JPH04317738A - Production of fluoride ion adsorbing material - Google Patents

Production of fluoride ion adsorbing material

Info

Publication number
JPH04317738A
JPH04317738A JP3083735A JP8373591A JPH04317738A JP H04317738 A JPH04317738 A JP H04317738A JP 3083735 A JP3083735 A JP 3083735A JP 8373591 A JP8373591 A JP 8373591A JP H04317738 A JPH04317738 A JP H04317738A
Authority
JP
Japan
Prior art keywords
fluoride ion
zirconium
cerium
polystyrene particles
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3083735A
Other languages
Japanese (ja)
Inventor
Toshishige Suzuki
敏重 鈴木
Osamu Hirai
修 平井
Tadashi Okamoto
忠 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Resonac Corp
Original Assignee
Agency of Industrial Science and Technology
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Hitachi Chemical Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP3083735A priority Critical patent/JPH04317738A/en
Publication of JPH04317738A publication Critical patent/JPH04317738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To produce at low costs the fluoride ion adsorbing material capable of adsorbing and removing fluoride ions with a good efficiency and repeatability. CONSTITUTION:A method for producing a fluoride ion adsorbing material having the water-containing oxide of zirconium or cerium supported on a carrier is characterized by using polystyrene particles in the carrier, bringing into contact with the polystyrene particles a solution of the metal alkoxide represented by the general formula (I)M(OR)4(I) (wherein M is zirconium or cerium and R represents alkyl group having at most 5 carbon atoms), and thereafter hydrolyzing the solution.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、フッ化物イオン吸着材
の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fluoride ion adsorbent.

【0002】0002

【従来の技術】フッ化物イオン吸着材としては、フッ化
物イオンがアルミニウム、鉄、ジルコニウム、希土類金
属等の金属と強い親和性有することを利用した、これら
金属とキレート樹脂の結合体が知られているが(特開昭
51−115058号公報、特開昭57−107287
号公報)、この結合体は、フッ化物イオン吸着後の樹脂
の再生処理の際に、フッ化物イオンとともに金属イオン
も脱離するため、これらのイオンの脱離後改めて金属イ
オンを結合させる処理を施すという煩雑な再生操作を必
要とする上に、コスト高となるのを免れなかった。この
ような不利は、キレート樹脂の配位子部分と金属イオン
とで形成される錯体の安定度が十分でないことから、樹
脂を再生する際に該金属イオンも樹脂から脱離するため
に生じるものと考えられる。
[Prior Art] As a fluoride ion adsorbent, a combination of metals such as aluminum, iron, zirconium, rare earth metals, and chelate resins is known, which takes advantage of the strong affinity of fluoride ions with metals such as aluminum, iron, zirconium, and rare earth metals. Iruga (Japanese Unexamined Patent Application Publication No. 115058/1983, No. 107287/1983)
In this bond, metal ions are also desorbed along with fluoride ions during resin regeneration treatment after adsorption of fluoride ions, so after these ions have been desorbed, a treatment to bind metal ions is required. Not only does this require a complicated regeneration operation, but it also inevitably leads to high costs. This disadvantage arises because the complex formed between the ligand moiety of the chelate resin and the metal ion is not sufficiently stable, and the metal ion is also released from the resin when the resin is regenerated. it is conceivable that.

【0003】一方、セリウムやジルコニウム等の金属の
含水酸化物がフッ化物イオンを選択的に吸着することや
、これらの含水酸化物が酸やアルカリや有機溶媒に難溶
である上に、酸化還元を受けにくいなど極めて安定な特
性を有することから、フッ化物イオン吸着材として有望
であることも報告されている(日本化学会誌、(198
7)、第807ページ)。
On the other hand, hydrated oxides of metals such as cerium and zirconium selectively adsorb fluoride ions, and these hydrated oxides are sparingly soluble in acids, alkalis, and organic solvents, and are oxidation-reduction resistant. It has also been reported that it is promising as a fluoride ion adsorbent because it has extremely stable characteristics such as being resistant to fluoride ions (Journal of the Chemical Society of Japan, (1988)).
7), page 807).

