JP4547528B2 - Nitrate ion selective adsorbent, production method thereof, nitrate ion removal method and nitrate ion recovery method using the same - Google Patents

Nitrate ion selective adsorbent, production method thereof, nitrate ion removal method and nitrate ion recovery method using the same Download PDF

Info

Publication number
JP4547528B2
JP4547528B2 JP2004115471A JP2004115471A JP4547528B2 JP 4547528 B2 JP4547528 B2 JP 4547528B2 JP 2004115471 A JP2004115471 A JP 2004115471A JP 2004115471 A JP2004115471 A JP 2004115471A JP 4547528 B2 JP4547528 B2 JP 4547528B2
Authority
JP
Japan
Prior art keywords
ions
nitrate
group
nitrate ion
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004115471A
Other languages
Japanese (ja)
Other versions
JP2005296773A (en
Inventor
聡子 手束
ラメシュ チトラカー
晃成 苑田
健太 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004115471A priority Critical patent/JP4547528B2/en
Publication of JP2005296773A publication Critical patent/JP2005296773A/en
Application granted granted Critical
Publication of JP4547528B2 publication Critical patent/JP4547528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Compounds Of Iron (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、硝酸イオン含有溶液、例えば河川、湖沼、海水、上下水等の汚染源から、特に富栄養化の原因となる硝酸イオンを効率よく除去するための新規な吸着剤、該吸着剤の製造方法、および該吸着剤を用いて硝酸イオンを効率的に除去或いは回収する方法に関する。   The present invention relates to a novel adsorbent for efficiently removing nitrate ions that cause eutrophication from a source of nitrate ion-containing solution such as rivers, lakes, seawater, and water and sewage, and the production of the adsorbent. The present invention relates to a method and a method for efficiently removing or recovering nitrate ions using the adsorbent.

硝酸性窒素は、吸着をしたり、沈殿物を作らないため、通常の化学的処理法が適用しにくく、除去が困難である。また、水環境では他の陰イオンが共存するため、一般に広く利用されているイオン交換法では硝酸イオンの除去率は低下するという問題がある。   Since nitrate nitrogen does not adsorb or form precipitates, it is difficult to apply ordinary chemical treatment methods and it is difficult to remove nitrate nitrogen. In addition, since other anions coexist in an aqueous environment, there is a problem that the removal rate of nitrate ions is lowered in the ion exchange method that is generally widely used.

これまで硝酸イオン含有溶液から硝酸イオンを選択的に除去できる適当な吸着剤はなく、黒鉛−硝酸化合物(特許文献1参照)、トリブチルアミノ基を有するイオン交換樹脂(特許文献2参照)、二級アミン置換基および三級アミン置換基を有する樹脂(特許文献3参照)、リン酸エステル基とアミノ基を有する共重合体(特許文献4参照)などが知られている。黒鉛−硝酸化合物は、吸着量が小さく欠点があり、トリブチルアミノ基を有するイオン交換樹脂は、硝酸イオンに対する選択性は高いが、樹脂の再生が困難であった。二級アミン置換基および三級アミン置換基を有する樹脂およびリン酸エステル基とアミノ基を有する共重合体は、硝酸イオンに対する選択吸着性が十分ではなく、他の陰イオンが大量に共存する溶液中では吸着量が不十分であった。
特公昭60−18605号公報 米国特許第4,479,877号明細書 特開平5−15776号公報 特開平7−238113号公報
Until now, there is no suitable adsorbent that can selectively remove nitrate ions from a nitrate ion-containing solution. Graphite-nitrate compound (see Patent Document 1), ion-exchange resin having tributylamino group (see Patent Document 2), secondary A resin having an amine substituent and a tertiary amine substituent (see Patent Document 3), a copolymer having a phosphate group and an amino group (see Patent Document 4), and the like are known. The graphite-nitric acid compound has a drawback in that it has a small amount of adsorption, and the ion exchange resin having a tributylamino group has high selectivity for nitrate ions, but it is difficult to regenerate the resin. Resins having secondary amine substituents and tertiary amine substituents and copolymers having phosphate ester groups and amino groups do not have sufficient selective adsorption to nitrate ions, and other anions coexist in large quantities. Among them, the amount of adsorption was insufficient.
Japanese Patent Publication No. 60-18605 U.S. Pat. No. 4,479,877 Japanese Patent Application Laid-Open No. 5-15776 JP 7-238113 A

本発明の目的は、硝酸イオン含有溶液、中でも他の陰イオンの共存する硝酸イオン含有溶液において、高い硝酸イオン選択吸着性を有する吸着剤を提供することである。 An object of the present invention, nitrate ion-containing solutions, in nitrate ion-containing solution Of these co-existing anions is to provide adsorbents that have a high nitrate ion selective adsorptivity.

本発明者らは、上記した目的を達成すべく鋭意研究を重ねた結果、所定の組成で所定の面間隔を有する複合金属水酸化物およびその水熱処理物が高い硝酸イオン選択吸着性を有することを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that a composite metal hydroxide having a predetermined composition and a predetermined interplanar spacing and its hydrothermally treated product have high nitrate ion selective adsorption. As a result, the present invention has been completed.

