激に吸着量が増大するが、塩素
イオン等の他のイオンの場合には、溶液のPHが4
以下でなければ吸着量の急激な増加はない。 したがつて、弗素錯イオンが塩素イオン等の他
のイオンと共存する場合、溶液のPHが1〜7で選
択的に弗素錯イオンを吸着できる。しかも、該イ
オンに対する吸着能は、他の陰イオンに比べ著し
く大きい。該吸着剤による弗素イオンの吸着に際
し、好ましい溶液のPHは1〜7、より好ましくは
2〜7である。溶液のPHが1以下では該吸着体の
溶解が著しく、7以上では吸着能が小さい。 本発明の弗素吸着剤は、弗素錯イオンの選択性
が非常に優れている。すなわち、弗素錯イオンと
同濃度の塩素イオン、硝酸イオン、硫酸イオンが
溶存する水溶液において、弗素錯イオン以外の他
の陰イオンに対する選択性は、該水溶液の吸着平
衡時のPHが5の場合には、塩素イオンに対する弗
素の選択係数K(F/Cl)は4×102以上、硝酸イ
オンに対する弗素の選択係数K(F/NO3)は6
×10以上、硫酸イオンに対する弗素イオンの選択
係数K(F/SO4)は1.1×102以上と非常に高い。
なお、本発明で云うところの選択係数とは、下式
に示すとおりである。 K(F/Cl)= 〔吸着体中全弗素 濃度(m・eq/g−吸着剤)〕〔水
溶液中塩素イオン濃度(mmol//〔水溶液中全弗素
濃度(mmol/)〕〔吸着体中塩素イオン濃度(m・eq
/g吸着剤……第一式 本発明の弗素錯イオン吸着剤の単位重量当りの
飽和吸着量は、溶液中の弗素イオン濃度と相関関
係がある。例えば、含水酸化セリウムの場合、吸
着平衡時の水溶液のPHが5であれば、水溶液中の
弗素錯イオン濃度が0.01mmol/、0.1mmol/
、1.0mmol/において、該弗素錯イオン吸着
体の弗素錯イオンの飽和吸着量は、それぞれ
0.5mmol/g−CeO2・nH2O、1.2mmol/g−
CeO2・nH2O、2.5mmol/g−CeO2・nH2Oであ
る。したがつて、該弗素錯イオン吸着体を用いて
弗素錯イオンを吸着除去する場合、弗素錯イオン
の初濃度と目標到達濃度とによつて、該弗素錯イ
オン吸着体と弗素錯イオン含有水の好適な混合割
合を設定することができる。例えば、上記の吸着
容量を有する含水酸化セリウムを使用し、弗素錯
イオンの初期濃度が1mmol/(114ppm)の弗
素錯イオン含有水の弗素錯イオン濃度を
0.13mmol/(15ppm)にする場合、該吸着体
1gを該水溶液1.6に混合し、該混合溶液のPH
を5とすればよい。 上記の吸着操作の温度は、吸着速度に影響を与
え、加温することは効果がある。しかし、常温で
も実用上十分な速度を有しており、5〜90℃、実
用的には20〜60℃の範囲が好ましい。また、接触
時間は、接触時の方法、該吸着剤の種類によつて
左右されるが、通常吸着量が飽和に達するには1
分〜3日程度であるが、実用的には1分〜60分で
よい。これらの温度、時間条件は、後述する脱
着、再生操作にも適応できる。 また、弗素錯イオンを吸着した本発明の吸着剤
は、アルカリ溶液と接触することにより、弗素錯
イオンを脱離し、繰り返し吸着操作に供すること
ができる。上記の脱着操作では、該吸着剤に吸着
されている弗素錯イオン量、脱着液の接触PH、吸
着剤と脱着液の混合比および温度が、脱着率およ
び脱着液中の弗素錯イオン濃度に影響を及ぼす。
例えば、本発明の弗化イツトリウムの水和物を用
いる場合の、脱着液の接触PHと脱着率の関係は、
第2図のように、脱着液の接触PHと共に脱着率は
急激に増大する。したがつて、脱着操作における
脱着液の接触PHは、好ましくは8以上、より好ま
しくは12以上である。8以下では脱着率が非常に
小さい。 上記脱着操作では、アルカリ水溶液として水酸
化ナトリウム、水酸化カリウム、水酸化アンモニ
ウム等の無機アルカリおよび有機アミン類等が使
用できる。水酸化ナトリウムおよび水酸化カリウ
ムは脱着効率が大きく特に好ましい。アルカリ溶
液濃度は0.01mol/以上、好ましくは
0.05mol/以上である。 本発明の吸着剤に固定された弗素錯イオンを脱
着させる方法は、該吸着剤をアルカリ水溶液に接
触させる方法であれば、どのような方法でもよ
く、前述の吸着方法と同様の方法が採用される。 (発明の効果) 次に、本発明の弗素吸着剤の特徴について述べ
ると、次のようである。 (1) PH7以下においてアニオン交換性を示し、中
でも弗素錯イオンの選択吸着性が大きい。 (2) 弗素錯イオンの液相中の低濃度の範囲におい
ても平衡吸着量が大きく、例えば、液相中弗素
濃度が0.1mmol/の時に、吸着量は
1.2mmol/g−吸着体にもなり、処理水中の弗
素濃度を低くすることができる。 (3) 弗素イオンや弗素錯イオンが共存していても
吸着性能は変わらず、吸着除去することができ
る。 (4) アルカリ領域での弗素錯イオンの脱着が容易
で、繰り返し吸・脱着を行なうことができる。 (実施例) 以下、実施例によりさらに詳細に説明する。 なお、本文中の吸着量、除去率、脱着率は、下
記式により求めた。 吸着量(mmol/g−吸着剤)= (初濃度−吸着前後濃度)(mmol/)/吸着量(g
)/液量() 除去率(%)=1−吸着後濃度(mmol/)/初濃度(
mmol/) ×100 脱着率(%)= 液量()×濃度(mmol/)/吸着剤量(g)×吸
着量(mmol/g)×100 実施例 1 本発明の含水酸化セリウム(市販品、熱減量
15.2%、一次粒子の平均粒径0.08μ、凝集粒子の
平均粒径0.4μ、X線回折第5a図、赤外吸収スペ
クトル第5b図)の弗素イオンおよびヘキサフル
オロケイ酸イオンに対する吸着性能のPH依存性に
ついて例を示す。 弗化水素酸(試薬特級)あるいはケイフツ化水
素酸(試薬特級)の2mmol/の水溶液を調製
し、該水溶液に該吸着体を1g−吸着体/1の
割合で混合し、撹拌した。該混合液に0.1N水酸
化ナトリウム水溶液を加え、所定のPHにした。2
時間後、混合液中に溶存する弗素イオンの濃度を
イオンクロマトグラフイー(装置Dionex社製
20201型)により測定した。この結果を、溶液の
PHと弗素イオンあるいはヘキサフルオロケイ酸イ
オンの除去率との関係として第1図に示す。 なお、参考例として塩素イオン、硝酸イオン、
硫酸イオンについて、同様の実験を行なつた結果
を第1図に示す。 実施例 2〜11 本発明の吸着剤のヘキサフルオロケイ酸イオン
に対する吸着性能について例を示す。 ヘキサフルオロケイ酸イオン含有水
(1mmol/、Fとして114ppm)を調製し、該
水溶液に含水酸化セリウム(実施例1と同物質)、
ジルコニウムゲル状酸化物(試薬特級、熱減量30
%、一次粒子の平均粒径0.05μ、凝集粒子の平均
粒径5μ、X線回折第6a図、赤外吸収スペクト
ル第6b図)、水酸化イツトリウム(調製法後述、
熱減量25%、一次粒子の平均粒子径0.1μ、凝集粒
子の平均粒径1μ、X線回折第7a図、赤外吸収
スペクトル第7b図)、弗化イツトリウム水和物
(調製法後述、熱減量6%、一次粒子の平均粒子
径0.03μ、凝集粒子の粒子径1μ、X線回折第8a
図、赤外吸収スペクトル第8b図)、塩化希土水
和酸化物(調製法後述、熱減量18%、一次粒子の
粒子径0.05μ、凝集粒子の平均粒径1μ、X線回折
第9a図、赤外吸収スペクトル第9b図)、含水
酸化ランタン(調製法後述、熱減量21%、凝集粒
子の平均粒子径0.6μ)、含水酸化トリウム(調製
法後述、熱減量19%、凝集粒子の平均粒径1.1μ)、
水酸化サマリウム(調製法後述、熱減量33%、凝
集粒子の平均粒径1.0μ)、水酸化ジスプロシウム
(調製法後述、熱減量28%、凝集粒子の平均粒径
1.2μ)、および水酸化ツリウム(調製法後述、熱
減量27%、凝集粒子の平均粒径0.9μ)を、それぞ
れ1/1g−吸着剤および3/1g−吸着剤
の割合で混合し撹拌した。該混合液に0.1N水酸
化ナトリウム水溶液または0.1N塩酸を加え、該
混合液のPHを5とした。2時間後、該混合液中に
溶存するヘキサフルオロケイ酸イオンの濃度を、
実施例1と同様の方法により測定し、ヘキサフル
オロケイ酸イオンの除去率と吸着量を算出した。
その結果を表1に示す。 なお、比較例として活性アルミナ(市販品、ガ
スクロマトグラフイー用充填材)、含水酸化チタ
ン(市販品)についても実施例2〜6と同様の実
験を行ない、その結果を表1に示す。
(Industrial Application Field) The present invention relates to an adsorbent that can selectively remove fluorine complex ions dissolved in water at low concentrations with high efficiency. Furthermore, the present invention adsorbs and removes fluorine complex ions dissolved in raw drinking water or industrial wastewater, and the adsorbent desorbs and regenerates the adsorbed ions with a simple operation, and is operable and economical, allowing repeated use. Regarding adsorbents with high properties. (Prior art) Fluorine is originally found in extremely small amounts in nature, for example, 1.2 to 1.4 ppm in seawater, and usually 0.1 to 1.4 ppm in river water.
The dissolved amount is about 0.3 ppm, but this amount does not pose any problem in the ecological environment. However, it is known that the concentration of fluorine ions in groundwater exceeds 10 ppm due to the release of hydrogen fluoride from volcanic activity, and industrial wastewater, especially metal smelting, metal surface treatment, glass, ceramic industry, electronic industry, Fluorine wastewater discharged from chemical industries has a high concentration, and due to recent advances in fluorine chemistry, fluorine emissions from these industries are increasing day by day. Such highly concentrated fluorine-containing water, as environmental water, has various negative effects on the human body, animals and plants, and therefore must be maintained and managed at a level as low as possible. It is stipulated that the concentration must be 0.8ppm or less for industrial wastewater, and 15ppm or less for industrial wastewater. Fluorine is used as a method for removing fluorine dissolved in water.
For raw drinking water containing 0.8 ppm or more, the activated alumina adsorption method or the combined treatment of ion exchange resin and activated alumina have been conventionally performed. However, the activated alumina adsorption method has the disadvantage that the amount of fluorine ions adsorbed by activated alumina is low and is affected by coexisting ions such as carbonate ions, making it difficult to obtain the expected removal effect. Regarding this point, there has been an attempt to remove fluorine ions by treating the liquid with activated alumina after adsorbing and removing other coexisting ions with an ion exchange resin, but in this case, more harmless ions than necessary are also removed. Therefore, there are problems such as the water quality not being desirable as drinking water and requiring a large amount of cost for treatment. On the other hand, a commonly used method for removing fluorine ions and fluorine complex ions from industrial wastewater is to use calcium salts such as slaked lime or calcium chloride, and separate them by precipitation as calcium fluoride, which has a low solubility. . However, calcium fluoride is soluble in water, and even in ideal treatment,
It is not possible to reduce the fluorine concentration to 8 ppm or less. Furthermore, fluorine ions have a strong tendency to form complex ions with silicon, iron, aluminum, etc. in wastewater, and the solubility of these calcium salts is high, making treatment by sedimentation separation extremely difficult. In addition, a method of adsorbing fluorine ions using activated alumina or a metal-supported chelate adsorbent (Japanese Patent Application Laid-Open No. 58-36632) has been proposed, but the adsorption performance for fluorine complex ions is unknown, and there are practical problems. remains. Furthermore, fluorine ions were added to silicon (Japanese Patent Application Laid-Open No.
A method has been proposed in which fluorine is reacted with iron, aluminum, or zirconium (Japanese Patent Laid-Open No. 58-64181) to form fluorine complex ions to increase selective adsorption, and then adsorption treatment is performed using an anion exchange resin. This method requires adsorption pretreatment, which complicates the process, and since fluorine complex ions have a dissociation constant, fluorine ions remain in the wastewater, so advanced treatment is required to reduce the fluorine ion concentration to 1 ppm or less. It is considered difficult to set the conditions for this. (Problem to be solved by the invention) Currently, from the perspective of environmental conservation and pollution prevention, the concentration of fluorine in wastewater discharged into public water bodies is regulated to 15 ppm or less, and there is a need to further regulate wastewater standards. Some local governments are seeking to establish even more efficient advanced treatment technology. (Means for Solving the Problems) In order to solve these problems, the present inventors have intensively investigated a method for selectively and efficiently separating and removing fluorine complex ions dissolved in water, and have developed the present invention. invention has been achieved. Therefore, an object of the present invention is to provide an adsorbent that efficiently removes fluorine complex ions dissolved at low concentrations, and a further object of the present invention is to provide an adsorbent that efficiently removes fluorine complex ions dissolved at low concentrations. In addition to efficiently removing fluorine complex ions from water or wastewater and treating it to drinking water or wastewater with a fluorine concentration below the regulatory value, the adsorbent can economically desorb and regenerate the adsorbed fluorine, allowing for cyclic use. The objective is to provide an adsorbent that enables this. That is, the adsorbent of the present invention contains rare earth elements,
