JP2004267917A - Sulfur compound adsorbent, its production method, and sulfur compound removal/recovery using it and adsorbent regeneration method - Google Patents

Sulfur compound adsorbent, its production method, and sulfur compound removal/recovery using it and adsorbent regeneration method Download PDF

Info

Publication number
JP2004267917A
JP2004267917A JP2003062429A JP2003062429A JP2004267917A JP 2004267917 A JP2004267917 A JP 2004267917A JP 2003062429 A JP2003062429 A JP 2003062429A JP 2003062429 A JP2003062429 A JP 2003062429A JP 2004267917 A JP2004267917 A JP 2004267917A
Authority
JP
Japan
Prior art keywords
metal
water
compound
aqueous solution
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003062429A
Other languages
Japanese (ja)
Other versions
JP4012964B2 (en
Inventor
Ume Yuki
梅 雪
Ramesh Chitorakaa
ラメシュ チトラカー
Koji Sakane
幸治 坂根
Kenta Oi
健太 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003062429A priority Critical patent/JP4012964B2/en
Publication of JP2004267917A publication Critical patent/JP2004267917A/en
Application granted granted Critical
Publication of JP4012964B2 publication Critical patent/JP4012964B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient removal/recovery method for a sulfur compound capable of efficiently adsorbing and removing the sulfur compound contained in a gas or a liquid even in a low concentration and using a sulfur compound adsorbent having adsorption capacity and an adsorbent. <P>SOLUTION: The adsorbent comprises a heated treatment substance of a metal-containing hydroxide containing a sulfate ion or a carbonate ion. As the metal-containing hydroxide, the compound represented by the general formula: M<SP>II</SP><SB>1-x-z</SB>M<SP>III</SP><SB>x</SB>M<SP>IV</SP><SB>z</SB>(OH)<SB>y</SB>A<SP>n-</SP><SB>(2+x+2z-y)/n</SB>-mH<SB>2</SB>O is preferable. In the formula, M<SP>II</SP>is a divalent metal including at least one kind of Zn<SP>2+</SP>, Co<SP>2+</SP>and Cu<SP>2+</SP>; M<SP>III</SP>is a trivalent metal including at least one kind of Al<SP>3+</SP>, Fe<SP>3+</SP>and Mn<SP>3+</SP>; M<SP>IV</SP>is a tetravalent metal including at least one kind of Ti<SP>4+</SP>, Zr<SP>4+</SP>, Sn<SP>4+</SP>, Mn<SP>4+</SP>and Ce<SP>4+</SP>; A<SP>n-</SP>is an anion including at least one kind of divalent ion of SO<SB>4</SB><SP>2-</SP>and CO<SB>3</SB><SP>2-</SP>; n is an average valency of anion; and x, y, z and m are the number satisfying 0≤x≤0.8, 0≤y≤0.7, 0≤z≤0.4 and 0<m≤3. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、硫黄化合物の新規な吸着剤、更に詳しく言えば、気体或いは液体中に含まれる硫黄化合物を低濃度であっても効率的に除去できる吸着剤及びそれを用いた硫黄化合物の除去法に関するものである。
【0002】
【従来の技術】
硫黄化合物は悪臭原因物質、酸性雨原因物質など環境有害物質として大きな問題となっており、その除去技術が求められ、例えば悪臭空気汚染物質である硫化水素、メルカプタン類や、水系或いは有機溶媒系中の有害な硫黄化合物、例えば液化天然ガス、ガソリンなどに含まれる有害な硫黄化合物を、その環境への放出防止等の観点から、あらかじめ除去する技術が求められている。
【0003】
これまで硫黄化合物を選択的に除去できる吸着剤としては、粘土鉱物の複合体(特許文献1参照)、酸化チタン・酸化銅・酸化鉄複合体(特許文献2参照)、酸化亜鉛・アルカリ複合体(特許文献3参照)、珪酸塩・亜鉛・活性炭複合体(特許文献4参照)、金属塩含有珪酸ゲル(特許文献5参照)、ラネー銅(特許文献6参照)、遷移金属含有アパタイト化合物(特許文献7参照)、酸化マンガン系吸着剤(特許文献8参照)、リン酸塩添加活性炭(特許文献9参照)、複合金属酸化物(特許文献10参照)、銅成分担持多孔体(特許文献11参照)、金属酸化物担持有機高分子体(特許文献12参照)、鉄・銅複合金属含水酸化物(特許文献13参照)などが知られている。
しかし、これらの吸着剤はある程度の濃度の硫黄化合物に対しては良好な吸着性能を示すものの、低濃度の硫黄化合物については、吸着除去性や、吸着容量などの点で必ずしも満足しうるものではない。
【0004】
【特許文献1】
特開昭50−160816号公報(特許請求の範囲その他)
【特許文献2】
特公昭59−32169号公報(特許請求の範囲その他)
【特許文献3】
特開平1−203040号公報(特許請求の範囲その他)
【特許文献4】
特開平4−349934号公報(特許請求の範囲その他)
【特許文献5】
特開平4−290546号公報(特許請求の範囲その他)
【特許文献6】
特開平6−55065号公報(特許請求の範囲その他)
【特許文献7】
特開平7−96175号公報(特許請求の範囲その他)
【特許文献8】
特開平9−85077号公報(特許請求の範囲その他)
【特許文献9】
特開平10−192703号公報(特許請求の範囲その他)
【特許文献10】
特開平11−28352号公報(特許請求の範囲その他)
【特許文献11】
特開2001−123188号公報(特許請求の範囲その他)
【特許文献12】
特開2002−177767号公報(特許請求の範囲その他)
【特許文献13】
特開2002−320847号公報(特許請求の範囲その他)
【0005】
【発明が解決しようとする課題】
本発明の課題は、気体或いは液体中に含まれる硫黄化合物を低濃度であっても効率的に吸着、除去でき、しかも吸着容量の大きい硫黄化合物吸着剤及び該吸着剤を用いた効率的な硫黄化合物の除去回収法を提供することにある。
【0006】
【課題を解決するための手段】
本発明の課題は、硫酸イオンや炭酸イオンを含む金属含水酸化物を加熱処理すると、炭酸イオンは炭酸ガス、硫酸イオンは酸化硫黄ガスとなって固体内から抜け出るが、その際に硫黄化合物を吸着するのに適当なサイトを形成すると共に、固体が多孔化し吸着容量の大きな吸着剤を得ることができるとの知見に基づき、硫酸イオンや炭酸イオンなどの多価陰イオンを含む前駆体の金属含水酸化物の加熱処理物からなる吸着剤により達成された。
【0007】
すなわち、本発明は、以下のとおりのものである。
(1)硫酸イオン又は炭酸イオンを含む金属含水酸化物の加熱処理物からなる硫黄化合物吸着剤。
(2)硫酸イオン又は炭酸イオンを含む金属含水酸化物が、一般式
II 1−x−zIII IV (OH)n− (2+x+2z−y)/n・mH
(式中、MIIは、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属、MIIIは、Al3+、Fe3+及びMn3+のうちの少なくとも1種を含む三価金属、MIVはTi4+、Zr4+、Sn4+、Mn4+及びCe4+のうちの少なくとも1種を含む四価金属、An−はSO 2−及びCO 2−のうちの少なくとも1種の2価イオンを含む陰イオン、nは陰イオンの平均価数、x、y、z及びmは、0≦x≦0.8、0≦y≦0.7、0≦z≦0.4、0<m≦3を満足する数である)で表される金属含水酸化物である前記(1)記載の硫黄化合物吸着剤。
(3)Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物を含む水溶液、或いはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物とAl3+及びFe3+のうちの少なくとも1種を含む三価金属の水溶性化合物を含む混合水溶液、或いはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物とMn2+の水溶性化合物を含む混合水溶液、或いはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物と、Al3+及びFe3+のうちの少なくとも1種を含む三価金属の水溶性化合物と、Ti4+、Zr4+、Sn4+及びCe4+のうちの少なくとも1種を含む四価金属の水溶性化合物を含む混合水溶液に、硫酸イオン存在下で水酸化アルカリ又はその水溶液を加え、一般式
II 1−x−zIII IV (OH)n− (2+x+2z−y)/n・mH
(式中、MIIは、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属、MIIIは、Al3+、Fe3+及びMn3+のうちの少なくとも1種を含む三価金属、MIVはTi4+、Zr4+、Sn4+、Mn4+及びCe4+のうちの少なくとも1種を含む四価金属、An−はSO 2−を含む陰イオン、nは陰イオンの平均価数、x、y、z及びmは、0≦x≦0.8、0≦y≦0.7、0≦z≦0.4、x+z<1、0<m≦3を満足する数である)
で表される、硫酸イオンを含有する金属含水酸化物を沈殿させ、さらにこの沈殿物を100〜600℃で加熱処理することを特徴とする前記(1)又は(2)記載の硫黄化合物吸着剤の製造方法。
(4)Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物を含む水溶液、或いはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物とAl3+及びFe3+のうちの少なくとも1種を含む三価金属の水溶性化合物を含む混合水溶液、或いはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物とMn2+の水溶性化合物を含む混合水溶液、或いはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物と、Al3+及びFe3+のうちの少なくとも1種を含む三価金属の水溶性化合物と、Ti4+、Zr4+、Sn4+及びCe4+のうちの少なくとも1種を含む四価金属の水溶性化合物を含む混合水溶液に、炭酸アルカリ又はその水溶液を加え、一般式