すなわち、本発明は、下記に示すとおりの硝酸イオン選択的吸着剤、その製造方法、それを用いた硝酸イオン除去方法および硝酸イオン回収方法を提供するものである。
項1. 下記一般式(1):
2+ 1-x3+ x(OH)2[An-x/n・mH2O (1)
(式中、M2+はMgイオンおよびZnイオンからなる群より選択される少なくとも1種の金属2価イオンであり、M3+はAlイオンおよびFeイオンからなる群より選択される少なくとも1種の金属3価イオンであり、An-はn価の陰イオンからなる。xは0.20≦x≦0.25を満たす数である。)で表され、面間隔(003)が8.05〜8.15Åの複合金属水酸化物およびその水熱処理物からなる群より選択される少なくとも1種を有効成分とする硝酸イオン選択的吸着剤。
項2. MgおよびZnからなる群より選択される少なくとも1種の2価金属の水溶性化合物と、AlおよびFeからなる群より選択される少なくとも1種の3価金属の水溶性化合物とを、該3価金属の水溶性化合物に対する該2価金属の水溶性化合物のモル比が3.0〜4.0となるように混合した溶液と、アルカリまたはその溶液とを混合して反応させ、下記一般式(1):
2+ 1-x3+ x(OH)2[An-x/n・mH2O (1)
(式中、M2+はMgイオンおよびZnイオンからなる群より選択される少なくとも1種の金属2価イオンであり、M3+はAlイオンおよびFeイオンからなる群より選択される少なくとも1種の金属3価イオンであり、An-はn価の陰イオンからなる。xは0.20≦x≦0.25を満たす数である。)で表され、面間隔(003)が8.05〜8.15Åの複合金属水酸化物を沈殿させ、この沈殿を分離することを特徴とする硝酸イオン選択的吸着剤の製造方法。
項3. MgおよびZnからなる群より選択される少なくとも1種の2価金属の水溶性化合物と、AlおよびFeからなる群より選択される少なくとも1種の3価金属の水溶性化合物とを、該3価金属の水溶性化合物に対する該2価金属の水溶性化合物のモル比が3.0〜4.0となるように混合した溶液と、アルカリまたはその溶液とを混合して反応させ、下記一般式(1):
2+ 1-x3+ x(OH)2[An-x/n・mH2O (1)
(式中、M2+はMgイオンおよびZnイオンからなる群より選択される少なくとも1種の金属2価イオンであり、M3+はAlイオンおよびFeイオンからなる群より選択される少なくとも1種の金属3価イオンであり、An-はn価の陰イオンからなる。xは0.20≦x≦0.25を満たす数である。)で表され、面間隔(003)が8.05〜8.15Åの複合金属水酸化物を沈殿させ、次いで水熱処理することを特徴とする選択的硝酸イオン吸着剤の製造方法。
項4. 項1に記載の硝酸イオン選択的吸着剤を硝酸イオン含有溶液に添加し、硝酸イオンを選択的に吸着させた後に、固液分離することを特徴とする硝酸イオン除去方法。
項5. 項1に記載の硝酸イオン選択的吸着剤を硝酸イオン含有溶液に添加し、硝酸イオンを選択的に吸着させ、次いで硝酸イオンの吸着された吸着剤を分離し、100〜500℃の温度で加熱処理した後に、塩化物イオンを含む溶液に接触させることを特徴とする硝酸イオン脱着および吸着剤再生方法。
項6. 項1に記載の硝酸イオン選択的吸着剤を硝酸イオン含有溶液に添加し、硝酸イオンを選択的に吸着させ、次いで、硝酸イオンの吸着された吸着剤を、脱着剤を含む溶液に接触させて硝酸イオンを脱着させて回収することを特徴とする硝酸イオン回収方法。
That is, the present invention provides a nitrate ion selective adsorbent as shown below, a production method thereof, a nitrate ion removal method and a nitrate ion recovery method using the same.
Item 1. The following general formula (1):
M 2+ 1-x M 3+ x (OH) 2 [A n− ] x / n · mH 2 O (1)
( Wherein M 2+ is at least one metal divalent ion selected from the group consisting of Mg ions and Zn ions, and M 3+ is at least one type selected from the group consisting of Al ions and Fe ions) A n− is made of an n-valent anion. X is a number satisfying 0.20 ≦ x ≦ 0.25.) And the surface spacing (003) is 8. A nitrate ion selective adsorbent comprising as an active ingredient at least one selected from the group consisting of a mixed metal hydroxide of 05 to 8.15 kg and a hydrothermally treated product thereof.
Item 2. A trivalent metal water-soluble compound selected from the group consisting of Mg and Zn, and at least one trivalent metal water-soluble compound selected from the group consisting of Al and Fe. A solution mixed so that the molar ratio of the water-soluble compound of the divalent metal to the water-soluble compound of the metal is 3.0 to 4.0 is mixed with an alkali or a solution thereof to be reacted, and the following general formula ( 1):
M 2+ 1-x M 3+ x (OH) 2 [A n− ] x / n · mH 2 O (1)
( Wherein M 2+ is at least one metal divalent ion selected from the group consisting of Mg ions and Zn ions, and M 3+ is at least one type selected from the group consisting of Al ions and Fe ions) A n− is made of an n-valent anion. X is a number satisfying 0.20 ≦ x ≦ 0.25.) And the surface spacing (003) is 8. A method for producing a nitrate ion selective adsorbent, comprising precipitating a mixed metal hydroxide of 05 to 8.15 kg and separating the precipitate.
Item 3. A trivalent metal water-soluble compound selected from the group consisting of Mg and Zn, and at least one trivalent metal water-soluble compound selected from the group consisting of Al and Fe. A solution mixed so that the molar ratio of the water-soluble compound of the divalent metal to the water-soluble compound of the metal is 3.0 to 4.0 is mixed with an alkali or a solution thereof to be reacted, and the following general formula ( 1):
M 2+ 1-x M 3+ x (OH) 2 [A n− ] x / n · mH 2 O (1)
( Wherein M 2+ is at least one metal divalent ion selected from the group consisting of Mg ions and Zn ions, and M 3+ is at least one type selected from the group consisting of Al ions and Fe ions) A n− is made of an n-valent anion. X is a number satisfying 0.20 ≦ x ≦ 0.25.) And the surface spacing (003) is 8. A method for producing a selective nitrate ion adsorbent, comprising precipitating 05 to 8.15 kg of composite metal hydroxide, followed by hydrothermal treatment.
Item 4. A method for removing nitrate ions, comprising adding the nitrate ion selective adsorbent according to Item 1 to a nitrate ion-containing solution and selectively adsorbing nitrate ions, followed by solid-liquid separation.
Item 5. The nitrate ion selective adsorbent according to Item 1 is added to a nitrate ion-containing solution to selectively adsorb nitrate ions, and then the adsorbent on which nitrate ions are adsorbed is separated and heated at a temperature of 100 to 500 ° C. A method for desorbing nitrate ions and regenerating an adsorbent, characterized in that after treatment, the solution is brought into contact with a solution containing chloride ions.
Item 6. The nitrate ion selective adsorbent according to Item 1 is added to a nitrate ion-containing solution to selectively adsorb nitrate ions, and then the adsorbent on which nitrate ions are adsorbed is brought into contact with a solution containing a desorbent. A method for recovering nitrate ions, comprising desorbing and recovering nitrate ions.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の硝酸イオン選択的吸着剤は、下記一般式(1)で表され、面間隔(003)が8.05〜8.15Åの複合金属水酸化物およびその水熱処理物からなる群より選択される少なくとも1種を有効成分とする。(面間隔(003)は、M2+、M3+およびOH-からなる層の層間隔を意味する。)
2+ 1-x3+ x(OH)2[An-x/n・mH2O (1)
式中、M2+はMgイオンおよびZnイオンからなる群より選択される少なくとも1種の金属2価イオンであり、M3+はAlイオンおよびFeイオンからなる群より選択される少なくとも1種の金属3価イオンであり、An-はn価の陰イオンからなる。xは0.20≦x≦0.25を満たす数である。
The nitrate ion selective adsorbent of the present invention is selected from the group consisting of a composite metal hydroxide represented by the following general formula (1) and having an interplanar spacing (003) of 8.05 to 8.15 mm and a hydrothermally treated product thereof. At least one of these is used as an active ingredient. (Surface spacing (003) means the layer spacing of layers composed of M 2+ , M 3+ and OH )
M 2+ 1-x M 3+ x (OH) 2 [A n− ] x / n · mH 2 O (1)
In the formula, M 2+ is at least one metal divalent ion selected from the group consisting of Mg ions and Zn ions, and M 3+ is at least one type selected from the group consisting of Al ions and Fe ions. It is a metal trivalent ion, and A n− consists of an n-valent anion. x is a number satisfying 0.20 ≦ x ≦ 0.25.

