JP2005335965A - Good quality layered composite hydroxide obtained by uniform precipitation method using hexamethylene tetramine, and its use - Google Patents

Good quality layered composite hydroxide obtained by uniform precipitation method using hexamethylene tetramine, and its use Download PDF

Info

Publication number
JP2005335965A
JP2005335965A JP2004152923A JP2004152923A JP2005335965A JP 2005335965 A JP2005335965 A JP 2005335965A JP 2004152923 A JP2004152923 A JP 2004152923A JP 2004152923 A JP2004152923 A JP 2004152923A JP 2005335965 A JP2005335965 A JP 2005335965A
Authority
JP
Japan
Prior art keywords
layered double
double hydroxide
ion
anion
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004152923A
Other languages
Japanese (ja)
Inventor
Nobuo Ii
伸夫 井伊
Yoshiro Kaneko
芳郎 金子
Hiroteru Matsumoto
太輝 松本
Kenji Kitamura
健二 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004152923A priority Critical patent/JP2005335965A/en
Publication of JP2005335965A publication Critical patent/JP2005335965A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for synthesizing a good layered composite hydroxide which can easily exchange with other anions or anions of a cationic functional organic substance or the like by ion exchange, is free from hardly ion-exchangeable carbonate ion between layers, and is good in particle size, uniformity and crystallinity. <P>SOLUTION: A crystal of the layered composite hydroxide having a composition expressed by general formula: M<SB>x</SB>N(OH)<SB>y</SB>(Z<SP>-</SP>)-nH<SB>2</SB>O and a structure similar to hydrotalcite is formed by adding hexamethylene tetramine to a reaction raw material mixed aqueous solution containing required components and heat treating the resulting mixture. In the formula, x is 1.8-4.2; y is 2(x+1); M shows divalent metal ion; N shows trivalent metal ion; Z<SP>-</SP>shows anion except carbonate ion (CO<SB>3</SB><SP>2-</SP>); and n is about 2 although it changes depending on the humidity of the environment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ハイドロタルサイト様化合物、すなわち層状複水酸化物の良質な結晶の製造方法、およびそれらの用途発明に関する。   The present invention relates to a method for producing a high-quality crystal of a hydrotalcite-like compound, that is, a layered double hydroxide, and a use invention thereof.

従来、粘土鉱物などの層状化合物を使用し、各種の陽イオンや陽イオン性の機能性有機物を包接することによって多くの層状化合物が開発されてきた(非特許文献1)。層状複水酸化物は、粘土鉱物と異なり、層自体が陽電荷を持ち、層間に陰イオンを有し、陰イオン交換性を有する無機化合物である。層は、2価と3価の金属(たとえば、MgやAl等)の水酸化物で構成されており、その割合によって層電荷をコントロールすることができる。陰イオン性交換性の物質は、陽イオン交換性の化合物に比べ種類が極端に少なく、層状複水酸化物は陰イオン交換性化合物の代表的なものである。   Conventionally, many layered compounds have been developed by using a layered compound such as a clay mineral and including various cations and cationic functional organic substances (Non-patent Document 1). A layered double hydroxide is an inorganic compound having a positive charge, having an anion between layers, and having anion exchange properties, unlike a clay mineral. The layer is made of a hydroxide of a divalent or trivalent metal (for example, Mg or Al), and the layer charge can be controlled by the ratio. There are extremely few types of anionic exchangeable substances compared to cation exchangeable compounds, and layered double hydroxides are representative of anion exchangeable compounds.

層状複水酸化物は、その陰イオン交換性を利用して、二酸化炭素の捕捉に使用され、また、層間に他の陰イオンを導入することにより、層間に機能性の分子や有機物をナノレベルで包接したナノ層状化合物が合成されている。さらに、板状の形状を持つことから、その表面積と触媒作用を生かし、触媒や触媒担体としても用いられており、これに関しても多くの研究がなされている(非特許文献2)。   Layered double hydroxides are used to capture carbon dioxide by taking advantage of their anion exchange properties, and by introducing other anions between layers, functional molecules and organic substances can be nanoscaled between layers. A nano-layered compound that has been clathrated with is synthesized. Furthermore, since it has a plate-like shape, it has been used as a catalyst and a catalyst carrier by taking advantage of its surface area and catalytic action, and many studies have been made on this as well (Non-patent Document 2).

通常、層状複水酸化物は、層を構成する金属の塩(例えば塩化物や硝酸塩)などの水溶液と、水酸化ナトリウムなどのアルカリ溶液を、pHをアルカリに保ちながら混合して沈殿を生じさせる、いわゆる「共沈法」を用いる。この方法で、生じたゲルを加熱もしくは、長時間撹拌して熟成させ、層状複水酸化物の板状結晶を生成させる。この方法では、粒子の径がほとんどの場合、1μ以下と小さくまた、粒径が不均一であるだけでなく、一般的に結晶性は良くない。   In general, layered double hydroxides cause precipitation by mixing an aqueous solution such as a metal salt (for example, chloride or nitrate) and an alkali solution such as sodium hydroxide while keeping the pH at alkali. The so-called “coprecipitation method” is used. By this method, the resulting gel is aged by heating or stirring for a long time to produce plate-like crystals of layered double hydroxides. In this method, in most cases, the particle diameter is as small as 1 μm or less, the particle diameter is not uniform, and the crystallinity is generally not good.

均一粒径や結晶性の向上のため、最近では、特に「尿素」を用いて、均一に核形成を行い、均一な粒径に制御されたハイドロタルサイトの板状結晶が合成されている(非特許文献3)。この方法では、出発原料である金属塩の水溶液に尿素をあらかじめ加え、混合溶液を高温で処理する。これは、高温水溶液中で、尿素が加水分解して、アンモニアと二酸化炭素を生じ、溶液がアルカリ性となって層状複水酸化物の沈殿が生じることを利用しており、溶液中で均一にアンモニアを発生し、反応に偏りが生じないため、粒径が均一で、しかも粒径の比較的大きな板状結晶を作ることができる。
しかし、この方法においてはアンモニアと共に二酸化炭素を生じるため、層状複水酸化物の層間に、必然的に炭酸イオンが包接された層状複水酸化物のみが生じる。
In order to improve the uniform particle size and crystallinity, recently, a plate-like crystal of hydrotalcite that has been uniformly nucleated and controlled to a uniform particle size, especially using “urea” has been synthesized ( Non-patent document 3). In this method, urea is added in advance to an aqueous solution of a metal salt that is a starting material, and the mixed solution is treated at a high temperature. This utilizes the fact that urea is hydrolyzed in a high temperature aqueous solution to produce ammonia and carbon dioxide, and the solution becomes alkaline and precipitates a layered double hydroxide. And the reaction is not biased, so that a plate-like crystal having a uniform particle size and a relatively large particle size can be produced.
However, in this method, since carbon dioxide is generated together with ammonia, only the layered double hydroxide in which carbonate ions are inevitably included between the layers of the layered double hydroxide is generated.

通常、炭酸イオンを含むものが工業的に生産されている。これは、通常の陰イオンのなかで、炭酸イオンは、層状複水酸化物に対し最も親和性が大きいため、炭酸イオンを含む層状複水酸化物の場合、炭酸イオンが極めて安定に層間に存在するため、製造し易いというのがその理由であるが、一方、イオン交換性が極めて低くほとんどイオン交換が起こらないこと(非特許文献4)から、実際上、その陰イオン交換剤としての用途は、極めて限られていた(非特許文献3)。即ち、単に微粒子の表面吸着の利用に限られていたのである。   Usually, those containing carbonate ions are industrially produced. This is because, among ordinary anions, carbonate ions have the greatest affinity for layered double hydroxides, so in the case of layered double hydroxides containing carbonate ions, carbonate ions exist extremely stably between the layers. Therefore, it is easy to produce, but on the other hand, the ion exchange property is extremely low and almost no ion exchange occurs (Non-patent Document 4). It was extremely limited (Non-Patent Document 3). That is, it was limited to the use of surface adsorption of fine particles.

陰イオン交換のためには、炭酸イオンを含まない陰イオン交換性の層状複水酸化物を合成する必要がある。陰イオン交換性の層状複水酸化物(例えば硝酸イオン、塩素イオンな
ど)を合成するため、二酸化炭素を溶解していない脱炭酸ガスの蒸留水を用い、窒素気流中など二酸化炭素の無い雰囲気下で行う。例えば、マグネシウム・アルミニウム層状複水酸化物の場合、マグネシウム塩、アルミニウム塩(塩化物や硝酸塩)と水酸化ナトリウム水溶液との共沈反応により、炭酸以外の陰イオンで、交換が容易な陰イオン(硝酸イオン、塩素イオンなど)を含む、層状複水酸化物を合成していた(「共沈法」、非特許文献5)。このように、炭酸イオン以外の陰イオンを含む層状複水酸化物を合成するには、全ての合成過程で、注意深く反応させる必要がある。
For anion exchange, it is necessary to synthesize an anion exchange layered double hydroxide that does not contain carbonate ions. In order to synthesize anion-exchanging layered double hydroxides (eg, nitrate ions, chlorine ions, etc.), use carbon dioxide-dissolved distilled water that does not dissolve carbon dioxide, and in an atmosphere without carbon dioxide, such as in a nitrogen stream. To do. For example, in the case of magnesium-aluminum layered double hydroxide, anions other than carbonic acid can be easily exchanged with anions other than carbonic acid by coprecipitation reaction of magnesium salt, aluminum salt (chloride or nitrate) and aqueous sodium hydroxide solution ( A layered double hydroxide containing nitrate ions, chlorine ions, etc. was synthesized (“Coprecipitation method”, Non-Patent Document 5). Thus, in order to synthesize a layered double hydroxide containing an anion other than carbonate ion, it is necessary to react carefully in all the synthesis processes.

なお、加熱による構造変化を利用した別法もある。これは、500℃程度の加熱により、ハイドロタルサイトは、構造変化を起こし脱炭酸するが、得られた生成物を、包接させたい陰イオンを含む水溶液に投入することによって、その陰イオンを含む層状複水酸化物が再構築することを利用したものである(非特許文献6)。この方法(「再構築法」)を用いて、二酸化炭素の捕捉という目的に供したり、また、この再構築によって、任意の陰イオンが層間に入ることを利用し、層間に機能性の無機イオン(例えば、ヘテロポリ酸イオン)や機能性有機物をナノレベルで包接したナノ層状化合物が合成されてきた。   There is another method that utilizes structural changes caused by heating. This is because hydrotalcite undergoes a structural change due to heating at about 500 ° C. and decarboxylates, but when the obtained product is put into an aqueous solution containing an anion to be included, the anion is introduced. This is based on the fact that the containing layered double hydroxide is reconstructed (Non-Patent Document 6). Using this method (“reconstruction method”), it serves the purpose of capturing carbon dioxide, and by utilizing the fact that any anion enters the layer by this reconstruction, a functional inorganic ion between the layers Nanolayered compounds containing nano-level inclusions (for example, heteropolyacid ions) and functional organic substances have been synthesized.