II 1−x−zIII IV (OH)n− (2+x+2z−y)/n・mH
(式中、MIIは、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属、MIIIは、Al3+、Fe3+及びMn3+のうちの少なくとも1種を含む三価金属、MIVはTi4+、Zr4+、Sn4+、Mn4+及びCe4+のうちの少なくとも1種を含む四価金属、An−はCO 2−を含む陰イオン、nは陰イオンの平均価数、x、y、z及びmは、0≦x≦0.8、0≦y≦0.7、0≦z≦0.4、x+z<1、0<m≦3を満足する数である)
で表される、炭酸イオンを含有する金属含水酸化物を沈殿させ、さらにこの沈殿物を100〜600℃で加熱処理することを特徴とする前記(1)又は(2)記載の硫黄化合物吸着剤の製造方法。
(5)硫酸イオン又は炭酸イオンを含む金属含水酸化物が、一般式
II 1−xIII (OH)n− (2+x−y)/n・mH
(式中、MIIは、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属、MIIIは、Al3+、Fe3+及びMn3+のうちの少なくとも1種を含む三価金属、An−はSO 2−及びCO 2−のうちの少なくとも1種の2価イオンを含む陰イオン、nは陰イオンの平均価数、x、y及びmは、0≦x≦0.67、0≦y≦0.7、0<m≦3を満足する数である)
で表される結晶性金属含水酸化物である前記(1)記載の硫黄化合物吸着剤。
(6)Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物を含む水溶液、或いはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物と、Al3+及びFe3+のうちの少なくとも1種を含む三価金属の水溶性化合物及びMn2+の水溶性化合物のうちの少なくとも1種を含む混合水溶液に、硫酸イオン存在下で水酸化アルカリ又はその水溶液を加えた後、40〜120℃で反応させ、一般式
II 1−xIII (OH)n− (2+x−y)/n・mH
(式中、MIIは、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属、MIIIは、Al3+、Fe3+及びMn3+のうちの少なくとも1種を含む三価金属、An−はSO 2−を含む陰イオン、nは陰イオンの平均価数、x、y及びmは、0≦x≦0.67、0≦y≦0.7、0<m≦3を満足する数である)
で表される、硫酸イオンを含有する結晶性金属含水酸化物を沈殿させ、さらにこの沈殿物を100〜600℃で加熱処理することを特徴とする前記(5)記載の硫黄化合物吸着剤の製造方法。
(7)Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物を含む水溶液、或いはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物と、Al3+及びFe3+のうちの少なくとも1種を含む三価金属の水溶性化合物及びMn2+の水溶性化合物のうちの少なくとも1種を含む混合水溶液に、炭酸アルカリ又はその水溶液を加えた後、40〜120℃で反応させ、一般式
II 1−xIII (OH)n− (2+x−y)/n・mH
(式中、MIIは、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属、MIIIは、Al3+、Fe3+及びMn3+のうちの少なくとも1種を含む三価金 属、An−はCO 2−を含む陰イオン、nは陰イオンの平均価数、x、y及びmは、0≦x≦0.67、0≦y≦0.7、0<m≦3を満足する数である)で表される、炭酸イオンを含有する結晶性金属含水酸化物を沈殿させ、さらにこの沈殿物を100〜600℃で加熱処理することを特徴とする前記(5)記載の硫黄化合物吸着剤の製造方法。
(8)Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の酸化物を、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物を含む水溶液、或いはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物と、Al3+及びFe3+のうちの少なくとも1種を含む三価金属の水溶性化合物及びMn2+の水溶性化合物のうちの少なくとも1種を含む混合水溶液に添加し、硫酸イオンの存在下で反応させ、一般式
II 1−xIII (OH)n− (2+x−y)/n・mH
(式中、MIIは、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属、MIIIは、Al3+、Fe3+及びMn3+のうちの少なくとも1種を含む三価金属、An−はSO 2−を含む陰イオン、nは陰イオンの平均価数、x、y及びmは、0≦x≦0.67、0≦y≦0.7、0<m≦3を満足する数である)
で表される、硫酸イオンを含有する結晶性金属含水酸化物を沈殿させ、さらにこの沈殿物を100〜600℃で加熱処理することを特徴とする前記(5)記載の硫黄化合物吸着剤の製造方法。
(9)下記の工程(I)、工程(II)からなることを特徴とする硫黄化合物除去・回収並びに吸着剤再生方法。
工程(I)
前記(1)、(2)又は(5)記載の硫黄化合物吸着剤を、硫黄化合物を含む気体又は液体に添加し、硫黄化合物を吸着させて除去する工程。
工程(II)
工程(I)で得られた硫黄化合物を吸着させた吸着剤を500℃以上で加熱処理し、硫黄化合物を脱着させて回収するか或いは分解させ、かつ吸着剤を再生させる工程。
【0008】
【発明の実施の形態】
本発明の吸着剤において、その前駆体として用いられ、加熱処理対象物である、硫酸イオン又は炭酸イオンを含む金属含水酸化物については特に制限されないが、金属が多価、中でも二価ないし四価であるものが安定性の点で適当である。二価金属としてはZn2+、Co2+、Cu2+が、三価金属としてはAl3+、Fe3+、Mn3+が、四価金属としてはTi4+、Zr4+、Sn4+、Mn4+、Ce4+がそれぞれ好ましく、中でも多価金属がこれらの金属からなるか、或いはこれらの金属を主とし、各価数の金属において、その全量に対し、これら所定金属のうちの相当金属が原子比で過半量、好ましくは70%以上、中でも80%以上占めるのがよい。
また、この金属含水酸化物としては、複合物も用いることができる。
【0009】
このような金属含水酸化物としては、一般式(I)
II 1−x−zIII IV (OH)n− (2+x+2z−y)/n・mH
(式中、MIIは、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属、MIIIは、Al3+、Fe3+及びMn3+のうちの少なくとも1種を含む三価金属、MIVはTi4+、Zr4+、Sn4+、Mn4+及びCe4+のうちの少なくとも1種を含む四価金属、An−はSO 2−及びCO 2−のうちの少なくとも1種の2価イオンを含む陰イオン、nは陰イオンの平均価数、x、y、z及びmは、0≦x≦0.8、0≦y≦0.7、0≦z≦0.4、0<m≦3を満足する数である)で表されるもの、中でもこのもののうち少なくともMIIの二価金属を有するもの(一般式(I)においてさらにx+z<1を満足するもの)、特に一般式(II)
II 1−xIII (OH)n− (2+x−y)/n・mH
(式中、MIIは、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属、MIIIは、Al3+、Fe3+及びMn3+のうちの少なくとも1種を含む三価金属、An−はSO 2−及びCO 2−のうちの少なくとも1種の2価イオンを含む陰イオン、nは陰イオンの平均価数、x、y及びmは、0≦x≦0.67、0≦y≦0.7、0<m≦3を満足する数である)
で表される結晶性金属含水酸化物が好ましい。
【0010】
このような多価金属含水酸化物における二価、三価、四価金属の含有割合については特に制限されないが、多価陰イオンの含有量の多くなるようにするのが好ましく、原子比で、これら多価金属全量に対し、二価金属については33〜100%、中でも50〜100%、三価金属については0〜67%、中でも0〜50%、四価金属については0〜20%の範囲がそれぞれ好ましい。
陰イオンについては、SO 2−及び/又はCO 2−だけであってもよいが、それに加えて他のもの、例えば水酸イオン、ハロゲンイオン、オキシハロゲンイオン、硝酸イオン、炭酸水素イオンなどを併存させてもよい。
また、多価金属含水酸化物における含水量は、mHOについてmが0.5≦m≦2を満足するような範囲のものが好ましい。
【0011】
加熱処理時の構造安定性を高めるためには金属含水酸化物は結晶性のもの、中でも上記一般式(II)の結晶性金属含水酸化物が好ましい。このような結晶性金属含水酸化物として、上記多価陰イオンを層間に含む層状構造の金属含水酸化物や複合金属含水酸化物が好ましいが、結晶性のものであればこの限りではない。この層状構造は、金属酸化物からなる層と陰イオンと水からなる層が交互に積層したものである。そのため、層状構造の金属含水酸化物を加熱処理すると、最初に層間水mHOが蒸発し、さらに加熱処理を続行すると、層間の多価陰イオンが分解しガスが放出される。その際、金属酸化物の層が安定であり、層間の多価陰イオンが分解し、ガスとなって抜け出てももとの構造を保持することができ、多孔体構造が形成、保持されるようになる。
【0012】
上記金属含水酸化物を調製するには、上記二価金属、三価金属及び四価金属の水溶性化合物が1種或いは2種以上、水溶液或いは混合水溶液として用いられる。
この水溶性化合物としては、ハロゲン化物、オキシハロゲン化物、硝酸塩、硫酸塩、炭酸水素塩などを用いることができる。そのほか、所望ならば水酸化ニッケル、水酸化亜鉛、水酸化銅、水酸化鉄、水酸化マグネシウム、水酸化アルミニウムのような水酸化物も用いることができる。
また、硫酸イオンの供給源としては、上記水溶性化合物自体に硫酸塩を用いるのが簡便であるが、硫酸ナトリウム、硫酸カリウム等の硫酸塩を用いてもよい。この際、硫酸塩は水溶液として用いると、滴下等の簡便な添加形態を採りうるので好ましい。
【0013】
硫酸イオンを含む金属含水酸化物は、好ましくは、あらかじめ硫酸イオンを含有する原料金属塩水溶液、中でも原料金属塩自体が硫酸塩であるものの水溶液に水酸化アルカリ又はその水溶液、好ましくは水酸化アルカリ水溶液を加え、沈殿させることにより得られる。
多価陰イオンの含量は沈殿時のpHや溶液温度を制御することで調整することができる。原料溶液中の硫酸イオン濃度は濃厚なほど沈殿物の硫酸イオン含量が増えるが、溶解度や溶液の取り扱いの容易さを考慮すると1M〜3Mの範囲とするのが適当である。沈殿時のpHについては、一般的に低いpHから水酸化物を沈殿させる方が多価陰イオン含量を増やせるが、pHが低すぎると沈殿の生成量が少なくなりすぎるという欠点があるので、二価金属塩では7<pH<11、三価金属塩では3<pH<10、四価金属塩では1<pH<9の範囲とするのが好ましい。
また、硫酸塩の含量を増やすためには原料金属塩として多価金属の硫酸塩を用いるのが有利であるが、多価金属塩の水溶液に硫酸塩を含有する水酸化アルカリ溶液を加えて沈殿させるようにしてもよい。
【0014】
炭酸イオンを含む金属含水酸化物は、通常、多価金属塩の水溶液に炭酸アルカリ又はその水溶液を加えて沈殿させることにより得られる。炭酸アルカリ水溶液の濃度については特に制限されないが、沈殿効率等を考えると0.1M以上とするのが好ましい。炭酸アルカリとしての添加量は、多価金属量に対して、当量比で0.9〜2の範囲とするのが好ましい。
【0015】
