JP6093223B2 - Inorganic ion adsorbent and porous molded body - Google Patents

Inorganic ion adsorbent and porous molded body Download PDF

Info

Publication number
JP6093223B2
JP6093223B2 JP2013073373A JP2013073373A JP6093223B2 JP 6093223 B2 JP6093223 B2 JP 6093223B2 JP 2013073373 A JP2013073373 A JP 2013073373A JP 2013073373 A JP2013073373 A JP 2013073373A JP 6093223 B2 JP6093223 B2 JP 6093223B2
Authority
JP
Japan
Prior art keywords
molded body
inorganic ion
porous molded
ion adsorbent
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013073373A
Other languages
Japanese (ja)
Other versions
JP2014195787A (en
Inventor
昭浩 大森
昭浩 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2013073373A priority Critical patent/JP6093223B2/en
Publication of JP2014195787A publication Critical patent/JP2014195787A/en
Application granted granted Critical
Publication of JP6093223B2 publication Critical patent/JP6093223B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、無機イオン吸着体、多孔性成形体及びそれらの製造方法に関する。   The present invention relates to an inorganic ion adsorbent, a porous molded body, and a method for producing them.

近年、環境汚染による富栄養化の問題から、飲料水、工業用水、工業排水、下水道処理水、各種環境水中のリン、ホウ素、ヒ素、フッ素イオン等の環境基準が強化されており、それらを除去する技術への要望が高まっている。   In recent years, environmental standards such as phosphorus, boron, arsenic, and fluoride ions in drinking water, industrial water, industrial wastewater, sewage treated water, and various environmental waters have been strengthened due to problems of eutrophication due to environmental pollution. There is a growing demand for technology to do this.

リンは、富栄養化の原因物質の一つであり、特に閉鎖水域で規制が強まっている。また、枯渇が危惧されている元素でもあるため、排水中から回収し、再利用する技術が求められている。
ホウ素は、植物の育成にとって必須の元素であるが、過剰に存在すると植物の成長に悪影響を及ぼすことが知られている。さらに、人体に対しても、飲料水中に含まれると健康への影響、特に生殖機能の低下等の健康障害を起こす可能性が指摘されている。
ヒ素は、非鉄金属精錬工業の排水や、地熱発電所の熱排水、特定地域の地下水等に含まれている。ヒ素の毒性については昔より知られており、生体への蓄積性があり、慢性中毒や、体重減少、知覚傷害、肝臓障害、皮膚沈着、皮膚がんなどを発症すると言われている。
フッ素は、金属精錬工業、ガラス工業、電子材料工業等からの排水に多く含まれる。フッ素の人体へ影響が懸念されており、フッ素を過剰に摂取すると、斑状歯、骨硬化症、甲状腺障害等の慢性フッ素中毒症を引き起こすことが知られている。
これらの有害物質の排出量は、産業の発達に伴い、年々増加しており、これらの有害物質を効率的に除去する技術が求められている。
Phosphorus is one of the causative substances of eutrophication, and regulations are getting stronger, especially in closed water areas. In addition, since it is an element that is feared to be depleted, there is a need for technology to recover it from wastewater and reuse it.
Boron is an essential element for plant growth. However, boron is known to have an adverse effect on plant growth when present in excess. Furthermore, it has been pointed out that when it is contained in drinking water, it may cause health problems such as a decrease in reproductive function when it is contained in drinking water.
Arsenic is contained in wastewater from nonferrous metal refining industry, thermal wastewater from geothermal power plants, and groundwater in specific areas. The toxicity of arsenic has been known for a long time, has an accumulation property in the living body, and is said to cause chronic poisoning, weight loss, sensory injury, liver damage, skin deposition, skin cancer and the like.
A large amount of fluorine is contained in waste water from the metal refining industry, the glass industry, the electronic materials industry, and the like. There is concern about the effects of fluorine on the human body, and it is known that excessive intake of fluorine causes chronic fluorine poisoning such as patchy teeth, osteosclerosis, and thyroid disorders.
The emissions of these harmful substances are increasing year by year with the development of the industry, and a technique for efficiently removing these harmful substances is required.

上述したような各種有害物質を除去する技術としては、例えば、ジルコニウム含水亜鉄酸塩や、含水酸化セリウム等の無機イオン吸着体粉末を高分子材料に担持させた吸着剤を用いる技術が知られている。特許文献1には、有機高分子と無機イオン吸着体とを含む多孔性成形体の発明が記載されており、リンやホウ素等を吸着することや多孔性成形体の製造方法についても記載されている。   As a technique for removing various harmful substances as described above, for example, a technique using an adsorbent in which an inorganic ion adsorbent powder such as zirconium hydrous ferrite or hydrous cerium hydroxide is supported on a polymer material is known. ing. Patent Document 1 describes an invention of a porous molded body containing an organic polymer and an inorganic ion adsorbent, and also describes a method for adsorbing phosphorus, boron, etc., and a method for producing a porous molded body. Yes.

特許第4671419号Japanese Patent No. 4671419

上記従来技術の多孔性成形体の製造方法には、無機イオン吸着体製造時に、脱イオン水でpHが中性になるまで洗浄することが記載されている。しかしながら、洗浄の終点をpHだけで管理すると、無機イオン吸着体製造時に用いた塩類の残存量が多すぎるため、有機高分子と無機イオン吸着体との担持性(接着強度)が弱くなってしまう傾向にある。そのため、耐久性が高く、繰り返し使用できる多孔性成形体が得られにくいという問題を有していた。   The method for producing a porous molded body according to the prior art describes that the inorganic ion adsorbent is washed with deionized water until the pH becomes neutral. However, if the end point of the cleaning is controlled only by the pH, the residual amount of salts used in the production of the inorganic ion adsorbent is too large, and the supportability (adhesion strength) between the organic polymer and the inorganic ion adsorbent becomes weak. There is a tendency. For this reason, there is a problem that a porous molded body that is highly durable and can be used repeatedly is difficult to obtain.

一方、塩類の残存量が少なすぎる場合、無機イオン吸着体表面の活性点が、多孔性成形体製造時に有機高分子により塞がれてしまう傾向にある。そのため、リンやホウ素等を高速に吸着処理でき、吸着容量が大きい多孔性成形体が得られにくいという問題を有していた。   On the other hand, when the residual amount of salts is too small, the active sites on the surface of the inorganic ion adsorbent tend to be blocked by the organic polymer during the production of the porous molded body. For this reason, there has been a problem that phosphorus, boron, and the like can be adsorbed at high speed and it is difficult to obtain a porous molded body having a large adsorption capacity.

本発明者らは、上記従来技術の課題を解決するために、鋭意研究を重ねた結果、少量の硝酸塩を含有する無機イオン吸着体と有機高分子とを含む多孔性成形体は、有害物質を高速除去でき、吸着容量が大きく、耐久性が高く繰り返し使用可能な、吸着剤に適した多孔性成形体となることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-described problems of the prior art, the present inventors have found that a porous molded body containing an inorganic ion adsorbent containing a small amount of nitrate and an organic polymer has no harmful substances. The inventors have found that the porous molded body can be removed at high speed, has a large adsorption capacity, has high durability and can be used repeatedly, and is suitable for an adsorbent, and has completed the present invention.

すなわち、本発明は以下の通りである。
[1]有機高分子及び無機イオン吸着体を含有する多孔性成形体の製造に用いられる無機イオン吸着体であって、硝酸塩の含有量が0.01〜5wt%である、無機イオン吸着体。
[2]無機イオン吸着体が、下記式(i)で表される金属酸化物を少なくとも一種含有する、[1]の無機イオン吸着体。
MN・mHO ・・・(i)
(式(i)中、xは0〜3、nは1〜4、mは0〜6であり、M及びNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb及びTaからなる群より選ばれる金属元素であり、互いに異なるものである。)
[3]金属酸化物が、下記(a)および(b)からなる群より選ばれる1種又は2種以上の混合物である、[2]の無機イオン吸着体。
(a)水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン及び水和酸化イットリウム
(b)チタン、ジルコニウム、スズ、セリウム、ランタン及びイットリウムからなる群から選ばれる金属元素と、アルミニウム、珪素及び鉄からなる群から選ばれる金属元素との複合金属の酸化物
[4]金属酸化物の含水率が、1〜40wt%である、[2]または[3]の無機イオン吸着体。
[5][1]から[4]のいずれかの無機イオン吸着体を含有する有機高分子を含んでなる、多孔性成形体。
[6]有機高分子が、エチレンビニルアルコール共重合体、ポリアクリロニトリル、ポリスルホン、ポリエーテルスルホンおよびポリフッ化ビニリデンからなる群から選ばれる一種以上を含んでなる、[5]の多孔性成形体。
[7]ポリエーテルスルホンが、末端に水酸基を有する、[6]の多孔性成形体。
[8]有機高分子及び無機イオン吸着体を含有する多孔性成形体の製造方法であって、無機イオン吸着体を洗浄し、不純物含有量を調整する洗浄工程と、洗浄した無機イオン吸着体の含水率を調整する乾燥工程と、有機高分子と、有機高分子の良溶媒と、無機イオン吸着体と、水溶性高分子とを混合し、スラリーを得る混合工程と、スラリーを成形し、有機高分子の貧溶媒を含む凝固液中で凝固させる凝固工程と、を有する製造方法。
[9]洗浄工程の終点を、硝酸イオン濃度で規定する[8]の製造方法。
[10]有機高分子の良溶媒が、N−メチル−2ピロリドン、N,N−ジメチルアセトアミド及びN,N−ジメチルホルムアミドからなる群より選ばれる1種以上である、[8]または[9]の製造方法。
[11]凝固液が水を含む、[8]〜[10]のいずれかの製造方法。
[12]無機イオン吸着体が、下記式(i)で表される金属酸化物を少なくとも一種含有している、[8]〜[11]のいずれかの製造方法。
MN・mHO ・・・(i)
(式(i)中、xは0〜3、nは1〜4、mは0〜6であり、M及びNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb及びTaからなる群より選ばれる金属元素であり、互いに異なるものである。)
[13]無機イオン吸着体が、下記(a)および(b)からなる群より選ばれる1種又は2種以上の混合物である、[12]の製造方法。
(a)水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン及び水和酸化イットリウム
(b)チタン、ジルコニウム、スズ、セリウム、ランタン及びイットリウムからなる群から選ばれる金属元素と、アルミニウム、珪素及び鉄からなる群から選ばれる金属元素との複合金属の酸化物
[14]凝固工程において、凝固液は、貧溶媒:良溶媒の比率が、100〜30質量%:0〜70質量%である、[8]〜[13]のいずれかの製造方法。
[15]凝固工程が、回転する容器の側面に設けたノズルから、該容器中に収納されている成形用スラリーを飛散させ、液滴を成形させる工程を含む、[8]〜[14]のいずれかの製造方法。
[16]多孔性成形体が、連通孔を具備する多孔質構造を形成しており、多孔性成形体の外表面と内部に無機イオン吸着体を担持させる、[8]〜[15]のいずれかの製造方法。
[17][8]〜[16]のいずれかの方法で製造される、多孔性成形体。
That is, the present invention is as follows.
[1] An inorganic ion adsorbent used for the production of a porous molded article containing an organic polymer and an inorganic ion adsorbent, wherein the nitrate content is 0.01 to 5 wt%.
[2] The inorganic ion adsorbent according to [1], wherein the inorganic ion adsorbent contains at least one metal oxide represented by the following formula (i).
MN x O n · mH 2 O ··· (i)
(In formula (i), x is 0-3, n is 1-4, m is 0-6, M and N are Ti, Zr, Sn, Sc, Y, La, Ce, Pr, Nd, A metal selected from the group consisting of Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Si, Cr, Co, Ga, Fe, Mn, Ni, V, Ge, Nb and Ta It is an element and different from each other.)
[3] The inorganic ion adsorbent according to [2], wherein the metal oxide is one or a mixture of two or more selected from the group consisting of the following (a) and (b).
(A) Hydrated titanium oxide, hydrated zirconium oxide, hydrated tin oxide, hydrated cerium oxide, hydrated lanthanum oxide and hydrated yttrium oxide (b) From the group consisting of titanium, zirconium, tin, cerium, lanthanum and yttrium [2] or [3] The moisture content of the metal oxide selected from the metal element selected and the metal element selected from the group consisting of aluminum, silicon and iron [4] metal oxide is 1 to 40 wt% ] Inorganic ion adsorbent.
[5] A porous molded article comprising an organic polymer containing the inorganic ion adsorbent according to any one of [1] to [4].
[6] The porous molded article according to [5], wherein the organic polymer comprises one or more selected from the group consisting of ethylene vinyl alcohol copolymer, polyacrylonitrile, polysulfone, polyethersulfone, and polyvinylidene fluoride.
[7] The porous molded article according to [6], wherein the polyethersulfone has a hydroxyl group at a terminal.
[8] A method for producing a porous molded body containing an organic polymer and an inorganic ion adsorbent, wherein the inorganic ion adsorbent is washed to adjust the impurity content; A drying step for adjusting the moisture content, a mixing step of mixing an organic polymer, a good solvent for the organic polymer, an inorganic ion adsorbent, and a water-soluble polymer to obtain a slurry; A coagulation step of coagulating in a coagulation liquid containing a poor polymer solvent.
[9] The production method according to [8], wherein an end point of the cleaning step is defined by a nitrate ion concentration.
[10] The good solvent for the organic polymer is at least one selected from the group consisting of N-methyl-2pyrrolidone, N, N-dimethylacetamide and N, N-dimethylformamide, [8] or [9] Manufacturing method.
[11] The method according to any one of [8] to [10], wherein the coagulation liquid contains water.
[12] The method according to any one of [8] to [11], wherein the inorganic ion adsorbent contains at least one metal oxide represented by the following formula (i).
MN x O n · mH 2 O ··· (i)
(In formula (i), x is 0-3, n is 1-4, m is 0-6, M and N are Ti, Zr, Sn, Sc, Y, La, Ce, Pr, Nd, A metal selected from the group consisting of Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Si, Cr, Co, Ga, Fe, Mn, Ni, V, Ge, Nb and Ta It is an element and different from each other.)
[13] The production method of [12], wherein the inorganic ion adsorbent is one or a mixture of two or more selected from the group consisting of the following (a) and (b).
(A) Hydrated titanium oxide, hydrated zirconium oxide, hydrated tin oxide, hydrated cerium oxide, hydrated lanthanum oxide and hydrated yttrium oxide (b) From the group consisting of titanium, zirconium, tin, cerium, lanthanum and yttrium In the solidification step of the composite metal oxide of the metal element selected and the metal element selected from the group consisting of aluminum, silicon and iron [14] In the solidification step, the ratio of the poor solvent: good solvent is 100-30 masses. %: The production method according to any one of [8] to [13], which is 0 to 70% by mass.
[15] The steps of [8] to [14], wherein the coagulation step includes a step of splashing molding slurry stored in the container from a nozzle provided on a side surface of the rotating container to form droplets. Either manufacturing method.
[16] Any of [8] to [15], wherein the porous molded body forms a porous structure having communication holes, and an inorganic ion adsorbent is supported on the outer surface and inside of the porous molded body. Manufacturing method.
[17] A porous molded article produced by any one of the methods [8] to [16].