一般式(1)において、M2+はMgイオンおよびZnイオンからなる群より選択される少なくとも1種の金属2価イオンであり、Mgイオンが好ましい。 In the general formula (1), M 2+ is at least one metal divalent ion selected from the group consisting of Mg ions and Zn ions, and Mg ions are preferable.

一般式(1)において、M3+はAlイオンおよびFeイオンからなる群より選択される少なくとも1種の金属3価イオンである。 In the general formula (1), M 3+ is at least one metal trivalent ion selected from the group consisting of Al ions and Fe ions.

一般式(1)において、An-はn価の陰イオンからなり、Cl-が主であるのが好ましく、CO3 2-が微量含まれていてもよい。複合金属水酸化物の層間には、Cl-が存在するのが好ましく、吸着剤として用いる際に他の陰イオンと交換が可能である。 In the general formula (1), A n- is an n-valent anion, Cl - is preferably is a primary, CO 3 2-may also contain minor amounts. The layers of the composite metal hydroxide, Cl - is preferably present is a possible exchange with other anions when used as an adsorbent.

一般式(1)中のxは0.20≦x≦0.25を満たす数である。また、一般式(1)において、(1−x)/xは3.0〜4.0であるのが好ましい。   X in the general formula (1) is a number satisfying 0.20 ≦ x ≦ 0.25. In the general formula (1), (1-x) / x is preferably 3.0 to 4.0.

一般式(1)中のmは、0.1≦m≦1.0を満たす数であるのが好ましい。   M in the general formula (1) is preferably a number satisfying 0.1 ≦ m ≦ 1.0.

一般式(1)で表される複合金属水酸化物は、MgおよびZnからなる群より選択される少なくとも1種の2価金属の水溶性化合物と、AlおよびFeからなる群より選択される少なくとも1種の3価金属の水溶性化合物とを、該3価金属の水溶性化合物に対する該2価金属の水溶性化合物のモル比(2価金属の水溶性化合物/3価金属の水溶性化合物)が3.0〜4.0となるように混合し、該混合物を加水分解することによって製造することができるが、好ましくは加水分解反応後、さらに熟成するのがよい。これら2価金属の水溶性化合物と3価金属の水溶性化合物としては、金属のハロゲン化物、硝酸塩、硫酸塩、炭酸水素塩などを挙げることができるが、後の処理を考えると塩化物、硝酸塩、炭酸水素塩が好ましい。   The composite metal hydroxide represented by the general formula (1) is at least one selected from the group consisting of at least one divalent metal water-soluble compound selected from the group consisting of Mg and Zn, and the group consisting of Al and Fe. One water-soluble compound of a trivalent metal and a molar ratio of the water-soluble compound of the divalent metal to the water-soluble compound of the trivalent metal (water-soluble compound of divalent metal / water-soluble compound of trivalent metal) Can be prepared by hydrolyzing the mixture, and preferably after the hydrolysis reaction, further aging. Examples of these divalent metal water-soluble compounds and trivalent metal water-soluble compounds include metal halides, nitrates, sulfates, bicarbonates, and the like. Hydrogen carbonate is preferred.