硫酸イオンを含む層状構造の金属含水酸化物は、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物を硫酸イオン存在下で水酸化アルカリを用いて加水分解し、好ましくはさらに熟成するか、或いはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の酸化物を、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物を含む水溶液に添加し、硫酸イオンの存在下で反応させることにより得られる。また、硫酸イオンを含む層状構造の複合金属含水酸化物は、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物とAl3+及びFe3+のうちの少なくとも1種を含む三価金属の水溶性化合物或いはMn2+を含む水溶性化合物の混合物を硫酸イオン存在下で水酸化アルカリを用いて加水分解し、好ましくはさらに熟成するか、あるいはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の酸化物を、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物と、Al3+及びFe3+のうちの少なくとも1種を含む三価金属の水溶性化合物及びMn2+の水溶性化合物のうちの少なくとも1種を含む混合水溶液に添加し、硫酸イオンの存在下で反応させることにより得られる。
【0016】
加水分解は、水酸化ナトリウムなどのアルカリ金属水酸化物(これを水酸化アルカリともいう)、炭酸ナトリウムなどのアルカリ金属炭酸塩、炭酸水素ナトリウムなどのアルカリ金属炭酸水素塩、アンモニアなどを用いて行うことができるが、好ましくは水酸化アルカリが加えられ、中でも水溶液として所定水溶性化合物の水溶液又は混合水溶液に滴下等で加えるのがよい。
【0017】
炭酸イオンを含む層状構造の金属含水酸化物は、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物を炭酸アルカリで加水分解し、好ましくはさらに熟成することにより得られる。また、炭酸イオンを含む層状構造の複合金属含水酸化物は、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物とAl3+及びFe3+のうちの少なくとも1種を含む三価金属の水溶性化合物或いはMn2+を含む水溶性化合物の混合物を炭酸アルカリで加水分解し、好ましくはさらに熟成することにより得られる。二価金属の水溶性化合物と三価金属の水溶性化合物としては、ハロゲン化物、硝酸塩、硫酸塩、炭酸水素塩などを用いることができるが、後の処理を考えればハロゲン化物、硝酸塩が好ましい。そのほか、所望ならば水酸化ニッケル、水酸化鉄、水酸化マグネシウム、水酸化アルミニウムのような水酸化物を用いることができる。
【0018】
これら層状構造の所定含水酸化物の製法において、原料の水溶性化合物は水溶液或いは混合水溶液として用いるのが好ましい。また、結晶性の良好なものを得るには、加水分解を、pH8〜12、中でも9〜11の範囲で、40〜120℃、中でも60〜100℃の範囲の温度で行い、熟成は30〜70℃の範囲の温度で行うのが好ましい。
【0019】
本発明の吸着剤は、上記した、硫酸イオンや炭酸イオンの多価陰イオンを含む金属含水酸化物或いは複合金属含水酸化物を加熱処理することにより得られる。加熱処理温度は陰イオンの種類にもよるが、通常、100〜600℃、好ましくは200〜500℃の範囲で選ばれる。
加熱処理は、特に、層状構造の結晶性金属含水酸化物に行うことにより、層間の多価陰イオンが分解しガスとして逃散するため、多孔化し、層間に硫黄化合物が入りやすくなり吸着性が著しく上昇するようになるので好ましい。
【0020】
本発明の硫黄吸着剤を用いて硫黄化合物を除去するには、該吸着剤を硫黄化合物を含有する気体或いは液体(例えば溶液等)に添加すればよい。該吸着剤を添加し所定時間後、吸着剤と気体或いは液体(例えば溶液等)を分離すれば硫黄化合物は吸着剤に取り込まれ、気体中或いは液体(例えば溶液等)中の硫黄化合物は除去される。吸着時間は、吸着剤の粒径や硫黄化合物の濃度にもよるが、吸着剤が粉末の場合、通常30分から5時間でほとんどの硫黄化合物が吸着剤に取り込まれる。
【0021】
吸着剤に吸着された硫黄化合物は、吸着剤を加熱処理することで取り除くことができる。この加熱処理温度は通常300〜900℃、好ましくは500〜800℃の範囲で選ばれる。この加熱処理により、吸着された硫黄化合物が脱着或いは分解されガスとして放出されるので、吸着剤を再生することができる。
【0022】
【発明の効果】
本発明の吸着剤によれば、低濃度の硫黄化合物を効率よく吸着除去することができ、悪臭除去や、環境浄化に資すること大であり、また、吸着剤の再生も簡便に行うことができるという利点がある。
【0023】
【実施例】
次に、実施例により本発明を更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
【0024】
実施例1
酸化亜鉛80gを1M硫酸亜鉛水溶液2リットルに加え、30℃で1時間撹拌し、1日静置して沈殿物を生成させ、これをろ過した。このようにして得られた沈殿物は、X線回折の結果、層状構造で結晶性である、硫酸イオン含量が0.9mmol/gの含水酸化亜鉛であった。さらに、この硫酸イオン含有の含水酸化亜鉛を空気中で300℃で4時間加熱処理して吸着剤を得た。この吸着剤1gを10ppmの硫化水素濃度の気体中に入れ、硫化水素吸着量を測定したところ、120mg/gと多かった。これより、本吸着剤が良好な硫黄化合物吸着性能を有することは明らかである。
【0025】
比較例1
酸化亜鉛80gを1M硝酸亜鉛水溶液2リットルに加え、1時間撹拌し、1日静置した後、生成した沈殿をろ過して硝酸イオンを含有する含水酸化亜鉛を得た。この硝酸イオン含有含水酸化亜鉛を空気中で300℃で4時間加熱処理して吸着剤を得た。この吸着剤1gを10ppmの硫化水素濃度の気体中に入れ、硫化水素吸着量を測定したところ、15mg/gと少なかった。
【0026】
実施例2
1M硝酸コバルト水溶液100mlに1M炭酸ナトリウム水溶液をpHが8になるまで加え、炭酸イオンを含有する含水酸化コバルトを沈殿させた。この懸濁液に水を加え全体積を2リットルとし、4時間撹拌したのち、沈殿物を遠心分離した。この炭酸イオン含有含水酸化コバルト沈殿物を空気中で300℃で3時間加熱処理し、炭酸イオンを放出させ吸着剤を得た。この吸着剤1gを10ppmの硫化水素濃度の気体中に入れ、硫化水素吸着量を測定したところ、65mg/gと多かった。これより、本吸着剤が良好な硫黄化合物吸着性能を有することは明らかである。
【0027】
比較例2
1M硝酸コバルト水溶液100mlに1M水酸化ナトリウム水溶液をpHが8になるまで加え、硝酸イオンを含む含水酸化コバルトを沈殿させた。この懸濁液に水を加え全体積を2リットルとし、4時間撹拌したのち、沈殿物を遠心分離した。この硝酸イオン含有含水酸化コバルト沈殿物を空気中で300℃で3時間加熱処理し吸着剤を得た。この吸着剤1gを10ppmの硫化水素濃度の気体中に入れ、硫化水素吸着量を測定したところ、10mg/gと少なかった。
【0028】
実施例3
0.5Mの硫酸銅、0.5Mの硫酸マンガンを含む水溶液100mlに1M炭酸ナトリウム水溶液をpHが8になるまで加え、炭酸イオンと硫酸イオンを含む含水酸化銅と含水酸化マンガンの混合物を沈殿させた。この懸濁液に水を加え全体積を2リットルとし、4時間撹拌したのち、沈殿物を遠心分離した。これら多価陰イオンを含む金属含水酸化物沈殿物を空気中で300℃で3時間加熱処理し、多価陰イオンを分解、放出させ吸着剤を得た。この吸着剤1gを10ppmの硫化水素濃度の気体中に入れ、硫化水素吸着量を測定したところ、90mg/gと多かった。これより、本吸着剤が良好な硫黄化合物吸着性能を有することは明らかである。
【0029】
比較例3
0.5Mの硝酸銅、0.5Mの硝酸マンガンを含む水溶液100mlに1M水酸化ナトリウム水溶液をpHが8になるまで加え、硝酸イオンを含む含水酸化銅と含水酸化マンガンの混合物を沈殿させた。この懸濁液に水を加え全体積を2リットルとし、4時間撹拌したのち、沈殿物を遠心分離した。この硝酸イオン含有複合金属含水酸化物沈殿物を空気中で300℃で3時間加熱処理し、硝酸イオンを放出させ吸着剤を得た。この吸着剤1gを10ppmの硫化水素濃度の気体中に入れ、吸着量を測定したところ、硫化水素吸着量は30mg/gと少なかった。
【0030】
実施例4
0.7Mの塩化亜鉛、0.2Mの塩化チタン、0.1Mのオキシ塩化ジルコニウムを含む水溶液100mlに1M炭酸ナトリウム水溶液を溶液のpHが8になるまで加え、炭酸イオンを含む含水酸化亜鉛、含水酸化チタン、含水酸化ジルコニウムの混合物を沈殿させた。この懸濁液に水を加え全体積を2リットルとし、4時間撹拌したのち、沈殿物を遠心分離した。この炭酸イオン含有複合金属含水酸化物沈殿物を空気中で300℃で3時間加熱処理し、炭酸イオンを放出させ吸着剤を得た。この吸着剤1gを10ppmの硫化水素濃度の気体中に入れ、硫化水素吸着量を測定したところ、140mg/gと多かった。これより、本吸着剤が良好な硫黄化合物吸着性能を有することは明らかである。
【0031】
比較例4
0.7Mの塩化亜鉛、0.2Mの塩化チタン、0.1Mのオキシ塩化ジルコニウムを含む水溶液100mlに1M水酸化ナトリウム水溶液を溶液のpHが8になるまで加え、塩化物を含む含水酸化亜鉛、含水酸化チタン、含水酸化ジルコニウムの混合物を沈殿させた。この懸濁液に水を加え全体積を2リットルとし、4時間撹拌したのち、沈殿物を遠心分離した。この塩化物含有複合金属含水酸化物沈殿物を空気中で300℃、3時間加熱処理し吸着剤を得た。この吸着剤1gを10ppmの硫化水素濃度の気体中に入れ、吸着量を測定したところ、硫化水素吸着量は40mg/gと少なかった。
【0032】
実施例5
0.75Mの塩化亜鉛と0.25Mの塩化アルミニウムを含む水溶液100mlに1M炭酸ナトリウム水溶液を溶液のpHが8になるまで加え80℃で4時間撹拌し、炭酸イオンを含む含水酸化亜鉛と含水酸化アルミニウムの混合物を沈殿させた。この懸濁液に水を加え全体積を2リットルとし、4時間撹拌し熟成したのち、沈殿物を遠心分離した。沈殿物のX線回折を行ったところ、層状構造の結晶性化合物であることがわかった。また、元素分析の結果、炭酸イオン含量は、1.2mmol/gであることがわかった。この沈殿物を空気中で300℃で3時間加熱処理し炭酸イオンを分解・放出させ、吸着剤を得た。この吸着剤1gを10ppmの硫化水素濃度の気体中に入れ、吸着量をバッチ法で測定したところ、硫化水素吸着量は130mg/gと多かった。これより、本吸着剤が良好な硫黄化合物吸着性能を有することは明らかである。
【0033】
実施例6
酸化亜鉛80gを1M硫酸銅水溶液2リットルに加え、1時間撹拌し、1日静置して沈殿物を生成させた。この沈殿物をろ過し、X線回折の結果、層状構造で結晶性である、硫酸イオン含量が1.5mmol/gの金属含水酸化物を得た。さらに、この硫酸イオン含有金属含水酸化物を空気中で300℃で4時間加熱処理して吸着剤を得た。この吸着剤1gを10ppmの硫化水素濃度の気体中に入れ、吸着量を測定したところ、硫化水素吸着量は150mg/gと多かった。これより、本吸着剤が良好な硫黄化合物吸着性能を有することは明らかである。
【0034】
実施例7
実施例4で合成した吸着剤1gを300ppmの硫化水素濃度の気体600リットル中に入れ、硫化水素吸着量を測定したところ、それは150mg/gと多かった。この吸着剤を取り出し、空気中で700℃で1時間加熱処理した。加熱処理後の吸着剤の硫黄濃度を分析したところ、0.5%以下であり、95%以上の硫黄を脱着できた。これより、吸着した硫黄化合物は加熱処理により容易に脱着できることは明らかである。
【0035】
実施例8
実施例7で硫黄化合物を脱着した吸着剤0.3gを、そのまま300ppmの硫化水素濃度の気体200リットル中に入れ、硫化水素吸着量を測定したところ、110mg/gと実施例7より若干低下するものの、高い吸着性能を保持していた。
また、実施例7で硫黄化合物を脱着した吸着剤0.4gを1M硫酸亜鉛水溶液10mlに添加し、1時間撹拌後1日静置した後、沈殿をろ過し、空気中で300℃で4時間加熱処理して吸着剤を得た。この吸着剤0.3gを300ppmの硫化水素濃度の気体200リットル中に入れ、硫化水素吸着量を測定したところ、150mg/gと多かった。これより、脱着後の吸着剤は再度硫酸塩処理をすることで再生が可能となることは明らかである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel adsorbent for a sulfur compound, more specifically, an adsorbent capable of efficiently removing a sulfur compound contained in a gas or a liquid even at a low concentration, and a method for removing a sulfur compound using the same. It is about.