しかし、再構築法においては、500℃というような、脱炭酸にかなり厳しい条件を利用している。この加熱によって構造が変化しているため、再構築法の方向性が出発物と同一とはいえず、粒径や均一性に変化を起こす。また、再建築を繰り返すことによって構造が崩れてくることからもわかるように、再建築操作が構造を破壊していることは明らかで、さらにエネルギー的にも時間的にも実用的ではなく、大きな欠点をもっていた。   However, in the reconstruction method, a rather severe condition such as 500 ° C. is used for decarboxylation. Since the structure is changed by this heating, the direction of the reconstruction method cannot be said to be the same as that of the starting material, and the particle size and uniformity are changed. Also, as you can see from the fact that the structure collapses due to repeated rebuilding, it is clear that the rebuilding operation is destroying the structure, and it is not practical in terms of energy and time. I had a fault.

もし、イオン交換性の極めて低い炭酸イオンを含まないような、粒径が制御された均一な層状複水酸化物を簡単なプロセスで合成できるならば、工業的にもまた、研究・試験レベルにも広い応用が期待できる。
これを解決する手段としては、
(1)一般的に容易に合成できる炭酸イオン含有の層状複水酸化物を、脱炭酸イオンにより、イオン交換が容易な陰イオン(例えば、硝酸イオン、塩素イオンなど)を含む層状複水酸化物へ交換する方法、
(2)炭酸イオン含まない層状複水酸化物を直接合成する方法、
の2つが考えられる。
本発明は、後者による解決を目指したものである。
If a uniform layered double hydroxide with controlled particle size that does not contain carbonate ions with extremely low ion exchange properties can be synthesized by a simple process, it is industrially also at the research and test level. Can be expected to have wide application.
As a means to solve this,
(1) A layered double hydroxide containing an anion (for example, nitrate ion, chlorine ion, etc.) that can be easily ion-exchanged by decarboxylation from a carbonate ion-containing layered double hydroxide that can be generally easily synthesized. How to exchange,
(2) A method of directly synthesizing a layered double hydroxide not containing carbonate ions,
These are considered.
The present invention aims to solve the latter.

ちなみに前者は、炭酸イオンを含む層状複水酸化物を、脱炭酸イオンにより、交換が容易な陰イオン(例えば、硝酸イオン、塩素イオンなど)を含む層状複水酸化物を合成する方法に関しては、確かに、これまで、0.01規定の塩酸を用いた方法や150℃の塩化水素ガスによる処理の報告もある(非特許文献7、8)。しかし、前者の方法においては、化合物そのものが溶解していることを示す指標である重量減少がみられ(非特許文献8)、また、後者の方法においては、反応条件が過激なことから、簡便な方法とは言えず、重量減少がなく脱炭酸イオンを行うことは、従来の方法では、事実上、不可能であった。   Incidentally, the former relates to a method for synthesizing a layered double hydroxide containing carbonate ions and an anion (for example, nitrate ion, chloride ion, etc.) that can be easily exchanged by decarboxylation ions. To date, there have been reports of methods using 0.01 N hydrochloric acid and treatment with hydrogen chloride gas at 150 ° C. (Non-patent Documents 7 and 8). However, in the former method, weight loss, which is an index indicating that the compound itself is dissolved, is observed (Non-Patent Document 8), and in the latter method, since the reaction conditions are extreme, it is simple. In other words, it was practically impossible to perform decarboxylation without weight reduction.

このように、ハイドロタルサイトから、簡単な化学的手法によって、炭酸イオンを含まない、粒径が大きく均一で結晶性の良い層状複水酸化物を、合成する方法は、従来存在していなっかた(非特許文献3)。その結果、粒径が大きく均一で結晶性の良い層状複水酸化物が合成できるようになったものの、粒径や均一性を保ったままイオン交換法によって、無機の陰イオンを層間に導入したり、イオン性を持つ機能性有機物を導入して機能性層状複合体とするといったような、ソフト化学的な手法によって、結晶性が良く粒径の大きな新規複合材料を合成し提供することは、実現していなかった。   Thus, a method for synthesizing a layered double hydroxide having a large particle size, uniform particle size, and good crystallinity that does not contain carbonate ions from a hydrotalcite by a simple chemical method has existed in the past. (Non-Patent Document 3). As a result, although it became possible to synthesize layered double hydroxides with large and uniform particle size and good crystallinity, inorganic anions were introduced between the layers by ion exchange while maintaining the particle size and uniformity. Or by synthesizing and providing a new composite material with good crystallinity and a large particle size by a soft chemical method such as introducing a functional organic substance having ionicity into a functional layered composite, It was not realized.

炭酸イオンを含まない層状複水酸化物は、応用面で大きく期待できる。炭酸イオンを含
まない層状複水酸化物は、二酸化炭素に対し大きな親和性を持つため、無機の脱炭酸材料として、使用が考えられる。二酸化炭素は、地球温暖化の原因の大きな要素であり、排出の際の捕捉が急務となっているのである。
A layered double hydroxide that does not contain carbonate ions can be greatly expected in application. Since the layered double hydroxide containing no carbonate ion has a great affinity for carbon dioxide, it can be used as an inorganic decarboxylation material. Carbon dioxide is a major cause of global warming, and it is an urgent need to capture it when it is emitted.

また、2次元の層状物は、他にも汎用ポリマーの機械的強度を向上させるためのフィラーとして注目されており、例えば粘土鉱物など2次元レイヤーを含む化合物が用いられているが、レイヤーの剥離が完全に行われない点やマトリックスとの親和性が充分でない点で問題があり、分散性などに多くの解決すべき課題が残っているものであった。層状複水酸化物の層は、粘土鉱物と異なり、陽イオン性であり、粘土では対応できない陰イオン性のモノマーを包接することができる。もし、層間に高分子のモノマーを包接し、反応を起こさせることができるなら、粘土鉱物の使用できないような高分子についても、用いることが可能となり、また、レイヤーまでの剥離が期待でき、機械的強度、ガスバリヤー性の改善がおおいに期待できる。   Two-dimensional layered materials are also attracting attention as fillers for improving the mechanical strength of other general-purpose polymers. For example, compounds containing two-dimensional layers such as clay minerals are used. There is a problem in that the process is not performed completely and the affinity with the matrix is not sufficient, and many problems to be solved remain in dispersibility. Unlike clay minerals, the layered double hydroxide layer is cationic and can include anionic monomers that cannot be handled by clay. If a polymer monomer can be included between layers to cause a reaction, a polymer that cannot be used with clay minerals can be used, and peeling to the layer can be expected. The improvement in mechanical strength and gas barrier properties can be greatly expected.

このように、炭酸イオンを含まず、しかも粒径や均一性が良好な層状複水酸化物が、簡単なプロセスで合成できるならば、実験室レベルから工業レベルまで、また、環境問題からナノテクノロジーまで広い分野で、ブレークスルーが期待できるが、従来、このような手法は開発されていなかった。
小森佳彦、黒田一幸「無機層状物質と有機物との相互作用」化学総説(日本化学会編、学会出版センター)42,p33−44,(1994). Cavani,F.;Trifiro,F.;Vaccari,A.Catal.Today 1991,11,173. Ogawa,M.;Kaiho,H.Langmuir 2002,18,4240. Miyata,S.Clays Clay Miner.1983,31,305. Reichle,W.T.Solid States Ionics 1986,22,135. 鈴木榮一、小野嘉夫「ハイドロタルサイトのインターカレーション化学」、化学総説(日本化学会編、学会出版センター)21、p49−55、(1994). Bish,D.L.,Bull.Mineral.1980,103,170. Constatino,U.;Marmottini,F.;Nocchetti,M.;Vivani,R. Eur.J.Inorg.Chem. 1988,1439.
In this way, if layered double hydroxides that do not contain carbonate ions and have good particle size and uniformity can be synthesized by a simple process, they can be synthesized from the laboratory level to the industrial level and from environmental issues to nanotechnology. Breakthroughs can be expected in a wide range of fields, but no such method has been developed.
Yoshihiko Komori and Kazuyuki Kuroda “Interaction between Inorganic Layered Substances and Organic Substances” Chemistry Review (Edited by the Chemical Society of Japan, Society Publishing Center) 42, p33-44 (1994). Cavani, F.M. Trifiro, F .; Vaccari, A .; Catal. Today 1991, 11, 173. Ogawa, M .; Kaiho, H .; Langmuir 2002, 18, 4240. Miyata, S .; Clays Cray Miner. 1983, 31, 305. Reichle, W.M. T.A. Solid States Ionics 1986, 22, 135. Junichi Suzuki, Yoshio Ono “Intercalation Chemistry of Hydrotalcite”, Chemistry Review (The Chemical Society of Japan, Society Publishing Center) 21, p. 49-55, (1994). Bish, D.C. L. Bull. Mineral. 1980, 103, 170. Constantino, U. Marmotini, F .; Nocchetti, M .; Vivani, R .; Eur. J. et al. Inorg. Chem. 1988, 1439.

本発明は難イオン交換性の炭酸イオンを層間に含まず、しかも粒径・均一性・結晶性が良好な層状複水酸化物を得るための、実用性に富んだ極めて簡便な化学的合成手法を提供しようというものである。このようにして得られた層状複水酸化物は、陰イオン交換性を備えているためイオン交換によって容易に、他の陰イオンや、陽イオン性の機能性有機物質などの陰イオンと交換することが可能となるものである。   The present invention is a practical and extremely simple chemical synthesis method for obtaining layered double hydroxides that do not contain difficult ion-exchange carbonate ions between layers and that have good particle size, uniformity, and crystallinity. Is to provide. The layered double hydroxide obtained in this way has anion exchange properties, so it can be easily exchanged with other anions or anions such as cationic functional organic substances by ion exchange. Is possible.

このようにして得られた層状複水酸化物のイオン交換性を生かすことによって、該層状化合物に、簡単に機能性分子を導入することができ、これまでに存在しなかった結晶性が良く粒径の大きく均一な機能性新規層状化合物を提供することも可能となるものであり、その利用可能性は、良質な新規化合物を提供する意味でも、また、環境問題の分野でも、極めて優れ実用性に富んでおり、意義が大きいといえる。   By taking advantage of the ion exchange properties of the layered double hydroxide thus obtained, a functional molecule can be easily introduced into the layered compound, and the crystallinity that has not existed so far has good grain size. It is also possible to provide a large-sized and uniform functional new layered compound, and its availability is extremely excellent and practical in the sense of providing a high-quality new compound and in the field of environmental problems. It can be said that it is rich in significance.