本発明によれば、排水から有害物質を高速除去でき、有害物質の吸着容量が大きく、逆洗に対する耐久性が高く、繰り返し使用しても破砕することが少ない、吸着剤に適した多孔性成形体及び無機イオン吸着体が得られる。さらに、排水を本発明による多孔性成形体に通液した際に硝酸塩の排水への溶出が少ないので、吸着剤に適用した時の処理水の窒素濃度が低く、自然環境への負荷が少ないという効果も奏する。   According to the present invention, it is possible to remove harmful substances from waste water at a high speed, the adsorption capacity of the harmful substances is large, the durability against backwashing is high, and the porous molding suitable for the adsorbent is less crushed even after repeated use. And an inorganic ion adsorbent are obtained. Furthermore, when drainage is passed through the porous molded body according to the present invention, nitrate is not eluted into the wastewater, so the nitrogen concentration of the treated water when applied to the adsorbent is low and the load on the natural environment is low. There is also an effect.

以下、本発明を実施するための形態(以下、本実施形態と言う。)について、説明するが、本発明は以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。   Hereinafter, a mode for carrying out the present invention (hereinafter referred to as the present embodiment) will be described. However, the present invention is not limited to the following embodiment, and various modifications may be made within the scope of the gist. Can be implemented.

本実施形態の無機イオン吸着体は、有機高分子及び無機イオン吸着体を含有する多孔性成形体の製造に用いられる無機イオン吸着体であって、硝酸塩の含有量が0.01〜5wt%である。   The inorganic ion adsorbent of the present embodiment is an inorganic ion adsorbent used for the production of a porous molded article containing an organic polymer and an inorganic ion adsorbent, and the nitrate content is 0.01 to 5 wt%. is there.

〔無機イオン吸着体〕
本実施形態において無機イオン吸着体とは、イオン吸着現象又はイオン交換現象を示す無機物質をいう。天然物系の無機イオン吸着体としては、ゼオライトやモンモリロナイト、各種の鉱物性物質が挙げられる。各種の鉱物性物質の具体例としては、アルミノケイ酸塩で単一層格子をもつカオリン鉱物、2層格子構造の白雲母、海緑石、鹿沼土、パイロフィライト、タルク、3次元骨組み構造の長石、ゼオライト等が挙げられる。
[Inorganic ion adsorbent]
In this embodiment, the inorganic ion adsorbent refers to an inorganic substance that exhibits an ion adsorption phenomenon or an ion exchange phenomenon. Examples of the natural-based inorganic ion adsorbent include zeolite, montmorillonite, and various mineral substances. Specific examples of various minerals include aluminosilicate kaolin minerals with a single layer lattice, bilayered muscovite, sea green stone, Kanuma soil, pyrophyllite, talc, feldspar with a three-dimensional framework structure And zeolite.

また、合成物系の無機イオン吸着体としては、例えば、金属酸化物(金属酸化物、複合金属酸化物、複合金属水酸化物、金属の含水酸化物等)、多価金属の塩、又は不溶性の含水酸化物等が挙げられる。   Examples of the synthetic inorganic ion adsorbent include, for example, metal oxides (metal oxides, composite metal oxides, composite metal hydroxides, metal hydrated oxides, etc.), polyvalent metal salts, or insoluble. And hydrous oxides.

無機イオン吸着体は、下記式(i)により表される金属酸化物であることが好ましい。また、無機イオン吸着体は、下記式(i)で表される金属酸化物を複数種含有していてもよい。
MN・mHO ・・・(i)
上記式(i)中、xは0〜3、nは1〜4、mは0〜6であり、M及びNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb及びTaからなる群より選ばれる金属元素であり、互いに異なるものである。
The inorganic ion adsorbent is preferably a metal oxide represented by the following formula (i). Moreover, the inorganic ion adsorbent may contain multiple types of metal oxides represented by the following formula (i).
MN x O n · mH 2 O ··· (i)
In the above formula (i), x is 0 to 3, n is 1 to 4, m is 0 to 6, and M and N are Ti, Zr, Sn, Sc, Y, La, Ce, Pr, Nd, A metal selected from the group consisting of Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Si, Cr, Co, Ga, Fe, Mn, Ni, V, Ge, Nb and Ta It is an element and different from each other.

金属酸化物は、上記式(i)中のmが0で表される未含水(未水和)の金属酸化物であってもよいし、mが0以外の数値で表せる金属の含水酸化物(水和金属酸化物)であってもよい。   The metal oxide may be a non-hydrated (unhydrated) metal oxide in which m in the above formula (i) is 0, or a metal hydrous oxide in which m can be represented by a numerical value other than 0. (Hydrated metal oxide) may be used.

また、上記式(i)中のxが0以外の数値である場合の金属酸化物は、含有される各金属元素が規則性を持って酸化物全体に均一に分布し、金属酸化物に含有される各金属元素の組成比が一定に定まった化学式で表される複合金属酸化物である。   In addition, in the case where x in the above formula (i) is a numerical value other than 0, each contained metal element has regularity and is uniformly distributed throughout the oxide, and is contained in the metal oxide. The composite metal oxide is represented by a chemical formula in which the composition ratio of each metal element is constant.

具体的には、ペロブスカイト構造、スピネル構造等を形成し、ニッケルフェライト(NiFe)、ジルコニウムの含水亜鉄酸塩(Zr・Fe・mHO、mは0.5〜6)等が挙げられる。 Specifically, a perovskite structure, a spinel structure, etc. are formed, nickel ferrite (NiFe 2 O 4 ), zirconium hydrous ferrite (Zr · Fe 2 O 4 · mH 2 O, m is 0.5 to 6) ) And the like.

無機イオン吸着体としては、リン、ホウ素、フッ素、ヒ素の吸着性能に優れているという観点から、
(a)水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン及び水和酸化イットリウム、並びに、
(b)チタン、ジルコニウム、スズ、セリウム、ランタン及びイットリウムからなる群より選ばれる金属元素と、アルミニウム、珪素及び鉄からなる群より選ばれる金属元素との複合金属酸化物
からなる群から選ばれる少なくとも一種以上の金属酸化物を選択することが好ましい。これらの群より選ばれる材料は、(a)、(b)群のうち、いずれかの群から選択される材料を組み合わせて用いてもよく、(a)、(b)群のそれぞれにおける各材料を適宜組み合わせて用いてもよい。
As an inorganic ion adsorbent, from the viewpoint of excellent adsorption performance of phosphorus, boron, fluorine, arsenic,
(A) hydrated titanium oxide, hydrated zirconium oxide, hydrated tin oxide, hydrated cerium oxide, hydrated lanthanum oxide and hydrated yttrium oxide, and
(B) at least selected from the group consisting of a complex metal oxide of a metal element selected from the group consisting of titanium, zirconium, tin, cerium, lanthanum and yttrium and a metal element selected from the group consisting of aluminum, silicon and iron It is preferable to select one or more metal oxides. The material selected from these groups may be used in combination of materials selected from any of the groups (a) and (b), and each material in each of the groups (a) and (b) May be used in appropriate combination.

上記式(i)により表される金属酸化物において、上述したM、N以外の金属元素がさらに固溶したものは、無機イオンの吸着性や製造コストの観点から、より好ましい。例えば、上記式(i)に則って、ZrO・mHOという式で表される水和酸化ジルコニウムに、鉄が固溶したものが挙げられる。 In the metal oxide represented by the above formula (i), a metal element other than the above-described metal elements other than M and N is more preferable from the viewpoints of adsorption of inorganic ions and production cost. For example, in accordance with the above formula (i), a hydrated zirconium oxide represented by the formula ZrO 2 .mH 2 O is obtained by dissolving iron in solid solution.