It is characterized by consisting of one or more metal hydrated oxides or metal hydrated fluorides selected from the element group Zr and Th. The adsorbent of the present invention selectively and highly efficiently adsorbs fluorine complex ions by contacting with fluorine-dissolved water with a pH of 7 or less, and the adsorbed fluorine of the adsorbent is
By contacting with an alkaline aqueous solution with a pH of 8 to 14, it can be easily desorbed and regenerated, making it possible to reuse it. Hereinafter, the adsorbent of the present invention will be explained in detail. The rare earth elements of the present invention include Y, La, Ce, Pr,
Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er,
Tm, Yb and Lu. In the present invention,
Further, Zr and Th are used, and these metals may be used alone or in a mixture of two or more. The hydrated oxides and hydrated fluorides of these metal elements include the hydrated oxides, hydroxides,
It is a gel-like oxide and fluoride hydrate. These hydrated oxides and hydrated fluorides may be used alone or as a mixture of two or more. Further, it may be used together with other adsorbents such as activated carbon, activated alumina, and hydrous titanium oxide. The metal hydrated oxide of the present invention can be easily precipitated by, for example, adding an alkaline solution to an aqueous salt solution such as the metal hydrochloride, sulfate, nitrate, etc. and adjusting the pH of the salt aqueous solution. Obtained as an object.
During the adjustment, by selecting the type and solution concentration of the metal and its salt, the type and concentration of the alkali, the mixing method and mixing speed of the aqueous metal salt solution and the alkaline solution, and the conditions for forming the precipitate, such as the reaction temperature. , hydrous oxides, hydroxides or gelled oxides can be produced. As will be explained later, hydrous oxides and gelled oxides are structurally similar and different, but for example, gelled oxides can be heated at a relatively low temperature of 100 to 300°C, or It can also be converted into a hydrous oxide by reaction. In addition, the metal hydrated fluoride can be prepared by reacting the hydrated oxide prepared by the above method with hydrofluoric acid, or similarly to the metal hydrated oxide, adding the metal salt aqueous solution with hydrofluoric acid or easily. The metal fluoride is prepared by reacting a soluble fluoride aqueous solution, and then an alkaline aqueous solution such as a sodium hydroxide aqueous solution is allowed to act on the metal fluoride. In addition, when preparing the metal hydrated oxide and the metal hydrated fluoride by the above-mentioned preparation method, a composite metal hydrated oxide and a composite metal hydrated fluoride are produced by coexisting various metal ions. It may be. Examples of metal elements that can coexist are Al, Cr,
Co, Ga, Fe, Mn, Ni, Ti, V, Sn, Ge,
Examples include Nb and Ta. The amounts of these metal elements that can coexist are as follows:
It is 40 mol% or less, more preferably 20 mol% or less. The cations and anions used in the above preparation may also be present as part of the structure of the hydrated oxide or fluoride of the invention. These coexisting cations and anions are, for example,
NH 4 , Na, K, Ca, and SO 4 , NO 3 , Cl,
PO 4 etc. The structural characteristics of the metal hydrated oxide and the metal hydrated fluoride prepared by the above production method will be explained in detail below. Among hydrated oxides, hydrated oxides show the same diffraction pattern as the corresponding metal oxide in X-ray diffraction, but due to poor crystallinity, the diffraction line width is wide, and thermally they have a specific transition point. It gradually loses heat as the temperature rises, and finally becomes an oxide with good crystallinity, and the loss on heat at that time is 5 to 30% by weight. In the infrared absorption spectrum, there is a broad absorption band near 3400 cm -1 based on the stretching vibration of the hydroxyl group, and a 2 band based on the bending vibration of the hydroxyl group between 1700 and 1300 cm -1 .
Shows ~3 absorption bands. In addition, hydroxide exhibits a diffraction pattern of the corresponding metal hydroxide in X-ray diffraction, and thermally transforms into an oxide at a specific temperature. In the infrared absorption spectrum, there is a sharp absorption band at 3500 to 3700 cm -1 , which is characteristic of metal hydroxides, based on the stretching vibration of hydroxyl groups, and a sharp absorption band at 3400 cm -1 .
There is a wide absorption band based on the stretching vibration of hydroxyl groups in the vicinity.
It also shows two to three absorption bands at 1700 to 1300 cm -1 based on the bending vibration of the hydroxyl group. Furthermore, gel-like oxides do not show specific diffraction lines in X-ray diffraction and only slowly scattered rays are detected.
Thermally, it exhibits the same heat loss behavior as hydrous oxides, but its heat loss is 10 to 70% by weight, which is larger than that of hydrous oxides. In addition, in the infrared absorption spectrum, similar to hydrous oxides, there is a wide absorption band near 3400 cm -1 based on the vibrational vibration of the hydroxyl group, and two to three absorption bands between 1700 and 1300 cm -1 based on the bending vibration of the hydroxyl group. shows. On the other hand, hydrated fluoride shows the same pattern as the corresponding metal fluoride in X-ray diffraction, but has poor crystallinity and a wide diffraction line width. Thermally, it does not have a specific transition point and turns into a metal fluoride at high temperatures, for example, up to 500°C, and the thermal loss at that time is 2 to 20% by weight. In the infrared absorption spectrum, there is a wide absorption band based on the stretching vibration of hydroxyl groups around 3400 cm -1 , and a wide absorption band between 1700 and 1300 cm -1.
Two to three absorption bands based on the bending vibration of the hydroxyl group are shown at cm -1 . As mentioned above, the metal hydrated oxide and metal hydrated fluoride of the present invention each have unique characteristics in terms of X-ray diffraction, infrared absorption spectrum, and thermal properties, but they have common characteristics, especially related to adsorption performance. The characteristics are around 1500 cm -1 and 1350 cm -1 in the infrared absorption spectrum.
It is important to have an absorption band nearby, and the structure having the absorption band is extremely important for achieving the effects of the present invention. The absorption band is based on the hydroxyl group that acts on the adsorption of the present invention, and is characterized by decreasing or disappearing when the hydroxyl group is exchanged with an anion other than the hydroxyl group, such as a fluorine ion. In addition, the thermal loss referred to in the present invention is the loss relative to the original weight when a sample is heated from room temperature to 800°C in the case of hydrated oxides and 500°C in the case of hydrated fluorides at a rate of 10°C/min. percentage decrease. The adsorbent of the present invention is a cake obtained by filtering the metal hydrated oxide or the metal hydrated fluoride by the above-mentioned preparation method or the like, or a dried powder, which is supported on a suitable porous carrier. It is a molded article formed into any shape such as granules, threads, strings, strips, plates, etc. by the above method. The molded body is extremely effective in increasing the practicality of adsorption operations. Various inorganic and organic materials that can produce the effects of the present invention can be used as the material for the carrier, but various organic polymeric materials are preferred from the viewpoints of supporting processability, carrier strength, chemical durability, and the like. Examples of organic polymer materials include phenolic resin, urea resin, melamine resin, polyester resin, diallyl phthalate resin, xylene resin, alkylbenzene resin, epoxy resin, epoxy acrylate resin, silicon resin, urethane resin, fluororesin, vinyl chloride resin, Vinylidene chloride resin, polyethylene, chlorinated polyolefin, polypropylene, polystyrene, ABS resin, polyamide, methacrylic resin, polyacetal, polycarbonate, cellulose resin, polyvinyl alcohol,
Polyimide, polysulfone, polyacrylonitrile, etc. and the above copolymers can be used, but they have appropriate water resistance, chemical resistance, and high hydrophilicity.