加水分解反応は適当なアルカリ、例えば水酸化ナトリウムなどのアルカリ金属水酸化物、炭酸ナトリウムなどのアルカリ金属炭酸塩、炭酸水素ナトリウムなどのアルカリ金属炭酸水素塩、アンモニアや、これらの溶液等を用いて行うことができるが、一般には水酸化ナトリウムなどのアルカリ金属水酸化物の水溶液が用いられる。反応を均一化させるために、2価金属の水溶性化合物と3価金属の水溶性化合物を混合水溶液とし、この水溶液とアルカリ金属水酸化物の水溶液とを同時滴下するのが好ましい。   The hydrolysis reaction is carried out using a suitable alkali, for example, an alkali metal hydroxide such as sodium hydroxide, an alkali metal carbonate such as sodium carbonate, an alkali metal bicarbonate such as sodium bicarbonate, ammonia, or a solution thereof. In general, an aqueous solution of an alkali metal hydroxide such as sodium hydroxide is used. In order to make the reaction uniform, it is preferable that a water-soluble compound of a divalent metal and a water-soluble compound of a trivalent metal are used as a mixed aqueous solution, and this aqueous solution and an aqueous solution of an alkali metal hydroxide are added dropwise simultaneously.

加水分解反応において、溶液のpHは8〜12、中でも9〜11に保つのが好ましく、特に沈殿時の溶液のpHをそのようにするのがよい。   In the hydrolysis reaction, the pH of the solution is preferably 8 to 12, and particularly preferably 9 to 11, and the pH of the solution during precipitation is particularly preferably set as such.

加水分解反応により沈殿が生成され、この沈殿をろ過または遠心分離により分取し、中性になるまで水洗した後に、風乾することにより、複合金属水酸化物が粉末として得られる。   A precipitate is generated by the hydrolysis reaction, and this precipitate is collected by filtration or centrifugation, washed with water until neutral, and then air-dried to obtain a composite metal hydroxide as a powder.

このようにして得られた複合金属水酸化物は、そのままでも吸着剤として用いることができるが、これを水熱処理したものも良好な硝酸イオン吸着性を示す。水熱処理は、耐圧容器(オートクレーブ)中、通常0.11〜1MPaの範囲の加圧下、100〜250℃の範囲の温度、好ましくは0.15〜0.5MPaの範囲の加圧下、110〜180℃の範囲の温度で行われる。   The composite metal hydroxide thus obtained can be used as an adsorbent as it is, but a hydrothermally treated product of the composite metal hydroxide also exhibits good nitrate ion adsorptivity. The hydrothermal treatment is usually performed in a pressure vessel (autoclave) under a pressure in the range of 0.11 to 1 MPa, at a temperature in the range of 100 to 250 ° C., preferably under a pressure in the range of 0.15 to 0.5 MPa. Performed at a temperature in the range of ° C.

本発明の硝酸イオン選択的吸着剤を用いて溶液中の硝酸イオンを除去するには、該吸着剤を硝酸イオン含有溶液に添加し、十分撹拌混合して硝酸イオンを吸着させ、さらにはほぼ吸着平衡に達しめた後に、固液分離すればよい。それにより、溶液中の硝酸イオンは吸着剤に取り込まれ、吸着剤ごと固体として液体より分別除去される。このような吸着処理において、溶液のpHは4〜10の範囲に調整されるのが好ましい。 In order to remove nitrate ions in a solution using the nitrate ion selective adsorbent of the present invention , the adsorbent is added to a nitrate ion-containing solution, and mixed sufficiently with stirring to adsorb nitrate ions. After reaching equilibrium, solid-liquid separation may be performed. Thereby, nitrate ions in the solution are taken into the adsorbent, and the adsorbent is separated and removed from the liquid as a solid. In such an adsorption treatment, the pH of the solution is preferably adjusted to a range of 4-10.

吸着剤に吸着された硝酸イオンは、吸着剤を適当な脱着剤、通常アルカリ、例えば水酸化ナトリウムなどのアルカリ金属水酸化物、炭酸ナトリウムなどのアルカリ金属炭酸塩、炭酸水素ナトリウムなどのアルカリ金属炭酸水素塩等や、塩化ナトリウムなどのハロゲン化アルカリ等の溶液、好ましくは水溶液で処理すれば、脱着されて溶液中に溶出してくる。脱着剤の溶液濃度は、硝酸イオン吸着量によっても異なるが、通常0.1〜5M、好ましくは0.1〜2Mの範囲で選ばれる。脱着と同時に吸着剤の再生を行う場合には、脱着剤溶液として塩化物イオンを含む溶液を用いるのが好ましい。   Nitrate ions adsorbed on the adsorbent are used as a suitable desorbent, usually an alkali such as an alkali metal hydroxide such as sodium hydroxide, an alkali metal carbonate such as sodium carbonate, or an alkali metal carbonate such as sodium bicarbonate. When treated with a solution such as a hydrogen salt or an alkali halide such as sodium chloride, preferably an aqueous solution, it is desorbed and eluted into the solution. The solution concentration of the desorbent varies depending on the nitrate ion adsorption amount, but is usually 0.1 to 5M, preferably 0.1 to 2M. When regenerating the adsorbent simultaneously with desorption, it is preferable to use a solution containing chloride ions as the desorbent solution.