多価金属の塩としては、例えば、下記式(ii)のハイドロタルサイト系化合物が挙げられる。
2+ (1−p)3+ (OH(2+p−q)(An−q/r ・・・(ii)
式(ii)中、M2+は、Mg2+、Ni2+、Zn2+、Fe2+、Ca2+及びCu2+からなる群より選ばれる少なくとも1種の二価の金属イオンを示す。また、M3+は、Al3+及びFe3+からなる群より選ばれる、少なくとも1種の三価の金属イオンを示し、An−は、n価のアニオンを示す。また、0.1≦p≦0.5であり、0.1≦q≦0.5であり、rは1又は2である。
Examples of the polyvalent metal salt include a hydrotalcite compound represented by the following formula (ii).
M 2+ (1-p) M 3+ p (OH ) (2 + p-q) (A n− ) q / r (ii)
In the formula (ii), M 2+ represents at least one divalent metal ion selected from the group consisting of Mg 2+ , Ni 2+ , Zn 2+ , Fe 2+ , Ca 2+ and Cu 2+ . Further, M 3+ is selected from the group consisting of Al 3+ and Fe 3+, represents at least one trivalent metal ion, A n-represents an n-valent anion. Further, 0.1 ≦ p ≦ 0.5, 0.1 ≦ q ≦ 0.5, and r is 1 or 2.

式(ii)のハイドロタルサイト系化合物は、無機イオン吸着体として原料が安価であり、吸着性が高いことから好ましい。   The hydrotalcite-based compound of the formula (ii) is preferable because the raw material is inexpensive as an inorganic ion adsorbent and the adsorptivity is high.

不溶性の含水酸化物としては、不溶性のヘテロポリ酸塩、不溶性ヘキサシアノ鉄酸塩等が挙げられる。   Examples of insoluble hydrated oxides include insoluble heteropolyacid salts and insoluble hexacyanoferrates.

本実施形態の多孔性成形体を構成する無機イオン吸着体の構造については、特に制限はないが、特定の金属酸化物の周囲を他の金属酸化物が覆った混合体構造にすることが好ましい。この混合体構造とすることで、各金属酸化物の有する特性が有効に活用され、よりコストパフォーマンスに優れる無機イオン吸着体が得られる。   The structure of the inorganic ion adsorbent constituting the porous molded body of the present embodiment is not particularly limited, but it is preferable to have a mixed structure in which a specific metal oxide is covered with another metal oxide. . By setting it as this mixture structure, the characteristic which each metal oxide has is used effectively, and the inorganic ion adsorption body which is more excellent in cost performance is obtained.

このような構造の一例として、四三酸化鉄の廻りを水和酸化ジルコニウムが覆った構造が挙げられる。上述したように、金属酸化物には、他の元素を固溶しているものも含む。そのため、ジルコニウムが固溶した四三酸化鉄の周囲が、鉄が固溶した水和酸化ジルコニウムにより覆われた構造も好ましい。   An example of such a structure is a structure in which hydrated zirconium oxide covers the periphery of iron trioxide. As described above, the metal oxide includes those in which other elements are dissolved. Therefore, a structure in which the periphery of triiron tetroxide in which zirconium is dissolved is covered with hydrated zirconium oxide in which iron is dissolved.

ここで、水和酸化ジルコニウムは、リン、ホウ素、フッ素、ヒ素等のイオンに対する吸着性能や繰り返し使用に対する耐久性能が高く、高価である。一方、四三酸化鉄は、水和酸化ジルコニウムに比較してリン、ホウ素、フッ素、ヒ素等のイオンに対する吸着性能や繰り返し使用に対する耐久性能が低く、非常に安価である。   Here, hydrated zirconium oxide has high adsorption performance for ions such as phosphorus, boron, fluorine, and arsenic and high durability performance for repeated use, and is expensive. On the other hand, triiron tetroxide has a low adsorption performance for ions such as phosphorus, boron, fluorine, and arsenic and a durability performance for repeated use compared to hydrated zirconium oxide, and is very inexpensive.

従って、四三酸化鉄の周囲を水和酸化ジルコニウムで覆った構造にした場合、イオンの吸着に関与する無機イオン吸着体の表面付近は、吸着性能、耐久性能が高い水和酸化ジルコニウムになる一方、吸着に関与しない内部は安価な四三酸化鉄になるため、高吸着性能、高耐久性能で低価格の、すなわちコストパフォーマンスに極めて優れる吸着剤として利用できるため好ましい。   Therefore, in the case where the periphery of triiron tetroxide is covered with hydrated zirconium oxide, the surface of the inorganic ion adsorbent involved in the adsorption of ions becomes hydrated zirconium oxide with high adsorption performance and durability. Since the inside which does not participate in adsorption becomes inexpensive iron trioxide, it is preferable because it can be used as an adsorbent having high adsorption performance, high durability performance and low cost, that is, extremely excellent in cost performance.

上述したことから、リン、ホウ素、フッ素、ヒ素の環境や健康に有害なイオンの吸着除去に対して、コストパフォーマンスに優れる吸着剤を得るという観点からは、無機イオン吸着体は、上記式(i)中の、M及びNの少なくとも一方が、アルミニウム、珪素及び鉄からなる群より選ばれる金属元素である金属酸化物の周囲を、上記式(i)中のM及びNの少なくとも一方が、チタン、ジルコニウム、スズ、セリウム、ランタン及びイットリウムからなる群より選ばれる金属元素である金属酸化物で覆った構造で構成されていることが好ましい。   In view of the above, from the viewpoint of obtaining an adsorbent having excellent cost performance with respect to adsorption and removal of ions harmful to the environment and health of phosphorus, boron, fluorine and arsenic, the inorganic ion adsorbent is expressed by the above formula (i ) In which at least one of M and N is a metal element selected from the group consisting of aluminum, silicon and iron, at least one of M and N in the above formula (i) is titanium. It is preferable that the structure is covered with a metal oxide which is a metal element selected from the group consisting of zirconium, tin, cerium, lanthanum and yttrium.

この場合、無機イオン吸着体中の、アルミニウム、珪素及び鉄からなる群より選ばれる金属元素の含有比率は、アルミニウム、珪素及び鉄からなる群より選ばれる金属元素と、チタン、ジルコニウム、スズ、セリウム、ランタン及びイットリウムからなる群より選ばれる金属元素との合計モル数をT、アルミニウム、珪素及び鉄からなる群より選ばれる金属元素のモル数をFとして、F/T(モル比)が、0.01〜0.95の範囲であることが好ましく、0.1〜0.90の範囲であることがより好ましく、0.2〜0.85であることがさらに好ましく、0.3〜0.80であることがさらにより好ましい。   In this case, the content ratio of the metal element selected from the group consisting of aluminum, silicon and iron in the inorganic ion adsorbent is the metal element selected from the group consisting of aluminum, silicon and iron, and titanium, zirconium, tin and cerium. F / T (molar ratio) is 0, where T is the total number of moles of the metal element selected from the group consisting of lanthanum and yttrium, and F is the number of moles of the metal element selected from the group consisting of aluminum, silicon and iron. The range is preferably from 0.01 to 0.95, more preferably from 0.1 to 0.90, still more preferably from 0.2 to 0.85, and more preferably from 0.3 to 0.00. Even more preferably, it is 80.

F/T(モル比)の値を0.95より大きくすると、吸着性能、耐久性能が低くなる傾向にあり、0.01より小さくすると、低価格化に対する効果が小さくなる傾向にある。   If the value of F / T (molar ratio) is larger than 0.95, the adsorption performance and durability performance tend to be low, and if it is smaller than 0.01, the effect on cost reduction tends to be small.

また、金属によっては、金属元素の酸化数が異なる複数の形態の金属酸化物が存在するものがあるが、無機イオン吸着体中で安定に存在できれば、その形態は特に制限されるものではない。例えば、鉄の酸化物である場合は、空気中での酸化安定性の問題から水和酸化第二鉄(一般式:FeO1.5・mHO)又は水和四三酸化鉄(一般式:FeO1.33・mHO)であることが好ましい。 Some metals have a plurality of forms of metal oxides having different oxidation numbers of metal elements. However, the form is not particularly limited as long as it can be stably present in the inorganic ion adsorbent. For example, in the case of an oxide of iron, hydrated ferric oxide (general formula: FeO 1.5 · mH 2 O) or hydrated iron trioxide (general formula) due to the problem of oxidation stability in air. : FeO 1.33 · mH 2 O).

また、本実施形態の多孔性成形体を構成する無機イオン吸着体は、その比表面積が、吸着性能や耐久性能に影響するため、比表面積が一定の範囲内であることが好ましい。具体的には、窒素吸着法で求めたBET比表面積が、20〜1000m/gであることが好ましく、30〜800m/gであることがより好ましく、50〜600m/gであることがさらに好ましく、60〜500m/gであることがさらにより好ましい。BET比表面積を20m/gより小さくすると吸着性能が低下する傾向にあり、1000m/gより大きくすると酸やアルカリに対する溶解性が大きくなる傾向にあり、その結果繰り返し使用に対する耐久性能が低下する傾向にある。 Moreover, since the specific surface area of the inorganic ion adsorbent constituting the porous molded body of the present embodiment affects the adsorption performance and durability performance, the specific surface area is preferably within a certain range. Specifically, BET specific surface area determined by nitrogen adsorption method, is preferably 20~1000m 2 / g, more preferably 30~800m 2 / g, it is 50 to 600 m 2 / g Is more preferable, and it is still more preferable that it is 60-500 m < 2 > / g. When the BET specific surface area is smaller than 20 m 2 / g, the adsorption performance tends to be lowered. When the BET specific surface area is larger than 1000 m 2 / g, the acid and alkali solubility tends to be increased, and as a result, the durability performance against repeated use is lowered. There is a tendency.

無機イオン吸着体の製造方法として、上記式(i)で表される金属酸化物を例に説明する。上記金属酸化物の製造方法としては、特に限定されないが、例えば、金属塩酸塩、硫酸塩、硝酸塩等の塩類水溶液中にアルカリ溶液を添加して得られた沈殿物をろ過、洗浄した後、乾燥することにより得られる。乾燥は風乾するかもしくは約150℃以下、好ましくは約90℃以下で約1〜20時間程度乾燥する。   As a method for producing an inorganic ion adsorbent, a metal oxide represented by the above formula (i) will be described as an example. The method for producing the metal oxide is not particularly limited. For example, the precipitate obtained by adding an alkaline solution to an aqueous salt solution such as metal hydrochloride, sulfate, nitrate, etc. is filtered, washed, and then dried. Can be obtained. Drying is performed by air drying or at about 150 ° C. or less, preferably about 90 ° C. or less for about 1 to 20 hours.

次に、特定の金属酸化物の周囲を、他の金属酸化物が覆った混合体構造にする製造方法について、四三酸化鉄の周囲を酸化ジルコニウムが覆った構造の無機イオン吸着体を製造する場合を例に説明する。   Next, an inorganic ion adsorbent having a structure in which zirconium oxide is covered around triiron tetroxide is manufactured for a manufacturing method in which the periphery of a specific metal oxide is a mixed structure covered with another metal oxide. A case will be described as an example.

この例の製造方法は、上記式(i)中のM及びNの少なくとも一方がアルミニウム、珪素及び鉄からなる群より選ばれる金属元素である金属酸化物の周囲を、上記式(i)中のM及びNの少なくとも一方がチタン、ジルコニウム、スズ、セリウム、ランタン及びイットリウムからなる群から選ばれる金属元素である金属酸化物で覆った構造で構成されている無機イオン吸着体の製造方法にも相当する。   In the manufacturing method of this example, at least one of M and N in the above formula (i) is surrounded by a metal oxide which is a metal element selected from the group consisting of aluminum, silicon and iron in the above formula (i). Corresponding to a method for producing an inorganic ion adsorbent comprising a structure in which at least one of M and N is covered with a metal oxide which is a metal element selected from the group consisting of titanium, zirconium, tin, cerium, lanthanum and yttrium To do.