【0004】しかしながら、これらの含水酸化物は微粉
体であるため、吸着、溶離、再生の操作を行う上で取扱
いにくいという問題があった。また、セリウムやジルコ
ニウム等の金属の含水酸化物を多孔性担体上に析出させ
た樹脂が、フッ化物イオンの吸着材として有望であるこ
とも報告されている(特開平2−211244号公報)
。しかし、この多孔性担体は、高価になる。
However, since these hydrous oxides are in the form of fine powder, there is a problem in that they are difficult to handle during adsorption, elution, and regeneration operations. It has also been reported that a resin in which hydrous oxides of metals such as cerium and zirconium are deposited on a porous carrier is promising as an adsorbent for fluoride ions (Japanese Unexamined Patent Publication No. 2-211244).
. However, this porous carrier is expensive.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
従来のフッ化物イオン吸着材の持つ欠点を克服し、水溶
液中などのフッ化物イオンを効率的に、しかも繰返し再
現性良く吸着除去しうる安価なフッ化物イオン吸着材の
製造法を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention overcomes the drawbacks of conventional fluoride ion adsorbents and adsorbs and removes fluoride ions from aqueous solutions efficiently and with good repeatability. The purpose of the present invention is to provide a method for manufacturing a fluoride ion adsorbent that is highly efficient and inexpensive.

【0006】[0006]

【課題を解決するための手段】本発明者らは、ジルコニ
ウムやセリウムのアルコキシドの溶液をポリスチレン系
粒子に接触させ、ついで該金属アルコキシドを加水分解
することにより、含水酸化物をポリスチレン系担体の表
面に均一に析出させることができ、前記目的を達成しう
ることを見出し、この知見に基づいて本発明を完成する
に至った。
[Means for Solving the Problems] The present inventors brought a solution of zirconium or cerium alkoxide into contact with polystyrene particles, and then hydrolyzed the metal alkoxide to bring the hydrous oxide onto the surface of a polystyrene support. The inventors have discovered that the above object can be achieved by uniformly depositing the particles, and based on this finding, the present invention has been completed.

【0007】すなわち、本発明は、ジルコニウムまたは
セリウムの含水酸化物を担体に担持させたフッ化物イオ
ン吸着材を製造するに当り、担体にポリスチレン系粒子
を用い、一般式(I) M(OR)4        (I) (式中のMはジルコニウムまたはセリウムを示し、Rは
炭素原子数5以下のアルキル基を示す)で示される金属
アルコキシドの溶液を、ポリスチレン系粒子に接触させ
たのち、これを加水分解処理することを特徴とするフッ
化物イオン吸着材の製造法に関する。
That is, in producing a fluoride ion adsorbent in which a hydrous oxide of zirconium or cerium is supported on a carrier, the present invention uses polystyrene-based particles as the carrier, and the general formula (I) M(OR) 4 (I) (In the formula, M represents zirconium or cerium, and R represents an alkyl group having 5 or less carbon atoms) is brought into contact with polystyrene particles, and then hydrated. The present invention relates to a method for producing a fluoride ion adsorbent, which is characterized by decomposition treatment.

【0008】以下、本発明を詳細に説明する。本発明に
用いられるポリスチレン系粒子としては、例えば、ポリ
スチレン、スチレンと他のビニル系単量体との共重合体
、スチレンとジビニルベンゼンとの共重合体ゲルなどが
あげられるが、工業的入手しやすさを考慮すると、発泡
ポリスチレンの用途に使用される発泡剤含浸前のポリス
チレン粒子が好ましい。粒子径は、20〜200メッシ
ュのものが好ましい。
The present invention will be explained in detail below. Examples of the polystyrene particles used in the present invention include polystyrene, copolymers of styrene and other vinyl monomers, copolymer gels of styrene and divinylbenzene, etc., but none of them are industrially available. Considering ease of use, polystyrene particles used in expanded polystyrene applications before being impregnated with a blowing agent are preferred. The particle size is preferably 20 to 200 mesh.

【0009】本発明において、前記一般式(I)で表わ
される金属アルコキシドの溶液をポリスチレン系粒子に
接触させることが必要である。すなわち、一般式(I)
M(OR)4        (I) (式中のMはジルコニウムまたはセリウムを示し、Rは
炭素原子数5以下のアルキル基を示す)で示される金属
アルコキシドを、適当な有機溶媒に溶解し、この溶液を
ポリスチレン系粒子と接触させたのち、前記有機溶媒を
留去等により除去すればよい。
In the present invention, it is necessary to bring the solution of the metal alkoxide represented by the general formula (I) into contact with the polystyrene particles. That is, general formula (I)
A metal alkoxide represented by M(OR)4 (I) (in the formula, M represents zirconium or cerium, and R represents an alkyl group having 5 or less carbon atoms) is dissolved in a suitable organic solvent, and this solution is dissolved. After contacting the polystyrene particles, the organic solvent may be removed by distillation or the like.