また、吸着剤に吸着された硝酸イオンは、吸着剤を加熱処理することで脱着することができる。すなわち、硝酸イオンを吸着した吸着剤を100〜500℃、好ましくは200〜350℃で加熱処理すれば、層間の硝酸イオンは分解しガスとして放出される。その後に、吸着剤を、塩化ナトリウム、塩化マグネシウム等の塩化物イオンを含む水溶液に添加することにより、再生することができる。   The nitrate ions adsorbed on the adsorbent can be desorbed by heat-treating the adsorbent. That is, if the adsorbent adsorbing nitrate ions is heat-treated at 100 to 500 ° C., preferably 200 to 350 ° C., the nitrate ions between the layers are decomposed and released as gas. Thereafter, the adsorbent can be regenerated by adding it to an aqueous solution containing chloride ions such as sodium chloride and magnesium chloride.

本発明の硝酸イオン選択的吸着剤によれば、硝酸イオン含有溶液、中でも他の陰イオンの共存する硝酸イオン含有溶液において、高い硝酸イオン選択吸着性を有する。従って、共存する陰イオン、例えば硫酸イオン、塩素イオン、リン酸水素イオン、炭酸イオンなどの通常硝酸イオンの吸着を妨害すると考えられている陰イオンが共存していても、硝酸イオンを高い効率で吸着することができる。さらに、多量の陰イオンが存在する海水においても硝酸イオンを選択的に吸着し得る高選択吸着性を有するので、全水域の硝酸イオンの除去に有効である。 The nitrate ion selective adsorbent of the present invention has a high nitrate ion selective adsorption property in a nitrate ion-containing solution, particularly a nitrate ion-containing solution in which other anions coexist. Therefore, even in the presence of coexisting anions, such as sulfate ions, chloride ions, hydrogen phosphate ions, carbonate ions, and the like, which are normally thought to interfere with the adsorption of nitrate ions, nitrate ions are highly efficient. Can be adsorbed. Furthermore, even in seawater where a large amount of anions are present, it has a high selective adsorption property capable of selectively adsorbing nitrate ions, which is effective in removing nitrate ions in the entire water area.

また、既に吸着処理に使用済みの硝酸イオン選択的吸着剤は、簡単に硝酸イオンを脱着、再生して繰り返し使用することができる。 In addition, the nitrate ion selective adsorbent that has already been used for the adsorption treatment can be repeatedly used by simply desorbing and regenerating nitrate ions.

以下、実施例を挙げて本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

なお、以下の実施例および比較例において、面間隔は、X線回折(XRD)測定より求めた。X線回折測定は、粉末X線回折装置を使用し、管電圧40kV、管電流24mA、走査速度2θ=2°/minの条件下で行った。面間隔は(003)の回折ピーク位置から求めた。   In the following examples and comparative examples, the surface spacing was determined by X-ray diffraction (XRD) measurement. X-ray diffraction measurement was performed using a powder X-ray diffractometer under conditions of a tube voltage of 40 kV, a tube current of 24 mA, and a scanning speed of 2θ = 2 ° / min. The surface spacing was determined from the diffraction peak position at (003).

実施例1
1Mの塩化マグネシウム溶液12mlと1Mの塩化アルミニウム溶液3mlとを含む混合溶液と、1M水酸化ナトリウム水溶液とを、水50mlにpH10に保ちながら同時に滴下し、1時間撹拌した後、遠心分離し、水溶液と析出物を分離した。析出物は80mlの水溶液と共に150℃で1日間水熱処理させ、沈殿生成物を得た。沈殿生成物を遠心分離し、中性になるまで水洗いし、室温で1日間乾燥した(1.5g)。生成物は、粉末X線回折、組成分析、熱分析により、[Mg0.799Al0.201(OH)2][Cl0.176(CO30.013]・0.496H2Oの化学組成の複合金属水酸化物と同定され、これを吸着剤試料とした。
Example 1
A mixed solution containing 12 ml of 1M magnesium chloride solution and 3 ml of 1M aluminum chloride solution and 1M aqueous sodium hydroxide solution were added dropwise to 50 ml of water while keeping the pH at 10 and stirred for 1 hour, followed by centrifugation to obtain an aqueous solution. And the precipitate were separated. The precipitate was hydrothermally treated with 150 ml of an aqueous solution at 150 ° C. for 1 day to obtain a precipitated product. The precipitated product was centrifuged, washed with water until neutral and dried at room temperature for 1 day (1.5 g). The product is a composite metal hydroxide having a chemical composition of [Mg 0.799 Al 0.201 (OH) 2 ] [Cl 0.176 (CO 3 ) 0.013 ] · 0.496H 2 O by powder X-ray diffraction, composition analysis, and thermal analysis. This was identified as an adsorbent sample.