先ず、ジルコニウムの塩化物、硝酸塩、硫酸塩等の塩と、鉄の塩化物、硝酸塩、硫酸塩等の塩とを、上述のF/T(モル比)が所望の値になるように混合した塩類水溶液を作製する。その後、アルカリ水溶液を添加して、pHを8〜9.5好ましくは8.5〜9に調製して沈殿物を生成させる。この後、水溶液の温度を50℃にし、pHを8〜9.5に、好ましくは8.5〜9に保ちながら空気を吹き込み、液相に第一鉄イオンが検出できなくなるまで、酸化処理を行う。   First, zirconium chloride, nitrate, sulfate, and other salts and iron chloride, nitrate, sulfate, and other salts were mixed so that the above-mentioned F / T (molar ratio) was a desired value. An aqueous salt solution is prepared. Thereafter, an alkaline aqueous solution is added to adjust the pH to 8 to 9.5, preferably 8.5 to 9 to form a precipitate. Thereafter, the temperature of the aqueous solution is set to 50 ° C., air is blown in while maintaining the pH at 8 to 9.5, preferably 8.5 to 9, and oxidation is performed until no ferrous ions can be detected in the liquid phase. Do.

そして、生じた沈澱を濾別し、水洗した後乾燥することにより得られる。乾燥は風乾するかもしくは約150℃以下、好ましくは約90℃以下で約1〜20時間程度乾燥する。乾燥後の含水率は、1〜40wt%の範囲内に入ることが好ましい。   The resulting precipitate is filtered off, washed with water and dried. Drying is performed by air drying or at about 150 ° C. or less, preferably about 90 ° C. or less for about 1 to 20 hours. The moisture content after drying is preferably in the range of 1 to 40 wt%.

上述した製造方法において用いられるジルコニウムの塩としては、オキシ塩化ジルコニウム(ZrOCl)、四塩化ジルコニウム(ZrCl)、硝酸ジルコニウム(Zr(NO)、硫酸ジルコニウム(Zr(SO)等が挙げられる。これらは例えば、Zr(SO・4HO等のように含水塩であってもよい。これらの金属塩は、通常、1リットル中に約0.05〜2.0モルの溶液状で用いられる。 Zirconium salts used in the production method described above include zirconium oxychloride (ZrOCl 2 ), zirconium tetrachloride (ZrCl 4 ), zirconium nitrate (Zr (NO 3 ) 4 ), zirconium sulfate (Zr (SO 4 ) 2 ). Etc. These may be hydrated salts such as Zr (SO 4 ) 2 .4H 2 O. These metal salts are usually used in the form of a solution of about 0.05 to 2.0 mol per liter.

上述した製造方法において用いられる鉄の塩としては、硫酸第一鉄(FeSO)、硝酸第一鉄(Fe(NO)、塩化第一鉄(FeCl)等の第一鉄塩が挙げられる。これらもFeSO・7HO等の含水塩であってもよい。これらの第一鉄塩は通常、固形物で加えられるが、溶液状で加えてもよい。 Examples of the iron salt used in the production method described above include ferrous salts such as ferrous sulfate (FeSO 4 ), ferrous nitrate (Fe (NO 3 ) 2 ), and ferrous chloride (FeCl 2 ). Can be mentioned. These may also be hydrated salts such as FeSO 4 .7H 2 O. These ferrous salts are usually added as solids, but may be added in the form of a solution.

アルカリとしては、例えば水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア、炭酸ナトリウム等が挙げられる。   Examples of the alkali include sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia, sodium carbonate and the like.

また、上記ジルコニウムの塩及び鉄の塩は、好ましくは約5〜20質量%の水溶液で用いられる。   The zirconium salt and iron salt are preferably used in an aqueous solution of about 5 to 20% by mass.

上記酸化処理工程において酸化性ガスを吹き込む場合、その時間は、酸化性ガスの種類などによって異なるが、通常約1〜10時間程度である。また上記酸化処理工程において空気を吹き込む処理に代えて酸化剤を用いる場合、酸化剤としては、例えば過酸化水素、次亜塩素酸ナトリウム、次亜塩素酸カリウム等が用いられる。   When the oxidizing gas is blown in the oxidation treatment step, the time is usually about 1 to 10 hours, although it varies depending on the kind of the oxidizing gas. Moreover, when using an oxidizing agent instead of the process which blows air in the said oxidation treatment process, as an oxidizing agent, hydrogen peroxide, sodium hypochlorite, potassium hypochlorite etc. are used, for example.

〔無機イオン吸着体の硝酸塩含有量〕
本実施形態の多孔性成形体の製造に用いる無機イオン吸着体の硝酸塩の含有量は、0.01〜5wt%である。好ましくは、0.015〜2wt%、さらに好ましくは0.02〜1wt%である。
[Nitrate content of inorganic ion adsorbent]
The content of nitrate in the inorganic ion adsorbent used for producing the porous molded body of the present embodiment is 0.01 to 5 wt%. Preferably, it is 0.015 to 2 wt%, more preferably 0.02 to 1 wt%.

硝酸塩の含有量が0.01wt%以上であると、無機イオン吸着体表面の活性点が、多孔性成形体製造時に有機高分子により塞がれにくい。そのため、リンやホウ素等を高速に吸着処理できる多孔性成形体が得られる。硝酸塩の含有量が5wt%以下であると、有機高分子と無機イオン吸着体との担持性(接着強度)が強い。そのため、耐久性が高く、繰り返し使用できる多孔性成形体が得られる。   When the content of nitrate is 0.01 wt% or more, the active sites on the surface of the inorganic ion adsorbent are not easily blocked by the organic polymer during the production of the porous molded body. Therefore, a porous molded body that can adsorb phosphorus, boron, and the like at high speed is obtained. When the nitrate content is 5 wt% or less, the supportability (adhesion strength) between the organic polymer and the inorganic ion adsorbent is strong. Therefore, a porous molded body that has high durability and can be used repeatedly is obtained.

〔硝酸塩含有量の分析方法〕
本実施形態の無機イオン吸着体の硝酸塩の含有量は、無機イオン吸着体を純水の中に分散させ、純水側に溶出してくる硝酸イオンを分析して求める。分析方法は、公知の方法が適用でき、比色法やイオンクロマトグラフィーが適用できる。特に、検出感度が高い点でイオンクロマトグラフィーが好ましい。
[Method of analyzing nitrate content]
The nitrate content of the inorganic ion adsorbent of the present embodiment is obtained by dispersing the inorganic ion adsorbent in pure water and analyzing nitrate ions eluted to the pure water side. As the analysis method, a known method can be applied, and a colorimetric method or ion chromatography can be applied. In particular, ion chromatography is preferable in terms of high detection sensitivity.

無機イオン吸着と純水の割合は、重量比で1:1とする。この時、無機イオン吸着体の含水率は、1〜40wt%の範囲である。無機イオン吸着の硝酸塩含有量は、イオンクロマトグラフィーで求めた純水側に溶出した硝酸イオン濃度を、無機イオン吸着体の重量あたりに換算して算出する。   The ratio of inorganic ion adsorption to pure water is 1: 1 by weight. At this time, the moisture content of the inorganic ion adsorbent is in the range of 1 to 40 wt%. The nitrate content of inorganic ion adsorption is calculated by converting the nitrate ion concentration eluted on the pure water side determined by ion chromatography per weight of the inorganic ion adsorbent.

〔無機イオン吸着体の含水率〕
本実施形態の無機イオン吸着体の含水率は、1〜40wt%である。好ましくは、2〜35wt%、更に好ましくは、5〜30wt%である。
[Water content of inorganic ion adsorbent]
The moisture content of the inorganic ion adsorbent of the present embodiment is 1 to 40 wt%. Preferably, it is 2-35 wt%, More preferably, it is 5-30 wt%.

無機イオン吸着体の含水率が1wt%以上であると、無機イオン吸着体の水酸基が多いため、リンやホウ素等を高速に吸着処理できる多孔性成形体を得られる。また、40wt%以下であると、無機イオン吸着体の自由水が少ないため、有機高分子と無機イオン吸着体との担持性(接着強度)が強い。そのため、耐久性が高く、繰り返し使用できる多孔性成形体を得られる。   When the water content of the inorganic ion adsorbent is 1 wt% or more, since the inorganic ion adsorbent has many hydroxyl groups, a porous molded body capable of adsorbing phosphorus, boron, etc. at high speed can be obtained. Moreover, since there is little free water of an inorganic ion adsorption body as it is 40 wt% or less, the supportability (adhesion strength) of an organic polymer and an inorganic ion adsorption body is strong. Therefore, it is possible to obtain a porous molded body that has high durability and can be used repeatedly.

〔含水率測定方法〕
本実施形態の無機イオン吸着体の含水率は、無機イオン吸着体の乾燥時の質量Wd(g)、灰分の質量Wa(g)、とするとき、下記式(iii)により表される値である。
含水率(wt%)=(Wd−Wa)/Wa ×100 ・・・(iii)
ここで、灰分は本実施形態の無機イオン吸着体を800℃で2時間焼成したときの残分として求められる。
[Method of measuring moisture content]
The moisture content of the inorganic ion adsorbent of the present embodiment is a value represented by the following formula (iii) when the inorganic ion adsorbent has a dry mass Wd (g) and an ash mass Wa (g). is there.
Water content (wt%) = (Wd−Wa) / Wa × 100 (iii)
Here, the ash content is obtained as a residue when the inorganic ion adsorbent of the present embodiment is baked at 800 ° C. for 2 hours.

〔多孔性成形体〕
本実施形態の多孔性成形体は、有機高分子と、無機イオン吸着体とを含有し、無機イオン吸着体の硝酸塩の含有量が0.01〜5wt%である多孔性成形体である。
(Porous molded product)
The porous molded body of the present embodiment is a porous molded body containing an organic polymer and an inorganic ion adsorbent, and the content of nitrate in the inorganic ion adsorbent is 0.01 to 5 wt%.

〔有機高分子〕
本実施形態の有機高分子は、特に限定されないが、湿式相分離による多孔化手法が可能なものが好ましい。たとえば、ポリスルホン系ポリマー、ポリフッ化ビニリデン系ポリマー、ポリ塩化ビニリデン系ポリマー、アクリロニトリル系ポリマー、ポリメタクリル酸メチル系ポリマー、ポリアミド系ポリマー、ポリイミド系ポリマー、セルロース系ポリマー、エチレンビニルアルコール共重合体系ポリマー等、多種類があげられる。
[Organic polymer]
The organic polymer of the present embodiment is not particularly limited, but is preferably one that can be made porous by wet phase separation. For example, polysulfone polymer, polyvinylidene fluoride polymer, polyvinylidene chloride polymer, acrylonitrile polymer, polymethyl methacrylate polymer, polyamide polymer, polyimide polymer, cellulose polymer, ethylene vinyl alcohol copolymer polymer, etc. There are many types.

特に、水中での非膨潤性と耐生分解性、さらに製造のし易さから、エチレンビニルアルコール共重合体(EVOH)、ポリアクリロニトリル(PAN)、ポリスルホン(PS)、ポリエーテルスルホン(PES)、ポリフッ化ビニリデン(PVDF)が好ましく、さらに耐薬品性と高強度を兼ね備えている点で、ポリスルホン(PS)とポリエーテルスルホン(PES)が好ましい。特に、末端に水酸基を有しているポリエーテルスルホン(PES)は、無機イオン吸着体との親和性が高い。そのため、耐久性が高く繰り返し使用可能な、吸着剤に適した多孔性成形体を得られる。   In particular, from the viewpoint of non-swellability and biodegradability in water, and ease of production, ethylene vinyl alcohol copolymer (EVOH), polyacrylonitrile (PAN), polysulfone (PS), polyethersulfone (PES), Polyvinylidene fluoride (PVDF) is preferred, and polysulfone (PS) and polyethersulfone (PES) are preferred in that they have both chemical resistance and high strength. In particular, polyethersulfone (PES) having a hydroxyl group at the terminal has high affinity with the inorganic ion adsorbent. Therefore, a porous molded body suitable for an adsorbent that has high durability and can be used repeatedly can be obtained.