[0002]
[Prior art]
Sulfur compounds have become a serious problem as environmental harmful substances such as odor-causing substances and acid rain-causing substances, and their removal technology is required. For example, hydrogen sulfide and mercaptans, which are odorous air pollutants, and water-based or organic solvent-based substances There is a need for a technique for previously removing harmful sulfur compounds, such as harmful sulfur compounds contained in liquefied natural gas and gasoline, from the viewpoint of preventing their release into the environment.
[0003]
So far, adsorbents capable of selectively removing sulfur compounds include clay mineral composites (see Patent Document 1), titanium oxide / copper oxide / iron oxide composites (see Patent Document 2), and zinc oxide / alkali complexes. (See Patent Document 3), silicate / zinc / activated carbon composite (see Patent Document 4), silicate gel containing metal salt (see Patent Document 5), Raney copper (see Patent Document 6), apatite compound containing transition metal (patent) Literature 7, a manganese oxide-based adsorbent (see Patent Literature 8), phosphate-added activated carbon (see Patent Literature 9), a composite metal oxide (see Patent Literature 10), a copper component-supporting porous material (see Patent Literature 11) ), A metal oxide-supported organic polymer (see Patent Document 12), an iron / copper composite metal hydrated oxide (see Patent Document 13), and the like.
However, although these adsorbents show good adsorption performance for sulfur compounds at a certain concentration, low-concentration sulfur compounds are not necessarily satisfactory in terms of adsorption-removability and adsorption capacity. Absent.
[0004]
[Patent Document 1]
JP-A-50-160816 (Claims and others)
[Patent Document 2]
JP-B-59-32169 (claims and others)
[Patent Document 3]
JP-A-1-203040 (Claims and others)
[Patent Document 4]
JP-A-4-349934 (claims and others)
[Patent Document 5]
JP-A-4-290546 (Claims and others)
[Patent Document 6]
JP-A-6-55065 (claims and others)
[Patent Document 7]
JP-A-7-96175 (Claims and others)
[Patent Document 8]
JP-A-9-85077 (Claims and others)
[Patent Document 9]
JP-A-10-192703 (Claims and others)
[Patent Document 10]
JP-A-11-28352 (Claims and others)
[Patent Document 11]
JP 2001-123188 A (Claims and others)
[Patent Document 12]
JP-A-2002-177767 (Claims and others)
[Patent Document 13]
JP-A-2002-320847 (Claims and others)
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a sulfur compound adsorbent that can efficiently adsorb and remove sulfur compounds contained in a gas or a liquid even at a low concentration, and that has a large adsorption capacity and an efficient sulfur using the adsorbent. An object of the present invention is to provide a method for removing and recovering a compound.
[0006]
[Means for Solving the Problems]
An object of the present invention is to heat-treat a metal hydrate containing a sulfate ion or a carbonate ion, and the carbonate ion is converted into a carbon dioxide gas and the sulfate ion is converted into a sulfur oxide gas, and escapes from the solid. At that time, a sulfur compound is adsorbed. Based on the knowledge that a suitable site is formed and that the solid becomes porous and an adsorbent with a large adsorption capacity can be obtained, the metal hydrate containing a polyanion such as a sulfate ion or a carbonate ion can be obtained. This was achieved by an adsorbent consisting of a heat-treated oxide.
[0007]
That is, the present invention is as follows.
(1) A sulfur compound adsorbent comprising a heat-treated metal hydrate containing a sulfate ion or a carbonate ion.
(2) A metal hydrate containing a sulfate ion or a carbonate ion has a general formula
MII 1-x-zMIII xMIV z(OH)yAn- (2 + x + 2z-y) / n・ MH2O
(Where MIIIs Zn2+, Co2+And Cu2+A divalent metal comprising at least one of the following: MIIIIs Al3+, Fe3+And Mn3+A trivalent metal comprising at least one of the following: MIVIs Ti4+, Zr4+, Sn4+, Mn4+And Ce4+A tetravalent metal containing at least one of the following, An-Is SO4 2-And CO3 2-An anion containing at least one divalent ion of the above, n is the average valence of the anion, x, y, z and m are 0 ≦ x ≦ 0.8, 0 ≦ y ≦ 0.7, 0 ≦ z ≦ 0.4, 0 <m ≦ 3) The metal compound hydrate represented by (1) above.
(3) Zn2+, Co2+And Cu2+An aqueous solution containing a water-soluble compound of a divalent metal containing at least one of2+, Co2+And Cu2+A water-soluble compound of a divalent metal containing at least one of3+And Fe3+Mixed aqueous solution containing a water-soluble compound of a trivalent metal containing at least one of2+, Co2+And Cu2+A water-soluble compound of a divalent metal containing at least one of2+Mixed aqueous solution containing a water-soluble compound of2+, Co2+And Cu2+A water-soluble compound of a divalent metal containing at least one of3+And Fe3+A water-soluble compound of a trivalent metal containing at least one of4+, Zr4+, Sn4+And Ce4+An alkali hydroxide or an aqueous solution thereof is added to a mixed aqueous solution containing a water-soluble compound of a tetravalent metal containing at least one of
MII 1-x-zMIII xMIV z(OH)yAn- (2 + x + 2z-y) / n・ MH2O
(Where MIIIs Zn2+, Co2+And Cu2+A divalent metal comprising at least one of the following: MIIIIs Al3+, Fe3+And Mn3+A trivalent metal comprising at least one of the following: MIVIs Ti4+, Zr4+, Sn4+, Mn4+And Ce4+A tetravalent metal containing at least one of the following, An-Is SO4 2-, N is the average valence of the anion, x, y, z and m are 0 ≦ x ≦ 0.8, 0 ≦ y ≦ 0.7, 0 ≦ z ≦ 0.4, x + z <1 , 0 <m ≦ 3)
Wherein the metal hydrate containing sulfate ions is precipitated, and the precipitate is subjected to heat treatment at 100 to 600 ° C., wherein the adsorbent for a sulfur compound according to the above (1) or (2), Manufacturing method.
(4) Zn2+, Co2+And Cu2+An aqueous solution containing a water-soluble compound of a divalent metal containing at least one of2+, Co2+And Cu2+A water-soluble compound of a divalent metal containing at least one of3+And Fe3+A mixed aqueous solution containing a water-soluble compound of a trivalent metal containing at least one of2+, Co2+And Cu2+A water-soluble compound of a divalent metal containing at least one of2+Mixed aqueous solution containing a water-soluble compound of2+, Co2+And Cu2+A water-soluble compound of a divalent metal containing at least one of3+And Fe3+A water-soluble compound of a trivalent metal containing at least one of4+, Zr4+, Sn4+And Ce4+An alkali carbonate or an aqueous solution thereof is added to a mixed aqueous solution containing a water-soluble compound of a tetravalent metal containing at least one of
MII 1-x-zMIII xMIV z(OH)yAn- (2 + x + 2z-y) / n・ MH2O
(Where MIIIs Zn2+, Co2+And Cu2+A divalent metal comprising at least one of the following: MIIIIs Al3+, Fe3+And Mn3+A trivalent metal comprising at least one of the following: MIVIs Ti4+, Zr4+, Sn4+, Mn4+And Ce4+A tetravalent metal containing at least one of the following, An-Is CO3 2-, N is the average valence of the anion, x, y, z and m are 0 ≦ x ≦ 0.8, 0 ≦ y ≦ 0.7, 0 ≦ z ≦ 0.4, x + z <1 , 0 <m ≦ 3)
Wherein the metal hydrate containing carbonate ion is precipitated, and the precipitate is further subjected to a heat treatment at 100 to 600 ° C., wherein the sulfur compound adsorbent according to the above (1) or (2), Manufacturing method.
(5) A metal hydrate containing a sulfate ion or a carbonate ion has a general formula
MII 1-xMIII x(OH)yAn- (2 + xy) / n・ MH2O
(Where MIIIs Zn2+, Co2+And Cu2+A divalent metal comprising at least one of the following: MIIIIs Al3+, Fe3+And Mn3+A trivalent metal comprising at least one of the following, An-Is SO4 2-And CO3 2-An anion containing at least one divalent ion among them, n is the average valence of the anion, x, y and m are 0 ≦ x ≦ 0.67, 0 ≦ y ≦ 0.7, 0 <m ≤3)
The sulfur compound adsorbent according to the above (1), which is a crystalline metal hydrate represented by the formula:
(6) Zn2+, Co2+And Cu2+An aqueous solution containing a water-soluble compound of a divalent metal containing at least one of2+, Co2+And Cu2+A water-soluble compound of a divalent metal containing at least one of3+And Fe3+A water-soluble compound of a trivalent metal containing at least one of2+After adding an alkali hydroxide or an aqueous solution thereof in the presence of sulfate ions to a mixed aqueous solution containing at least one of the water-soluble compounds of
MII 1-xMIII x(OH)yAn- (2 + xy) / n・ MH2O
(Where MIIIs Zn2+, Co2+And Cu2+A divalent metal comprising at least one of the following: MIIIIs Al3+, Fe3+And Mn3+A trivalent metal comprising at least one of the following, An-Is SO4 2-, N is the average valence of the anion, and x, y, and m are numbers satisfying 0 ≦ x ≦ 0.67, 0 ≦ y ≦ 0.7, and 0 <m ≦ 3.)
Wherein the crystalline metal hydrate containing sulfate ions is precipitated, and the precipitate is heated at 100 to 600 ° C. to produce the sulfur compound adsorbent according to the above (5). Method.