既に述べたように、尿素法はこれまでのプロセスに比べ、粒径や均一性、結晶性の面で優れた層状複水酸化物を提供するものの、本質的に炭酸イオンを包接した層状複水酸化物しか得られない。これを本質的に解決するには、尿素と異なり、高温水溶液中で加水分解などの反応を起こしアルカリ化する成分を生じる際、二酸化炭素を生じない物質を選ぶ必要がある。このようにすれば、炭酸イオンを含まない層状複水酸化物の合成が可能となり、尿素法の欠点を克服できるのではないか、との考えに至った。   As already mentioned, the urea method provides a layered double hydroxide that is superior in particle size, uniformity, and crystallinity compared to the conventional processes, but it is essentially a layered complex containing carbonate ions. Only hydroxide can be obtained. In order to solve this problem essentially, it is necessary to select a substance that does not generate carbon dioxide when producing a component that undergoes a reaction such as hydrolysis in a high-temperature aqueous solution and alkalizes, unlike urea. By doing so, it became possible to synthesize layered double hydroxides that do not contain carbonate ions, leading to the idea that the drawbacks of the urea method could be overcome.

以上の基本方針に基づき鋭意研究した結果、尿素に替えて、ヘキサメチレンテトラミン(C6124)を使用し、出発原料である金属塩の水溶液に、このヘキサメチレンテトラミンをあらかじめ加えた混合水溶液を高温で処理することにより、炭酸イオンを含まない層状複水酸化物を合成することに成功した。ヘキサメチレンテトラミンは、高温水溶液中で加水分解して、アンモニアとフォルムアルデヒドを生じる。これにより、溶液がアルカリ性となって層状複水酸化物の沈殿が生じ、しかもこの反応の間に二酸化炭素を生ずることはない。ヘキサメチレンテトラミンは尿素と同じように溶液中で均一にアンモニアを発生するため、結晶化に偏りがなく、粒径もμmオーダーの結晶性の良い層状複水酸化物の板状結晶が生成する優れた反応原料であることを見出すに至った。 As a result of earnest research based on the above basic policy, instead of urea, hexamethylenetetramine (C 6 H 12 N 4 ) was used, and this hexamethylenetetramine was added in advance to the metal salt aqueous solution as the starting material. By treating the aqueous solution at a high temperature, the inventors succeeded in synthesizing a layered double hydroxide not containing carbonate ions. Hexamethylenetetramine is hydrolyzed in a high temperature aqueous solution to produce ammonia and formaldehyde. This renders the solution alkaline and precipitates the layered double hydroxide, and does not produce carbon dioxide during this reaction. Hexamethylenetetramine generates ammonia uniformly in the solution like urea, so there is no bias in crystallization, and excellent formation of plate-like crystals of layered double hydroxides with good crystallinity with a particle size of μm order. It came to discover that it was a raw material for the reaction.

ただし、得られた層状複水酸化物の層間には、水酸基や塩素イオンではなく、ヘキサメチレンテトラミンが加水分解して生じたフォルムアルデヒドがさらに酸化して生じたギ酸イオンが包接されていることが、各種分析により明らかとなった。しかしながら、これは、後述する実施例2でも記述しているように、生成物を希塩酸と食塩の混合溶液で、室温において接触処理することによって、生成物の形状を変化させることなく、また、溶解等による重量減なく、包接成分を簡単に溶離・脱離し、イオン交換が容易な包接成分にイオン交換できることが確認されている。このように、不要の包接成分が含まれていない高純度の層状複水酸化物結晶は、生成プロセス後に生成物を回収した後、該精製手段を適用することによって容易に得ることが出来る。   However, between the layers of the obtained layered double hydroxide, formic acid ions formed by further oxidation of formaldehyde generated by hydrolysis of hexamethylenetetramine must be included instead of hydroxyl groups and chlorine ions. However, various analyzes revealed it. However, as described in Example 2 described later, this can be achieved by subjecting the product to contact with a mixed solution of dilute hydrochloric acid and sodium chloride at room temperature without changing the shape of the product. It has been confirmed that the inclusion component can be easily eluted and desorbed and the ion exchange can be easily performed for the inclusion component without the weight loss due to the above. Thus, a high-purity layered double hydroxide crystal free from unnecessary inclusion components can be easily obtained by applying the purification means after recovering the product after the production process.

以上から、本発明者らにおいては、層状複水酸化物を構成する金属の塩を含む水溶液にヘキサメチレンテトラミンをあらかじめ加え、混合溶液を高温(120℃〜160℃)で処理することにより、粒径が均一で、しかも粒径が、1〜5μと比較的大きい、炭酸イオンを含まない層状複水酸化物の六角形の自形を有する板状結晶を作ることに成功したものである。   From the above, in the present inventors, by adding hexamethylenetetramine in advance to an aqueous solution containing a metal salt constituting the layered double hydroxide, the mixed solution is treated at a high temperature (120 ° C. to 160 ° C.). The present inventors have succeeded in producing a plate-like crystal having a hexagonal self-shape of a layered double hydroxide that has a uniform diameter and a relatively large particle diameter of 1 to 5 μm and does not contain carbonate ions.

すなわち、本発明は、以下(1)から(10)に記載する解決手段を講ずることによって達成されたものである。
(1) 層状複水酸化物を構成する金属元素M、Nの塩(塩化物や硝酸塩)を、目的の層状複水酸化物を構成する金属元素の比率で含む水溶液に、ヘキサメチレンテトラミンを加え、混合水溶液を耐圧容器中に密封し、水の沸点以上の温度で加熱処理することにより、一般式;MxN(OH)y(Z-)・nH2O(式中、xは、1.8≦x≦4.2の数値範囲を示す。yは、2(x+1)を示す。Mは、2価の金属イオン。Nは、3価の金属イオン。Z-は、炭酸イオン(CO3 2-)以外の陰イオン、nは、環境の湿度により変化するが、ほぼ2)で表される組成を有し、ハイドロタルサイトに類似した構造を有する層状複水酸化物の結晶を生成させることを特徴とする層状複水酸化物の製造方法。
(2) 層状複水酸化物を構成する金属元素M,Nの塩(塩化物と硝酸塩)を、目的の層状複水酸化物を構成する金属元素の比率で含む水溶液に、ヘキサメチレンテトラミンおよび、包接したい陰イオン性の有機ゲスト分子を加え、混合水溶液を耐圧容器中に密封し、水の沸点以上の温度で加熱処理することにより、一般式;MxN(OH)z(Q)-・nH2O(式中、xは、1.8≦x≦4.2の数値範囲を示す。zは、2(x+1)を示す。M
は、2価の金属イオン。Nは、3価の金属イオン。Q-は、陰イオン性の機能性有機分子
イオン、nは、環境の湿度により変化するが、ほぼ2)で表される組成を有し、ハイドロタルサイトに類似した構造を有する層状複水酸化物を生成させることを特徴とする層状複水酸化物・有機複合体の製造方法。
(3) 該加熱処理が、100℃以上200℃以下の温度領域で行われる、前記(1)または(2)項に記載の層状複酸化物の製造方法。
(4) 該反応溶液中の金属塩が、目的とする層状複水酸化物を構成する金属元素の比率に近い値を持ち、合計の濃度が0.005M〜0.50Mの濃度である、前記(1)または(2)項に記載の層状複水酸化物の製造方法。
(5) 該反応溶液中のヘキサメチレンテトラミンが、反応溶液に含まれる3価金属元素のモル数の2倍〜6倍である、前記(1)または(2)項に記載の層状複水酸化物の製造方法。
(6) 該一般式で示される出発層状複水酸化物が、式中金属イオンMがマグネシウムイオンMgであり、式中3価の金属イオンNがアルミニウムイオンAlである層状複水酸化物である、前記(1)または(2)項に記載の層状複水酸化物の製造方法。
(7) 陰イオン性の機能性有機分子イオン(Q-)が、一般式CH3(CH2n-2COO-(n=10〜18)で示される直鎖の長鎖アルキル基を持つカルボン酸イオンである、
前記(2)項に記載の層状複水酸化物の製造方法。
(8) 前記(1)ないし(7)に記載の何れか1項に記載の層状複水酸化物の製造方法において、析出、沈殿した陰イオン交換性層状複水酸化物を回収し、引き続き回収した陰イオン交換性層状複水酸化物にイオン交換処理を施し、もしくは、塩酸−食塩の混合水溶液との接触による脱有機イオン処理を施し、有機イオン、炭酸イオンを含まない高純度層状複水酸化物へと改質して陰イオン交換性能を高めたことを特徴とする前記(1)ないし(7)の何れか1項に記載の層状複水酸化物の製造方法。
(9) 前記(1)ないし(8)に記載の何れか1項に記載のプロセスで製造された陰イオン交換性層状複水酸化物を、排出ガス中の炭酸ガス除去プロセスにおける二酸化炭素捕捉剤として使用し、該陰イオン交換性層状複水酸化物を炭酸ガスないしは炭酸ガスを含んだ液相と接触させて二酸化炭素を該層状複水酸化物の炭酸塩として固定化することを特徴とする、二酸化炭素除去方法。
(10) 前記(1)ないし(8)に記載のプロセスで製造された陰イオン交換性層状複水酸化物ないしはこれを含む材料を、陰イオンを有する機能性有機化合物のモノマーと接触させて該モノマーを層状複水酸化物に導入し、次いでモノマーを重合させることを特徴とする、機能性有機化合物で修飾、変性されてなる無機有機複合体。
(11) 該無機有機複合体が分散性を高める機能を有する有機化合物によって修飾、変性されたことを特徴とする、前記(10)項に記載の無機有機複合体。
(12) 該無機有機複合体がフィラーとして使用されることを特徴とした、前記(10)項に記載の無機有機複合体。
That is, the present invention has been achieved by taking the solutions described in (1) to (10) below.
(1) Add hexamethylenetetramine to an aqueous solution containing salts (chlorides and nitrates) of the metal elements M and N constituting the layered double hydroxide in a ratio of the metal elements constituting the target layered double hydroxide. The mixed aqueous solution is sealed in a pressure-resistant vessel and heated at a temperature equal to or higher than the boiling point of water, whereby a general formula; M x N (OH) y (Z ) · nH 2 O (wherein x is 1 8 represents a numerical range of x ≦ 4.2, y represents 2 (x + 1), M represents a divalent metal ion, N represents a trivalent metal ion, Z represents a carbonate ion (CO 3 Anion other than 2- ), n varies depending on the humidity of the environment, but produces a layered double hydroxide crystal having the composition represented by 2) and a structure similar to hydrotalcite. A method for producing a layered double hydroxide, characterized by comprising:
(2) Hexamethylenetetramine and an aqueous solution containing salts (chloride and nitrate) of the metal elements M and N constituting the layered double hydroxide in a ratio of the metal elements constituting the target layered double hydroxide, An anionic organic guest molecule to be included is added, the mixed aqueous solution is sealed in a pressure vessel, and heat-treated at a temperature equal to or higher than the boiling point of water, whereby the general formula: M x N (OH) z (Q) NH 2 O (wherein x represents a numerical range of 1.8 ≦ x ≦ 4.2. Z represents 2 (x + 1). M
Is a divalent metal ion. N is a trivalent metal ion. Q is an anionic functional organic molecular ion, n varies depending on the humidity of the environment, but has a composition represented by 2) and has a structure similar to hydrotalcite and has a structure similar to hydrotalcite A method for producing a layered double hydroxide / organic composite characterized in that a product is produced.
(3) The method for producing a layered complex oxide according to (1) or (2), wherein the heat treatment is performed in a temperature range of 100 ° C. or more and 200 ° C. or less.
(4) The metal salt in the reaction solution has a value close to the ratio of metal elements constituting the target layered double hydroxide, and the total concentration is a concentration of 0.005M to 0.50M. (1) The manufacturing method of the layered double hydroxide as described in (2).
(5) The layered double hydroxide according to (1) or (2), wherein hexamethylenetetramine in the reaction solution is 2 to 6 times the number of moles of the trivalent metal element contained in the reaction solution. Manufacturing method.
(6) The starting layered double hydroxide represented by the general formula is a layered double hydroxide in which the metal ion M is magnesium ion Mg and the trivalent metal ion N is aluminum ion Al. The method for producing a layered double hydroxide according to item (1) or (2).
(7) The anionic functional organic molecular ion (Q ) has a linear long-chain alkyl group represented by the general formula CH 3 (CH 2 ) n-2 COO (n = 10 to 18). A carboxylate ion,
The manufacturing method of the layered double hydroxide as described in said (2) term.
(8) In the method for producing a layered double hydroxide according to any one of (1) to (7), the anion exchangeable layered double hydroxide precipitated and precipitated is recovered and subsequently recovered. High-purity layered double hydroxide containing no organic ions or carbonate ions by subjecting the anion-exchanged layered double hydroxide to ion exchange treatment or deorganization by contact with a mixed aqueous solution of hydrochloric acid and sodium chloride The method for producing a layered double hydroxide according to any one of (1) to (7) above, wherein the anion exchange performance is improved by reforming into a product.
(9) A carbon dioxide scavenger in the process of removing carbon dioxide in the exhaust gas from the anion-exchange layered double hydroxide produced by the process according to any one of (1) to (8) And the anion exchange layered double hydroxide is brought into contact with carbon dioxide or a liquid phase containing carbon dioxide to fix carbon dioxide as a carbonate of the layered double hydroxide. , Carbon dioxide removal method.
(10) The anion-exchange layered double hydroxide produced by the process described in the above (1) to (8) or a material containing the same is brought into contact with a monomer of a functional organic compound having an anion. An inorganic organic composite modified and modified with a functional organic compound, wherein a monomer is introduced into a layered double hydroxide and then the monomer is polymerized.
(11) The inorganic-organic composite according to (10), wherein the inorganic-organic composite is modified and modified with an organic compound having a function of improving dispersibility.
(12) The inorganic-organic composite according to (10), wherein the inorganic-organic composite is used as a filler.