Those capable of forming a porous structure are preferred, and polyamides, cellulose resins, polysulfones, polyacrylonitrile, vinyl chloride, vinyl alcohol copolymers and the like are particularly preferred. Various known methods can be applied to the method of supporting the above-mentioned organic polymer material. For example, a method in which particles of the metal hydrated oxide or hydrated fluoride are suspended and dispersed in a solution containing an appropriate high molecular weight polymer and formed into particles, threads, strings, or strips, or A method in which a molecular monomer is polymerized into particles by emulsion or suspension polymerization in the presence of particles of the metal hydrated oxide or hydrated fluoride, or a suitable polymer and the metal After kneading and molding a hydrated oxide or hydrated fluoride and various extractants, a method can be adopted in which the extractant is extracted with an appropriate solvent to make the material porous. In either case, the molded product must have a porous structure, a sufficient amount of the metal hydrated oxide or hydrated fluoride is supported, and the structure must be difficult to leak, and there is a method that can achieve this purpose. If,
Any method is acceptable. Among these methods, a particularly preferred method is to dissolve a hydrophilic polymer such as the above-mentioned polyamide, cellulose resin, polystyrene, polyacrylonitrile, vinyl chloride, or vinyl alcohol copolymer in an appropriate solvent, and then add the hydrated oxidation agent to the metal. This is a method in which a substance or hydrated fluoride is suspended and formed into particles using water as a coagulation bath. The granules obtained by this method have a porous structure, sufficient adsorption rate and physical strength,
It is suitable for carrying out adsorption and desorption regeneration operations by engineering methods such as fixed bed or fluidized bed. In particular, the amount of polymer used is from 5 to 50% by weight, particularly preferably from 10 to 30% by weight of the metal hydrated oxide or fluoride. If it is less than 5% by weight, a sufficient supporting effect will not be exhibited and the strength will be insufficient. On the other hand, if it exceeds 50% by weight, the adsorption rate will drop significantly. In addition, the particle diameter and volumetric porosity of the granules are:
This affects the adsorption behavior of the invention, especially the speed. The average particle diameter is preferably 0.1 to 5 mm, or the volumetric porosity is preferably 0.5 to 0.85. The volumetric porosity as used in the present invention refers to the amount of change in volume (V I −V O ) from the apparent volume (V I ) of the granular material in a dry state to the compressed volume (V O ) during pressure compression.
is expressed as (V I −V O )/V I .
Here, the apparent volume (V I ) is the volume measured by the mercury pycnometer method of a granular material of constant weight, while the compressed volume (V O ) is the volume of a sample of the same weight between press plates at 100°C to 50 kg This is the volume of a product formed under pressure at a pressure of /cm 2 . If the volumetric porosity is less than 0.5, the adsorption rate is too slow, and if it is more than 0.85, the strength is insufficient. In addition, the properties and surface conditions of the metal hydrated oxide and metal hydrated fluoride particles are extremely important in achieving the effects of the present invention, such as the structure of the particles or the amount of adhering water, the particle size of the particles, It is preferable to adjust the degree of aggregation, and the particle size is preferably as fine as possible, with the primary particle size as an average particle size of 0.01μ to 1μ, particularly preferably
The particle size is preferably 0.01 to 0.5 μm, and the agglomerated particles with a low degree of aggregation are preferably fine particles of about 0.05 to 5 μm. The method for adsorbing fluorine complex ions to the adsorbent is as follows:
Any method may be used as long as it brings the hydrated metal oxide or hydrated metal fluoride into contact with water in which fluorine ions are dissolved. For example, a method in which a cake, powder, or the above-mentioned molded product of the metal hydrated oxide or metal fluoride is added to the water and then dispersed and brought into contact with the water, or a method in which the water is passed through a column filled with the molded product or powder An effective method is to contact the Group B of the periodic table, which is a fluorine adsorbent of the present invention,
Zr and Hf metal hydrated oxides and metal hydrated fluorides have excellent adsorption performance even when fluorine exists in the form of fluorine complex ions in water, and are completely new adsorbents that have never existed before. be. Examples of fluorine complex ions present in water include hexafluorosilicate ion, borofluoride ion, hexafluoroaluminum ion, hexafluoroiron ion, hexafluorotitanium ion, and hexafluorozirconium ion, and these may be used singly or in combination of two or more. may be dissolved in the water. Among them, fluorine is often present as hexafluorosilicate ions, but for example, if the hydrous cerium oxide of the present invention is used, it exhibits excellent adsorption performance at pH 7 or lower. However, hexafluoroaluminum ions, hexafluorotitanium ions, etc. dissociate due to changes in pH, and in some cases precipitate occurs, so it is difficult to determine the exact adsorption amount of each complex ion. be. Since the adsorbent of the present invention has excellent adsorption performance even when fluorine ions and fluorine complex ions coexist, it can also exhibit excellent effectiveness in the adsorption treatment of fluorine complex ions as described above. can. The mechanism by which the metal hydrated oxides and metal hydrated fluorides of the rare earth elements of the periodic table, Zr and Th, which are the fluorine complex ion adsorbents of the present invention, adsorb fluorine complex ions is that This is an anion exchange in which existing hydroxyl groups exchange ions with dissolved fluorine complex ions. The hydroxyl groups present on the surface of the fluorine complex ion adsorbent are highly active, and when the pH of the aqueous solution is low, they interact with various dissolved anions such as fluorine ions, fluorine complex ions, chloride ions, nitrate ions, sulfate ions, etc. and if the pH is high, it is retained as a hydroxyl group. That is, when the pH of the aqueous solution in which various anions are dissolved is low, various anions are fixed on the adsorbent, and when the pH is high, the anions fixed on the adsorbent are eluted into the aqueous solution. be done. For example, using the hydrous cerium oxide of the present invention,
The fluorine ion of the adsorbent, hexafluorosilicic acid,
The relationship between the adsorption performance for chloride ions, nitrate ions, and sulfate ions and the pH of the solution during adsorption is as shown in Figure 1, where each ion has a large adsorption capacity on the acidic side. In particular, in the case of fluorine ions, the adsorption amount increases rapidly when the pH of the solution is 7 or less, but in the case of other ions such as chlorine ions, the pH of the solution is 4 or less.
Unless it is below, there will be no rapid increase in adsorption amount. Therefore, when fluorine complex ions coexist with other ions such as chlorine ions, the fluorine complex ions can be selectively adsorbed when the pH of the solution is 1 to 7. Furthermore, the adsorption capacity for this ion is significantly greater than that for other anions. When adsorbing fluorine ions by the adsorbent, the pH of the solution is preferably 1 to 7, more preferably 2 to 7. When the pH of the solution is 1 or less, the adsorbent is significantly dissolved, and when the pH of the solution is 7 or more, the adsorption capacity is small. The fluorine adsorbent of the present invention has excellent selectivity for fluorine complex ions. In other words, in an aqueous solution in which chloride ions, nitrate ions, and sulfate ions are dissolved in the same concentration as fluorine complex ions, the selectivity for other anions other than fluorine complex ions is as follows: The selection coefficient K (F/Cl) of fluorine to chloride ions is 4×10 2 or more, and the selection coefficient K (F/NO 3 ) of fluorine to nitrate ions is 6
×10 or more, and the selectivity coefficient K (F/SO 4 ) of fluorine ions to sulfate ions is very high, at least 1.1×10 2 .
Note that the selection coefficient referred to in the present invention is as shown in the following formula. K(F/Cl) = [Total fluorine concentration in adsorbent (m・eq/g-adsorbent)] [Chlorine ion concentration in aqueous solution (mmol//[Total fluorine in aqueous solution