(7) Zn2+, Co2+And Cu2+An aqueous solution containing a water-soluble compound of a divalent metal containing at least one of2+, Co2+And Cu2+A water-soluble compound of a divalent metal containing at least one of3+And Fe3+A water-soluble compound of a trivalent metal containing at least one of2+After adding alkali carbonate or an aqueous solution thereof to a mixed aqueous solution containing at least one of the water-soluble compounds of
MII 1-xMIII x(OH)yAn- (2 + xy) / n・ MH2O
(Where MIIIs Zn2+, Co2+And Cu2+A divalent metal comprising at least one of the following: MIIIIs Al3+, Fe3+And Mn3+A trivalent metal comprising at least one of the following: An-Is CO3 2-, N is the average valence of the anion, and x, y and m are numbers satisfying 0 ≦ x ≦ 0.67, 0 ≦ y ≦ 0.7, and 0 <m ≦ 3). The method for producing a sulfur compound adsorbent according to (5), wherein the crystalline metal hydrate containing carbonate ions is precipitated, and the precipitate is heated at 100 to 600 ° C. .
(8) Zn2+, Co2+And Cu2+A divalent metal oxide containing at least one of2+, Co2+And Cu2+An aqueous solution containing a water-soluble compound of a divalent metal containing at least one of2+, Co2+And Cu2+A water-soluble compound of a divalent metal containing at least one of3+And Fe3+A water-soluble compound of a trivalent metal containing at least one of2+To a mixed aqueous solution containing at least one water-soluble compound of the formula
MII 1-xMIII x(OH)yAn- (2 + xy) / n・ MH2O
(Where MIIIs Zn2+, Co2+And Cu2+A divalent metal comprising at least one of the following: MIIIIs Al3+, Fe3+And Mn3+A trivalent metal comprising at least one of the following, An-Is SO4 2-, N is the average valence of the anion, and x, y, and m are numbers satisfying 0 ≦ x ≦ 0.67, 0 ≦ y ≦ 0.7, and 0 <m ≦ 3.)
Wherein the crystalline metal hydrate containing sulfate ions is precipitated, and the precipitate is heated at 100 to 600 ° C. to produce the sulfur compound adsorbent according to the above (5). Method.
(9) A method for removing and recovering a sulfur compound and regenerating an adsorbent, comprising the following steps (I) and (II).
Step (I)
A step of adding the sulfur compound adsorbent according to (1), (2) or (5) to a gas or liquid containing a sulfur compound to adsorb and remove the sulfur compound.
Step (II)
A step of subjecting the adsorbent obtained in step (I) to which the sulfur compound has been adsorbed to a heat treatment at 500 ° C. or higher to desorb and recover or decompose the sulfur compound and regenerate the adsorbent.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In the adsorbent of the present invention, a metal hydrate containing a sulfate ion or a carbonate ion, which is used as a precursor thereof and is an object to be subjected to a heat treatment, is not particularly limited, but the metal is polyvalent, and especially divalent to tetravalent. Is appropriate in terms of stability. Zn as a divalent metal2+, Co2+, Cu2+However, the trivalent metal is Al3+, Fe3+, Mn3+However, as a tetravalent metal, Ti4+, Zr4+, Sn4+, Mn4+, Ce4+Are preferred, and among them, the polyvalent metal is composed of these metals or is mainly composed of these metals, and in the metals of each valence, the equivalent metal of these predetermined metals is a majority in atomic ratio with respect to the total amount. Preferably, it accounts for 70% or more, especially 80% or more.
Further, a composite can be used as the metal hydrated oxide.
[0009]
As such a metal hydrated oxide, general formula (I)
MII 1-x-zMIII xMIV z(OH)yAn- (2 + x + 2z-y) / n・ MH2O
(Where MIIIs Zn2+, Co2+And Cu2+A divalent metal comprising at least one of the following: MIIIIs Al3+, Fe3+And Mn3+A trivalent metal comprising at least one of the following: MIVIs Ti4+, Zr4+, Sn4+, Mn4+And Ce4+A tetravalent metal containing at least one of the following, An-Is SO4 2-And CO3 2-An anion containing at least one divalent ion of the following, n is the average valence of the anion, x, y, z and m are 0 ≦ x ≦ 0.8, 0 ≦ y ≦ 0.7, 0 ≦ z ≦ 0.4, 0 <m ≦ 3), among which at least MII(In general formula (I), further satisfying x + z <1), in particular, general formula (II)
MII 1-xMIII x(OH)yAn- (2 + xy) / n・ MH2O
(Where MIIIs Zn2+, Co2+And Cu2+A divalent metal comprising at least one of the following: MIIIIs Al3+, Fe3+And Mn3+A trivalent metal comprising at least one of the following, An-Is SO4 2-And CO3 2-An anion containing at least one divalent ion among them, n is the average valence of the anion, x, y and m are 0 ≦ x ≦ 0.67, 0 ≦ y ≦ 0.7, 0 <m ≤3)
The crystalline metal hydrate represented by the following formula is preferable.
[0010]
The content of divalent, trivalent, and tetravalent metals in such a polyvalent metal hydrate is not particularly limited, but it is preferable to increase the content of the polyvalent anion. Based on the total amount of these polyvalent metals, 33 to 100%, particularly 50 to 100%, divalent metals, 0 to 67%, trivalent metals, 0 to 50%, and tetravalent metals, 0 to 20% for the trivalent metals. Each range is preferred.
For anions, SO4 2-And / or CO3 2-However, in addition to the above, other substances such as a hydroxyl ion, a halogen ion, an oxyhalogen ion, a nitrate ion, and a hydrogen carbonate ion may be present together.
The water content of the hydrated polyvalent metal is mH2O preferably has a range in which m satisfies 0.5 ≦ m ≦ 2.
[0011]
In order to enhance the structural stability at the time of the heat treatment, the metal hydrate is preferably crystalline, and among them, the crystalline metal hydrate of the general formula (II) is preferable. As such a crystalline metal hydrate, a metal hydrate or a composite metal hydrate having a layered structure containing the above-mentioned polyvalent anion between layers is preferable, but is not limited as long as it is crystalline. This layered structure is obtained by alternately stacking layers composed of metal oxides and layers composed of anions and water. Therefore, when the metal hydrated oxide having a layered structure is subjected to heat treatment, first, the interlayer water mH2When O is evaporated and the heat treatment is further continued, polyvalent anions between the layers are decomposed and gas is released. At that time, the metal oxide layer is stable, and the polyvalent anion between the layers is decomposed and can maintain the original structure even if it escapes as a gas, and the porous structure is formed and maintained. Become like
[0012]
To prepare the metal hydrate, one or more water-soluble compounds of the above-mentioned divalent metal, trivalent metal and tetravalent metal are used as an aqueous solution or a mixed aqueous solution.
As the water-soluble compound, halides, oxyhalides, nitrates, sulfates, bicarbonates and the like can be used. In addition, hydroxides such as nickel hydroxide, zinc hydroxide, copper hydroxide, iron hydroxide, magnesium hydroxide and aluminum hydroxide can be used if desired.
As a source of sulfate ions, it is convenient to use a sulfate for the water-soluble compound itself, but a sulfate such as sodium sulfate or potassium sulfate may be used. At this time, it is preferable that the sulfate is used as an aqueous solution, since it can take a simple addition form such as dropping.
[0013]
The metal hydrate containing a sulfate ion is preferably an aqueous alkali metal hydroxide or an aqueous solution thereof, preferably an aqueous alkali metal hydroxide solution, in which a raw metal salt aqueous solution containing a sulfate ion in advance, among which the raw metal salt itself is a sulfate, is used. Is added and the mixture is precipitated.
The content of the polyvalent anion can be adjusted by controlling the pH and the solution temperature during precipitation. The higher the concentration of sulfate ions in the raw material solution, the higher the sulfate ion content of the precipitate. Regarding the pH at the time of precipitation, it is generally possible to increase the content of polyvalent anions by precipitating the hydroxide from a low pH. It is preferable to set the range of 7 <pH <11 for a valent metal salt, 3 <pH <10 for a trivalent metal salt, and 1 <pH <9 for a tetravalent metal salt.
In order to increase the content of sulfate, it is advantageous to use a sulfate of a polyvalent metal as a raw material metal salt. However, an alkali hydroxide solution containing a sulfate is added to an aqueous solution of a polyvalent metal salt to precipitate the solution. You may make it do.
[0014]
The metal hydrate containing a carbonate ion is usually obtained by adding an alkali carbonate or an aqueous solution thereof to an aqueous solution of a polyvalent metal salt to cause precipitation. The concentration of the aqueous alkali carbonate solution is not particularly limited, but is preferably 0.1 M or more in consideration of precipitation efficiency and the like. The amount of alkali carbonate to be added is preferably in the range of 0.9 to 2 in equivalent ratio to the amount of polyvalent metal.
[0015]
The metal hydrate having a layered structure containing sulfate ions is Zn2+, Co2+And Cu2+A divalent metal water-soluble compound containing at least one of the following is hydrolyzed with alkali hydroxide in the presence of sulfate ions, preferably further aged, or2+, Co2+And Cu2+A divalent metal oxide containing at least one of2+, Co2+And Cu2+The compound is added to an aqueous solution containing a water-soluble compound of a divalent metal containing at least one of the above, and reacted in the presence of sulfate ions. The composite metal hydrate having a layered structure containing sulfate ions is Zn2+, Co2+And Cu2+A water-soluble compound of a divalent metal containing at least one of3+And Fe3+A water-soluble compound of a trivalent metal containing at least one of2+Is hydrolyzed with an alkali hydroxide in the presence of sulfate ions, preferably further aged, or Zn2+, Co2+And Cu2+A divalent metal oxide containing at least one of2+, Co2+And Cu2+A water-soluble compound of a divalent metal containing at least one of3+And Fe3+A water-soluble compound of a trivalent metal containing at least one of2+By adding to a mixed aqueous solution containing at least one of the above water-soluble compounds and reacting in the presence of sulfate ions.
[0016]
The hydrolysis is performed using an alkali metal hydroxide such as sodium hydroxide (also referred to as alkali hydroxide), an alkali metal carbonate such as sodium carbonate, an alkali metal bicarbonate such as sodium hydrogen carbonate, ammonia, or the like. Preferably, an alkali hydroxide is added. Among them, an aqueous solution is preferably added dropwise to an aqueous solution or a mixed aqueous solution of a predetermined water-soluble compound.
[0017]
The metal hydrate having a layered structure containing carbonate ions is Zn2+, Co2+And Cu2+Is obtained by hydrolyzing a water-soluble compound of a divalent metal containing at least one of the above with alkali carbonate, and preferably further aging. The composite metal hydrate having a layered structure containing carbonate ions is Zn2+, Co2+And Cu2+A water-soluble compound of a divalent metal containing at least one of3+And Fe3+A water-soluble compound of a trivalent metal containing at least one of2+The mixture is obtained by hydrolyzing a mixture of water-soluble compounds containing As the water-soluble compound of a divalent metal and the water-soluble compound of a trivalent metal, a halide, a nitrate, a sulfate, a hydrogen carbonate, or the like can be used, but a halide or a nitrate is preferable in consideration of the subsequent treatment. In addition, if desired, hydroxides such as nickel hydroxide, iron hydroxide, magnesium hydroxide, and aluminum hydroxide can be used.