〔多孔性成形体の形状〕
本実施形態の多孔性成形体の形状は、後述の多孔性成形体の製造方法における凝固工程において、粒子状、円柱状、中空円柱状、糸状、中空糸状、シート状等の形状に成形することができる。特に、多孔性成形体を水処理分野において吸着剤として使用する場合には、カラム等に充填して通水する際の圧力損失、接触面積の有効性の点、取り扱い易さの点から粒子状が好ましく、特に球状粒子(真球状のみならず、楕円球状であってもよい)が好ましい。
[Shape of porous molded body]
The shape of the porous molded body of the present embodiment is formed into a shape such as a particulate shape, a cylindrical shape, a hollow cylindrical shape, a thread shape, a hollow fiber shape, and a sheet shape in a solidification step in the porous molded body manufacturing method described later. Can do. In particular, when the porous molded body is used as an adsorbent in the water treatment field, it is in the form of particles from the viewpoint of pressure loss, contact area effectiveness, and ease of handling when packed in a column or the like and passed through. In particular, spherical particles (not only spherical but may be elliptical) may be preferable.

本実施形態の多孔性成形体を球状体としたとき、該球状粒子の最大長を粒子径とし、その平均値を平均粒子径とする。平均粒子径は、成形体表面を電子顕微鏡又は実体顕微鏡で観察し、成形体表面の画像から実測して求めることができる。例えば、多孔性成形体の粒子が真球である場合はその直径、真球以外である場合は最大長が粒子径となる。   When the porous molded body of this embodiment is a spherical body, the maximum length of the spherical particles is the particle diameter, and the average value is the average particle diameter. The average particle diameter can be obtained by observing the surface of the molded body with an electron microscope or a stereomicroscope and actually measuring the surface of the molded body. For example, when the particles of the porous molded body are true spheres, the diameter is the diameter. When the particles are other than the true sphere, the maximum length is the particle diameter.

なお、「球状」とは、実質的に略球形状とみなされるものであればよく、完全な真球状であることを要求するものではない。   It should be noted that the “spherical shape” only needs to be regarded as a substantially spherical shape, and does not require a perfect spherical shape.

球状粒子の好ましい平均粒子径の範囲は100〜2500μmであり、200〜2000μmがより好ましい。平均粒子径が100μm以上であると、カラムやタンク等に充填した際に、圧力損失が抑えられる傾向にあり、また、平均粒子径が2500μm以下であると、カラムやタンクに充填したときの表面積が大きくなり処理効率が上がる傾向にある。   The range of the preferable average particle diameter of a spherical particle is 100-2500 micrometers, and 200-2000 micrometers is more preferable. When the average particle size is 100 μm or more, the pressure loss tends to be suppressed when the column or tank is packed, and when the average particle size is 2500 μm or less, the surface area when the column or tank is packed Tends to increase and the processing efficiency tends to increase.

また、多孔性成形体が球状体以外の粒子状の形状である場合についても、球状体と同様の方法により平均粒子径を求めることができ、好ましい平均粒子径の数値範囲も同様である。   Further, even when the porous molded body has a particle shape other than the spherical body, the average particle diameter can be obtained by the same method as that for the spherical body, and the preferable numerical range of the average particle diameter is also the same.

〔多孔性成形体の製造方法〕
本実施形態の多孔性成形体の製造方法は、無機イオン吸着体を洗浄し、不純物含有量を調整する洗浄工程と、洗浄した無機イオン吸着体の含水率を調整する乾燥工程と、有機高分子と、有機高分子の良溶媒と、無機イオン吸着体と、水溶性高分子とを混合してスラリーを得る混合工程と、スラリーを成形し、有機高分子の貧溶媒を含む凝固液中で凝固させる凝固工程とを有する。
[Method for producing porous molded body]
The method for producing a porous molded body of the present embodiment includes a cleaning step for cleaning an inorganic ion adsorbent and adjusting the impurity content, a drying step for adjusting the water content of the washed inorganic ion adsorbent, and an organic polymer. A mixing step of mixing a good solvent of organic polymer, an inorganic ion adsorbent, and a water-soluble polymer to obtain a slurry, and forming the slurry and coagulating in a coagulating liquid containing a poor solvent of the organic polymer A coagulation step.

〔洗浄工程〕
本実施形態の無機イオン吸着体の不純物含有量(硝酸塩含有量)を調整する洗浄工程は、無機イオン吸着体を洗浄水の中に分散、撹拌し、水側に不純物を溶出させ、不純物を含有した洗浄水と無機イオン吸着体を固液分離することで洗浄する。当該洗浄工程は、所定の不純物含有量になるまで、繰り返される。
[Washing process]
In the cleaning process for adjusting the impurity content (nitrate content) of the inorganic ion adsorbent of this embodiment, the inorganic ion adsorbent is dispersed and stirred in the washing water, and the impurities are eluted on the water side and contain impurities. Washing is performed by solid-liquid separation of the washed water and the inorganic ion adsorbent. The cleaning process is repeated until a predetermined impurity content is reached.

洗浄の終点は、水側に溶出してくる硝酸イオンの濃度を分析して求める。分析方法は、公知の方法が適用でき、比色法やイオンクロマトグラフィーが適用できる。特に、検出感度が高い点でイオンクロマトグラフィーが好ましい。   The end point of washing is determined by analyzing the concentration of nitrate ions eluted to the water side. As the analysis method, a known method can be applied, and a colorimetric method or ion chromatography can be applied. In particular, ion chromatography is preferable in terms of high detection sensitivity.

好ましい洗浄終点の範囲は、無機イオン吸着と洗浄水の割合が、重量比で1:1の時、200〜50,000mg−NO/Lである。洗浄終点が200mg−NO/L以上であると、無機イオン吸着体表面の活性点が、多孔性成形体製造時に有機高分子により塞がれにくい。そのため、リンやホウ素等を高速に吸着処理できる多孔性成形体を得られる。
洗浄終点が50,000mg−NO/L以下であると、有機高分子と無機イオン吸着体との担持性(接着強度)が強い。そのため、耐久性が高く、繰り返し使用できる多孔性成形体を得られる。
A preferable range of the end point of washing is 200 to 50,000 mg-NO 3 / L when the ratio of inorganic ion adsorption and washing water is 1: 1 by weight. When the end point of cleaning is 200 mg-NO 3 / L or more, the active points on the surface of the inorganic ion adsorbent are not easily blocked by the organic polymer during the production of the porous molded body. Therefore, a porous molded body that can adsorb phosphorus, boron, and the like at high speed can be obtained.
When the cleaning end point is 50,000 mg-NO 3 / L or less, the supportability (adhesion strength) between the organic polymer and the inorganic ion adsorbent is strong. Therefore, it is possible to obtain a porous molded body that has high durability and can be used repeatedly.

洗浄水は、特に限定されるものではないが、蒸留水やイオン交換水、超純水を用いることが好ましい。   The washing water is not particularly limited, but it is preferable to use distilled water, ion exchange water, or ultrapure water.

固液分離方法は、特に限定されないが、ろ過法、沈降法、遠心分離法が適用できる。   The solid-liquid separation method is not particularly limited, and a filtration method, a sedimentation method, and a centrifugation method can be applied.

〔乾燥工程〕
本実施形態の無機イオン吸着体の含水率を調整する乾燥工程において、乾燥方法は特に限定されないが、風乾するかもしくは乾燥機を用いて乾燥することができる。乾燥機も特に限定されないが、棚乾燥機、パドルドライヤー等が使用できる。乾燥温度は150℃以下が好ましく、90℃以下が更に好ましい。乾燥後の含水率は、1〜40wt%の範囲内に入ることが好ましい。
[Drying process]
In the drying step of adjusting the moisture content of the inorganic ion adsorbent of the present embodiment, the drying method is not particularly limited, but it can be air-dried or dried using a dryer. The dryer is not particularly limited, but a shelf dryer, a paddle dryer or the like can be used. The drying temperature is preferably 150 ° C. or lower, and more preferably 90 ° C. or lower. The moisture content after drying is preferably in the range of 1 to 40 wt%.

〔有機高分子の良溶媒〕
本実施形態の多孔性成形体の製造方法に用いる有機高分子の良溶媒としては、成形体の製造条件において有機高分子を安定に1質量%を超えて溶解するものであれば、特に限定されるものではなく、従来公知のものを使用できる。例えば、N−メチル−2ピロリドン(NMP)、N,N−ジメチルアセトアミド(DMAC)、N,N−ジメチルホルムアミド(DMF)等が挙げられる。これらは1種のみを用いてもよく、2種以上を混合して用いてもよい。
[Good solvent for organic polymers]
The good solvent for the organic polymer used in the method for producing the porous molded body of the present embodiment is not particularly limited as long as the organic polymer is stably dissolved in excess of 1% by mass under the production conditions of the molded body. Conventionally known ones can be used. For example, N-methyl-2pyrrolidone (NMP), N, N-dimethylacetamide (DMAC), N, N-dimethylformamide (DMF) and the like can be mentioned. These may use only 1 type and may mix and use 2 or more types.

〔水溶性高分子〕
本実施形態の多孔性成形体の製造方法に用いる水溶性高分子は、有機高分子の良溶媒と有機高分子とに対して相溶性のあるものであればよく、特に限定されない。水溶性高分子としては、天然高分子、半合成高分子、合成高分子のいずれも使用できる。
(Water-soluble polymer)
The water-soluble polymer used in the method for producing the porous molded body of the present embodiment is not particularly limited as long as it is compatible with a good solvent for the organic polymer and the organic polymer. As the water-soluble polymer, any of natural polymers, semi-synthetic polymers, and synthetic polymers can be used.

天然高分子としては、例えば、グアーガム、ローカストビーンガム、カラーギナン、アラビアゴム、トラガント、ペクチン、デンプン、デキストリン、ゼラチン、カゼイン、コラーゲン等が挙げられる。半合成高分子としては、例えば、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルデンプン、メチルデンプン等が挙げられる。合成高分子としては、例えば、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルメチルエーテル、カルボキシビニルポリマー、ポリアクリル酸ナトリウム、さらに、テトラエチレングリコール、トリエチレングリコール等のポリエチレングリコール類が挙げられる。   Examples of natural polymers include guar gum, locust bean gum, carrageenan, gum arabic, tragacanth, pectin, starch, dextrin, gelatin, casein, collagen and the like. Examples of the semisynthetic polymer include methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl starch, and methyl starch. Examples of the synthetic polymer include polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl methyl ether, carboxyvinyl polymer, sodium polyacrylate, and polyethylene glycols such as tetraethylene glycol and triethylene glycol.

上記水溶性高分子のなかでも、無機イオン吸着体の担持性を高める点から、合成高分子が好ましく、多孔性が向上する点から、ポリビニルピロリドン類とポリエチレングリコール類がより好ましい。   Among the water-soluble polymers, a synthetic polymer is preferable from the viewpoint of improving the supportability of the inorganic ion adsorbent, and polyvinylpyrrolidones and polyethylene glycols are more preferable from the viewpoint of improving the porosity.

〔混合工程〕
混合工程においては、有機高分子と、有機高分子の良溶媒と、無機イオン吸着体と、水溶性高分子とを混合してスラリーを得る。混合の方法は、特に限定されるものではなく、公知技術が使用できる。例えば、撹拌機、混合ミル、アトライタ、ビーズミル等を用いることができる。
[Mixing process]
In the mixing step, an organic polymer, a good solvent for the organic polymer, an inorganic ion adsorbent, and a water-soluble polymer are mixed to obtain a slurry. The mixing method is not particularly limited, and a known technique can be used. For example, a stirrer, a mixing mill, an attritor, a bead mill or the like can be used.