本発明は、上記の構成を講ずることによって、イオン交換が困難な炭酸イオンを含まない、粒径が大きく粒径の均一で結晶性の良い層状複水酸化物の合成に成功した。そして、この成功によって、二酸化炭素除去プロセスあるいは無機有機複合体を提供することにも成功したものである。   The present invention has succeeded in synthesizing a layered double hydroxide having a large particle size, a uniform particle size and good crystallinity, which does not contain carbonate ions which are difficult to exchange ions, by adopting the above-described configuration. And with this success, we have also succeeded in providing a carbon dioxide removal process or inorganic-organic composite.

本発明は、従来知られていなかったヘキサメチレンテトラミンによる層状複水酸化物の簡便な合成に成功したものであり、そのプロセス自体産業上利用しうるもので、その意義は大きい。加えて、得られる層状複水酸化物は、簡単な操作で含まれる有機陰イオンを脱
離し、得られる層状複水酸化物は、更なる陰イオン交換が可能なため、他の陰イオンへの交換や有機無機ナノ複合体を含む新化合物が合成でき、今後各種分野に大いに利用されることが期待される。
The present invention has succeeded in the simple synthesis of layered double hydroxides with hexamethylenetetramine, which has not been known so far, and the process itself can be used industrially, and its significance is great. In addition, the resulting layered double hydroxide desorbs organic anions contained in a simple operation, and the resulting layered double hydroxide can be further anion-exchanged, so that it can be converted to other anions. It is expected that new compounds including exchange and organic / inorganic nanocomposites can be synthesized and used in various fields in the future.

例えば、炭酸イオンと結びつくと、二酸化炭素の捕捉分離剤としての利用が考えられる。さらに、このような二酸化炭素の捕捉剤としての用途のほかにも、陰イオン性機能性有機分子をイオン交換プロセスといった極めて簡単な操作によるいわゆるソフトケミカル的な反応によって、粒径や形状の制御された層状複水酸化物の層間に包接することができるため、新規な機能を有する新規物質の開発・促進につながるものと期待される。   For example, when combined with carbonate ions, use as a carbon dioxide scavenger is conceivable. In addition to its use as a carbon dioxide scavenger, the particle size and shape are controlled by so-called soft chemical reactions by an extremely simple operation such as an ion exchange process for anionic functional organic molecules. Therefore, it is expected to lead to the development and promotion of new substances having new functions.

さらに、本発明は、任意の均一粒径の層状複水酸化物より、簡単な反応により、粒径・外形・重量を変化させること無く、任意の陰イオンを含む層状複水酸化物を提供できることを示している。該層状複水酸化物は、高いアスペクト比を持つ板状結晶であるため、キャスト法により簡単に基板上に配向膜を形成することが可能であり、近年、注目されているような、配向性の高いナノデバイスの構築といった新しい応用分野にまで発展し、及ぶことが考えられ、そのもたらす作用効果は技術的に極めて大きな意義を有するものである。   Furthermore, the present invention can provide a layered double hydroxide containing any anion without changing the particle size, external shape, and weight by a simple reaction from the layered double hydroxide of any uniform particle size. Is shown. Since the layered double hydroxide is a plate-like crystal having a high aspect ratio, it is possible to easily form an alignment film on a substrate by a casting method. It can be considered that it will develop and extend to new application fields such as the construction of high-quality nanodevices, and the effects brought about by it are extremely significant technically.

本発明の解決手段は、前述した通りであるが、以下、実施例及び図面に基づいて具体的に説明する。但しこれら実施例は、本発明を容易に理解するための一助として示したものであり、決して本発明を限定する趣旨ではない。   The solution of the present invention is as described above, and will be specifically described below based on examples and drawings. However, these examples are shown as an aid for easily understanding the present invention, and are not intended to limit the present invention.

図1は、実施例で得られた各生成物の赤外スペクトルを示す。
同図中、
(a)は、Mg/Al=2(モル比)、[Mg+Al]=0.15M、ヘキサメチレンテトラミンをAlの2.625倍(モル)、100℃、24時間の条件で、生成した固体、(b)は、Mg/Al=2(モル比)、[Mg+Al]=0.15M、ヘキサメチレンテトラミンをAlの2.625倍(モル)、140℃、24時間の条件で、生成した固体、(c)は、ヘキサメチレンテトラミン法によって合成した層状複水酸化物を0.005N塩酸濃度でかつ、13重量%の食塩を含有する水溶液で25℃、1日処理して得られた層状複水酸化物、
(d)は、出発原料にCH3(CH2n-2COONa(n=10)を加えて、反応させて
得られた層状複水酸化物、
(e)は、出発原料にCH3(CH2n-2COONa(n=12)を加えて、反応させて
得られた層状複水酸化物である。
FIG. 1 shows an infrared spectrum of each product obtained in the examples.
In the figure,
(A) is Mg / Al = 2 (molar ratio), [Mg + Al] = 0.15M, hexamethylenetetramine 2.625 times (mole) of Al, 100 ° C., 24 hours, produced solid, (B): Mg / Al = 2 (molar ratio), [Mg + Al] = 0.15M, hexamethylenetetramine 2.625 times (mole) of Al, 140 ° C., 24 hours, produced solid, (C) is a layered double water obtained by treating a layered double hydroxide synthesized by the hexamethylenetetramine method with an aqueous solution containing 0.005N hydrochloric acid and 13% by weight of sodium chloride at 25 ° C. for 1 day. Oxide,
(D) is a layered double hydroxide obtained by reacting CH 3 (CH 2 ) n-2 COONa (n = 10) with the starting material,
(E) is a layered double hydroxide obtained by reacting CH 3 (CH 2 ) n-2 COONa (n = 12) with the starting material.

また、図2は、実施例で得られた各生成物の走査型電子顕微鏡で得られた像(SEM写真)を示すものである。
同図中、
(a)は、Mg/Al=2(モル比)、[Mg+Al]=0.25M、ヘキサメチレンテトラミンをAlの3.5倍(モル)、130℃、24時間、の条件で生成した固体であり、
(b)は、上記(a)の層状複水酸化物を0.005N塩酸濃度でかつ、13重量%の食塩を含有する水溶液で25℃、1日処理して得られた層状複水酸化物である。
Moreover, FIG. 2 shows the image (SEM photograph) obtained with the scanning electron microscope of each product obtained in the Example.
In the figure,
(A) is a solid produced under the conditions of Mg / Al = 2 (molar ratio), [Mg + Al] = 0.25M, hexamethylenetetramine 3.5 times (mol) of Al, 130 ° C., 24 hours. Yes,
(B) is a layered double hydroxide obtained by treating the layered double hydroxide of (a) above with an aqueous solution containing 0.005N hydrochloric acid and 13% by weight of sodium chloride at 25 ° C. for 1 day. It is.

さらにまた、図3は、実施例で得られた各生成物の粉末X線回折図を示す。
同図中、
(a)は、Mg/Al=2(モル比)、[Mg+Al]=0.15M、ヘキサメチレンテトラミンをAlの2.625倍(モル)、100℃、24時間の条件で、生成した固体、(b)は、Mg/Al=2(モル比)、[Mg+Al]=0.15M、ヘキサメチレンテ
トラミンをAlの2.625倍(モル)、140℃、24時間、の条件で、生成した固体、
(c)は、ヘキサメチレンテトラミン法によって合成した層状複水酸化物を0.005N塩酸濃度でかつ、13重量%の食塩を含有する水溶液で25℃、1日処理して得られた層状複水酸化物、
(d)は、出発原料にCH3(CH2n-2COONa(n=12)を加えて、反応させて
得られた層状複水酸化物である。
Furthermore, FIG. 3 shows the powder X-ray diffraction pattern of each product obtained in the examples.
In the figure,
(A) is Mg / Al = 2 (molar ratio), [Mg + Al] = 0.15M, hexamethylenetetramine 2.625 times (mole) of Al, 100 ° C., 24 hours, produced solid, (B) is a solid produced under the conditions of Mg / Al = 2 (molar ratio), [Mg + Al] = 0.15M, hexamethylenetetramine 2.625 times (mole) of Al, 140 ° C., 24 hours. ,
(C) is a layered double water obtained by treating a layered double hydroxide synthesized by the hexamethylenetetramine method with an aqueous solution containing 0.005N hydrochloric acid and 13% by weight of sodium chloride at 25 ° C. for 1 day. Oxide,
(D) is a layered double hydroxide obtained by reacting CH 3 (CH 2 ) n-2 COONa (n = 12) with the starting material.