実施例2
1Mの塩化マグネシウム溶液12mlと1Mの塩化鉄溶液3mlとを含む混合溶液と、1M水酸化ナトリウム水溶液とを、水50mlにpH10に保ちながら同時に滴下し、1時間撹拌した後、遠心分離し、水溶液と析出物を分離した。析出物は80mlの水溶液と共に150℃で1日間水熱処理させ、沈殿生成物を得た。沈殿生成物を遠心分離し、中性になるまで水洗いし、室温で1日間乾燥した(1.7g)。生成物は、粉末X線回折、組成分析、熱分析により、[Mg0.752Fe0.248(OH)2][Cl0.215(CO30.016]・0.518H2Oの化学組成の複合金属水酸化物と同定され、これを吸着剤試料とした。
Example 2
A mixed solution containing 12 ml of 1M magnesium chloride solution and 3 ml of 1M iron chloride solution and 1M aqueous sodium hydroxide solution were simultaneously added dropwise to 50 ml of water while keeping the pH at 10 and stirred for 1 hour, followed by centrifugation to obtain an aqueous solution. And the precipitate were separated. The precipitate was hydrothermally treated with 150 ml of an aqueous solution at 150 ° C. for 1 day to obtain a precipitated product. The precipitated product was centrifuged, washed with water until neutral and dried at room temperature for 1 day (1.7 g). The product, a powder X-ray diffraction, composition analysis, thermal analysis, [Mg 0.752 Fe 0.248 (OH ) 2] [Cl 0.215 (CO 3) 0.016] · 0.518H 2 composite metal hydroxide of O chemical composition This was identified as an adsorbent sample.

比較例1
吸着剤試料として、冨田製薬株式会社製の商品名「TPEX」を用いた。
Comparative Example 1
The brand name “TPEX” manufactured by Iwata Pharmaceutical Co., Ltd. was used as the adsorbent sample.

実施例1、2および比較例1の吸着剤試料を用いて、以下のようにして、硝酸飽和吸着容量、海水からの硝酸吸着容量、および分配係数(Kd)を求めた。結果を表1に示す。   Using the adsorbent samples of Examples 1 and 2 and Comparative Example 1, the nitric acid saturated adsorption capacity, the nitric acid adsorption capacity from seawater, and the distribution coefficient (Kd) were determined as follows. The results are shown in Table 1.

[硝酸飽和吸着容量]
吸着剤試料0.2gに対して0.1M硝酸ナトリウム水溶液100mlを加え、吸着実験を27℃で3日間行い、硝酸イオンの飽和吸着容量を求めた。
[Nitric acid saturated adsorption capacity]
100 mL of 0.1 M sodium nitrate aqueous solution was added to 0.2 g of the adsorbent sample, and the adsorption experiment was performed at 27 ° C. for 3 days to determine the saturated adsorption capacity of nitrate ions.

[海水からの硝酸吸着容量]
吸着剤試料0.1gに対して0.03mM硝酸ナトリウムを添加した天然海水1Lを加え、吸着実験を27℃で3日間行い、海水からの硝酸イオンの吸着容量を求めた。
[Nitric acid adsorption capacity from seawater]
1 L of natural seawater added with 0.03 mM sodium nitrate was added to 0.1 g of the adsorbent sample, and the adsorption experiment was conducted at 27 ° C. for 3 days to determine the adsorption capacity of nitrate ions from seawater.

[分配係数(Kd)]
吸着剤試料0.1gを、濃度各1mMの、塩化物イオン、硝酸イオン、リン酸二水素イオン、硫酸イオン(何れもナトリウム塩として供用)を含む混合溶液10mlに加え、混合陰イオン吸着実験を27℃で3日間行った。次いで、上澄みの陰イオン濃度を陰イオンクロマトグラフィーで分析した。
[Distribution coefficient (Kd)]
Add 0.1 g of adsorbent sample to 10 ml of a mixed solution containing chloride ion, nitrate ion, dihydrogen phosphate ion, and sulfate ion (all used as sodium salts) at a concentration of 1 mM, and perform mixed anion adsorption experiments. 3 days at 27 ° C. Subsequently, the anion concentration of the supernatant was analyzed by anion chromatography.

なお、表1における(1−x)/xは、吸着剤試料における3価金属に対する2価金属のモル比(2価金属/3価金属)である。   In Table 1, (1-x) / x is the molar ratio of divalent metal to trivalent metal in the adsorbent sample (divalent metal / trivalent metal).

Figure 0004547528
上記[硝酸飽和吸着容量]に記載のようにして硝酸イオンを吸着した実施例1および2の吸着剤を、以下のようにして加熱脱着または脱着剤を用いて再生することにより、吸脱着を繰り返した。
Figure 0004547528
Repeated adsorption / desorption by regenerating the adsorbents of Examples 1 and 2 adsorbing nitrate ions as described in [Natural Nitrogen Saturated Adsorption Capacity] using heat desorption or desorption as follows. It was.

実施例3(加熱脱着による再生)
硝酸イオン吸着後の吸着剤0.2gを、300℃で2時間加熱した(0.18g)。加熱処理後の吸着剤0.05gを0.1M塩化ナトリウム水溶液100mlに添加し、室温で2日間撹拌して再生した。以下同様にして、硝酸イオンの吸脱着を5回以上繰り返すことができた。
Example 3 (Regeneration by heat desorption)
After adsorption of nitrate ions, 0.2 g of the adsorbent was heated at 300 ° C. for 2 hours (0.18 g). 0.05 g of the adsorbent after the heat treatment was added to 100 ml of a 0.1 M sodium chloride aqueous solution, and the mixture was regenerated by stirring at room temperature for 2 days. In the same manner, the adsorption and desorption of nitrate ions could be repeated 5 times or more.

実施例4(脱着剤による再生)
硝酸イオン吸着後の吸着剤0.05gを0.1M塩化ナトリウム水溶液100mlに添加し、室温で2日間撹拌して脱着・再生した。硝酸イオンは80%以上脱着した。以下同様にして、硝酸イオンの吸脱着を5回以上繰り返すことができた。
Example 4 (Regeneration with Desorbent)
0.05 g of adsorbent after adsorption of nitrate ions was added to 100 ml of 0.1 M aqueous sodium chloride solution, and the mixture was stirred for 2 days at room temperature for desorption / regeneration. Nitrate ions were desorbed by 80% or more. In the same manner, the adsorption and desorption of nitrate ions could be repeated 5 times or more.