Concentration (mmol/)] [Chloride ion concentration in adsorbent (m・eq
/g adsorbent...Equation 1 The saturated adsorption amount per unit weight of the fluorine complex ion adsorbent of the present invention has a correlation with the fluorine ion concentration in the solution. For example, in the case of hydrous cerium oxide, if the pH of the aqueous solution at adsorption equilibrium is 5, the fluorine complex ion concentration in the aqueous solution is 0.01 mmol/, 0.1 mmol/
, 1.0 mmol/, the saturated adsorption amount of fluorine complex ions of the fluorine complex ion adsorbent is
0.5mmol/g- CeO2nH2O , 1.2mmol/g-
CeO2.nH2O , 2.5 mmol/ g - CeO2.nH2O . Therefore, when fluorine complex ions are adsorbed and removed using the fluorine complex ion adsorbent, the fluorine complex ion adsorbent and the fluorine complex ion-containing water are mixed depending on the initial concentration of fluorine complex ions and the target concentration. A suitable mixing ratio can be set. For example, using hydrous cerium oxide with the above adsorption capacity, the fluorine complex ion concentration of water containing fluorine complex ions with an initial concentration of 1 mmol/(114 ppm) is determined.
In case of 0.13 mmol/(15 ppm), mix 1 g of the adsorbent with 1.6 of the aqueous solution and adjust the pH of the mixed solution.
may be set to 5. The temperature of the adsorption operation described above affects the adsorption rate, and heating is effective. However, it has a practically sufficient speed even at room temperature, and a temperature range of 5 to 90°C, preferably 20 to 60°C, is preferable. In addition, the contact time depends on the contact method and the type of adsorbent, but usually it takes about 1 hour for the amount of adsorption to reach saturation.
The time is about 1 minute to 3 days, but in practical terms, 1 minute to 60 minutes is sufficient. These temperature and time conditions can also be applied to the desorption and regeneration operations described below. Further, the adsorbent of the present invention that has adsorbed fluorine complex ions can be contacted with an alkaline solution to desorb the fluorine complex ions, and can be subjected to repeated adsorption operations. In the above desorption operation, the amount of fluorine complex ions adsorbed on the adsorbent, the contact pH of the desorption solution, the mixing ratio of the adsorbent and the desorption solution, and the temperature affect the desorption rate and the fluorine complex ion concentration in the desorption solution. effect.
For example, when using the yttrium fluoride hydrate of the present invention, the relationship between the contact PH of the desorption solution and the desorption rate is as follows:
As shown in FIG. 2, the desorption rate increases rapidly with the contact pH of the desorption liquid. Therefore, the contact pH of the desorption liquid in the desorption operation is preferably 8 or more, more preferably 12 or more. Below 8, the desorption rate is very low. In the above desorption operation, inorganic alkalis such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, and organic amines can be used as the alkaline aqueous solution. Sodium hydroxide and potassium hydroxide are particularly preferred because of their high desorption efficiency. Alkaline solution concentration is 0.01mol/or more, preferably
It is 0.05 mol/or more. The method for desorbing the fluorine complex ions fixed on the adsorbent of the present invention may be any method as long as the adsorbent is brought into contact with an alkaline aqueous solution, and a method similar to the above-mentioned adsorption method may be adopted. Ru. (Effects of the Invention) Next, the characteristics of the fluorine adsorbent of the present invention are as follows. (1) Exhibits anion exchange properties at pH 7 or below, and has particularly high selective adsorption of fluorine complex ions. (2) The equilibrium adsorption amount is large even in the range of low concentration of fluorine complex ion in the liquid phase. For example, when the fluorine concentration in the liquid phase is 0.1 mmol/, the adsorption amount is
It also acts as a 1.2 mmol/g adsorbent and can lower the fluorine concentration in treated water. (3) Even if fluorine ions or fluorine complex ions coexist, the adsorption performance remains unchanged and they can be removed by adsorption. (4) Fluorine complex ions can be easily desorbed in alkaline regions, and adsorption and desorption can be performed repeatedly. (Example) Hereinafter, the present invention will be explained in more detail using examples. Note that the adsorption amount, removal rate, and desorption rate in the text were determined using the following formula. Adsorption amount (mmol/g - adsorbent) = (initial concentration - concentration before and after adsorption) (mmol/) / adsorption amount (g
)/Liquid volume () Removal rate (%) = 1 - concentration after adsorption (mmol/)/initial concentration (
mmol/) × 100 Desorption rate (%) = Liquid amount () × Concentration (mmol/) / Adsorbent amount (g) × Adsorption amount (mmol/g) × 100 Example 1 Hydrous cerium oxide of the present invention (commercially available product) , thermal loss
15.2%, average particle size of primary particles 0.08μ, average particle size of aggregated particles 0.4μ, X-ray diffraction diagram 5a, infrared absorption spectrum diagram 5b) PH of adsorption performance for fluorine ions and hexafluorosilicate ions Give an example of dependencies. A 2 mmol/aqueous solution of hydrofluoric acid (special grade reagent) or hydrosilicic acid (special grade reagent) was prepared, and the adsorbent was mixed into the aqueous solution at a ratio of 1 g/adsorbent/1, and the mixture was stirred. A 0.1N aqueous sodium hydroxide solution was added to the mixture to adjust the pH to a predetermined value. 2
After a period of time, the concentration of fluorine ions dissolved in the mixture was measured using ion chromatography (equipment manufactured by Dionex).
20201). This result can be expressed as
Figure 1 shows the relationship between pH and the removal rate of fluorine ions or hexafluorosilicate ions. For reference, chloride ions, nitrate ions,
Figure 1 shows the results of a similar experiment with sulfate ions. Examples 2 to 11 Examples will be given regarding the adsorption performance of the adsorbent of the present invention for hexafluorosilicate ions. Water containing hexafluorosilicate ions (1 mmol/114 ppm as F) was prepared, and the aqueous solution contained hydrated cerium oxide (same substance as in Example 1),
Zirconium gel oxide (reagent grade, thermal loss 30
%, average particle size of primary particles 0.05μ, average particle size of aggregated particles 5μ, X-ray diffraction diagram 6a, infrared absorption spectrum diagram 6b), yttrium hydroxide (preparation method described later,
Thermal loss 25%, average particle size of primary particles 0.1μ, average particle size of aggregated particles 1μ, Weight loss 6%, average particle size of primary particles 0.03μ, particle size of aggregated particles 1μ, X-ray diffraction No. 8a
Figure, infrared absorption spectrum Figure 8b), rare earth chloride hydrated oxide (preparation method described below, thermal loss 18%, primary particle diameter 0.05μ, average particle diameter of aggregated particles 1μ, X-ray diffraction Figure 9a) , infrared absorption spectrum (Figure 9b), hydrated lanthanum oxide (preparation method described later, thermal loss 21%, average particle size of aggregated particles 0.6μ), hydrated thorium oxide (preparation method described later, thermal loss 19%, average particle size of aggregated particles) particle size 1.1μ),
Samarium hydroxide (preparation method described later, heat loss 33%, average particle size of aggregated particles 1.0μ), dysprosium hydroxide (preparation method described later, heat loss 28%, average particle size of aggregated particles)
1.2 μ) and thulium hydroxide (preparation method described later, thermal loss 27%, average particle size of aggregated particles 0.9 μ) were mixed at a ratio of 1/1 g-adsorbent and 3/1 g-adsorbent, respectively, and stirred. . A 0.1N aqueous sodium hydroxide solution or 0.1N hydrochloric acid was added to the mixture to adjust the pH of the mixture to 5. After 2 hours, the concentration of hexafluorosilicate ions dissolved in the mixture was
Measurement was performed in the same manner as in Example 1, and the removal rate and adsorption amount of hexafluorosilicate ions were calculated.
The results are shown in Table 1. As a comparative example, the same experiments as in Examples 2 to 6 were conducted using activated alumina (commercial product, filler for gas chromatography) and hydrous titanium oxide (commercial product), and the results are shown in Table 1.