試薬として、MgCl2(六水和物)、AlCl3(六水和物)、ヘキサメチレンテトラミン(関東化学)を用いた。煮沸により脱炭酸ガスしたイオン交換水を使い、Mg/Al=2.0(モル比)、[Mg+Al]=0.15M、ヘキサメチレンテトラミンをAlの2.625倍(モル)の水溶液を作り、15mlずつ取り分け、それぞれステンレス製耐熱容器中のテフロン容器に入れ、気密な状態に封入した。この容器を、各々、100℃、120℃、140℃の高温槽に入れ、3時間および24時間、反応させた。所定時間の反応後、窒素気流中、0.2μmのメンブランフィルターでろ過し、煮沸により脱炭酸ガスを行ったイオン交換水で、沈殿物を充分に洗浄した。ろ別した沈殿物をかき集め、直ちに減圧し、真空下で1時間以上、乾燥して、白色粉末を得た。 MgCl 2 (hexahydrate), AlCl 3 (hexahydrate), and hexamethylenetetramine (Kanto Chemical) were used as reagents. Using ion-exchanged water decarbonated by boiling, Mg / Al = 2.0 (molar ratio), [Mg + Al] = 0.15M, hexamethylenetetramine made an aqueous solution of 2.625 times (molar) of Al, Each 15 ml was taken out, placed in a Teflon container in a stainless steel heat-resistant container, and sealed in an airtight state. This container was put into a high-temperature bath at 100 ° C., 120 ° C., and 140 ° C., respectively, and allowed to react for 3 hours and 24 hours. After the reaction for a predetermined time, the precipitate was sufficiently washed with ion-exchanged water filtered through a 0.2 μm membrane filter in a nitrogen stream and decarboxylated by boiling. The precipitate collected by filtration was collected, immediately depressurized, and dried under vacuum for 1 hour or longer to obtain a white powder.

これを赤外線分光分析、粉末X線解析、元素分析(CHN分析など)、熱分析などの方法により分析した。その結果、100℃、24時間の試料では、ゲル状態の固体が得られた。収率は、23%で、赤外スペクトルは、1071cm-1のピークを生じていた(図1(a))。これは、水酸化物に見られる吸水であり、層状複水酸化物には、観察されないピークで、中間生成物によるものであると考えられる。粉末X線解析では、d=0.65nmに応対するたいへんブロードなピークが観察されたのみで層状複水酸化物は生じておらず、赤外分光の結果と符合している(図3(a))。 This was analyzed by methods such as infrared spectroscopic analysis, powder X-ray analysis, elemental analysis (CHN analysis, etc.), thermal analysis and the like. As a result, in the sample at 100 ° C. for 24 hours, a gel-state solid was obtained. The yield was 23%, and the infrared spectrum produced a peak at 1071 cm −1 (FIG. 1 (a)). This is the water absorption observed in the hydroxide, and is considered to be due to the intermediate product with a peak not observed in the layered double hydroxide. In the powder X-ray analysis, only a very broad peak corresponding to d = 0.65 nm was observed, no layered double hydroxide was formed, which is consistent with the result of infrared spectroscopy (FIG. 3 (a )).

一方、140℃、24時間の試料では、収率は、81%で、粉末X線解析では、d=0.757nmに対応する鋭いピーク(サブセル001反射)とその高次の反射が観察され、層状複水酸化物が生じていることを示していた(図3(b))。赤外スペクトルは、1354cm-1のC−O伸縮振動によると思われる吸収が生じていた。さらに、水とC−Oとの相互作用によるとされている3000cm-1付近のブロードなピークも観察された(図1(b))。炭酸イオンを含む層状複水酸化物のスペクトルに似ているが、炭酸イオンのC−O伸縮振動による吸収は、1368cm-1であり異なっている。さらに、450〜1000cm-1の領域の吸収は、780cm-1および952cm-1であり、炭酸イオンを含む層状複水酸化物が示す668cm-1の吸収とは明らかに異なっている。この様な事実により、この1354cm-1のC−O伸縮振動によると思われる吸収は、炭酸イオンによるものではなく、ギ酸イオン(HCOO-)に帰属するものと考えた。実際に、ギ酸イオンを層状複水酸化物に、イオン交換法によって包接させた試料と赤外スペクトルが全領域で一致した。化学分析により、得られた試料のMg/Alモル比は、2であり、仕込み割合と一致した。また、炭素の含有量は3.11重量%であり、層間にギ酸イオンが62%の占有率であることを示している。走査型電子顕微鏡で得られた像(SEM写真)は、図2と同様な、1μ〜5μ程度の粒径を持つ六角板状結晶を生じていた。 On the other hand, in the sample at 140 ° C. for 24 hours, the yield was 81%, and in the powder X-ray analysis, a sharp peak corresponding to d = 0.757 nm (subcell 001 reflection) and its higher-order reflection were observed. It was shown that layered double hydroxide was generated (FIG. 3 (b)). In the infrared spectrum, absorption which seems to be due to C—O stretching vibration of 1354 cm −1 occurred. Furthermore, a broad peak around 3000 cm −1, which is attributed to the interaction between water and C—O, was also observed (FIG. 1B). Although it resembles the spectrum of a layered double hydroxide containing carbonate ions, the absorption due to CO stretching vibration of carbonate ions is 1368 cm −1 and is different. Furthermore, the absorption in the region of 450 to 1000 cm −1 is 780 cm −1 and 952 cm −1 , which is clearly different from the 668 cm −1 absorption exhibited by the layered double hydroxide containing carbonate ions. Based on these facts, it was considered that the absorption that seems to be caused by the 1354 cm −1 C—O stretching vibration was attributed to formate ions (HCOO ), not carbonate ions. In fact, the infrared spectrum of the sample in which the formate ion was included in the layered double hydroxide by the ion exchange method was consistent. By chemical analysis, the Mg / Al molar ratio of the obtained sample was 2, which was consistent with the charged ratio. The carbon content is 3.11% by weight, indicating that the formate ion occupies 62% between the layers. The image (SEM photograph) obtained with the scanning electron microscope produced hexagonal plate crystals having a grain size of about 1 μ to 5 μ, similar to FIG.

また、反応時間が3時間の場合、140℃の試料では、d=0.65nmに対応するたいへんブロードな回折ピーク(中間生成物)と層状複水酸化物に由来するd=0.757nmの鋭い回折ピーク(サブセルの001反射)および、その高次の反射が観察され、赤外スペクトルにおいても、1071cm-1の吸収ピークが残存し、中間生成物と層状複水酸化物の混合物であることを示しており、これらの条件では、反応が充分でないことがわかる。また、120℃、24時間でも、中間生成物が僅かながら残存していた。 When the reaction time is 3 hours, the sample at 140 ° C. has a very broad diffraction peak (intermediate product) corresponding to d = 0.65 nm and a sharp d = 0.757 nm derived from the layered double hydroxide. A diffraction peak (001 reflection of subcell) and its higher-order reflection are observed, and an absorption peak of 1071 cm −1 remains in the infrared spectrum, indicating that it is a mixture of an intermediate product and a layered double hydroxide. It can be seen that the reaction is not sufficient under these conditions. Even at 120 ° C. for 24 hours, a slight amount of intermediate product remained.

合成条件、Mg/Al=2(モル比)、[Mg+Al]=0.25M、ヘキサメチレンテトラミンをAlの3.5倍(モル)で得られた層状複水酸化物(SEM写真;図2(a))を使用し、その層間に含まれたギ酸イオンの脱離を試みた。層状複水酸化物10mgとり、それに、0.005Nの塩酸濃度で、かつ、13重量%の塩化ナトリウム濃度に調整した水溶液を10ml加えて、25℃で1日、放置した。その後、窒素気流中、0.2μmのメンブランフィルターでろ過し、煮沸により脱炭酸ガスを行った蒸留水で、沈殿物を充分に洗浄した。ろ別した沈殿物をかき集め、直ちに減圧し、真空下で1時間以上、乾燥して、白色粉末を得た。   Synthesis conditions, Mg / Al = 2 (molar ratio), [Mg + Al] = 0.25M, layered double hydroxide obtained by hexamethylenetetramine 3.5 times (mole) of Al (SEM photograph; FIG. 2 ( Using a)), an attempt was made to desorb formate ions contained between the layers. 10 mg of a layered double hydroxide was added, 10 ml of an aqueous solution adjusted to a hydrochloric acid concentration of 0.005 N and a sodium chloride concentration of 13% by weight was added, and the mixture was allowed to stand at 25 ° C. for 1 day. Then, it filtered with the 0.2 micrometer membrane filter in nitrogen stream, and the deposit was fully wash | cleaned with the distilled water which performed the decarbonation gas by boiling. The precipitate collected by filtration was collected, immediately depressurized, and dried under vacuum for 1 hour or longer to obtain a white powder.

これを赤外線分光分析、および重量測定により脱ギ酸イオンの程度と重量変化・回収率を調べた。その結果、赤外スペクトルでは、ギ酸イオンによるピークは、ほとんど消失していた(図1(c))。また、重量減無く、定量的に回収された。粉末X線解析では、d=0.772nmに対応する鋭いピーク(サブセルの001反射)とその高次の反射が観察され、層状複水酸化物の構造を保っていることを示していた(図3(c))。走査型電子顕微鏡で得られた像を、図2(b)に示したが、処理前の層状複水酸化物の走査電顕像(図2(a))と比較して、六角板状結晶の表面や外形に粒子サイズに変化は認められなかった。   The degree of deformate ion, weight change and recovery rate were examined by infrared spectroscopic analysis and weight measurement. As a result, in the infrared spectrum, the peak due to formate ion almost disappeared (FIG. 1 (c)). Moreover, it was recovered quantitatively without weight loss. In the powder X-ray analysis, a sharp peak corresponding to d = 0.772 nm (001 reflection of subcell) and its higher-order reflection were observed, indicating that the structure of the layered double hydroxide was maintained (Fig. 3 (c)). The image obtained with the scanning electron microscope is shown in FIG. 2 (b). Compared with the scanning electron microscope image (FIG. 2 (a)) of the layered double hydroxide before processing, the hexagonal plate crystal No change in the particle size was observed on the surface or the outer shape of the film.