【0010】接触させる方法としては、例えば、塗布、
浸漬、混合、含浸等があり、2以上の方法を組み合わせ
ることができる。この際に用いられる一般式(I)で示
される金属アルコキシドにおいて、炭素数が5以下のア
ルキル基としては、メチル、エチル、n−プロピル、イ
ソプロピル、n−ブチル、イソブチル、tert−ブチ
ル、n−アミル、イソアミル等があげられる。また、こ
の際に用いられる有機溶媒としては、ポリスチレン系粒
子を溶解させずに、一般式の金属アルコキシドを溶解さ
せるものがよく炭素原子数が5以下のアルコールが好適
である。
[0010] Examples of the contacting method include coating,
There are dipping, mixing, impregnation, etc., and two or more methods can be combined. In the metal alkoxide represented by the general formula (I) used in this case, examples of the alkyl group having 5 or less carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n- Examples include amyl and isoamyl. The organic solvent used in this case is preferably one that dissolves the metal alkoxide of the general formula without dissolving the polystyrene particles, and alcohols having 5 or less carbon atoms are preferred.

【0011】つぎに、このようにしてポリスチレン系粒
子に担持された金属アルコキシドを水や水性媒体などで
処理することにより、ポリスチレン系粒子表面の金属ア
ルコキシドM(OR)4を加水分解する必要がある。加
水分解によって、含水金属酸化物(MO2・H2O)を
形成させ、含水金属酸化物をポリスチレン系粒子に担持
させることができる(MO2・H2Oからなる極めて薄
い膜がポリスチレン系粒子の表面に形成される)。なお
、加水分解は、次式のように起こる。 M(OR)4+3H2O→MO2・H2O+4ROH(
式中のMは一般式(I)と同じ意味である)
Next, it is necessary to hydrolyze the metal alkoxide M(OR)4 on the surface of the polystyrene particles by treating the metal alkoxide supported on the polystyrene particles with water or an aqueous medium. . Through hydrolysis, a hydrated metal oxide (MO2/H2O) can be formed and the hydrated metal oxide can be supported on the polystyrene particles (an extremely thin film composed of MO2/H2O is formed on the surface of the polystyrene particles). ). Note that hydrolysis occurs as shown in the following equation. M(OR)4+3H2O→MO2・H2O+4ROH(
M in the formula has the same meaning as general formula (I))

【0012
】この際のpHには特に制限はないが、pH1〜2の酸
性水溶液や、pH11〜14のアルカリ水溶液が好適に
用いられる。また、この際の水溶液の温度には特に制限
はないが、高温になるほど、加水分解は速やかで、えら
れた吸着材内での含水金属酸化物とポリスチレン系粒子
の密着性が良好になる。
0012
] There is no particular restriction on the pH at this time, but an acidic aqueous solution with a pH of 1 to 2 or an alkaline aqueous solution with a pH of 11 to 14 are preferably used. Further, there is no particular restriction on the temperature of the aqueous solution at this time, but the higher the temperature, the faster the hydrolysis and the better the adhesion between the hydrous metal oxide and the polystyrene particles in the obtained adsorbent.

【0013】[0013]

【実施例】つぎに実施例によって本発明をさらに詳細に
説明する。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples.

【0014】実施例1 テトラ(n−ブトキシ)ジルコニウム120gを300
mlの乾燥n−ブタノールに溶解し、この溶液にあらか
じめ洗浄、乾燥したポリスチレン粒子(粒径14〜22
メッシュ、GPCによる数平均分子量1.0×104 
重量平均分子量3.3×105)100gを加え混合物
を約1時間減圧に置いた後、n−ブタノールを減圧蒸留
によって除去し、乾燥状態の樹脂ビーズを得た。これを
ビーカに移し、pH2.0の水500mlを加え、2時
間静置したのち、上澄みを捨て、この中に、再びpH2
.0の水500mlを加え、24時間加熱還流した。つ
いで、粒子をろ過し、水、エタノールで順次洗浄し、目
的物のフッ化物イオン吸着材を得た。
Example 1 120g of tetra(n-butoxy)zirconium was
ml of dry n-butanol, and pre-washed and dried polystyrene particles (particle size 14-22
Mesh, number average molecular weight by GPC 1.0 x 104
After adding 100 g of the mixture having a weight average molecular weight of 3.3×10 5 and leaving the mixture under reduced pressure for about 1 hour, n-butanol was removed by distillation under reduced pressure to obtain dry resin beads. Transfer this to a beaker, add 500 ml of pH 2.0 water, let it stand for 2 hours, discard the supernatant, and add it again to pH 2.0.
.. 0 ml of water was added thereto, and the mixture was heated under reflux for 24 hours. Next, the particles were filtered and washed with water and ethanol in order to obtain the target fluoride ion adsorbent.