【表】 吸着剤製法 1 水酸化イツトリウム:塩化イツトリウム(試
薬)を蒸留水に溶解し、水酸化ナトリウム水溶液
を添加し、溶液のPHを9に調製した。1晩熟成
後、蒸留水により十分洗浄し、110℃で乾燥した。 吸着剤製法 2 弗化イツトリウムの水和物:塩化イツトリウム
(試薬)を蒸留水に溶解し、アンモニア水を添加
し溶液のPHを9に調製した。生成した沈殿物に、
イツトリウムの3倍当量以上の弗酸を添加した。
1晩熟成後、沈殿物を蒸留水により十分洗浄した
後、過し60℃で乾燥した。該沈殿物1gを
0.1Nの水酸化ナトリウム水溶液100c.c.に懸濁させ
た後、水洗、過し、60℃で乾燥した。 吸着剤製法 3 塩化希土水和酸化物:塩化希土(市販品)を蒸
留水に溶解し、希土元素と当量の過酸化水素水を
添加して撹拌した後、アンモニア水を添加してPH
9に調製した。その後、85℃に加熱して過剰の過
酸化水素を分解し、冷却後、塩酸を加えPHを4に
調製した。一晩熟成後、蒸留水で十分洗浄し、60
℃で乾燥した。 該塩化希土の組成を表2に示す。 表 2 塩化希土の配分組成(酸化物換算) La2O3 25.15重量% Ce2O4 51.91 〃 Pr6O11 5.12 〃 Nd2O3 16.07 〃 Sm2O3 1.02 〃 Eu2O3 0.19 〃 Gd2O3 0.17 〃 Y2O3 0.04 〃 吸着剤製法 4 塩化ランタン(99%、試薬)を蒸留水に溶解
し、水酸化カリウムを添加し、PHを8.5に調製し
た。一晩熟成後、カリウムイオンが認められなく
なるまで洗浄し、風乾する。 吸着剤製法 5 酸化トリウム(99%、試薬)を濃硫酸と白煙が
でるまで加熱した後、蒸留水を加えて溶解、6N
アンモニア水を加えて沈でんを生成せしめる。一
晩熟成後、硫酸イオンおよびアンモニウムイオン
が認められなくなるまで洗浄し、50℃で乾燥す
る。 吸着剤製法 6 サマリウム、ジスプロシウム、あるいはツリウ
ムの硝酸塩(99.9%、試薬)を蒸留水に溶解し、
水酸化ナトリウム水溶液を添加して、PHを10に調
製した。一晩熟成後、過し、ナトリウムイオ
ン、硝酸イオンが認められなくなるまで水洗し、
50℃で乾燥した。 実施例 12〜15 本発明の吸着体のイオン吸着選択性について例
を示す。 ヘキサフルオロケイ酸イオン、硫酸イオン、塩
素イオン、および硝酸イオンをそれぞれ
1mmol/になるように、ケイフツ化水素酸
(試薬特級)、硫酸(試薬特級)、塩酸(試薬特
級)、および硝酸(試薬特級)を蒸留水に希釈し、
混合酸水溶液を調製した。 該混合酸水溶液に含水酸化セリウム(実施例1
と同一物質)、ジルコニウムゲル状酸化物(実施
例3と同一物質)、水酸化イツトリウム(実施例
4と同一物質)および弗化イツトリウム水和物
(実施例5と同一物質)を、おのおの1g−吸着
剤/1の割合で混合し撹拌した。該混合溶液に
0.1N水酸化ナトリウム水溶液を加え、該混合溶
液のPHを5とした。2時間後、該混合液中のヘキ
サフルオロケイ酸イオン、塩素イオン、硝酸イオ
ン、硫酸イオンの濃度を、実施例1と同様の方法
により測定し、各吸着剤の各イオンに対する吸着
量を求めた。 測定結果より、各吸着体の塩素イオン、硝酸イ
オンおよび硫酸イオンに対する弗素の吸着選択係
数を第一式より算出した。測定結果と吸着量を表
a、選択係数を表bに示す。
[Table] Adsorbent manufacturing method 1 Yttrium hydroxide: Yttrium chloride (reagent) was dissolved in distilled water, and an aqueous sodium hydroxide solution was added to adjust the pH of the solution to 9. After aging overnight, it was thoroughly washed with distilled water and dried at 110°C. Adsorbent manufacturing method 2 Hydrate of yttrium fluoride: Yttrium chloride (reagent) was dissolved in distilled water, and aqueous ammonia was added to adjust the pH of the solution to 9. In the generated precipitate,
Hydrofluoric acid was added in an amount equal to or more than 3 times that of yttrium.
After aging overnight, the precipitate was thoroughly washed with distilled water, filtered, and dried at 60°C. 1 g of the precipitate
After suspending in 100 c.c. of 0.1N aqueous sodium hydroxide solution, it was washed with water, filtered, and dried at 60°C. Adsorbent manufacturing method 3 Rare earth chloride hydrated oxide: Dissolve rare earth chloride (commercial product) in distilled water, add hydrogen peroxide in an amount equivalent to the rare earth element, stir, and then add aqueous ammonia. PH
9. Thereafter, excess hydrogen peroxide was decomposed by heating to 85°C, and after cooling, hydrochloric acid was added to adjust the pH to 4. After aging overnight, wash thoroughly with distilled water and
Dry at °C. The composition of the rare earth chloride is shown in Table 2. Table 2 Distribution composition of rare earth chloride (in terms of oxide) La 2 O 3 25.15% by weight Ce 2 O 4 51.91 〃 Pr 6 O 11 5.12 〃 Nd 2 O 3 16.07 〃 Sm 2 O 3 1.02 〃 Eu 2 O 3 0.19 〃 Gd 2 O 3 0.17 〃 Y 2 O 3 0.04 〃 Adsorbent manufacturing method 4 Lanthanum chloride (99%, reagent) was dissolved in distilled water, potassium hydroxide was added, and the pH was adjusted to 8.5. After aging overnight, it is washed until no potassium ions are detected and air-dried. Adsorbent manufacturing method 5 After heating thorium oxide (99%, reagent) with concentrated sulfuric acid until white smoke appears, add distilled water to dissolve, 6N
Add ammonia water to form a precipitate. After aging overnight, it is washed until no sulfate ions and ammonium ions are observed, and dried at 50°C. Adsorbent manufacturing method 6 Dissolve samarium, dysprosium, or thulium nitrate (99.9%, reagent) in distilled water,
The pH was adjusted to 10 by adding an aqueous sodium hydroxide solution. After aging overnight, filter and wash with water until no sodium ions or nitrate ions are detected.
Dry at 50°C. Examples 12 to 15 Examples will be given regarding the ion adsorption selectivity of the adsorbent of the present invention. Hexafluorosilicate ion, sulfate ion, chloride ion, and nitrate ion, respectively.
Dilute hydrosilicic acid (special grade reagent), sulfuric acid (special grade reagent), hydrochloric acid (special grade reagent), and nitric acid (special grade reagent) in distilled water to a concentration of 1 mmol/
A mixed acid aqueous solution was prepared. Hydrous cerium oxide (Example 1) was added to the mixed acid aqueous solution.
(same substance as in Example 3), zirconium gel oxide (same substance as in Example 3), yttrium hydroxide (same substance as in Example 4), and yttrium fluoride hydrate (same substance as in Example 5) at 1 g each. They were mixed at a ratio of adsorbent/1 and stirred. to the mixed solution
A 0.1N aqueous sodium hydroxide solution was added to adjust the pH of the mixed solution to 5. After 2 hours, the concentrations of hexafluorosilicate ions, chloride ions, nitrate ions, and sulfate ions in the mixed solution were measured in the same manner as in Example 1, and the adsorption amount of each ion by each adsorbent was determined. . From the measurement results, the adsorption selectivity coefficient of fluorine for chlorine ions, nitrate ions, and sulfate ions of each adsorbent was calculated using the first equation. The measurement results and adsorption amounts are shown in Table a, and the selection coefficients are shown in Table b.