Claims (6)

下記一般式(1):
2+ 1-x3+ x(OH)2[An-x/n・mH2O (1)
(式中、M2+はMgイオンおよびZnイオンからなる群より選択される少なくとも1種の金属2価イオンであり、M3+はAlイオンおよびFeイオンからなる群より選択される少なくとも1種の金属3価イオンであり、An-はn価の陰イオンからなる。xは0.20≦x≦0.25を満たす数である。)で表され、面間隔(003)が8.05〜8.15Åの複合金属水酸化物およびその水熱処理物からなる群より選択される少なくとも1種を有効成分とする硝酸イオン選択的吸着剤。
The following general formula (1):
M 2+ 1-x M 3+ x (OH) 2 [A n− ] x / n · mH 2 O (1)
( Wherein M 2+ is at least one metal divalent ion selected from the group consisting of Mg ions and Zn ions, and M 3+ is at least one type selected from the group consisting of Al ions and Fe ions) A n− is made of an n-valent anion. X is a number satisfying 0.20 ≦ x ≦ 0.25.) And the surface spacing (003) is 8. A nitrate ion selective adsorbent comprising as an active ingredient at least one selected from the group consisting of a mixed metal hydroxide of 05 to 8.15 kg and a hydrothermally treated product thereof.
MgおよびZnからなる群より選択される少なくとも1種の2価金属の水溶性化合物と、AlおよびFeからなる群より選択される少なくとも1種の3価金属の水溶性化合物とを、該3価金属の水溶性化合物に対する該2価金属の水溶性化合物のモル比が3.0〜4.0となるように混合した溶液と、アルカリまたはその溶液とを混合して反応させ、下記一般式(1):
2+ 1-x3+ x(OH)2[An-x/n・mH2O (1)
(式中、M2+はMgイオンおよびZnイオンからなる群より選択される少なくとも1種の金属2価イオンであり、M3+はAlイオンおよびFeイオンからなる群より選択される少なくとも1種の金属3価イオンであり、An-はn価の陰イオンからなる。xは0.20≦x≦0.25を満たす数である。)で表され、面間隔(003)が8.05〜8.15Åの複合金属水酸化物を沈殿させ、この沈殿を分離することを特徴とする硝酸イオン選択的吸着剤の製造方法。
A trivalent metal water-soluble compound selected from the group consisting of Mg and Zn, and at least one trivalent metal water-soluble compound selected from the group consisting of Al and Fe. A solution mixed so that the molar ratio of the water-soluble compound of the divalent metal to the water-soluble compound of the metal is 3.0 to 4.0 is mixed with an alkali or a solution thereof to be reacted, and the following general formula ( 1):
M 2+ 1-x M 3+ x (OH) 2 [A n− ] x / n · mH 2 O (1)
( Wherein M 2+ is at least one metal divalent ion selected from the group consisting of Mg ions and Zn ions, and M 3+ is at least one type selected from the group consisting of Al ions and Fe ions) A n− is made of an n-valent anion. X is a number satisfying 0.20 ≦ x ≦ 0.25.) And the surface spacing (003) is 8. A method for producing a nitrate ion selective adsorbent, comprising precipitating a mixed metal hydroxide of 05 to 8.15 kg and separating the precipitate.
MgおよびZnからなる群より選択される少なくとも1種の2価金属の水溶性化合物と、AlおよびFeからなる群より選択される少なくとも1種の3価金属の水溶性化合物とを、該3価金属の水溶性化合物に対する該2価金属の水溶性化合物のモル比が3.0〜4.0となるように混合した溶液と、アルカリまたはその溶液とを混合して反応させ、下記一般式(1):
2+ 1-x3+ x(OH)2[An-x/n・mH2O (1)
(式中、M2+はMgイオンおよびZnイオンからなる群より選択される少なくとも1種の金属2価イオンであり、M3+はAlイオンおよびFeイオンからなる群より選択される少なくとも1種の金属3価イオンであり、An-はn価の陰イオンからなる。xは0.20≦x≦0.25を満たす数である。)で表され、面間隔(003)が8.05〜8.15Åの複合金属水酸化物を沈殿させ、次いで水熱処理することを特徴とする硝酸イオン選択的吸着剤の製造方法。
A trivalent metal water-soluble compound selected from the group consisting of Mg and Zn, and at least one trivalent metal water-soluble compound selected from the group consisting of Al and Fe. A solution mixed so that the molar ratio of the water-soluble compound of the divalent metal to the water-soluble compound of the metal is 3.0 to 4.0 is mixed with an alkali or a solution thereof to be reacted, and the following general formula ( 1):
M 2+ 1-x M 3+ x (OH) 2 [A n− ] x / n · mH 2 O (1)
( Wherein M 2+ is at least one metal divalent ion selected from the group consisting of Mg ions and Zn ions, and M 3+ is at least one type selected from the group consisting of Al ions and Fe ions) A n− is made of an n-valent anion. X is a number satisfying 0.20 ≦ x ≦ 0.25.) And the surface spacing (003) is 8. A method for producing a nitrate ion- selective adsorbent, comprising precipitating 05 to 8.15 kg of a composite metal hydroxide, followed by hydrothermal treatment.
請求項1に記載の硝酸イオン選択的吸着剤を硝酸イオン含有溶液に添加し、硝酸イオンを選択的に吸着させた後に、固液分離することを特徴とする硝酸イオン除去方法。 A method for removing nitrate ions, comprising adding the nitrate ion selective adsorbent according to claim 1 to a nitrate ion-containing solution to selectively adsorb nitrate ions, followed by solid-liquid separation. 請求項1に記載の硝酸イオン選択的吸着剤を硝酸イオン含有溶液に添加し、硝酸イオンを選択的に吸着させ、次いで硝酸イオンの吸着された吸着剤を分離し、100〜500℃の温度で加熱処理した後に、塩化物イオンを含む溶液に接触させることを特徴とする硝酸イオン脱着および吸着剤再生方法。 The nitrate ion selective adsorbent according to claim 1 is added to a nitrate ion-containing solution to selectively adsorb nitrate ions, and then the adsorbent on which nitrate ions are adsorbed is separated at a temperature of 100 to 500 ° C. A method for desorbing nitrate ions and regenerating an adsorbent, characterized by contacting with a solution containing chloride ions after heat treatment. 請求項1に記載の硝酸イオン選択的吸着剤を硝酸イオン含有溶液に添加し、硝酸イオンを選択的に吸着させ、次いで、硝酸イオンの吸着された吸着剤を、脱着剤を含む溶液に接触させて硝酸イオンを脱着させて回収することを特徴とする硝酸イオン回収方法。 The nitrate ion selective adsorbent according to claim 1 is added to a nitrate ion-containing solution to selectively adsorb nitrate ions, and then the adsorbent on which nitrate ions are adsorbed is brought into contact with a solution containing a desorbent. And recovering nitrate ions by desorbing the nitrate ions.
JP2004115471A 2004-04-09 2004-04-09 Nitrate ion selective adsorbent, production method thereof, nitrate ion removal method and nitrate ion recovery method using the same Expired - Lifetime JP4547528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004115471A JP4547528B2 (en) 2004-04-09 2004-04-09 Nitrate ion selective adsorbent, production method thereof, nitrate ion removal method and nitrate ion recovery method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004115471A JP4547528B2 (en) 2004-04-09 2004-04-09 Nitrate ion selective adsorbent, production method thereof, nitrate ion removal method and nitrate ion recovery method using the same