以上の結果、今回、ヘキサメチレンテトラミンを使用して得られた層状複水酸化物から、簡単な塩酸−食塩処理によって、他の層状複水酸化物に変換することができた。炭酸イオンを含まないほとんどの層状複水酸化物は、高いイオン交換性を有しているので、さらなるイオン交換により、結晶性の良い新たな有機無機層状複合体が得られる可能性がある。   As a result of the above, the layered double hydroxide obtained using hexamethylenetetramine was converted into another layered double hydroxide by simple hydrochloric acid-salt treatment. Since most layered double hydroxides not containing carbonate ions have high ion exchange properties, there is a possibility that new organic-inorganic layered composites with good crystallinity can be obtained by further ion exchange.

Mg/Alの比、[Mg+AL]の濃度、ヘキサメチルテトラミンの量、反応時間を変化させて合成した。試薬として、同じように、MgCl2(六水和物)、AlCl3(六水和物)、ヘキサメチルテトラミン(関東化学)を用いた。煮沸により脱炭酸ガスしたイオン交換水を使い、Mg/Al=2、3.4(モル比)、[Mg+Al]=0.03M、0.15M、0.25M、ヘキサメチルテトラミンをAlの2.625倍および、3.5倍(モル)の水溶液を作り、15mlずつ取り分け、それぞれステンレス製耐熱容器中のテフロン容器に入れ、気密な状態に封入した。この容器を、140℃の高温槽に入れ、24、48、72時間、反応させた。所定時間の反応後、窒素気流中、0.2μmのメンブランフィルターでろ過し、煮沸により脱炭酸ガスを行ったイオン交換水で、沈殿物を充分に洗浄した。ろ別した沈殿物をかき集め、直ちに減圧し、真空下で1時間以上、乾燥して、白色粉末を得た。 The synthesis was performed by changing the ratio of Mg / Al, the concentration of [Mg + AL], the amount of hexamethyltetramine, and the reaction time. Similarly, MgCl 2 (hexahydrate), AlCl 3 (hexahydrate), and hexamethyltetramine (Kanto Chemical) were used as reagents. Using ion-exchanged water decarboxylated by boiling, Mg / Al = 2, 3.4 (molar ratio), [Mg + Al] = 0.03M, 0.15M, 0.25M, hexamethyltetramine and 2. 625 times and 3.5 times (mole) aqueous solutions were made, each 15 ml was taken out, placed in a Teflon container in a stainless steel heat-resistant container, and sealed in an airtight state. This container was placed in a high-temperature bath at 140 ° C. and reacted for 24, 48, and 72 hours. After the reaction for a predetermined time, the precipitate was sufficiently washed with ion-exchanged water filtered through a 0.2 μm membrane filter in a nitrogen stream and decarboxylated by boiling. The precipitate collected by filtration was collected, immediately depressurized, and dried under vacuum for 1 hour or longer to obtain a white powder.

生成物を赤外線分光分析、粉末X線解析で分析した。全てにおいて、六角板状結晶の層状複水酸化物が生じていた。収率は、77〜89%で、[Mg+Al]が小さい、即ち薄い条件では、収率は減少する傾向があった。また、結晶外形、粒径、収率については、反応時間24、48、72時間の各処理において、一定の傾向は見られなかった。粒径は、1〜5μm程度であった。なお、ヘキサメチレンテトラミンの量により、最初の添加の際に白濁する場合がある。例えば、ヘキサメチレンテトラミンをAlの3.5倍にした場合、Mg/Al=3,4では、最初に加えた段階で溶液中に濁りを生じた。また、Mg/Alの比を3,4にした場合、[Mg+Al]=0.03Mの希薄条件では、得られた層状複水酸化物のMg/Al比は、ほぼ2になっていた。しかし、[Mg+Al]=0.15Mの場合、Mg/Al比は、増加していた。   The product was analyzed by infrared spectroscopy and powder X-ray analysis. In all, layered double hydroxides of hexagonal plate crystals were formed. Yields were 77-89%, and [Mg + Al] was small, that is, thin, the yields tended to decrease. In addition, regarding the crystal shape, particle size, and yield, no constant tendency was observed in each treatment with reaction times of 24, 48, and 72 hours. The particle size was about 1 to 5 μm. Depending on the amount of hexamethylenetetramine, it may become cloudy during the first addition. For example, when hexamethylenetetramine was made 3.5 times as much as Al, when Mg / Al = 3,4, turbidity was generated in the solution when it was first added. When the Mg / Al ratio was 3 or 4, the Mg / Al ratio of the obtained layered double hydroxide was almost 2 under the diluted condition of [Mg + Al] = 0.03M. However, when [Mg + Al] = 0.15M, the Mg / Al ratio was increased.

直接、陰イオン性の有機化合物を包接させるため、合成条件、Mg/Al=2(モル比)、[Mg+Al]=0.15M、ヘキサメチレンテトラミンをAlの2.625倍(モル)とし、15mlずつ取り分け、5mlのCH3(CH2n-2COONa(n=2、4、6、8、10、12、14)水溶液(Alの1.5倍(モル)を含有している)をそれぞれに加え、各々ステンレス製耐熱容器中のテフロン容器に入れ、気密な状態に封入した。この容器を、各々、100℃、120℃、140℃の高温槽に入れ、3時間および24時間、反応させた。所定時間の反応後、窒素気流中、0.2μmのメンブランフィルターでろ過し、煮沸により脱炭酸ガスを行ったイオン交換水で、沈殿物を充分に洗浄し、さらに、エタノールで洗浄した。ろ別した沈殿物をかき集め、直ちに減圧し、真空下で1時間以上、乾燥して、白色粉末を得た。 In order to directly include an anionic organic compound, synthesis conditions, Mg / Al = 2 (molar ratio), [Mg + Al] = 0.15M, hexamethylenetetramine is 2.625 times (mole) of Al, Separately 15 ml, 5 ml of CH 3 (CH 2 ) n-2 COONa (n = 2, 4, 6, 8, 10, 12, 14) aqueous solution (containing 1.5 times (mol) of Al) Were added to each, placed in a Teflon container in a stainless steel heat-resistant container, and sealed in an airtight state. This container was put into a high-temperature bath at 100 ° C., 120 ° C., and 140 ° C., respectively, and allowed to react for 3 hours and 24 hours. After the reaction for a predetermined time, the precipitate was sufficiently washed with ion-exchanged water filtered through a 0.2 μm membrane filter in a nitrogen stream and decarboxylated by boiling, and further washed with ethanol. The precipitate collected by filtration was collected, immediately depressurized, and dried under vacuum for 1 hour or longer to obtain a white powder.

これを赤外線分光分析、粉末X線解析などの方法により分析した。その結果、CH3
CH2n-2COONa(n=2、4、6、8、10、12、14)のカルボン酸ナトリウム塩のうち、n=2、4、6については、生成した層状複水酸化物に包接されておらず、これらのカルボン酸塩を添加しない場合と同じように、ギ酸イオンが含まれていた。しかし、n=10、12、14については、層状複水酸化物にこれらのカルボン酸イオンが包接されており、ギ酸イオンは、全く含まれていなかった。すなわち、赤外スペクトルでは、1354cm-1のギ酸イオンのC−O伸縮振動によると思われる吸収が消失し、アルキル基のC−Hの伸縮振動による2852および2920cm-1付近の強い吸収ピークと1553、1470、および1415cm-1付近のカルボン酸イオンCOO-による強い吸収ピークが観察された(図1(d)および(e))。粉末X線解析では、例えば、n=12については、d=2.40nmに対する回折ピーク(サブセルの001反射)とその高次の反射が観察され、層状複水酸化物の構造を持っていることを示していた(図3(d))。n=8については、赤外線分光分析では、n=8カルボン酸イオンとギ酸イオンの両者が混合したスペクトルになっていた。
This was analyzed by methods such as infrared spectroscopy and powder X-ray analysis. As a result, CH 3 (
Among the carboxylic acid sodium salts of CH 2 ) n-2 COONa (n = 2, 4, 6, 8, 10, 12, 14), n = 2, 4, and 6 are the resulting layered double hydroxides. It was not clathrated and contained formate ions as in the case where these carboxylates were not added. However, for n = 10, 12, and 14, these carboxylate ions were included in the layered double hydroxide, and no formate ion was contained at all. That is, in the infrared spectrum, absorption that seems to be due to C—O stretching vibration of 1354 cm −1 formate ion disappears, and strong absorption peaks near 1852 and 2920 cm −1 due to C—H stretching vibration of alkyl groups and 1553 , 1470, and 1415 cm −1, strong absorption peaks due to the carboxylate ion COO were observed (FIGS. 1D and 1E). In powder X-ray analysis, for example, for n = 12, a diffraction peak (001 reflection of subcell) and its higher-order reflection are observed for d = 2.40 nm, and it has a layered double hydroxide structure. (FIG. 3D). As for n = 8, the infrared spectroscopic analysis showed a spectrum in which both n = 8 carboxylate ions and formate ions were mixed.

このように、アルキル鎖の長さが長くなると層状複水酸化物に包接される事実が判明したが、そのメカニズムとして、次のことが考えられる。アルキル鎖の長さが長くなるにつれ一般的に疎水的になることが知られている。実際、アルキル鎖の長さが長いカルボン酸イオンを含む層状複水酸化物は、疎水性が強く、水をはじく傾向が見られた。最初の層状複水酸化物が生じた段階でカルボン酸イオンが取り込まれることにより、層状複水酸化物が疎水的になり、水溶液中で隔離され、後にヘキサメチレンテトラミンの加水分解で生じるフォルムアルデヒドの酸化により生成されるギ酸イオンを、寄せ付けず、イオン交換が行われないためであると考えられる。即ち、疎水性の強い基を持つ有機陰イオンは、反応時に共存させることにより、直接、層状複水酸化物を合成することができることを示している。   As described above, it has been found that when the length of the alkyl chain is increased, the layered double hydroxide is included in the clathrate. It is known that the alkyl chain generally becomes hydrophobic as the length of the alkyl chain increases. In fact, the layered double hydroxide containing a carboxylate ion having a long alkyl chain has a strong hydrophobicity and tends to repel water. By incorporating carboxylate ions at the stage when the first layered double hydroxide is formed, the layered double hydroxide becomes hydrophobic, sequestered in an aqueous solution, and later formed by the hydrolysis of hexamethylenetetramine. This is probably because formate ions generated by oxidation are not brought close to each other and ion exchange is not performed. That is, it is shown that an organic anion having a strongly hydrophobic group can directly synthesize a layered double hydroxide by coexisting in the reaction.