〔凝固工程〕
この凝固工程においては、混合工程により得たスラリーを有機高分子の貧溶媒を含む凝固液中で凝固させて、スラリーを成形し、多孔性成形体を得る。
[Coagulation process]
In this coagulation step, the slurry obtained in the mixing step is coagulated in a coagulation solution containing an organic polymer poor solvent, and the slurry is molded to obtain a porous molded body.

〔貧溶媒〕
混合工程により得たスラリーを成形し、有機高分子の貧溶媒を含む凝固液中で凝固させる工程において用いる貧溶媒としては、凝固させる工程の条件において有機高分子の溶解度が1質量%以下の溶媒を使用することができ、例えば、水や、メタノール、エタノール等のアルコール類、エーテル類、n−ヘキサン、n−ヘプタン等の脂肪族炭化水素類等の有機高分子を溶解しない液体が挙げられる。好ましくは、水である。
[Poor solvent]
The poor solvent used in the step of forming the slurry obtained by the mixing step and coagulating in a coagulating liquid containing a poor solvent for the organic polymer is a solvent having a solubility of the organic polymer of 1% by mass or less under the conditions of the solidifying step. Examples thereof include water, liquids that do not dissolve organic polymers such as alcohols such as methanol and ethanol, ethers, and aliphatic hydrocarbons such as n-hexane and n-heptane. Preferably, it is water.

また、凝固工程では、前の工程から良溶媒が持ち込まれ、良溶媒の濃度が、凝固工程開始時と終点で、変化してしまう。そのため、あらかじめ貧溶媒中に良溶媒を加え、初期の濃度を維持するように貧溶媒を別途加えながら濃度を管理して凝固する方法を採ることが好ましい。そのように濃度調整することで、多孔性成形体の構造(表面の開口度や、粒子形状)を制御できる。凝固工程において、凝固液は、貧溶媒:良溶媒の比率が、100〜30質量%:0〜70質量%であることが好ましい。貧溶媒が水の場合、凝固工程において、水に対する有機高分子の良溶媒の含有量は、0〜60質量%であることが好ましく、0〜50質量%であることがより好ましい。有機高分子の良溶媒の含有量が、60質量%以下であると、多孔性成形体の形状が良好になる効果が得られる。   Further, in the coagulation process, the good solvent is brought in from the previous process, and the concentration of the good solvent changes at the start and end points of the coagulation process. Therefore, it is preferable to adopt a method in which a good solvent is added to a poor solvent in advance and the concentration is controlled and solidified while separately adding the poor solvent so as to maintain the initial concentration. By adjusting the concentration in such a manner, the structure (opening degree of the surface and particle shape) of the porous molded body can be controlled. In the coagulation step, the ratio of the poor solvent to the good solvent in the coagulation liquid is preferably 100 to 30% by mass: 0 to 70% by mass. When the poor solvent is water, in the coagulation step, the content of the good solvent of the organic polymer with respect to water is preferably 0 to 60% by mass, and more preferably 0 to 50% by mass. When the content of the good solvent of the organic polymer is 60% by mass or less, an effect of improving the shape of the porous molded body is obtained.

加えて、貧溶媒中に、有機高分子の良溶媒を添加する量や速さを制御することで、成形用スラリーの凝固速度をコントロールすることも可能である。   In addition, the solidification rate of the molding slurry can be controlled by controlling the amount and speed of adding the good solvent of the organic polymer to the poor solvent.

貧溶媒の温度については、特に限定されるものではないが、貧溶媒中の成形体の状態の安定性の観点から、好ましくは−30℃〜90℃、より好ましくは0℃〜90℃、さらに好ましくは0℃〜80℃である。   Although it does not specifically limit about the temperature of a poor solvent, From a viewpoint of the stability of the state of the molded object in a poor solvent, Preferably it is -30 degreeC-90 degreeC, More preferably, it is 0 degreeC-90 degreeC, Furthermore, Preferably it is 0 degreeC-80 degreeC.

〔成形方法〕
本実施形態の多孔性成形体の形態は、成形用スラリーを成形する方法によって、粒子状、糸状、シート状、中空糸状、円柱状、中空円柱状等の任意の形態を採ることができる。
[Molding method]
The form of the porous molded body of the present embodiment can take any form such as a particulate form, a thread form, a sheet form, a hollow fiber form, a cylindrical form, and a hollow cylindrical form, depending on the method for forming the forming slurry.

例えば、粒子状の多孔性成形体を成形する方法としては、特に限定されないが、回転する容器の側面に設けたノズルから、容器中に収納されている成形用スラリーを飛散させて、液滴を形成させる回転ノズル法等が挙げられる。さらに具体的には、1流体ノズルや2流体ノズルから、成形用スラリー(有機高分子と、有機高分子の良溶媒と、無機イオン吸着体と、水溶性高分子との混合スラリー)を噴霧して凝固浴中で凝固する方法が挙げられる。特に、粒子状で粒度分布が揃ったものが得られるという観点から、回転ノズル法が特に好ましい。回転ノズル法とは、高速で回転する回転容器の側面に設けたノズルから、遠心力で成形用スラリーを飛散させて液滴を形成させる方法である。   For example, the method of forming the particulate porous molded body is not particularly limited, but the molding slurry stored in the container is scattered from the nozzle provided on the side surface of the rotating container, and droplets are formed. Examples of the method include a rotating nozzle method to be formed. More specifically, a molding slurry (a mixed slurry of an organic polymer, a good solvent for the organic polymer, an inorganic ion adsorbent, and a water-soluble polymer) is sprayed from a 1-fluid nozzle or a 2-fluid nozzle. And a method of coagulating in a coagulation bath. In particular, the rotating nozzle method is particularly preferable from the viewpoint that particles having a uniform particle size distribution can be obtained. The rotating nozzle method is a method in which droplets are formed by scattering molding slurry by centrifugal force from a nozzle provided on a side surface of a rotating container that rotates at high speed.

このとき、ノズルの径は、0.1mm〜10mmの範囲が好ましく、0.1mm〜5mmの範囲がより好ましい。0.1mm以上とすると液滴が飛散しやすく、10mm以下とすると粒度分布の広がりを抑えることができる。   At this time, the diameter of the nozzle is preferably in the range of 0.1 mm to 10 mm, and more preferably in the range of 0.1 mm to 5 mm. If the thickness is 0.1 mm or more, droplets are likely to scatter, and if it is 10 mm or less, the spread of the particle size distribution can be suppressed.

遠心力は、遠心加速度で表され、5〜1500Gの範囲が好ましく、10〜1000Gの範囲がより好ましく、10〜800Gの範囲がさらに好ましい。遠心加速度が5G以上であると、液滴の形成と飛散が容易であり、1500G以下であるとポリマースラリーが糸状にならずに吐出するので粒度分布が広くなるのを抑えることができる。   Centrifugal force is represented by centrifugal acceleration, preferably in the range of 5 to 1500 G, more preferably in the range of 10 to 1000 G, and still more preferably in the range of 10 to 800 G. When the centrifugal acceleration is 5G or more, the formation and scattering of droplets are easy, and when it is 1500G or less, the polymer slurry is discharged without being in the form of a thread, so that the particle size distribution can be suppressed from widening.

また、糸状やシート状の多孔性成形体を成形する方法としては、該当する形状の紡口、ダイスから成形用スラリーを押し出し、貧溶媒を含む凝固液中で凝固させる方法が挙げられる。   Examples of a method for forming a thread-like or sheet-like porous molded body include a method of extruding a molding slurry from a spinneret or die having a corresponding shape and coagulating it in a coagulating liquid containing a poor solvent.

また、中空糸状成形体とするときは、環状オリフィスからなる紡口を用いることで同様に成形できる。円柱状及び中空円柱状成形体とするときは、紡口から成形用スラリーを押し出す際、切断しながら貧溶媒を含む凝固液中で凝固させてもよいし、糸状に凝固させてから後に切断しても構わない。   Further, when a hollow fiber-shaped molded body is formed, it can be molded in the same manner by using a spinning nozzle composed of an annular orifice. When forming the cylindrical and hollow cylindrical molded bodies, when extruding the molding slurry from the spinning nozzle, it may be solidified in a coagulating liquid containing a poor solvent while being cut, or it may be solidified into a filament and then cut later. It doesn't matter.

以下、具体的な実施例及び比較例を挙げて説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although a specific Example and a comparative example are given and demonstrated, this invention is not limited to these.

本実施例において、無機イオン吸着体及び多孔性成形体の物性は、以下の方法により測定した。   In this example, the physical properties of the inorganic ion adsorbent and the porous molded body were measured by the following methods.

(硝酸塩含有量)
無機イオン吸着100gをイオン交換水100gの中に分散させ、撹拌羽を取り付けた撹拌機を用いて回転数200rpmで30分間撹拌した。10分間沈降させた後、上澄み液をサンプリングし、25μmフィルタでろ過し、イオンクロマトグラフィーで分析した。
イオンクロマトグラフィー装置(IC‐2001、東ソー(株))
カラム(TSKgel SuperIC−AZ、サイズ:4.6mmI.D×15cm)溶離液(6.3mM NaHC03+1,7mM Na2C03)
流速:0.8mL/分)
(Nitrate content)
100 g of inorganic ion adsorbed was dispersed in 100 g of ion-exchanged water, and stirred for 30 minutes at a rotation speed of 200 rpm using a stirrer equipped with stirring blades. After settling for 10 minutes, the supernatant was sampled, filtered through a 25 μm filter and analyzed by ion chromatography.
Ion chromatography device (IC-2001, Tosoh Corporation)
Column (TSKgel SuperIC-AZ, size: 4.6 mm ID × 15 cm) eluent (6.3 mM NaHC03 + 1, 7 mM Na2C03)
(Flow rate: 0.8 mL / min)

無機イオン吸着の硝酸塩含有量は、イオンクロマトグラフィーで求めた純水側に溶出した硝酸イオン濃度CNO3(mg/L)から、下記式(iv)を用いて算出した。
硝酸塩含有量(wt%)=CNO3(mg/L)/1000×100(g−純水)/1000/100(g−無機イオン吸着体)×100 ・・・(iv)
The nitrate content of inorganic ion adsorption was calculated using the following formula (iv) from the nitrate ion concentration C NO3 (mg / L) eluted on the pure water side determined by ion chromatography.
Nitrate content (wt%) = CNO3 (mg / L) / 1000 × 100 (g-pure water) / 1000/100 (g-inorganic ion adsorbent) × 100 (iv)

(含水率)
無機イオン吸着体を800℃で2時間焼成したときの灰分を求め、下記式(v)から算出した。
含水率(wt%)=(Wd−Wa)/Wa ×100 ・・・(v)
ここで、無機イオン吸着体の乾燥時の質量をWd(g)、灰分の質量をWa(g)とした。
(Moisture content)
The ash content when the inorganic ion adsorbent was baked at 800 ° C. for 2 hours was calculated and calculated from the following formula (v).
Moisture content (wt%) = (Wd−Wa) / Wa × 100 (v)
Here, the mass when the inorganic ion adsorbent was dried was Wd (g), and the mass of ash was Wa (g).

(強度保持率)
目開き300μmの篩を用いて、多孔性成形体を篩い、300μmより小さいものを除去した多孔性成形体を得た。メスシリンダーを用いて秤量した多孔性成形体10mLと純水100mLとを容量100mLのポリエチレン製容器(直径約50mm)に入れて、振とう機にて、250rpmの往復振とう周期で96時間振とうした。96時間振とう後、多孔性成形体を容器から取り出し、目開き300μmの篩で篩い分け、300μmより小さいものを破砕品として捕集した。
(Strength retention)
Using a sieve having a mesh opening of 300 μm, the porous molded body was sieved to obtain a porous molded body from which particles smaller than 300 μm were removed. 10 mL of a porous molded body and 100 mL of pure water weighed using a graduated cylinder are placed in a 100 mL polyethylene container (diameter: about 50 mm) and shaken for 96 hours with a shaker at a reciprocal shaking cycle of 250 rpm. did. After shaking for 96 hours, the porous molded body was taken out of the container, sieved with a sieve having an opening of 300 μm, and those smaller than 300 μm were collected as crushed products.