[0018]
In the method for producing the predetermined hydrated oxide having a layered structure, the water-soluble compound as a raw material is preferably used as an aqueous solution or a mixed aqueous solution. In addition, in order to obtain a product having good crystallinity, hydrolysis is performed at a temperature of 40 to 120 ° C., particularly 60 to 100 ° C., in a pH range of 8 to 12, especially 9 to 11, and ripening is performed in a temperature range of 30 to It is preferably carried out at a temperature in the range of 70 ° C.
[0019]
The adsorbent of the present invention can be obtained by heat-treating a metal hydrate or a composite metal hydrate containing a polyanion such as a sulfate ion or a carbonate ion. The temperature of the heat treatment depends on the type of the anion, but is usually selected in the range of 100 to 600C, preferably 200 to 500C.
The heat treatment is particularly performed on a crystalline metal hydrate having a layered structure, so that polyvalent anions between the layers decompose and escape as a gas. It is preferable because it rises.
[0020]
In order to remove a sulfur compound using the sulfur adsorbent of the present invention, the adsorbent may be added to a gas or liquid (for example, a solution) containing the sulfur compound. After a predetermined time after the addition of the adsorbent, if the adsorbent is separated from a gas or a liquid (for example, a solution), the sulfur compound is taken into the adsorbent, and the sulfur compound in the gas or the liquid (for example, a solution) is removed. You. Although the adsorption time depends on the particle size of the adsorbent and the concentration of the sulfur compound, when the adsorbent is a powder, most of the sulfur compound is taken into the adsorbent in usually 30 minutes to 5 hours.
[0021]
The sulfur compound adsorbed by the adsorbent can be removed by heating the adsorbent. This heat treatment temperature is selected in the range of usually 300 to 900 ° C, preferably 500 to 800 ° C. By this heat treatment, the adsorbed sulfur compound is desorbed or decomposed and released as a gas, so that the adsorbent can be regenerated.
[0022]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the adsorbent of this invention, a low-concentration sulfur compound can be efficiently adsorbed and removed, and a bad smell removal and environmental purification are greatly contributed, and also the adsorbent can be easily regenerated. There is an advantage.
[0023]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0024]
Example 1
80 g of zinc oxide was added to 2 liters of a 1M aqueous solution of zinc sulfate, stirred at 30 ° C. for 1 hour, and allowed to stand for 1 day to form a precipitate, which was filtered. As a result of X-ray diffraction, the precipitate thus obtained was hydrous zinc hydroxide having a layered structure and being crystalline and having a sulfate ion content of 0.9 mmol / g. The sulfated hydrous zinc oxide was further heat-treated in air at 300 ° C. for 4 hours to obtain an adsorbent. 1 g of this adsorbent was put into a gas having a hydrogen sulfide concentration of 10 ppm, and the amount of hydrogen sulfide adsorbed was measured to be as large as 120 mg / g. From this, it is clear that the present adsorbent has good sulfur compound adsorption performance.
[0025]
Comparative Example 1
80 g of zinc oxide was added to 2 liters of a 1 M aqueous solution of zinc nitrate, and the mixture was stirred for 1 hour and allowed to stand for 1 day. Then, the formed precipitate was filtered to obtain hydrous zinc oxide containing nitrate ions. The nitrated ion-containing zinc hydroxide was heat-treated in air at 300 ° C. for 4 hours to obtain an adsorbent. 1 g of this adsorbent was put into a gas having a hydrogen sulfide concentration of 10 ppm, and the amount of hydrogen sulfide adsorbed was measured to be as low as 15 mg / g.
[0026]
Example 2
A 1M aqueous solution of sodium carbonate was added to 100 ml of a 1M aqueous solution of cobalt nitrate until the pH reached 8, thereby precipitating hydrous cobalt oxide containing carbonate ions. Water was added to the suspension to make the total volume 2 liter, and after stirring for 4 hours, the precipitate was centrifuged. The carbonated hydrous cobalt oxide-containing precipitate was heat-treated at 300 ° C. for 3 hours in the air to release carbonate ions to obtain an adsorbent. 1 g of this adsorbent was put into a gas having a hydrogen sulfide concentration of 10 ppm, and the amount of hydrogen sulfide adsorbed was measured. As a result, it was as high as 65 mg / g. From this, it is clear that the present adsorbent has good sulfur compound adsorption performance.
[0027]
Comparative Example 2
A 1M aqueous solution of sodium hydroxide was added to 100 ml of a 1M aqueous solution of cobalt nitrate until the pH reached 8, thereby precipitating hydrous cobalt oxide containing nitrate ions. Water was added to the suspension to make the total volume 2 liter, and after stirring for 4 hours, the precipitate was centrifuged. This nitrate ion-containing hydrated cobalt oxide precipitate was heated in air at 300 ° C. for 3 hours to obtain an adsorbent. 1 g of this adsorbent was put into a gas having a hydrogen sulfide concentration of 10 ppm, and the amount of hydrogen sulfide adsorbed was measured to be as low as 10 mg / g.
[0028]
Example 3
A 1 M aqueous sodium carbonate solution is added to 100 ml of an aqueous solution containing 0.5 M copper sulfate and 0.5 M manganese sulfate until the pH becomes 8, and a mixture of hydrated copper oxide and manganese hydroxide containing carbonate ion and sulfate ion is precipitated. Was. Water was added to the suspension to make the total volume 2 liter, and after stirring for 4 hours, the precipitate was centrifuged. These metal hydrate precipitates containing polyanions were heated in air at 300 ° C. for 3 hours to decompose and release polyvalent anions to obtain an adsorbent. 1 g of this adsorbent was put into a gas having a hydrogen sulfide concentration of 10 ppm, and the amount of hydrogen sulfide adsorbed was measured. As a result, it was as high as 90 mg / g. From this, it is clear that the present adsorbent has good sulfur compound adsorption performance.
[0029]
Comparative Example 3
A 1M aqueous solution of sodium hydroxide was added to 100 ml of an aqueous solution containing 0.5 M copper nitrate and 0.5 M manganese nitrate until the pH reached 8, thereby precipitating a mixture of copper oxide containing nitrate ions and manganese oxide. Water was added to the suspension to make the total volume 2 liter, and after stirring for 4 hours, the precipitate was centrifuged. The nitrate ion-containing composite metal hydrate precipitate was heated in air at 300 ° C. for 3 hours to release nitrate ions to obtain an adsorbent. When 1 g of this adsorbent was put into a gas having a hydrogen sulfide concentration of 10 ppm and the amount of adsorption was measured, the amount of hydrogen sulfide adsorbed was as small as 30 mg / g.
[0030]
Example 4
To a 100 ml aqueous solution containing 0.7 M zinc chloride, 0.2 M titanium chloride, and 0.1 M zirconium oxychloride, add a 1 M aqueous sodium carbonate solution until the pH of the solution becomes 8, and add carbonated ion-containing zinc hydroxide and water. A mixture of titanium oxide and hydrous zirconium oxide was precipitated. Water was added to the suspension to make the total volume 2 liter, and after stirring for 4 hours, the precipitate was centrifuged. This carbonate ion-containing composite metal hydrate precipitate was subjected to a heat treatment in air at 300 ° C. for 3 hours to release carbonate ions to obtain an adsorbent. 1 g of this adsorbent was put into a gas having a hydrogen sulfide concentration of 10 ppm, and the amount of hydrogen sulfide adsorbed was measured to be as high as 140 mg / g. From this, it is clear that the present adsorbent has good sulfur compound adsorption performance.
[0031]
Comparative Example 4
To 100 ml of an aqueous solution containing 0.7 M zinc chloride, 0.2 M titanium chloride, and 0.1 M zirconium oxychloride, add a 1 M aqueous sodium hydroxide solution until the pH of the solution becomes 8, and add chloride-containing hydrous zinc oxide; A mixture of hydrous titanium oxide and hydrous zirconium oxide was precipitated. Water was added to the suspension to make the total volume 2 liter, and after stirring for 4 hours, the precipitate was centrifuged. The chloride-containing composite metal hydrate precipitate was heat-treated in air at 300 ° C. for 3 hours to obtain an adsorbent. When 1 g of this adsorbent was put into a gas having a hydrogen sulfide concentration of 10 ppm and the amount of adsorption was measured, the amount of hydrogen sulfide adsorbed was as small as 40 mg / g.
[0032]
Example 5
To a 100 ml aqueous solution containing 0.75 M zinc chloride and 0.25 M aluminum chloride, add a 1 M aqueous sodium carbonate solution until the pH of the solution becomes 8, and stir at 80 ° C. for 4 hours. A mixture of aluminum was precipitated. Water was added to the suspension to bring the total volume to 2 liters, and the mixture was stirred for 4 hours and aged, and then the precipitate was centrifuged. X-ray diffraction of the precipitate revealed that the precipitate was a crystalline compound having a layered structure. As a result of elemental analysis, the carbonate ion content was found to be 1.2 mmol / g. The precipitate was heated in air at 300 ° C. for 3 hours to decompose and release carbonate ions, thereby obtaining an adsorbent. When 1 g of this adsorbent was put into a gas having a hydrogen sulfide concentration of 10 ppm and the amount of adsorption was measured by a batch method, the amount of hydrogen sulfide adsorbed was as large as 130 mg / g. From this, it is clear that the present adsorbent has good sulfur compound adsorption performance.
[0033]
Example 6
80 g of zinc oxide was added to 2 liters of a 1M aqueous solution of copper sulfate, and the mixture was stirred for 1 hour and left standing for 1 day to form a precipitate. The precipitate was filtered, and as a result of X-ray diffraction, a metal hydrate having a layered structure and being crystalline and having a sulfate ion content of 1.5 mmol / g was obtained. Further, the sulfated metal-containing metal hydrate was heated in air at 300 ° C. for 4 hours to obtain an adsorbent. When 1 g of this adsorbent was put into a gas having a hydrogen sulfide concentration of 10 ppm and the amount of adsorption was measured, the amount of hydrogen sulfide adsorbed was as large as 150 mg / g. From this, it is clear that the present adsorbent has good sulfur compound adsorption performance.
[0034]
Example 7
1 g of the adsorbent synthesized in Example 4 was put into 600 liters of a gas having a hydrogen sulfide concentration of 300 ppm, and the amount of hydrogen sulfide adsorbed was measured. As a result, the amount was 150 mg / g. The adsorbent was taken out and heated in air at 700 ° C. for 1 hour. When the sulfur concentration of the adsorbent after the heat treatment was analyzed, it was 0.5% or less, and 95% or more of sulfur could be desorbed. From this, it is clear that the adsorbed sulfur compound can be easily desorbed by the heat treatment.