本発明は、発明の効果の欄でも触れたように、その意義は格別のものがある。すなわち、本発明により、(1)結晶性の高い、粒径の大きな層状複水酸化物を簡単に得ることができ、(2)そして得られる層状複水酸化物は、有機イオンを含むものの、簡単に脱離することができ、他のイオン交換性のある層状複水酸化物に変えることができる。また、(3)陰イオン性の有機化合物を包接する層状複水酸化物を1段の反応で得ることができる。
この様な合成手法は、それ自体産業上利用しうるもので、その意義は大きい。加えて、その生成物の陰イオン交換性から、今後各種分野に大いに利用されることが期待される。例えば、陰イオン性機能性有機分子イオン交換プロセスといった極めて簡単な操作によるいわゆるソフトケミカル的な反応によって合成し、提供することができるため、新規な機能を有してなる新規物質開発・促進につながるものと期待される。また、陰イオン性の有
機化合物を包接する層状複水酸化物を1段の反応で得られることができるので、新たな合成手法として、意義深い。
この様にして、合成される層状複水酸化物の結晶は六角板状で、結晶のアスペクト比の高い、粒径が制御されたものであるため、特定の方向に並んだ配向膜の形成への道が開ける。これにより、基板上への規則正しい配向性を持った累積によるナノデバイスの構築といった新しい応用分野にまで発展し、及ぶことが考えられる。
As described in the column of the effect of the invention, the significance of the present invention is exceptional. That is, according to the present invention, (1) it is possible to easily obtain a layered double hydroxide having a high crystallinity and a large particle size, and (2) the obtained layered double hydroxide contains an organic ion. It can be easily desorbed and converted to other ion-exchangeable layered double hydroxides. Further, (3) a layered double hydroxide that includes an anionic organic compound can be obtained by a one-step reaction.
Such a synthesis method itself can be used industrially and has great significance. In addition, the product is expected to be used in various fields in the future due to the anion exchange property of the product. For example, it can be synthesized and provided by a so-called soft chemical reaction by an extremely simple operation such as an anionic functional organic molecular ion exchange process, leading to the development and promotion of new substances having new functions. Expected. In addition, since a layered double hydroxide that includes an anionic organic compound can be obtained by a one-step reaction, it is significant as a new synthesis method.
In this way, the synthesized layered double hydroxide crystals are hexagonal plate-shaped, and have a high crystal aspect ratio and controlled grain size, so that an alignment film aligned in a specific direction can be formed. Will open the way. As a result, it is possible to develop and extend to new application fields such as the construction of nanodevices by accumulation with regular orientation on the substrate.

各生成物の赤外スペクトルを示す図。The figure which shows the infrared spectrum of each product. 走査型電子顕微鏡で得られた像(SEM写真)を示す図。The figure which shows the image (SEM photograph) obtained with the scanning electron microscope. 生成物の粉末X線回折を示す図。The figure which shows the powder X-ray diffraction of a product.

Claims (12)

層状複水酸化物を構成する金属元素M、Nの塩(塩化物や硝酸塩)を、目的の層状複水
酸化物を構成する金属元素の比率で含む水溶液に、ヘキサメチレンテトラミンを加え、混合水溶液を耐圧容器中に密封し、水の沸点以上の温度で加熱処理することにより、一般式;MxN(OH)y(Z-)・nH2O(式中、xは、1.8≦x≦4.2の数値範囲を示す。yは、2(x+1)を示す。Mは、2価の金属イオン。Nは、3価の金属イオン。Z-
は、炭酸イオン(CO3 2-)以外の陰イオン、nは、環境の湿度により変化するが、ほぼ
2)で表される組成を有し、ハイドロタルサイトに類似した構造を有する層状複水酸化物の結晶を生成させることを特徴とする層状複水酸化物の製造方法。
Hexamethylenetetramine is added to an aqueous solution containing salts of the metal elements M and N (chlorides and nitrates) constituting the layered double hydroxide in a ratio of the metal elements constituting the target layered double hydroxide, and a mixed aqueous solution Is sealed in a pressure-resistant container and heat-treated at a temperature equal to or higher than the boiling point of water, whereby the general formula: M x N (OH) y (Z ) · nH 2 O (wherein x is 1.8 ≦ x represents a numerical range of 4.2, y represents 2 (x + 1), M represents a divalent metal ion, N represents a trivalent metal ion, Z −.
Is an anion other than carbonate ion (CO 3 2- ), and n varies depending on the humidity of the environment, but has a composition represented by 2) and has a structure similar to hydrotalcite. A method for producing a layered double hydroxide, characterized by producing oxide crystals.
層状複水酸化物を構成する金属元素M,Nの塩(塩化物と硝酸塩)を、目的の層状複水
酸化物を構成する金属元素の比率で含む水溶液に、ヘキサメチレンテトラミンおよび、包接したい陰イオン性の有機ゲスト分子を加え、混合水溶液を耐圧容器中に密封し、水の沸点以上の温度で加熱処理することにより、一般式;MxN(OH)z(Q)-・nH2O(式中、xは、1.8≦x≦4.2の数値範囲を示す。zは、2(x+1)を示す。Mは、2価の金属イオン。Nは、3価の金属イオン。Q-は、陰イオン性の機能性有機分子イオン
、nは、環境の湿度により変化するが、ほぼ2)で表される組成を有し、ハイドロタルサイトに類似した構造を有する層状複水酸化物を生成させることを特徴とする層状複水酸化物・有機複合体の製造方法。
We want to include hexamethylenetetramine and clathrate in an aqueous solution containing salts of metal elements M and N (chlorides and nitrates) constituting the layered double hydroxide in a ratio of the metal elements constituting the target layered double hydroxide. An anionic organic guest molecule is added, the mixed aqueous solution is sealed in a pressure vessel, and heat treatment is performed at a temperature equal to or higher than the boiling point of water to obtain a general formula: M x N (OH) z (Q) -. nH 2 O (wherein x represents a numerical range of 1.8 ≦ x ≦ 4.2. Z represents 2 (x + 1). M represents a divalent metal ion. N represents a trivalent metal ion. Q is an anionic functional organic molecular ion, n varies depending on the humidity of the environment, but has a composition represented by 2) and has a structure similar to that of hydrotalcite. A method for producing a layered double hydroxide / organic composite, characterized by producing an oxide.
該加熱処理が、100℃以上200℃以下の温度領域で行われる、請求項1または請求
項2に記載の層状複酸化物の製造方法。
The method for producing a layered complex oxide according to claim 1 or 2, wherein the heat treatment is performed in a temperature range of 100 ° C or higher and 200 ° C or lower.
該反応溶液中の金属塩が、目的とする層状複水酸化物を構成する金属元素の比率に近い
値を持ち、合計の濃度が0.005M〜0.50Mの濃度である、請求項1または請求項2に記載の層状複水酸化物の製造方法。
The metal salt in the reaction solution has a value close to the ratio of metal elements constituting the target layered double hydroxide, and the total concentration is a concentration of 0.005M to 0.50M. The manufacturing method of the layered double hydroxide of Claim 2.
該反応溶液中のヘキサメチレンテトラミンが、反応溶液に含まれる3価金属元素のモル
数の2倍〜6倍である、請求項1または請求項2に記載の層状複水酸化物の製造方法。
The method for producing a layered double hydroxide according to claim 1 or 2, wherein hexamethylenetetramine in the reaction solution is 2 to 6 times the number of moles of a trivalent metal element contained in the reaction solution.
該一般式で示される出発層状複水酸化物が、式中金属イオンMがマグネシウムイオンMgであり、式中3価の金属イオンNがアルミニウムイオンAlである層状複水酸化物である、請求項1または請求項2に記載の層状複水酸化物の製造方法。   The starting layered double hydroxide represented by the general formula is a layered double hydroxide in which the metal ion M is a magnesium ion Mg and the trivalent metal ion N is an aluminum ion Al in the formula. The manufacturing method of the layered double hydroxide of Claim 1 or Claim 2. 陰イオン性の機能性有機分子イオン(Q-)が、一般式CH3(CH2n-2COO-(n=10〜18)で示される直鎖の長鎖アルキル基を持つカルボン酸イオンである、請求項2に記載の層状複水酸化物の製造方法。 Carboxylic acid ion in which the anionic functional organic molecular ion (Q ) has a linear long chain alkyl group represented by the general formula CH 3 (CH 2 ) n-2 COO (n = 10 to 18) The method for producing a layered double hydroxide according to claim 2, wherein 請求項1ないし7に記載の何れか1項に記載の層状複水酸化物の製造方法において、析
出、沈殿した陰イオン交換性層状複水酸化物を回収し、引き続き回収した陰イオン交換性層状複水酸化物にイオン交換処理を施し、もしくは、塩酸−食塩の混合水溶液との接触による脱有機イオン処理を施し、有機イオン、炭酸イオンを含まない高純度層状複水酸化物へと改質して陰イオン交換能を高めたことを特徴とする請求項1ないし8記載の層状複水酸化物の製造方法。
The method for producing a layered double hydroxide according to any one of claims 1 to 7, wherein the precipitated and precipitated anion exchange layered double hydroxide is recovered, and subsequently recovered anion exchange layered layer. The double hydroxide is ion-exchanged or deorganically treated by contact with a mixed aqueous solution of hydrochloric acid and sodium chloride to reform it into a high-purity layered double hydroxide that does not contain organic ions or carbonate ions. 9. The method for producing a layered double hydroxide according to claim 1, wherein the anion exchange capacity is enhanced.
請求項1ないし8の何れか1項に記載の製造方法で製造された陰イオン交換性層状複水
酸化物を、排出ガス中の炭酸ガス除去プロセスにおける二酸化炭素捕捉剤として使用し、該陰イオン交換性層状複水酸化物を炭酸ガスないしは炭酸ガスを含んだ液相と接触させて二酸化炭素を該層状複水酸化物の炭酸塩として固定化することを特徴とする、二酸化炭素
除去方法。
An anion exchange layered double hydroxide produced by the production method according to any one of claims 1 to 8 is used as a carbon dioxide scavenger in a carbon dioxide removal process in exhaust gas, and the anion A method for removing carbon dioxide, comprising contacting an exchangeable layered double hydroxide with a liquid phase containing carbon dioxide or carbon dioxide to fix carbon dioxide as a carbonate of the layered double hydroxide.
請求項1ないし8に記載のプロセスで製造された陰イオン交換性層状複水酸化物ないし
はこれを含む材料を、陰イオンを有する機能性有機化合物のモノマーと接触させて該モノマーを層状複水酸化物に導入し、次いでモノマーを重合させることを特徴とする、機能性有機化合物で修飾、変性されてなる無機有機複合体。
An anion-exchange layered double hydroxide produced by the process according to claim 1 or 8 or a material containing the anion-exchange layered double hydroxide is brought into contact with a monomer of a functional organic compound having an anion to form the layered double hydroxide. An inorganic-organic composite modified and modified with a functional organic compound, which is introduced into a product and then polymerized with a monomer.
該無機有機複合体が分散性を高める機能を有する有機化合物によって修飾、変性された
ことを特徴とする、請求項10に記載の無機有機複合体。
The inorganic-organic composite according to claim 10, wherein the inorganic-organic composite is modified and modified with an organic compound having a function of enhancing dispersibility.
該無機有機複合体がフィラーとして使用されることを特徴とした、請求項10に記載の
無機有機複合体。
The inorganic-organic composite according to claim 10, wherein the inorganic-organic composite is used as a filler.
JP2004152923A 2004-05-24 2004-05-24 Good quality layered composite hydroxide obtained by uniform precipitation method using hexamethylene tetramine, and its use Pending JP2005335965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004152923A JP2005335965A (en) 2004-05-24 2004-05-24 Good quality layered composite hydroxide obtained by uniform precipitation method using hexamethylene tetramine, and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004152923A JP2005335965A (en) 2004-05-24 2004-05-24 Good quality layered composite hydroxide obtained by uniform precipitation method using hexamethylene tetramine, and its use