【表】【table】

【表】 実施例 16〜18 本発明の吸着剤の弗素錯イオンの吸着性能につ
いて例を示す。 弗素錯イオンからなる水溶液中の全弗素濃度が
100ppmの水溶液を調製した。弗素錯イオンとし
ては、それぞれケイフツ化ナトリウム(試薬特
級)、フツ化チタンカリウム(試薬)、あるいはク
リオライト(試薬)を用いた。該混合水溶液中
に、含水酸化セリウム(実施例1と同一物質)を
1g−吸着体/1の割合で混合し、PH5に調製
して24時間撹拌した。 水溶液中の各イオンの濃度を測定し、水中の残
存弗素濃度を測定し、弗素の除去率を求め、その
結果を表3に示す。
[Table] Examples 16 to 18 Examples of the fluorine complex ion adsorption performance of the adsorbent of the present invention are shown below. The total fluorine concentration in an aqueous solution consisting of fluorine complex ions is
A 100 ppm aqueous solution was prepared. As the fluorine complex ion, sodium silicate (special grade reagent), potassium titanium fluoride (reagent), or cryolite (reagent) was used. Hydrous cerium oxide (same substance as in Example 1) was mixed into the mixed aqueous solution at a ratio of 1 g of adsorbent/1, adjusted to pH 5, and stirred for 24 hours. The concentration of each ion in the aqueous solution was measured, the residual fluorine concentration in water was measured, and the fluorine removal rate was determined. Table 3 shows the results.

【表】 実施例 19 本発明の吸着剤のアルカリ水溶液による脱着再
生操作における脱着率のPH依存性について例を示
す。 予めヘキサフルオロケイ酸イオン0.82mmol/
g−吸着剤を吸着した弗化イツトリウム水和物
を、0.01N〜1.0Nの水酸化ナトリウム水溶液と10
g−吸着剤/1の割合で混合、撹拌し、2時間
後、混合液のPHとイオン濃度(実施例1と同様の
方法)を測定した。その結果を表4および第2図
に示す。
[Table] Example 19 An example of the PH dependence of the desorption rate in the desorption regeneration operation using an alkaline aqueous solution of the adsorbent of the present invention is shown. Hexafluorosilicate ion 0.82 mmol/
g- Yttrium fluoride hydrate adsorbed with adsorbent is mixed with 0.01N to 1.0N aqueous sodium hydroxide solution for 10
The mixture was mixed and stirred at a ratio of g-adsorbent/1, and after 2 hours, the pH and ion concentration of the mixture were measured (by the same method as in Example 1). The results are shown in Table 4 and FIG.