[0035]
Example 8
0.3 g of the adsorbent from which the sulfur compound was desorbed in Example 7 was directly put into 200 liters of a gas having a hydrogen sulfide concentration of 300 ppm, and the amount of hydrogen sulfide adsorbed was measured. However, high adsorption performance was maintained.
In addition, 0.4 g of the adsorbent from which the sulfur compound was desorbed in Example 7 was added to 10 ml of a 1 M aqueous solution of zinc sulfate, and the mixture was stirred for 1 hour and allowed to stand for 1 day. Heat treatment was performed to obtain an adsorbent. When 0.3 g of this adsorbent was put into 200 liters of a gas having a hydrogen sulfide concentration of 300 ppm, the amount of hydrogen sulfide adsorbed was measured and found to be as high as 150 mg / g. From this, it is clear that the adsorbent after desorption can be regenerated by performing the sulfate treatment again.

Claims (9)

硫酸イオン又は炭酸イオンを含む金属含水酸化物の加熱処理物からなる硫黄化合物吸着剤。A sulfur compound adsorbent comprising a heat-treated metal hydrate containing a sulfate ion or a carbonate ion. 硫酸イオン又は炭酸イオンを含む金属含水酸化物が、一般式
II 1−x−zIII IV (OH)n− (2+x+2z−y)/n・mH
(式中、MIIは、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属、MIIIは、Al3+、Fe3+及びMn3+のうちの少なくとも1種を含む三価金属、MIVはTi4+、Zr4+、Sn4+、Mn4+及びCe4+のうちの少なくとも1種を含む四価金属、An−はSO 2−及びCO 2−のうちの少なくとも1種の2価イオンを含む陰イオン、nは陰イオンの平均価数、x、y、z及びmは、0≦x≦0.8、0≦y≦0.7、0≦z≦0.4、0<m≦3を満足する数である)で表される金属含水酸化物である請求項1記載の硫黄化合物吸着剤。
Metal hydrous oxides containing sulfate ion or carbonate ion, the general formula M II 1-x-z M III x M IV z (OH) y A n- (2 + x + 2z-y) / n · mH 2 O
Wherein M II is a divalent metal containing at least one of Zn 2+ , Co 2+ and Cu 2+ , and M III is a trivalent metal containing at least one of Al 3+ , Fe 3+ and Mn 3+ metal, M IV is Ti 4+, Zr 4+, Sn 4+ , tetravalent metal containing at least one of Mn 4+ and Ce 4+, a n- is SO 4 2-and CO 3 2- at least one of An anion containing a divalent ion of the formula, n is the average valence of the anion, x, y, z and m are 0 ≦ x ≦ 0.8, 0 ≦ y ≦ 0.7, 0 ≦ z ≦ 0.4 And a metal hydrate represented by the following formula: 0 <m ≦ 3).
Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物を含む水溶液、或いはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物とAl3+及びFe3+のうちの少なくとも1種を含む三価金属の水溶性化合物を含む混合水溶液、或いはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物とMn2+の水溶性化合物を含む混合水溶液、或いはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物と、Al3+及びFe3+のうちの少なくとも1種を含む三価金属の水溶性化合物と、Ti4+、Zr4+、Sn4+及びCe4+のうちの少なくとも1種を含む四価金属の水溶性化合物を含む混合水溶液に、硫酸イオン存在下で水酸化アルカリ又はその水溶液を加え、一般式
II 1−x−zIII IV (OH)n− (2+x+2z−y)/n・mH
(式中、MIIは、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属、MIIIは、Al3+、Fe3+及びMn3+のうちの少なくとも1種を含む三価金属、MIVはTi4+、Zr4+、Sn4+、Mn4+及びCe4+のうちの少なくとも1種を含む四価金属、An−はSO 2−を含む陰イオン、nは陰イオンの平均価数、x、y、z及びmは、0≦x≦0.8、0≦y≦0.7、0≦z≦0.4、x+z<1、0<m≦3を満足する数である)
で表される、硫酸イオンを含有する金属含水酸化物を沈殿させ、さらにこの沈殿物を100〜600℃で加熱処理することを特徴とする請求項1及び2記載の硫黄化合物吸着剤の製造方法。
Zn 2+, an aqueous solution containing a water-soluble compound of a divalent metal comprising at least one of Co 2+ and Cu 2+, or Zn 2+, water-soluble divalent metal including at least one of Co 2+ and Cu 2+ Mixed aqueous solution containing a compound and a water-soluble compound of a trivalent metal containing at least one of Al 3+ and Fe 3+ , or water solubility of a divalent metal containing at least one of Zn 2+ , Co 2+ and Cu 2+ A mixed aqueous solution containing a compound and a water-soluble compound of Mn 2+ , or a water-soluble compound of a divalent metal containing at least one of Zn 2+ , Co 2+ and Cu 2+ , and at least one of Al 3+ and Fe 3+ a water-soluble compound of trivalent metal including, Ti 4+, Zr 4+, water solubilizing tetravalent metal containing at least one of Sn 4+ and Ce 4+ A mixed aqueous solution containing an object, an alkali or an aqueous solution thereof hydroxide was added in the presence of sulfate ions, formula M II 1-x-z M III x M IV z (OH) y A n- (2 + x + 2z-y) / n・ MH 2 O
Wherein M II is a divalent metal containing at least one of Zn 2+ , Co 2+ and Cu 2+ , and M III is a trivalent metal containing at least one of Al 3+ , Fe 3+ and Mn 3+ metal, M IV is Ti 4+, Zr 4+, Sn 4+ , tetravalent metal containing at least one of Mn 4+ and Ce 4+, a n- is an anion containing SO 4 2-, n is an average of the anion The valences x, y, z and m are numbers satisfying 0 ≦ x ≦ 0.8, 0 ≦ y ≦ 0.7, 0 ≦ z ≦ 0.4, x + z <1, 0 <m ≦ 3. is there)
3. The method for producing a sulfur compound adsorbent according to claim 1, wherein a metal hydrate containing a sulfate ion is precipitated, and the precipitate is heated at 100 to 600 ° C. .
Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物を含む水溶液、或いはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物とAl3+及びFe3+のうちの少なくとも1種を含む三価金属の水溶性化合物を含む混合水溶液、或いはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物とMn2+の水溶性化合物を含む混合水溶液、或いはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物と、Al3+及びFe3+のうちの少なくとも1種を含む三価金属の水溶性化合物と、Ti4+、Zr4+、Sn4+及びCe4+のうちの少なくとも1種を含む四価金属の水溶性化合物を含む混合水溶液に、炭酸アルカリ又はその水溶液を加え、一般式
II 1−x−zIII IV (OH)n− (2+x+2z−y)/n・mH
(式中、MIIは、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属、MIIIは、Al3+、Fe3+及びMn3+のうちの少なくとも1種を含む三価金属、MIVはTi4+、Zr4+、Sn4+、Mn4+及びCe4+のうちの少なくとも1種を含む四価金属、An−はCO 2−を含む陰イオン、nは陰イオンの平均価数、x、y、z及びmは、0≦x≦0.8、0≦y≦0.7、0≦z≦0.4、x+z<1、0<m≦3を満足する数である)
で表される、炭酸イオンを含有する金属含水酸化物を沈殿させ、さらにこの沈殿物を100〜600℃で加熱処理することを特徴とする請求項1及び2記載の硫黄化合物吸着剤の製造方法。
Zn 2+, an aqueous solution containing a water-soluble compound of a divalent metal comprising at least one of Co 2+ and Cu 2+, or Zn 2+, water-soluble divalent metal including at least one of Co 2+ and Cu 2+ Mixed aqueous solution containing a compound and a water-soluble compound of a trivalent metal containing at least one of Al 3+ and Fe 3+ , or water solubility of a divalent metal containing at least one of Zn 2+ , Co 2+ and Cu 2+ A mixed aqueous solution containing a compound and a water-soluble compound of Mn 2+ , or a water-soluble compound of a divalent metal containing at least one of Zn 2+ , Co 2+ and Cu 2+ , and at least one of Al 3+ and Fe 3+ a water-soluble compound of trivalent metal including, Ti 4+, Zr 4+, water solubilizing tetravalent metal containing at least one of Sn 4+ and Ce 4+ A mixed aqueous solution containing things, adding alkali carbonate or an aqueous solution thereof, the general formula M II 1-x-z M III x M IV z (OH) y A n- (2 + x + 2z-y) / n · mH 2 O
Wherein M II is a divalent metal containing at least one of Zn 2+ , Co 2+ and Cu 2+ , and M III is a trivalent metal containing at least one of Al 3+ , Fe 3+ and Mn 3+ metal, M IV is Ti 4+, Zr 4+, Sn 4+ , tetravalent metal containing at least one of Mn 4+ and Ce 4+, a n- is an anion containing a CO 3 2-, n is an average of the anion The valences x, y, z and m are numbers satisfying 0 ≦ x ≦ 0.8, 0 ≦ y ≦ 0.7, 0 ≦ z ≦ 0.4, x + z <1, 0 <m ≦ 3. is there)
3. The method for producing a sulfur compound adsorbent according to claim 1, wherein a metal hydrate containing carbonate ions represented by the formula: is precipitated, and the precipitate is heated at 100 to 600 ° C. .