【0015】応用例1 実施例1で得た吸着材5g(湿潤体積10.2ml)を
、内径1.0cmのカラムに充填し、pH3.0の水で
洗ったのち、フッ化物イオンを100ppm(NaFと
して溶解)含有するpH3.0の水溶液を2ml/mi
nで通液し、樹脂塔通過後のフッ化物イオン濃度を測定
した。その結果、樹脂体積の50倍の通液点(カラムに
充填した吸着剤の体積をxmlとすると、通液を開始し
てから50xml溶出した点をいう)でのフッ化物イオ
ン濃度は1ppm以下であり、70倍の通液点までで1
0ppm以下であった。
Application Example 1 5 g (wet volume 10.2 ml) of the adsorbent obtained in Example 1 was packed into a column with an inner diameter of 1.0 cm, and after washing with water of pH 3.0, fluoride ions were added to 100 ppm ( 2 ml/mi of an aqueous solution containing pH 3.0 (dissolved as NaF)
After passing through the resin column, the fluoride ion concentration was measured. As a result, the fluoride ion concentration at the point where 50 times the resin volume was passed (when the volume of the adsorbent packed in the column is xml, 50xml was eluted from the start of passing) was found to be 1 ppm or less. Yes, up to 70 times the liquid flow point
It was 0 ppm or less.

【0016】応用例2 応用例1でフッ化物イオンを吸着したカラムに、1M水
酸化ナトリウム水溶液200mlを2ml/minで通
液してフッ化物イオンの溶出をおこなった。カラム通液
後の水酸化ナトリウム水溶液中には、応用例1で吸着し
たフッ化物イオンの全量の97wt%が含まれており、
またジルコニウムは、全く検出されなかった。次に、p
H1.0の塩酸水溶液を、漏出液のpHが1.0になる
まで通液し、さらにカラムを水洗した後、応用例1と同
組成の被処理液を、応用例1と同様の方法で通液し、カ
ラム通過後のフッ化物イオン濃度を測定したところ、応
用例1と同様の結果を得た。
Application Example 2 Fluoride ions were eluted by passing 200 ml of a 1M aqueous sodium hydroxide solution through the column that had adsorbed fluoride ions in Application Example 1 at a rate of 2 ml/min. The sodium hydroxide aqueous solution after passing through the column contained 97 wt% of the total amount of fluoride ions adsorbed in Application Example 1,
Also, no zirconium was detected. Then p
After passing an aqueous hydrochloric acid solution of H1.0 until the pH of the leaked liquid becomes 1.0 and washing the column with water, a solution to be treated having the same composition as in Application Example 1 was added in the same manner as in Application Example 1. When the solution was passed through the column and the fluoride ion concentration was measured after passing through the column, the same results as in Application Example 1 were obtained.

【0017】[0017]

【発明の効果】本発明によれば、安価なポリスチレン担
体表面に含水金属酸化物を均一に析出させることができ
る。さらに、この吸着材は、吸着されたフッ化物イオン
を0.1〜2M程度のアルカリ水溶液等で処理すること
により定量的に溶離させ、酸洗い、水洗後、再び繰返し
再現性良くしようとすることができるという利点がある
According to the present invention, a hydrous metal oxide can be uniformly deposited on the surface of an inexpensive polystyrene carrier. Furthermore, this adsorbent can be quantitatively eluted by treating the adsorbed fluoride ions with an aqueous alkali solution of about 0.1 to 2M, and after pickling and water washing, it can be repeated again to improve reproducibility. It has the advantage of being able to

【0018】また、この吸着材では、担持されたジルコ
ニウムやセリウムの含水酸化物が酸やアルカリへの溶解
度が極めて小さいため、フッ化物イオンの溶出と吸着材
の再生を行う際の金属の溶解は、無視しうる程小さく、
この点からも繰返し再現性良くもちいることが可能であ
る。
In addition, in this adsorbent, the supported hydrous oxides of zirconium and cerium have extremely low solubility in acids and alkalis, so the dissolution of metals during elution of fluoride ions and regeneration of the adsorbent is difficult. , so small that it can be ignored,
From this point of view as well, it can be used repeatedly with good reproducibility.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ジルコニウムまたはセリウムの含水酸
化物を担体に担持させたフッ化物イオン吸着材を製造す
るに当り、担体にポリスチレン系粒子を用い、一般式(
I) M(OR)4        (I) (式中のMはジルコニウムまたはセリウムを示し、Rは
炭素原子数5以下のアルキル基を示す)で示される金属
アルコキシドの溶液を、ポリスチレン系粒子に接触させ
たのち、これを加水分解処理することを特徴とするフッ
化物イオン吸着材の製造法。
Claim 1: In producing a fluoride ion adsorbent in which a hydrous oxide of zirconium or cerium is supported on a carrier, polystyrene-based particles are used as the carrier, and the general formula (
I) A solution of a metal alkoxide represented by M(OR)4 (I) (in the formula, M represents zirconium or cerium, and R represents an alkyl group having 5 or less carbon atoms) is brought into contact with polystyrene particles. A method for producing a fluoride ion adsorbent, which is characterized in that the fluoride ion adsorbent is then subjected to a hydrolysis treatment.
JP3083735A 1991-04-16 1991-04-16 Production of fluoride ion adsorbing material Pending JPH04317738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3083735A JPH04317738A (en) 1991-04-16 1991-04-16 Production of fluoride ion adsorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3083735A JPH04317738A (en) 1991-04-16 1991-04-16 Production of fluoride ion adsorbing material