Publications (1)

Publication Number Publication Date
JP2005335965A true JP2005335965A (en) 2005-12-08

Family

ID=35489936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004152923A Pending JP2005335965A (en) 2004-05-24 2004-05-24 Good quality layered composite hydroxide obtained by uniform precipitation method using hexamethylene tetramine, and its use

Country Status (1)

Country Link
JP (1) JP2005335965A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007057570A1 (en) * 2005-11-18 2007-05-24 B.R.G.M. - Bureau De Recherches Geologiques Et Minieres - Method of separating and/or purifying a gas mixture
JP2008290913A (en) * 2007-05-24 2008-12-04 National Institute For Materials Science Cobalt hydroxide-iron crystal and cobalt hydroxide-iron monolayer nanosheet, and methods for producing the crystal and the nanosheet
JP2009203081A (en) * 2008-02-26 2009-09-10 National Institute For Materials Science Lamellar hydroxide, monolayer nanosheet and their production methods
JP2011138688A (en) * 2009-12-28 2011-07-14 Fuji Electric Co Ltd Fuel cell
JP2012076996A (en) * 2012-01-13 2012-04-19 National Institute For Materials Science Method for producing cobalt (ii) hydroxide-iron (iii) hexagonal plate-like lamellar crystal
WO2012102150A1 (en) 2011-01-27 2012-08-02 独立行政法人物質・材料研究機構 Water-swelling layered double hydroxide, method for producing same, gel or sol substance, double hydroxide nanosheet, and method for producing same
WO2012102151A1 (en) 2011-01-27 2012-08-02 独立行政法人物質・材料研究機構 Method for producing anion-exchanging layered double hydroxide and method for substituting carbonate ion of layered double hydroxide containing carbonate ion
CN109233830A (en) * 2018-10-17 2019-01-18 北京师范大学 Trimesic acid-LEuH complex and its synthetic method
KR20190079240A (en) * 2017-12-27 2019-07-05 (주)이엠티 A Method for Preparing Precursor of Cathod Active Material for Lithium Ion Secondary Battery Using Polyamine as A Complex Agent
WO2020012994A1 (en) 2018-07-12 2020-01-16 国立研究開発法人物質・材料研究機構 Packaged body containing hydrogen sulfide slow-release agent and method for producing same, and hydrogen sulfide slow-release agent, hydrogen sulfide slow-release body and hydrogen sulfide generation method using same
JPWO2020262054A1 (en) * 2019-06-28 2020-12-30
CN115052837A (en) * 2020-02-17 2022-09-13 国立研究开发法人科学技术振兴机构 Layered double hydroxide electronic compound and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503484A (en) * 1994-08-04 1997-04-08 ミネラルス・テクノロジーズ・インコーポレーテッド Oblate sphere aggregates of plate-like synthetic hydrotalcite
WO2001004053A1 (en) * 1999-07-08 2001-01-18 Mizusawa Industrial Chemicals, Ltd. Composite polybasic salt, process for producing the same, and use
JP2003063818A (en) * 2001-06-12 2003-03-05 Tosoh Corp Method for producing crystals of hydrotalcite compounds
JP2004099391A (en) * 2002-09-11 2004-04-02 Mizusawa Ind Chem Ltd Method of manufacturing layered double hydroxide
JP2005296773A (en) * 2004-04-09 2005-10-27 National Institute Of Advanced Industrial & Technology Nitrate ion adsorbent, method for producing the same, method for removing nitrate ion by using the same, and method for recovering nitrate ion by using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503484A (en) * 1994-08-04 1997-04-08 ミネラルス・テクノロジーズ・インコーポレーテッド Oblate sphere aggregates of plate-like synthetic hydrotalcite
WO2001004053A1 (en) * 1999-07-08 2001-01-18 Mizusawa Industrial Chemicals, Ltd. Composite polybasic salt, process for producing the same, and use
JP2003063818A (en) * 2001-06-12 2003-03-05 Tosoh Corp Method for producing crystals of hydrotalcite compounds
JP2004099391A (en) * 2002-09-11 2004-04-02 Mizusawa Ind Chem Ltd Method of manufacturing layered double hydroxide
JP2005296773A (en) * 2004-04-09 2005-10-27 National Institute Of Advanced Industrial & Technology Nitrate ion adsorbent, method for producing the same, method for removing nitrate ion by using the same, and method for recovering nitrate ion by using the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007057570A1 (en) * 2005-11-18 2007-05-24 B.R.G.M. - Bureau De Recherches Geologiques Et Minieres - Method of separating and/or purifying a gas mixture
JP2008290913A (en) * 2007-05-24 2008-12-04 National Institute For Materials Science Cobalt hydroxide-iron crystal and cobalt hydroxide-iron monolayer nanosheet, and methods for producing the crystal and the nanosheet
JP2009203081A (en) * 2008-02-26 2009-09-10 National Institute For Materials Science Lamellar hydroxide, monolayer nanosheet and their production methods
JP2011138688A (en) * 2009-12-28 2011-07-14 Fuji Electric Co Ltd Fuel cell
WO2012102150A1 (en) 2011-01-27 2012-08-02 独立行政法人物質・材料研究機構 Water-swelling layered double hydroxide, method for producing same, gel or sol substance, double hydroxide nanosheet, and method for producing same
WO2012102151A1 (en) 2011-01-27 2012-08-02 独立行政法人物質・材料研究機構 Method for producing anion-exchanging layered double hydroxide and method for substituting carbonate ion of layered double hydroxide containing carbonate ion
US9545615B2 (en) 2011-01-27 2017-01-17 National Institute For Materials Science Water-swelling layered double hydroxide, method for producing same, gel or sol substance, double hydroxide nanosheet, and method for producing same
JP2012076996A (en) * 2012-01-13 2012-04-19 National Institute For Materials Science Method for producing cobalt (ii) hydroxide-iron (iii) hexagonal plate-like lamellar crystal
KR20190079240A (en) * 2017-12-27 2019-07-05 (주)이엠티 A Method for Preparing Precursor of Cathod Active Material for Lithium Ion Secondary Battery Using Polyamine as A Complex Agent
KR102051714B1 (en) 2017-12-27 2019-12-04 (주)이엠티 A Method for Preparing Precursor of Cathod Active Material for Lithium Ion Secondary Battery Using Polyamine as A Complex Agent
WO2020012994A1 (en) 2018-07-12 2020-01-16 国立研究開発法人物質・材料研究機構 Packaged body containing hydrogen sulfide slow-release agent and method for producing same, and hydrogen sulfide slow-release agent, hydrogen sulfide slow-release body and hydrogen sulfide generation method using same
CN109233830A (en) * 2018-10-17 2019-01-18 北京师范大学 Trimesic acid-LEuH complex and its synthetic method
CN109233830B (en) * 2018-10-17 2020-10-16 北京师范大学 Trimesic acid-LEuH complex and synthesis method thereof
JPWO2020262054A1 (en) * 2019-06-28 2020-12-30
WO2020262054A1 (en) 2019-06-28 2020-12-30 国立研究開発法人物質・材料研究機構 Structural body for preventing and/or treating skin wounds
JP7262065B2 (en) 2019-06-28 2023-04-21 国立研究開発法人物質・材料研究機構 Skin wound prevention and/or skin wound healing composition
CN115052837A (en) * 2020-02-17 2022-09-13 国立研究开发法人科学技术振兴机构 Layered double hydroxide electronic compound and method for producing same
CN115052837B (en) * 2020-02-17 2024-07-30 国立研究开发法人科学技术振兴机构 Layered double hydroxide electronic compound and method for producing same

Similar Documents

Publication Publication Date Title
JP5317293B2 (en) Method for producing anion-exchange layered double hydroxide
Iyi et al. A novel synthetic route to layered double hydroxides using hexamethylenetetramine
Chuang et al. Removal of 2-chlorophenol from aqueous solution by Mg/Al layered double hydroxide (LDH) and modified LDH
Pirmoradi et al. Kinetics and thermodynamics of cyanide removal by ZnO@ NiO nanocrystals
Xia et al. Layered double hydroxides as supports for intercalation and sustained release of antihypertensive drugs
Fronczak et al. Graphitic carbon nitride doped with the s-block metals: adsorbent for the removal of methyl blue and copper (II) ions
JP5867831B2 (en) Method for producing anion-exchange layered double hydroxide and method for replacing carbonate ion of layered double hydroxide containing carbonate ion
US8362094B1 (en) Zinc-oxide nanoparticles and their use for photo catalytic degradation of cyanide
JP2005335965A (en) Good quality layered composite hydroxide obtained by uniform precipitation method using hexamethylene tetramine, and its use
US20130168320A1 (en) Organic templated nanometal oxyhydroxide
JP2009173482A (en) Swellable layered double hydroxide and its manufacturing method, and gel-like substance, sol-like substance and nanosheet using the same
JP4228077B2 (en) Method for producing layered hydroxide having ion-exchangeable anions by decarboxylation of hydrotalcite
CN102765742A (en) Preparation method of cerium oxide microspheres
Intasa-ard et al. Simple and cost-effective mass production of nitrate type MgAl layered double hydroxide: Titration from concentrated solution
JP3855047B2 (en) Manufacturing method of nano acicular ceria particles
JP4873751B2 (en) Carbon dioxide remover and its regeneration method
Zhong et al. Sorption of humic acid to layered double hydroxides prepared through ion thermal method
Unal Short-time hydrothermal synthesis and delamination of ion exchangeable Mg/Ga layered double hydroxides
JP4757618B2 (en) Zn complex-containing layered polymer, method for producing the same, calcium carbonate synthesis catalyst, and method for synthesizing calcium carbonate
JP2023106421A (en) Layered double hydroxide crystal and anion adsorbent
Yuan et al. Preparation and characterization of L-aspartic acid-intercalated layered double hydroxide
Xia et al. Slow and Sustained Release of Carbonate Ions from Amino Acids for Controlled Hydrothermal Growth of Alkaline-Earth Carbonate Single Crystals
Jamhour Intercalation and complexation of Co (II) and Ni (II) by chelating ligands incorporated in Zn-Al layered double hydroxides
Komárková et al. Effect of amines on (peroxo) titanates: characterization and thermal decomposition
Molina et al. Ammonium alunite and basic aluminum sulfate: effect of precipitant agent

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019