【表】 実施例 20〜22 本発明の吸着剤の脱着・再生操作において、
種々のアルカリ種を用いた脱着・再生操作の例を
示す。 予めヘキサフルオロケイ酸イオン0.82mmol/
g−吸着剤を吸着した弗化イツトリウム水和物
を、0.5Nの水酸化ナトリウム水溶液、水酸化カ
リウムおよびアンモニア水と10g−吸着剤/の
割合で混合、撹拌し、2時間後、混合液のPHと弗
素イオン濃度(実施例1と同様の方法)を測定し
た。その結果を表5に示す。
[Table] Examples 20 to 22 In the desorption/regeneration operation of the adsorbent of the present invention,
Examples of desorption/regeneration operations using various alkali species are shown. Hexafluorosilicate ion 0.82 mmol/
Yttrium fluoride hydrate adsorbed with g-adsorbent was mixed with 0.5N aqueous sodium hydroxide solution, potassium hydroxide and aqueous ammonia at a ratio of 10 g-adsorbent/stir, and after 2 hours, the mixture was PH and fluorine ion concentration (method similar to Example 1) were measured. The results are shown in Table 5.

【表】 実施例 23 エチレン−ビニルアルコール共重合体で造粒し
た含水酸化セリウムを用いて行なつた吸・脱着操
作の例を示す。 ケイフツ化ナトリウム(試薬特級)を蒸留水で
稀釈して、弗素濃度が100ppmであるPH3の水溶
液を調製し、これを原水とした。 該造粒体(平均粒径0.61mmφ、体積空隙率
0.59)の15mlをカラムに充てんし、上記の原水を
空塔速度SV=30、20、あるいは10hr-1と条件を
変えて通水し、カラム出口の処理水中の全弗素濃
度の経時変化を測定した。第2図に示すような曲
線が得られ、処理水中の全弗素濃度が1ppmにな
るまでの吸着剤1ml当りの通水量を求め、その結
果を表6に示した。
[Table] Example 23 An example of adsorption/desorption operations performed using hydrous cerium oxide granulated with ethylene-vinyl alcohol copolymer is shown. Sodium silicate (special grade reagent) was diluted with distilled water to prepare an aqueous solution of pH 3 with a fluorine concentration of 100 ppm, and this was used as raw water. The granules (average particle diameter 0.61mmφ, volumetric porosity
Fill the column with 15 ml of 0.59), pass the above raw water under different conditions such as superficial velocity SV = 30, 20, or 10 hr -1 , and measure the change over time in the total fluorine concentration in the treated water at the column outlet. did. A curve as shown in FIG. 2 was obtained, and the amount of water passed per ml of adsorbent until the total fluorine concentration in the treated water reached 1 ppm was determined, and the results are shown in Table 6.

【表】 次いで、実施例23−bの条件で吸着後の吸着剤
中に水酸化ナトリウム0.12mol/の水溶液を空
塔速度SV=3hr-1の条件で通水したところ、脱着
液中の全弗素濃度が3,500ppm(184mmol/)
という高濃度で得られた(第4図)。弗素に対し
てアルカリを当量で1.3倍使用することによつて、
脱着率を100%にすることができた。 吸着剤製法 7 エチレン−ビニルアルコール共重合体(エチレ
ン38モル%)をジメチルスルホキシドに11重量%
の濃度で溶解し、該溶液に含水酸化セリウム(市
販品、熱減量15.2%、一次粒子の平均粒径0.08μ、
凝集粒子の平均粒径0.4μ)を重合体量の4重量倍
添加し、十分撹拌分散させスラリー状とした。該
スラリーを水を凝固浴として用い、粒状に成形し
た。 実施例 24 ポリアクリロニトリル樹脂で造粒した含水酸化
セリウムを用いて行なつた吸・脱着操作の例を示
す。 フツ化ナトリウム(試薬特級)1mmol/と
ケイフツ化ナトリウム(試薬特級)0.7mmol/
からなる混合水溶液(弗素として100ppm)をPH
3に調製し、これを原水とした。 該造粒体(平均粒径0.82mmφ、体積空隙率
0.59)の15mlをカラムに充てんし、上記の原水を
空塔速度SV=20hr-1の条件で通水し、カラム出
口の処理水中の全弗素濃度の経時変化を測定し
た。処理水中の全弗素濃度が1ppmになるまでの
吸着剤1ml当りの通水量は180倍であつた。 次いで、再生液として0.2N水酸化ナトリウム
水溶液を空塔速度SV=3hr-1の条件で通水したと
ころ、脱着液中の全弗素濃度が5,000ppm
(263mmol/)とう高濃度で得られた。弗素に
対してアルカリを当量で0.6倍用いることにより、
100%の脱着率が達成される。弗素イオン単独の
場合よりアルカリ量が少なくてすむのは、ヘキサ
フルオロケイ素イオン(SiF6 2-)はケイフツ化ナ
トリウムとして脱着されるので、弗素3当量でア
ルカリ1当量の消費となるためである。 吸着剤製法 8 ポリアクリロニトリルをジメチルホルムアミド
に10重量%の濃度で溶解し、該溶液に含水酸化セ
リウム(実施例1と同一物質)を重合体量の4重
量倍添加し、十分撹拌分散させた。該混合物を凝
固浴として水を用い、粒状に成形した。
[Table] Next, an aqueous solution of 0.12 mol/sodium hydroxide was passed through the adsorbent after adsorption under the conditions of Example 23-b at a superficial velocity SV = 3 hr -1 . Fluorine concentration is 3,500ppm (184mmol/)
It was obtained at a high concentration (Fig. 4). By using an equivalent amount of alkali 1.3 times as much as fluorine,
We were able to achieve a desorption rate of 100%. Adsorbent manufacturing method 7 Ethylene-vinyl alcohol copolymer (38 mol% ethylene) in dimethyl sulfoxide 11% by weight
Hydrous cerium oxide (commercial product, thermal loss 15.2%, average primary particle size 0.08μ,
Agglomerated particles having an average particle diameter of 0.4 μm were added to the mixture by 4 times the weight of the polymer, and thoroughly stirred and dispersed to form a slurry. The slurry was formed into granules using water as a coagulation bath. Example 24 An example of adsorption/desorption operations performed using hydrous cerium oxide granulated with polyacrylonitrile resin is shown. Sodium fluoride (special grade reagent) 1 mmol/and sodium fluoride (special grade reagent) 0.7 mmol/
A mixed aqueous solution (100ppm as fluorine) consisting of PH
3, and this was used as raw water. The granules (average particle diameter 0.82mmφ, volumetric porosity
The column was filled with 15 ml of 0.59), and the above raw water was passed through the column at a superficial velocity SV = 20 hr -1 , and the change over time in the total fluorine concentration in the treated water at the column outlet was measured. The amount of water passed per ml of adsorbent until the total fluorine concentration in the treated water reached 1 ppm was 180 times. Next, when a 0.2N aqueous sodium hydroxide solution was passed through as a regenerating solution at a superficial velocity SV = 3 hr -1 , the total fluorine concentration in the desorption solution was 5,000 ppm.
(263 mmol/) was obtained at a very high concentration. By using an equivalent amount of alkali 0.6 times as much as fluorine,
A desorption rate of 100% is achieved. The reason why the amount of alkali is smaller than in the case of fluorine ions alone is because hexafluorosilicon ions (SiF 6 2- ) are desorbed as sodium silicate, so 3 equivalents of fluorine consumes 1 equivalent of alkali. Adsorbent Preparation Method 8 Polyacrylonitrile was dissolved in dimethylformamide at a concentration of 10% by weight, and hydrated cerium oxide (same substance as in Example 1) was added in an amount of 4 times the weight of the polymer, and thoroughly stirred and dispersed. The mixture was shaped into granules using water as a coagulation bath.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の含水酸化セリウムによる溶存
弗素イオン、塩素イオン、硝酸イオンおよび硫酸
イオンの吸着量のPH依存性を示す図表、第2図は
本発明の弗化イツトリウム水和物の水酸化ナトリ
ウム水溶液による脱着操作における脱着率のPH依
存性を示す図表、第3図は本発明の含水酸化セリ
ウム−エチレン−ビニルアルコール共重体の造粒
体を用いて、弗素イオン含有水溶液の固定床吸着
を行なつた時の破過曲線を示す図表、第4図は上
記造粒体による吸着後に0.1Nの水酸化ナトリウ
ム水溶液を用いて固定床脱着を行なつた時の弗素
の溶離曲線を示す図表、第5a図は含水酸化物の
代表として含水酸化セリウムのCuK α線による
X線回折図、第5b図は本発明の含水酸化セリウ
ムの赤外吸収スペクトル、第6a図は本発明のジ
ルコニウムゲル状酸化物のCuK α線によるX線
回折図、第6b図は本発明のジルコニウムゲル状
酸化物の赤外吸収スペクトル、第7a図は水酸化
物の代表として水酸化イツトリウムのCuK α線
によるX線回折図、第7b図は本発明の水酸化イ
ツトリウムの赤外吸収スペクトル、第8a図は本
発明の弗化イツトリウム水和物のCuKα線による
X線回折図、第8b図は金属弗化物の代表として
弗化イツトリウム水和物の赤外吸収スペクトル、
第9a図は本発明の塩化希土水和酸化物のCuKα
線によるX線回折図、第9b図は本発明の塩化希
土水和酸化物の赤外吸収スペクトルを示す。
Figure 1 is a chart showing the pH dependence of the amount of adsorption of dissolved fluorine ions, chloride ions, nitrate ions and sulfate ions by the hydrous cerium oxide of the present invention, and Figure 2 is a graph showing the hydroxylation of yttrium fluoride hydrate of the present invention. Figure 3 is a graph showing the PH dependence of the desorption rate in the desorption operation using a sodium aqueous solution. Figure 4 is a diagram showing the elution curve of fluorine when fixed bed desorption was performed using a 0.1N aqueous sodium hydroxide solution after adsorption by the granules; Fig. 5a is an X-ray diffraction diagram of hydrous cerium oxide as a representative of hydrous oxides using CuK α rays, Fig. 5b is an infrared absorption spectrum of hydrous cerium oxide of the present invention, and Fig. 6a is a zirconium gel oxide of the present invention. Figure 6b is the infrared absorption spectrum of the zirconium gel oxide of the present invention, and Figure 7a is the X-ray diffraction diagram of yttrium hydroxide, a representative of hydroxide, using CuK α rays. Figure 7b is an infrared absorption spectrum of yttrium hydroxide of the present invention, Figure 8a is an X-ray diffraction diagram using CuKα rays of yttrium fluoride hydrate of the present invention, and Figure 8b is a representative example of metal fluoride. Infrared absorption spectrum of yttrium fluoride hydrate,
Figure 9a shows CuKα of rare earth chloride hydrated oxide of the present invention.
The X-ray diffraction diagram, Figure 9b, shows the infrared absorption spectrum of the hydrated rare earth chloride oxide of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 希土類元素、ZrおよびThの元素群から選ば
れた一種以上の金属水和酸化物または金属水和弗
化物からなる弗素錯イオン吸着剤。
1. A fluorine complex ion adsorbent comprising one or more metal hydrated oxides or metal hydrated fluorides selected from the group of rare earth elements, Zr, and Th.
JP60031625A 1985-02-21 1985-02-21 Fluorine complex ion adsorbent Granted JPS61192340A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60031625A JPS61192340A (en) 1985-02-21 1985-02-21 Fluorine complex ion adsorbent
AU44552/85A AU579647B2 (en) 1985-02-21 1985-07-03 Process for adsorption treatment of dissolved fluorine
EP85109041A EP0191893B1 (en) 1985-02-21 1985-07-19 Process for adsorption treatment of dissolved fluorine
DE8585109041T DE3584627D1 (en) 1985-02-21 1985-07-19 METHOD FOR ADSORPING SOLVED FLUORS.
CN85105637A CN85105637B (en) 1985-02-21 1985-07-24 Treating dissolved fluorine by adsorption
US06/758,805 US4717554A (en) 1985-02-21 1985-07-25 Process for adsorption treatment of dissolved fluorine
KR1019850005342A KR890003882B1 (en) 1985-02-21 1985-07-25 Process for adsorption treatment of dissolved fluorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60031625A JPS61192340A (en) 1985-02-21 1985-02-21 Fluorine complex ion adsorbent