Publications (1)

Publication Number Publication Date
JPH04317738A true JPH04317738A (en) 1992-11-09

Family

ID=13810788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3083735A Pending JPH04317738A (en) 1991-04-16 1991-04-16 Production of fluoride ion adsorbing material

Country Status (1)

Country Link
JP (1) JPH04317738A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285541A (en) * 2008-05-27 2009-12-10 Mitsui Mining & Smelting Co Ltd Titanium group element based fluorine adsorbing-desorbing agent for fluorine-containing process liquid treatment for wet zinc smelting, and method for removing fluorine
WO2011052008A1 (en) * 2009-10-29 2011-05-05 株式会社Nhvコーポレーション Adsorbent, method for producing same, and use of same
CN110382442A (en) * 2017-01-31 2019-10-25 三井金属矿业株式会社 Formed body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285541A (en) * 2008-05-27 2009-12-10 Mitsui Mining & Smelting Co Ltd Titanium group element based fluorine adsorbing-desorbing agent for fluorine-containing process liquid treatment for wet zinc smelting, and method for removing fluorine
WO2011052008A1 (en) * 2009-10-29 2011-05-05 株式会社Nhvコーポレーション Adsorbent, method for producing same, and use of same
JP5316645B2 (en) * 2009-10-29 2013-10-16 株式会社Nhvコーポレーション Adsorbent manufacturing method
CN110382442A (en) * 2017-01-31 2019-10-25 三井金属矿业株式会社 Formed body
US11123709B2 (en) 2017-01-31 2021-09-21 Mitsui Mining & Smelting Co., Ltd. Molded article
CN110382442B (en) * 2017-01-31 2022-04-01 三井金属矿业株式会社 Shaped body

Similar Documents

Publication Publication Date Title
JP3044293B2 (en) Method for producing crystalline hydrous zirconium hydroxide-supported porous adsorbent
CN107583673B (en) Modified anion resin material and preparation method and application thereof
US3141729A (en) Gels and method of making
JPS6042234A (en) Method for recovering gallium
Kubota et al. Adsorption of chromium (VI) by titanium (IV) oxide coated on a silica gel surface
Peixoto et al. Selective spectrophotometric determination of trace amounts of chromium (VI) using a flow injection system with a microcolumn of zirconium (IV) oxide modified silica gel
US3948769A (en) Ligand exchange process for removal of ammonia
Wang et al. Preparation of pyrrolidinyl diglycolamide bonded silica particles and its rare earth separation properties
JPH04317738A (en) Production of fluoride ion adsorbing material
JP3629743B2 (en) Method for producing activated carbon
CN105148851B (en) A kind of Preparation method and use of urea groups functionalization cadmium ion surface imprint adsorbent
JPH0568969A (en) Adsorption and removal of phosphate ion
US4405576A (en) Removal of sulfate ions from brine
JP3079257B2 (en) Arsenic ion adsorption removal method
JPH02211244A (en) Preparation of fluoride ion adsorbing material
JPH02191543A (en) Method for removing fluoride ion
JPS62286539A (en) Phosphate ion adsorbent and its preparation
JPS6012190A (en) Method for separating and removing borate ion in seawater, salt water or bittern water
Yoshida et al. Studies of the selective adsorption of anions by metal ion loaded ion-exchange resin. VI. The adsorption behavior of the phosphate ion on the iron (III) loaded ion-exchange resin.
JPS63224735A (en) Adsorbent for recovering gallium
JPS62216641A (en) Adsorbent for purifying environment
JP2563852B2 (en) Regeneration method of mercury adsorbent
JPS6141607B2 (en)
JPS6044056A (en) Removal of sulfate ion from brine
JP3589510B2 (en) Novel iron complex, its production method and application