捕集した破砕品を真空乾燥機で乾燥し、破砕した成形体の乾燥質量(Wh(g))を求めた。別途求めた多孔性成形体のかさ比重(g/mL)及び乾燥質量Whから、下記式(vi)により、多孔性成形体の強度保持率を算出した。
強度保持率(%)=(かさ比重×10−Wh)/(かさ比重×10)×100 ・・・(vi)
The collected crushed product was dried with a vacuum dryer, and the dry mass (Wh (g)) of the crushed compact was determined. From the bulk specific gravity (g / mL) and the dry mass Wh obtained separately, the strength retention of the porous molded body was calculated by the following formula (vi).
Strength retention (%) = (bulk specific gravity × 10−Wh) / (bulk specific gravity × 10) × 100 (vi)

強度保持率は、95%以上であれば、繰り返し使用する耐久性が実用上良好であると判断した。   If the strength retention was 95% or more, it was judged that the durability for repeated use was practically good.

(無機イオン吸着体の比表面積)
無機イオン吸着体を室温で真空乾燥した後、ベックマン・コールター(株)社製コールターSA3100(商品名)を用い、吸着ガスに窒素を用いたBET法で、無機イオン吸着体の単位質量あたりの表面積SBET(m/g)を求めた。
(Specific surface area of inorganic ion adsorbent)
After the inorganic ion adsorbent is vacuum-dried at room temperature, the surface area per unit mass of the inorganic ion adsorbent is measured by the BET method using Beckman Coulter Co., Ltd. Coulter SA3100 (trade name) and nitrogen as the adsorbed gas. S BET (m 2 / g) was determined.

(かさ比重)
湿潤状態の多孔性成形体を、メスシリンダー等を用いて、みかけの体積V(ml)を測定した。その後、室温で真空乾燥して、多孔性成形体の乾燥質量W(g)を求めた。かさ比重は、次式(vii)から求めた。
かさ比重(g/ml)=W/V ・・・(vii)
式中、Wは多孔性成形体の乾燥質量(g)、Vはそのみかけの体積(ml)である。
(Bulk specific gravity)
The apparent volume V (ml) of the porous molded body in a wet state was measured using a graduated cylinder or the like. Then, it vacuum-dried at room temperature and calculated | required the dry mass W (g) of the porous molded object. The bulk specific gravity was determined from the following equation (vii).
Bulk specific gravity (g / ml) = W / V (vii)
In the formula, W is the dry mass (g) of the porous molded body, and V is its apparent volume (ml).

(多孔性成形体の平均粒子径)
多孔性成形体表面を、走査型電子顕微鏡又は実体顕微鏡で観察した。走査型電子顕微鏡(SEM)による成形体の観察は、株式会社日立製作所製のS−800型走査型電子顕微鏡を用いた。
(Average particle diameter of porous molded body)
The surface of the porous molded body was observed with a scanning electron microscope or a stereoscopic microscope. The S-800 scanning electron microscope manufactured by Hitachi, Ltd. was used for the observation of the molded body with a scanning electron microscope (SEM).

粒子の表面の画像から粒子が真球状の場合はその直径、真球状以外の場合は、最大長を粒子径として実測した。実測した標本数50以上の直径又は最大長について平均を算出し、平均粒子径とした。   From the image of the surface of the particle, the particle diameter was measured when the particle was true spherical, and when the particle was other than true spherical, the maximum length was measured as the particle diameter. An average was calculated for the diameter or maximum length of 50 or more samples actually measured, and the average particle diameter was obtained.

(多孔性成形体の空孔率)
十分に水に濡れた多孔性成形体を、乾いたろ紙上に拡げ、余分な水分を除去した後に、質量を測定し、多孔性成形体の含水時の質量(W1)とした。次に、多孔性成形体を室温下で24時間真空乾燥を行って乾燥した多孔性成形体を得た。乾燥した多孔性成形体の質量を測定し、多孔性成形体の乾燥時の質量(W0)とした。次に、比重瓶(ゲーリュサック型、容量10mL)を用意し、この比重瓶に純水(25℃)を満たしたときの質量を測定し、満水時の質量(Ww)とした。次に、この比重瓶に、純水に湿潤した状態の多孔性成形体を入れ、さらに標線まで純水を満たして質量を測定し、「Wwm」とした。次に、この多孔性成形体を比重瓶から取り出し、室温で24時間、真空乾燥を行い、乾燥した多孔性成形体を得た。乾燥した多孔性成形体の質量を測定して「M」とした。下記の計算式(viii)、(ix)に従って、多孔性成形体の比重(ρ)、及び多孔性成形体の空孔率(Pr)を求めた。
ρ=M/(Ww+M−Wwm) ・・・(viii)
Pr=(W1−W0)/(W1−W0+W0/ρ)×100 ・・・(ix)
上記式中、Prは空孔率(%)であり、W1は成形体の含水時の質量(g)、W0は成形体の乾燥後の質量(g)、ρは成形体の比重(g/cm)、Mは成形体の乾燥後の質量(g)、Wwは比重瓶の満水時の質量(g)、Wwmは比重瓶に含水した成形体と純水を入れたときの質量(g)である。
(Porosity of porous compact)
The porous molded body that had been sufficiently wetted with water was spread on dry filter paper, and after removing excess water, the mass was measured to obtain the mass (W1) of the porous molded body when it contained water. Next, the porous molded body was vacuum-dried at room temperature for 24 hours to obtain a dried porous molded body. The mass of the dried porous molded body was measured and taken as the mass (W0) when the porous molded body was dried. Next, a specific gravity bottle (Geryusac type, capacity 10 mL) was prepared, and the mass when the specific gravity bottle was filled with pure water (25 ° C.) was measured to obtain the mass (Ww) when full. Next, a porous molded body wet in pure water was placed in the specific gravity bottle, and the mass was measured by filling the pure water up to the marked line to obtain “Wwm”. Next, this porous molded body was taken out from the specific gravity bottle and vacuum-dried at room temperature for 24 hours to obtain a dried porous molded body. The mass of the dried porous molded body was measured to be “M”. The specific gravity (ρ) of the porous molded body and the porosity (Pr) of the porous molded body were determined according to the following calculation formulas (viii) and (ix).
ρ = M / (Ww + M−Wwm) (viii)
Pr = (W1-W0) / (W1-W0 + W0 / ρ) × 100 (ix)
In the above formula, Pr is the porosity (%), W1 is the mass (g) when the molded body is wet, W0 is the mass (g) after drying the molded body, and ρ is the specific gravity (g / g) of the molded body. cm 3 ), M is the mass (g) after drying the molded body, Ww is the mass (g) when the specific gravity bottle is full, and Wwm is the mass (g) when the molded body and pure water contained in the specific gravity bottle are added. ).

多孔性成形体の空孔率は50%以上であれば、有害物質の高速除去性能に優れていると判断し、95%以下であれば、多孔性成形体の強度が実用上十分なものであると判断した。   If the porosity of the porous molded body is 50% or more, it is judged that the high-speed removal performance of harmful substances is excellent, and if it is 95% or less, the strength of the porous molded body is practically sufficient. Judged that there was.

(電子顕微鏡用試料の作成)
多孔性成形体を室温で真空乾燥し、乾燥した成形体をイソプロピルアルコール(IPA)に加えて、成形体中にIPAを含浸させた。次いで、IPAと共に成形体を直径5mmのゼラチンカプセルに封入し、液体窒素中で凍結した。凍結した多孔性成形体をカプセルごと彫刻刀で割断した。割断されている多孔性成形体を選別して、電子顕微鏡による観察用試料とし、連通孔の有無を観察した。
(Preparation of sample for electron microscope)
The porous molded body was vacuum-dried at room temperature, and the dried molded body was added to isopropyl alcohol (IPA) to impregnate the molded body with IPA. Next, the molded body was enclosed in a gelatin capsule having a diameter of 5 mm together with IPA and frozen in liquid nitrogen. The frozen porous molded body was cleaved together with the engraved sword. The cut porous molded body was selected and used as an observation sample by an electron microscope, and the presence or absence of a communication hole was observed.

(リン吸着量)
リン酸三ナトリウム(NaPO・12HO)を蒸留水に溶解し、リン濃度9mg−P/Lの液を作製し、硫酸でpH7に調製した液を吸着原液とした。多孔性成形体8mLを、カラム(内径10mm)に充填して、吸着原液を240mL/hr(SV30)の速度で通水した。カラムからの流出液(処理液)を30分毎にサンプリングして、該処理水中のリン酸イオン濃度(リン濃度)を測定して、0.5mg−P/L(ppm)超過時までのリン吸着量(吸着量 g−P/L−多孔性成形体(R))を求めた。リン酸イオン濃度は、HACH社製リン酸測定装置フォスファックス・コンパクト(商品名)を用いて測定した。
(Phosphorus adsorption amount)
Trisodium phosphate (Na 3 PO 4 · 12H 2 O) was dissolved in distilled water to prepare a solution having a phosphorus concentration of 9 mg-P / L, and a solution adjusted to pH 7 with sulfuric acid was used as an adsorption stock solution. A porous molded body (8 mL) was packed in a column (inner diameter: 10 mm), and the adsorption stock solution was passed through at a rate of 240 mL / hr (SV30). The effluent from the column (treatment liquid) is sampled every 30 minutes, and the phosphate ion concentration (phosphorus concentration) in the treated water is measured, and phosphorus up to the time of exceeding 0.5 mg-P / L (ppm) is measured. The adsorption amount (adsorption amount g-P / L-porous molded body (R)) was determined. The phosphate ion concentration was measured using a phosphoric acid measuring device Phosfax Compact (trade name) manufactured by HACH.

リン吸着量が、4.0(g−P/L−多孔性成形体(R))以上であれば、吸着容量が大きく、リン吸着剤として良好であると判断した。   When the phosphorus adsorption amount was 4.0 (gP / L-porous molded body (R)) or more, it was judged that the adsorption capacity was large and the phosphorus adsorbent was good.

[実施例1]
水和酸化セリウム粉末(岩谷産業(株))500gを、脱イオン水500gの中に投入し、撹拌機を用いて1hr撹拌した。その後、上澄みを捨てた。この操作を5回繰り返した。この時、5回目洗浄液の上澄み液の不純物濃度(硝酸塩含有量)を表1に示す。
[Example 1]
Hydrated cerium oxide powder (Iwatani Sangyo Co., Ltd.) (500 g) was put into 500 g of deionized water and stirred for 1 hr using a stirrer. Thereafter, the supernatant was discarded. This operation was repeated 5 times. At this time, the impurity concentration (nitrate content) of the supernatant of the fifth cleaning solution is shown in Table 1.

洗浄後に、沈殿した水和酸化セリウムスラリーを、70℃の乾燥機中で72hr乾燥して、洗浄した水和酸化セリウムを得た。この時の水和酸化セリウムの含水率、比表面積を表1に示す。   After washing, the precipitated hydrated cerium oxide slurry was dried in a dryer at 70 ° C. for 72 hours to obtain washed hydrated cerium oxide. Table 1 shows the water content and specific surface area of the hydrated cerium oxide.