Publications (2)

Publication Number Publication Date
JPS61192340A JPS61192340A (en) 1986-08-26
JPH0217220B2 true JPH0217220B2 (en) 1990-04-19

Family

ID=12336394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60031625A Granted JPS61192340A (en) 1985-02-21 1985-02-21 Fluorine complex ion adsorbent

Country Status (1)

Country Link
JP (1) JPS61192340A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287547A (en) * 1987-05-21 1988-11-24 Asahi Chem Ind Co Ltd Adsorbent for fluoride ion
WO1995027935A1 (en) 1994-04-07 1995-10-19 Japan Nesamac Corporation Pen grip type input apparatus and input apparatus
JP2002075346A (en) * 2000-08-30 2002-03-15 Sanyo Electric Co Ltd Sintered nickel electrode and its manufacturing method
JP2002205062A (en) * 2001-01-12 2002-07-23 Shin Nihon Salt Co Ltd Method for removing copper in salt water, method for regenerating copper adsorbing resin and apparatus for removing copper in salt water
WO2004096433A1 (en) * 2003-05-01 2004-11-11 Nihon Kaisui Co., Ltd. Adsorbent and process for producing the same
JP4854999B2 (en) * 2005-07-20 2012-01-18 株式会社日本海水 Fluorine adsorbent and process for producing the same
JP6093223B2 (en) * 2013-03-29 2017-03-08 旭化成株式会社 Inorganic ion adsorbent and porous molded body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628638A (en) * 1979-08-16 1981-03-20 Takeda Chem Ind Ltd Adsorbent
JPS5969151A (en) * 1982-10-13 1984-04-19 Unitika Ltd Spherical ion exchange resin and its production and adsorptive treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628638A (en) * 1979-08-16 1981-03-20 Takeda Chem Ind Ltd Adsorbent
JPS5969151A (en) * 1982-10-13 1984-04-19 Unitika Ltd Spherical ion exchange resin and its production and adsorptive treatment

Also Published As

Publication number Publication date
JPS61192340A (en) 1986-08-26

Similar Documents

Publication Publication Date Title
EP0191893B1 (en) Process for adsorption treatment of dissolved fluorine
JPH0445213B2 (en)
JP4126399B2 (en) Iron oxyhydroxide production method and iron oxyhydroxide adsorbent
US9102551B2 (en) Media for the removal of heavy metals and volatile byproducts from drinking water
Chanda et al. Ligand exchange sorption of arsenate and arsenite anions by chelating resins in ferric ion form: II. Iminodiacetic chelating resin Chelex 100
WO2005069825A2 (en) Method of manufacture and use of hybrid anion exchanger for selective removal of contaminating ligands from fluids
WO2004052532A1 (en) Improved arsenic removal media
US4596659A (en) Selective separation of borate ions in water
AU2017278084A1 (en) Porous decontamination removal composition
JPH022612B2 (en)
CN107216415B (en) Preparation method of anion resin for adsorbing heat-stable salt in amine liquid
JPH0217220B2 (en)
JP4674854B2 (en) Wastewater treatment method
KR880000582B1 (en) Separating method for borate ion in water
JPS61192385A (en) Treatment of fluorine-containing waste solution
JPS63287547A (en) Adsorbent for fluoride ion
JPS6259973B2 (en)
JPS61287443A (en) Fluorine adsorbent
JP3240442B2 (en) Granulated dephosphorizing agent and wastewater treatment method
JP3291994B2 (en) How to remove arsenate ions
JP4637737B2 (en) Regeneration method of boron adsorbent
RU2313387C2 (en) Composite-type sorption material and a method for preparation thereof
JPS6136973B2 (en)
JP2006263603A (en) Method for treating boron-containing water
JP5279094B2 (en) Wastewater treatment method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term