硫酸イオン又は炭酸イオンを含む金属含水酸化物が、一般式
II 1−xIII (OH)n− (2+x−y)/n・mH
(式中、MIIは、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属、MIIIは、Al3+、Fe3+及びMn3+のうちの少なくとも1種を含む三価金属、An−はSO 2−及びCO 2−のうちの少なくとも1種の2価イオンを含む陰イオン、nは陰イオンの平均価数、x、y及びmは、0≦x≦0.67、0≦y≦0.7、0<m≦3を満足する数である)
で表される結晶性金属含水酸化物である請求項1記載の硫黄化合物吸着剤。
Metal hydrous oxides containing sulfate ion or carbonate ion, the general formula M II 1-x M III x (OH) y A n- (2 + x-y) / n · mH 2 O
Wherein M II is a divalent metal containing at least one of Zn 2+ , Co 2+ and Cu 2+ , and M III is a trivalent metal containing at least one of Al 3+ , Fe 3+ and Mn 3+ The metal, An- is an anion containing at least one divalent ion of SO 4 2- and CO 3 2- , n is the average valence of the anion, x, y and m are 0 ≦ x ≦ 0.67, 0 ≦ y ≦ 0.7, 0 <m ≦ 3)
The sulfur compound adsorbent according to claim 1, which is a crystalline metal hydrate represented by the formula:
Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物を含む水溶液、或いはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物と、Al3+及びFe3+のうちの少なくとも1種を含む三価金属の水溶性化合物及びMn2+の水溶性化合物のうちの少なくとも1種を含む混合水溶液に、硫酸イオン存在下で水酸化アルカリ又はその水溶液を加えた後、40〜120℃で反応させ、一般式
II 1−xIII (OH)n− (2+x−y)/n・mH
(式中、MIIは、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属、MIIIは、Al3+、Fe3+及びMn3+のうちの少なくとも1種を含む三価金属、An−はSO 2−を含む陰イオン、nは陰イオンの平均価数、x、y及びmは、0≦x≦0.67、0≦y≦0.7、0<m≦3を満足する数である)
で表される、硫酸イオンを含有する結晶性金属含水酸化物を沈殿させ、さらにこの沈殿物を100〜600℃で加熱処理することを特徴とする請求項5記載の硫黄化合物吸着剤の製造方法。
Zn 2+, an aqueous solution containing a water-soluble compound of a divalent metal comprising at least one of Co 2+ and Cu 2+, or Zn 2+, water-soluble divalent metal including at least one of Co 2+ and Cu 2+ the compound, in a mixed aqueous solution containing at least one water-soluble compounds and water-soluble compounds of Mn 2+ trivalent metal including at least one of Al 3+ and Fe 3+, alkali hydroxide in the presence of sulfate ions or after addition of the aqueous solution, and reacted at 40 to 120 ° C., the general formula M II 1-x M III x (OH) y a n- (2 + x-y) / n · mH 2 O
Wherein M II is a divalent metal containing at least one of Zn 2+ , Co 2+ and Cu 2+ , and M III is a trivalent metal containing at least one of Al 3+ , Fe 3+ and Mn 3+ metal, a n-anion containing SO 4 2-, n is the average valence of anion, x, y and m are, 0 ≦ x ≦ 0.67,0 ≦ y ≦ 0.7,0 <m ≤3)
The method for producing a sulfur compound adsorbent according to claim 5, wherein a crystalline metal hydrate containing a sulfate ion represented by the formula: is precipitated, and the precipitate is heated at 100 to 600 ° C. .
Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物を含む水溶液、或いはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物と、Al3+及びFe3+のうちの少なくとも1種を含む三価金属の水溶性化合物及びMn2+の水溶性化合物のうちの少なくとも1種を含む混合水溶液に、炭酸アルカリ又はその水溶液を加えた後、40〜120℃で反応させ、一般式
II 1−xIII (OH)n− (2+x−y)/n・mH
(式中、MIIは、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属、MIIIは、Al3+、Fe3+及びMn3+のうちの少なくとも1種を含む三価金属、An−はCO 2−を含む陰イオン、nは陰イオンの平均価数、x、y及びmは、0≦x≦0.67、0≦y≦0.7、0<m≦3を満足する数である)
で表される、炭酸イオンを含有する結晶性金属含水酸化物を沈殿させ、さらにこの沈殿物を100〜600℃で加熱処理することを特徴とする請求項5記載の硫黄化合物吸着剤の製造方法。
Zn 2+, an aqueous solution containing a water-soluble compound of a divalent metal comprising at least one of Co 2+ and Cu 2+, or Zn 2+, water-soluble divalent metal including at least one of Co 2+ and Cu 2+ the compound, in a mixed aqueous solution containing at least one trivalent water-soluble compound of a metal and a water-soluble compound of Mn 2+ containing at least one of Al 3+ and Fe 3+, it was added alkali carbonate or an aqueous solution thereof Thereafter, the reaction was carried out at 40 to 120 ° C., and the general formula M II 1-x M III x (OH) y An- (2 + xy) / n · mH 2 O
Wherein M II is a divalent metal containing at least one of Zn 2+ , Co 2+ and Cu 2+ , and M III is a trivalent metal containing at least one of Al 3+ , Fe 3+ and Mn 3+ metal, a n-anion containing CO 3 2-, n is the average valence of anion, x, y and m are, 0 ≦ x ≦ 0.67,0 ≦ y ≦ 0.7,0 <m ≤3)
The method for producing a sulfur compound adsorbent according to claim 5, wherein a crystalline metal hydrate containing carbonate ions represented by the formula: is precipitated, and the precipitate is heated at 100 to 600 ° C. .
Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の酸化物を、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物を含む水溶液、或いはZn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属の水溶性化合物と、Al3+及びFe3+のうちの少なくとも1種を含む三価金属の水溶性化合物及びMn2+の水溶性化合物のうちの少なくとも1種を含む混合水溶液に添加し、硫酸イオンの存在下で反応させ、一般式
II 1−xIII (OH)n− (2+x−y)/n・mH
(式中、MIIは、Zn2+、Co2+及びCu2+のうちの少なくとも1種を含む二価金属、MIIIは、Al3+、Fe3+及びMn3+のうちの少なくとも1種を含む三価金属、An−はSO 2−を含む陰イオン、nは陰イオンの平均価数、x、y及びmは、0≦x≦0.67、0≦y≦0.7、0<m≦3を満足する数である)
で表される、硫酸イオンを含有する結晶性金属含水酸化物を沈殿させ、さらにこの沈殿物を100〜600℃で加熱処理することを特徴とする請求項5記載の硫黄化合物吸着剤の製造方法。
Zn 2+, an oxide of a divalent metal comprising at least one of Co 2+ and Cu 2+, Zn 2+, an aqueous solution containing a water-soluble compound of a divalent metal comprising at least one of Co 2+ and Cu 2+ Or a water-soluble compound of a divalent metal containing at least one of Zn 2+ , Co 2+ and Cu 2+ , a water-soluble compound of a trivalent metal containing at least one of Al 3+ and Fe 3+ , and Mn 2+ was added to a mixed aqueous solution containing at least one of the water-soluble compounds, are reacted in the presence of sulfate ions, formula M II 1-x M III x (OH) y a n- (2 + x-y) / n · mH 2 O
Wherein M II is a divalent metal containing at least one of Zn 2+ , Co 2+ and Cu 2+ , and M III is a trivalent metal containing at least one of Al 3+ , Fe 3+ and Mn 3+ metal, a n-anion containing SO 4 2-, n is the average valence of anion, x, y and m are, 0 ≦ x ≦ 0.67,0 ≦ y ≦ 0.7,0 <m ≤3)
The method for producing a sulfur compound adsorbent according to claim 5, wherein a crystalline metal hydrate containing a sulfate ion represented by the formula: is precipitated, and the precipitate is heated at 100 to 600 ° C. .
下記の工程(I)、工程(II)からなることを特徴とする硫黄化合物除去・回収並びに吸着剤再生方法。
工程(I)
請求項1、2又は5記載の硫黄化合物吸着剤を、硫黄化合物を含む気体又は液体に添加し、硫黄化合物を吸着させて除去する工程。
工程(II)
工程(I)で得られた硫黄化合物を吸着させた吸着剤を500℃以上で加熱処理し、硫黄化合物を脱着させて回収するか或いは分解させ、かつ吸着剤を再生させる工程。
A method for removing and recovering a sulfur compound and regenerating an adsorbent, comprising the following steps (I) and (II).
Step (I)
A step of adding the sulfur compound adsorbent according to claim 1, 2 or 5 to a gas or liquid containing a sulfur compound, and adsorbing and removing the sulfur compound.
Step (II)
A step of subjecting the adsorbent obtained in step (I) to which the sulfur compound has been adsorbed to a heat treatment at 500 ° C. or higher to desorb and recover or decompose the sulfur compound and regenerate the adsorbent.
JP2003062429A 2003-03-07 2003-03-07 Method for producing porous sulfur compound adsorbent Expired - Lifetime JP4012964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003062429A JP4012964B2 (en) 2003-03-07 2003-03-07 Method for producing porous sulfur compound adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003062429A JP4012964B2 (en) 2003-03-07 2003-03-07 Method for producing porous sulfur compound adsorbent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007128116A Division JP4521498B2 (en) 2007-05-14 2007-05-14 Sulfur compound adsorbent and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004267917A true JP2004267917A (en) 2004-09-30
JP4012964B2 JP4012964B2 (en) 2007-11-28

Family

ID=33124354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003062429A Expired - Lifetime JP4012964B2 (en) 2003-03-07 2003-03-07 Method for producing porous sulfur compound adsorbent

Country Status (1)

Country Link
JP (1) JP4012964B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106310893A (en) * 2015-06-17 2017-01-11 中国石油化工股份有限公司 Absorption liquid with high hydrogen sulfide removal rate

Also Published As

Publication number Publication date
JP4012964B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
US7786038B2 (en) Composite metal oxide adsorbent for fluoride removal
EP1142622B1 (en) Method of adsorptive separation of carbon dioxide
Chen et al. Application of metal oxide heterostructures in arsenic removal from contaminated water
EP3502058A1 (en) Method for producing lanthanide-doped layered double hydroxides
JP6982318B2 (en) Thallium-containing wastewater treatment method
JP5568726B2 (en) Titanium oxide / layered double hydroxide composite and method for producing the same
US8242051B2 (en) Carbon supported activated alumina absorbent useful for the removal of fluoride ions from water and a process for the preparation thereof
Ogata et al. Adsorption of phosphate ion in aqueous solutions by calcined cobalt hydroxide at different temperatures
JP2008540116A (en) Metal oxide with improved reduction resistance
CN111330534A (en) Mesoporous alumina-based adsorbent and preparation method and application thereof
JP5110463B2 (en) Method for producing magnetic nanocomplex material having anion adsorptivity and magnetism
JP2004089760A (en) Highly selective dephosphorizing agent and manufacturing method thereof
JP4521498B2 (en) Sulfur compound adsorbent and method for producing the same
JP2004066161A (en) Water treatment method
KR101626857B1 (en) Preparation method of copper-manganese oxides for removing hazardous gas removal
JP2004267917A (en) Sulfur compound adsorbent, its production method, and sulfur compound removal/recovery using it and adsorbent regeneration method
JP2008029985A (en) Apparatus for regenerating anion adsorbent and method of regenerating anion adsorbent using the same
JP4000370B2 (en) Method for removing nitrate ions from various anion-containing aqueous solutions and method for recovering nitrate ions
KR20160106418A (en) A method of recovering indium or tin from indium or tin-containing solution or mixture with adsorption and further desorption procedure
CN114516651A (en) Calcium-aluminum hydrotalcite with 3D structure and preparation method and application thereof
JP4617476B2 (en) Method for removing potassium ions
JP4164681B2 (en) How to recover phosphorus
JP4547528B2 (en) Nitrate ion selective adsorbent, production method thereof, nitrate ion removal method and nitrate ion recovery method using the same
JP5039953B2 (en) Method for separating arsenic and chromium in aqueous solution
JP4469948B2 (en) Ammonium ion adsorbent and method for removing ammonium ion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070809

R150 Certificate of patent or registration of utility model

Ref document number: 4012964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term