Publications (2)

Publication Number Publication Date
JP2005296773A JP2005296773A (en) 2005-10-27
JP4547528B2 true JP4547528B2 (en) 2010-09-22

Family

ID=35328970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004115471A Expired - Lifetime JP4547528B2 (en) 2004-04-09 2004-04-09 Nitrate ion selective adsorbent, production method thereof, nitrate ion removal method and nitrate ion recovery method using the same

Country Status (1)

Country Link
JP (1) JP4547528B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005335965A (en) * 2004-05-24 2005-12-08 National Institute For Materials Science Good quality layered composite hydroxide obtained by uniform precipitation method using hexamethylene tetramine, and its use
JP2009195843A (en) * 2008-02-22 2009-09-03 Teijin Engineering Ltd Molding containing fine particle of nitrate ion-selective adsorbent and its manufacturing method
JP2009195879A (en) * 2008-02-25 2009-09-03 Teijin Engineering Ltd Water purifying apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001187336A (en) * 1997-06-12 2001-07-10 Tomita Pharmaceutical Co Ltd Dephosphorizing agent-granulated material and waste water treating method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523353B2 (en) * 1971-12-25 1977-01-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001187336A (en) * 1997-06-12 2001-07-10 Tomita Pharmaceutical Co Ltd Dephosphorizing agent-granulated material and waste water treating method

Also Published As

Publication number Publication date
JP2005296773A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
CA2285277C (en) Apparatus and method for ammonia removal from waste streams
EP0191893B1 (en) Process for adsorption treatment of dissolved fluorine
JP2009515694A (en) Method for separation and / or purification of gas mixtures
JP5110463B2 (en) Method for producing magnetic nanocomplex material having anion adsorptivity and magnetism
JP4348426B2 (en) Highly selective dephosphorizing agent and method for producing the same
JP5336932B2 (en) Water purification material, water purification method, phosphate fertilizer precursor and method for producing phosphate fertilizer precursor
JP4547528B2 (en) Nitrate ion selective adsorbent, production method thereof, nitrate ion removal method and nitrate ion recovery method using the same
JP4000370B2 (en) Method for removing nitrate ions from various anion-containing aqueous solutions and method for recovering nitrate ions
US8133838B2 (en) Water purification material
JP4617476B2 (en) Method for removing potassium ions
JPS61192385A (en) Treatment of fluorine-containing waste solution
JP4863192B2 (en) Layered double hydroxides with high anion exchange ability and high carbon dioxide contamination resistance and their synthesis
JP2004298738A (en) Boron-containing water treatment method
JP4392493B2 (en) Method for removing and recovering phosphorus
Kawamoto et al. Regeneration and reuse of hydrotalcite-like anion exchanger with high selectivity to phosphate anion
JP2020127914A (en) Technology of removal of highly concentrated nitrate ion in industrial wastewater using mayenite
JPWO2006080467A1 (en) Hydrotalcite-like compound, bromide ion exchanger, and use thereof
JP2859897B2 (en) A method for reducing the amount of anionic metal-ligand complex in solution
JP3754274B2 (en) Method for removing fluorine from waste liquid
JPH08206432A (en) Gas treatment method and gas treatment agent
JPS6055448B2 (en) How to recover uranium from seawater
JP7419952B2 (en) Novel silicotitanate composition and method for producing the same
JPS63287547A (en) Adsorbent for fluoride ion
JP2004267917A (en) Sulfur compound adsorbent, its production method, and sulfur compound removal/recovery using it and adsorbent regeneration method
JP2007253155A (en) Sulfur compound adsorbent and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100616

R150 Certificate of patent or registration of utility model

Ref document number: 4547528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term