ポリエチレングリコール(PEG35,000、メルク(株))4gを、N−メチル−2ピロリドン(NMP、三菱化学(株))220g中に溶解して均一な溶液を得た。この溶液224gに対し、水和酸化セリウム粉末100gを加えて、撹拌して黄色のスラリーを得た。   4 g of polyethylene glycol (PEG 35,000, Merck) was dissolved in 220 g of N-methyl-2pyrrolidone (NMP, Mitsubishi Chemical) to obtain a uniform solution. 100 g of hydrated cerium oxide powder was added to 224 g of this solution and stirred to obtain a yellow slurry.

さらに、このスラリーにポリエーテルスルホン樹脂(住友化学(株)、スミカエクセル5003PS(商品名))30gを、溶解槽中にて、60℃に加温して撹拌羽根を用いて撹拌・溶解し、均一な成形用スラリー溶液を得た。   Furthermore, 30 g of a polyethersulfone resin (Sumitomo Chemical Co., Ltd., Sumika Excel 5003PS (trade name)) was heated to 60 ° C. in the dissolution tank and stirred and dissolved using a stirring blade in this slurry. A uniform molding slurry solution was obtained.

得られた成形用スラリーを60℃に加温し、側面に直径5mmのノズルを開けた円筒状回転容器の内部に供給し、この容器を回転させ、遠心力(15G)によりノズルから液滴を形成し、60℃のNMP/水=50/50wt%からなる容量200Lの凝固浴槽中に吐出させ、成形用スラリーを凝固させた。さらに、洗浄、分級を行い、平均粒子径600μmの球状の多孔性成形体を得た。得られた多孔性成形体の物性(平均粒子径、空孔率、リン吸着量、強度保持率、連通孔の有無)を表1に示す。   The obtained molding slurry was heated to 60 ° C. and supplied to the inside of a cylindrical rotating container having a nozzle with a diameter of 5 mm on the side surface. The container was rotated, and droplets were ejected from the nozzle by centrifugal force (15 G). The slurry was formed and discharged into a 200 L coagulation bath composed of NMP / water = 50/50 wt% at 60 ° C. to coagulate the molding slurry. Furthermore, washing | cleaning and classification were performed and the spherical porous molded object with an average particle diameter of 600 micrometers was obtained. Table 1 shows the physical properties (average particle diameter, porosity, phosphorus adsorption amount, strength retention, presence / absence of communication holes) of the obtained porous molded body.

[比較例1]
洗浄しない水和酸化セリウムを用いること以外は実施例1と同様の方法で多孔性成形体を得た。得られた多孔性成形体の物性を表1に示す。
[Comparative Example 1]
A porous molded body was obtained in the same manner as in Example 1 except that hydrated cerium oxide that was not washed was used. Table 1 shows the physical properties of the obtained porous molded body.

[比較例2]
洗浄回数を10回に増やしたこと以外は実施例1と同様の方法で多孔性成形体を得た。得られた多孔性成形体の物性を表1に示す。
[Comparative Example 2]
A porous molded body was obtained in the same manner as in Example 1 except that the number of washings was increased to 10. Table 1 shows the physical properties of the obtained porous molded body.

[実施例2]
水和酸化セリウム粉末(岩谷産業(株))の代わりに、水和酸化ジルコニウム(岩谷産業(株))を用いること以外は、実施例1と同様の方法で多孔性成形体を得た。得られた多孔性成形体の物性を表1に示す。
[Example 2]
A porous molded body was obtained in the same manner as in Example 1 except that hydrated zirconium oxide (Iwatani Corporation) was used instead of hydrated cerium oxide powder (Iwatani Corporation). Table 1 shows the physical properties of the obtained porous molded body.

[比較例3]
洗浄しない水和酸化ジルコニウムを用いること以外は実施例2と同様の方法で多孔性成形体を得た。得られた多孔性成形体の物性を表1に示す。
[Comparative Example 3]
A porous molded body was obtained in the same manner as in Example 2 except that hydrated zirconium oxide that was not washed was used. Table 1 shows the physical properties of the obtained porous molded body.

[実施例3]
洗浄回数を2回にしたこと以外は実施例1と同様の方法で多孔性成形体を得た。得られた多孔性成形体の物性を表1に示す。
[Example 3]
A porous molded body was obtained in the same manner as in Example 1 except that the number of washings was two. Table 1 shows the physical properties of the obtained porous molded body.

[比較例4]
洗浄回数を10回に増やしたこと以外は実施例2と同様の方法で多孔性成形体を得た。得られた多孔性成形体の物性を表1に示す。
[Comparative Example 4]
A porous molded body was obtained in the same manner as in Example 2 except that the number of washings was increased to 10. Table 1 shows the physical properties of the obtained porous molded body.

Figure 0006093223
Figure 0006093223

本発明の多孔性成形体は、液体及び気体の処理に用いる吸着剤、ろ過剤、脱臭剤、抗菌剤、吸湿剤、食品の鮮度保持剤、各種のクロマトグラフィー用担体、触媒等として、産業上の利用可能性がある。   The porous molded body of the present invention is industrially used as an adsorbent, a filtering agent, a deodorizing agent, an antibacterial agent, a hygroscopic agent, a food freshness-preserving agent, various chromatographic carriers, a catalyst, etc. used for processing liquids and gases. There is a possibility of use.

Claims (6)

有機高分子及び無機イオン吸着体を含有する多孔性成形体の製造に用いられる無機イオン吸着体であって、
硝酸塩の含有量が0.01〜5wt%であり、
前記無機イオン吸着体が、
下記式(i)で表される金属酸化物を少なくとも一種含有する、無機イオン吸着体。
MN x n ・mH 2 O ・・・(i)
(式(i)中、xは0〜3、nは1〜4、mは0〜6であり、M及びNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb及びTaからなる群より選ばれる金属元素であり、互いに異なるものである。)
An inorganic ion adsorbent used for producing a porous molded article containing an organic polymer and an inorganic ion adsorbent,
The content of nitrate Ri 0.01-5% der,
The inorganic ion adsorbent is
It contains at least one metal oxide represented by the following formula (i), an inorganic ion adsorbent.
MN x O n · mH 2 O ··· (i)
(In formula (i), x is 0-3, n is 1-4, m is 0-6, M and N are Ti, Zr, Sn, Sc, Y, La, Ce, Pr, Nd, A metal selected from the group consisting of Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Si, Cr, Co, Ga, Fe, Mn, Ni, V, Ge, Nb and Ta It is an element and different from each other.)
前記金属酸化物が、下記(a)および(b)からなる群より選ばれる1種又は2種以上の混合物である、請求項に記載の無機イオン吸着体。
(a)水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン及び水和酸化イットリウム
(b)チタン、ジルコニウム、スズ、セリウム、ランタン及びイットリウムからなる群から選ばれる金属元素と、アルミニウム、珪素及び鉄からなる群から選ばれる金属元素との複合金属の酸化物
The inorganic ion adsorbent according to claim 1 , wherein the metal oxide is one or a mixture of two or more selected from the group consisting of the following (a) and (b).
(A) Hydrated titanium oxide, hydrated zirconium oxide, hydrated tin oxide, hydrated cerium oxide, hydrated lanthanum oxide and hydrated yttrium oxide (b) From the group consisting of titanium, zirconium, tin, cerium, lanthanum and yttrium Complex metal oxides of selected metal elements and metal elements selected from the group consisting of aluminum, silicon and iron
前記金属酸化物の含水率が、1〜40wt%である、請求項またはに記載の無機イオン吸着体。 The inorganic ion adsorbent according to claim 1 or 2 , wherein the metal oxide has a water content of 1 to 40 wt%. 請求項1からのいずれか一項に記載の無機イオン吸着体を含有する有機高分子を含んでなる、多孔性成形体。 A porous molded body comprising an organic polymer containing the inorganic ion adsorbent according to any one of claims 1 to 3 . 前記有機高分子が、エチレンビニルアルコール共重合体、ポリアクリロニトリル、ポリスルホン、ポリエーテルスルホン及びポリフッ化ビニリデンからなる群から選ばれる一種以上を含んでなる、請求項に記載の多孔性成形体。 The porous molded body according to claim 4 , wherein the organic polymer comprises one or more selected from the group consisting of an ethylene vinyl alcohol copolymer, polyacrylonitrile, polysulfone, polyethersulfone, and polyvinylidene fluoride. 前記ポリエーテルスルホンが、末端に水酸基を有する、請求項に記載の多孔性成形体。 The porous molded body according to claim 5 , wherein the polyethersulfone has a hydroxyl group at a terminal.
JP2013073373A 2013-03-29 2013-03-29 Inorganic ion adsorbent and porous molded body Expired - Fee Related JP6093223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013073373A JP6093223B2 (en) 2013-03-29 2013-03-29 Inorganic ion adsorbent and porous molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013073373A JP6093223B2 (en) 2013-03-29 2013-03-29 Inorganic ion adsorbent and porous molded body

Publications (2)

Publication Number Publication Date
JP2014195787A JP2014195787A (en) 2014-10-16
JP6093223B2 true JP6093223B2 (en) 2017-03-08

Family

ID=52357033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013073373A Expired - Fee Related JP6093223B2 (en) 2013-03-29 2013-03-29 Inorganic ion adsorbent and porous molded body

Country Status (1)

Country Link
JP (1) JP6093223B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6592306B2 (en) * 2015-08-21 2019-10-16 学校法人 中央大学 Porous membrane for phosphorus adsorption and method for producing the same
JP7119415B2 (en) * 2018-02-21 2022-08-17 東京電力ホールディングス株式会社 Method for evaluating embrittlement resistance of adsorbent, and powder trap used for the method
JP7341047B2 (en) * 2019-12-25 2023-09-08 株式会社荏原製作所 Antimony adsorbent and antimony-containing liquid treatment equipment and treatment method
JP7370312B2 (en) 2020-12-28 2023-10-27 株式会社日本海水 Hazardous substance remover, method for producing a hazardous substance remover, and method for treating hazardous substances using a hazardous substance remover

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192340A (en) * 1985-02-21 1986-08-26 Asahi Chem Ind Co Ltd Fluorine complex ion adsorbent
JP4671419B2 (en) * 2003-12-15 2011-04-20 旭化成ケミカルズ株式会社 Porous molded body and method for producing the same
JP2006000818A (en) * 2004-06-21 2006-01-05 Asahi Kasei Corp Adsorbent
JP2006256936A (en) * 2005-03-18 2006-09-28 Anan Kasei Kk Method of manufacturing metal oxide, metal oxide, and sintered compact
JP5507112B2 (en) * 2008-05-12 2014-05-28 旭化成ケミカルズ株式会社 High adsorption performance porous molded body and method for producing the same
KR101479820B1 (en) * 2009-11-20 2015-01-06 아사히 가세이 케미칼즈 가부시키가이샤 Porous molded article, and process for production thereof

Also Published As

Publication number Publication date
JP2014195787A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
JP5813150B2 (en) High adsorption performance porous molded body and method for producing the same
JP6573678B2 (en) Porous molded body, and method and apparatus for manufacturing porous molded body
JP4671419B2 (en) Porous molded body and method for producing the same
JP5622745B2 (en) Porous molded body and method for producing the same
JP2006297382A (en) Porous molding with high adsorption capacity and its production method
JP2007014826A (en) Porous molding and its producing method
JP6093223B2 (en) Inorganic ion adsorbent and porous molded body
JP5062971B2 (en) Water treatment apparatus and water treatment method
JP5062972B2 (en) Ion removal apparatus and ion removal method
WO2019135371A1 (en) Porous molding
JP6694345B2 (en) Adsorbent
JP6716382B2 (en) Iodic acid and/or antimony adsorbent
JP2019118877A (en) Porous molding
JP6694346B2 (en) Iodic acid and / or antimony adsorbent
JP2019118880A (en) Porous molding
JP2015192944A (en) Washing water treatment in electrodeposition chemical conversion process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151216

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170210

R150 Certificate of patent or registration of utility model

Ref document number: 6093223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees