JP4863192B2 - Layered double hydroxides with high anion exchange ability and high carbon dioxide contamination resistance and their synthesis - Google Patents
Layered double hydroxides with high anion exchange ability and high carbon dioxide contamination resistance and their synthesis Download PDFInfo
- Publication number
- JP4863192B2 JP4863192B2 JP2005158900A JP2005158900A JP4863192B2 JP 4863192 B2 JP4863192 B2 JP 4863192B2 JP 2005158900 A JP2005158900 A JP 2005158900A JP 2005158900 A JP2005158900 A JP 2005158900A JP 4863192 B2 JP4863192 B2 JP 4863192B2
- Authority
- JP
- Japan
- Prior art keywords
- layered double
- ion
- double hydroxide
- molar ratio
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000004679 hydroxides Chemical class 0.000 title claims description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title description 22
- 230000015572 biosynthetic process Effects 0.000 title description 12
- 238000003786 synthesis reaction Methods 0.000 title description 12
- 239000001569 carbon dioxide Substances 0.000 title description 11
- 229910002092 carbon dioxide Inorganic materials 0.000 title description 11
- 238000005349 anion exchange Methods 0.000 title description 9
- 238000011109 contamination Methods 0.000 title description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 57
- 150000001768 cations Chemical class 0.000 claims description 40
- 229910052751 metal Inorganic materials 0.000 claims description 40
- 239000002184 metal Substances 0.000 claims description 40
- 150000001450 anions Chemical class 0.000 claims description 31
- 239000003929 acidic solution Substances 0.000 claims description 27
- -1 hydrochloric acid ion Chemical class 0.000 claims description 20
- 239000007864 aqueous solution Substances 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 15
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 14
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 12
- 229910052783 alkali metal Inorganic materials 0.000 claims description 12
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N hydrochloric acid Substances Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 4
- 150000001340 alkali metals Chemical class 0.000 claims description 4
- 230000002194 synthesizing effect Effects 0.000 claims description 4
- 239000000843 powder Substances 0.000 description 50
- 230000000052 comparative effect Effects 0.000 description 36
- 239000011777 magnesium Substances 0.000 description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 30
- 239000002002 slurry Substances 0.000 description 26
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- 239000011734 sodium Substances 0.000 description 22
- 238000001179 sorption measurement Methods 0.000 description 20
- 229910052782 aluminium Inorganic materials 0.000 description 17
- 239000012670 alkaline solution Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 14
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 13
- 229910052796 boron Inorganic materials 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 12
- 239000000706 filtrate Substances 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 229910052749 magnesium Inorganic materials 0.000 description 9
- 229940091250 magnesium supplement Drugs 0.000 description 9
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 8
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 8
- 235000013361 beverage Nutrition 0.000 description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 8
- 239000011737 fluorine Substances 0.000 description 8
- 229910052731 fluorine Inorganic materials 0.000 description 8
- 229910001425 magnesium ion Inorganic materials 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- 239000003513 alkali Substances 0.000 description 6
- JGDITNMASUZKPW-UHFFFAOYSA-K aluminium trichloride hexahydrate Chemical compound O.O.O.O.O.O.Cl[Al](Cl)Cl JGDITNMASUZKPW-UHFFFAOYSA-K 0.000 description 5
- 229940009861 aluminum chloride hexahydrate Drugs 0.000 description 5
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 5
- 229940050906 magnesium chloride hexahydrate Drugs 0.000 description 5
- DHRRIBDTHFBPNG-UHFFFAOYSA-L magnesium dichloride hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-] DHRRIBDTHFBPNG-UHFFFAOYSA-L 0.000 description 5
- 238000001308 synthesis method Methods 0.000 description 5
- MFUVDXOKPBAHMC-UHFFFAOYSA-N magnesium;dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MFUVDXOKPBAHMC-UHFFFAOYSA-N 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 238000001784 detoxification Methods 0.000 description 3
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 3
- 229910001701 hydrotalcite Inorganic materials 0.000 description 3
- 229960001545 hydrotalcite Drugs 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- XNDZQQSKSQTQQD-UHFFFAOYSA-N 3-methylcyclohex-2-en-1-ol Chemical compound CC1=CC(O)CCC1 XNDZQQSKSQTQQD-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- QANIADJLTJYOFI-UHFFFAOYSA-K aluminum;magnesium;carbonate;hydroxide;hydrate Chemical compound O.[OH-].[Mg+2].[Al+3].[O-]C([O-])=O QANIADJLTJYOFI-UHFFFAOYSA-K 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- YPVGEVAPNPLPEP-UHFFFAOYSA-N azanium;chloride;hexahydrate Chemical compound [NH4+].O.O.O.O.O.O.[Cl-] YPVGEVAPNPLPEP-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- NIAXLPMJTSWMRK-UHFFFAOYSA-L magnesium;dichloride;pentahydrate Chemical compound O.O.O.O.O.[Mg+2].[Cl-].[Cl-] NIAXLPMJTSWMRK-UHFFFAOYSA-L 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
Images
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Description
本発明は、ハイドロタルサイトやハイドロカルマイト、パイロオーライトなどに代表される層状複水酸化物に関して、その陰イオン交換性と炭酸汚染し難い安定性を高めた合成法およびその合成法による高性能な層状複水酸化物を提案するものである。 The present invention relates to a layered double hydroxide typified by hydrotalcite, hydrocalumite, pyroolite, etc., and a synthetic method with improved anion exchange properties and stability that is difficult to contaminate carbonic acid, A high performance layered double hydroxide is proposed.
層状複水酸化物とは、ハイドロタルサイトやハイドロカルマイト、パイロオーライトなどに代表されるような天然に産する鉱物の総称であり、マグネシウム、カルシウム、アルミニウム、鉄など天然に豊富に存在する元素の水酸化物を主骨格としている。そして、例えば、ハイドロタルサイトは特許文献1、ハイドロカルサイトは特許文献2、パイロオーライトは特許文献3で示されているように、その合成も比較的容易に行うことができる。 Layered double hydroxide is a generic name for naturally occurring minerals such as hydrotalcite, hydrocalumite, and pyroolite, and is abundant in nature such as magnesium, calcium, aluminum, and iron. Elemental hydroxide is the main skeleton. For example, as shown in Patent Document 1 for hydrotalcite, Patent Document 2 for hydrocalcite, and Patent Document 3 for pyroolite, the synthesis thereof can be performed relatively easily.
また、これら層状複水酸化物は、陰イオン交換能を有していることが従来から知られている。そして、この陰イオン交換能によって、有害陰イオン(砒素、六価クロム、弗素、硼素など)を固定化することができれば、廃棄物の安全性向上技術、無害化環境技術において、汚染水の水質改善、有害物質の溶出防止、土壌改良などに寄与できるものと期待されている。
しかし、従来の層状複水酸化物は合成時に陰イオンとして炭酸イオンを組み込み、安定化させたものや、上記特許文献4のように炭酸イオン以外のさまざまな陰イオンを層間に組み込むことができてもそれは安定性に乏しいものであり、空気中や水中の二酸化炭素の影響を受けるなど、上記の陰イオン交換能が炭酸イオン優位のイオン選択性により阻害されている。 However, conventional layered double hydroxides can be incorporated and stabilized with carbonate ions as anions during synthesis, and various anions other than carbonate ions can be incorporated between layers as in Patent Document 4 above. However, it is poor in stability, and the above anion exchange ability is hindered by carbonate ion-dominated ion selectivity, such as being affected by carbon dioxide in the air or water.
そこで、本発明者等は上記問題点に鑑み検討と実験を重ね本発明を完成したものであって、高い陰イオン交換能を有し、二酸化炭素や炭酸イオンが存在する環境でも期待される陰イオン交換能を十分に発揮する層状複水酸化物とその合成方法を提供することに成功したものである。 In view of the above problems, the present inventors have completed the present invention through repeated examinations and experiments, and have high anion exchange ability and are expected in an environment where carbon dioxide and carbonate ions exist. The present inventors have succeeded in providing a layered double hydroxide that sufficiently exhibits ion exchange ability and a synthesis method thereof.
すなわち、上記課題を解決するために、2価の金属陽イオン(M2+)および3価の金属陽イオン(M3+)ならびにn価の陰イオンが存在する酸性溶液とアルカリ金属元素(A+)が存在するアルカリ性水溶液とを反応系が常にpH8以下となるようにA+/M2+のモル比を2.5〜3.0の範囲に調整して一気に混合する、もしくは2価の金属陽イオン(M2+)ならびにn価の陰イオンが存在する酸性水溶液と3価の金属陽イオン(M3+)ならびにアルカリ金属元素(A+)が存在するアルカリ性水溶液とを反応系が常にpH8以下となるようにA+/M2+のモル比を2.5〜3.0の範囲に調整して一気に混合することで、高い陰イオン交換能を有し、二酸化炭素や炭酸イオン、硫酸イオン、硝酸イオン、塩化物イオンなどが存在する環境でも期待される陰イオン交換能を発揮する層状複水酸化物が得られることを見出したものであり、より具体的には以下のごとくである。 That is, in order to solve the above problems, an acidic solution and an alkali metal element (A + ) in which a divalent metal cation (M 2+ ), a trivalent metal cation (M 3+ ), and an n-valent anion are present. The mixture is mixed at once with an alkaline aqueous solution in which the molar ratio of A + / M 2+ is adjusted to a range of 2.5 to 3.0 so that the reaction system always has a pH of 8 or less, or a divalent metal cation (M 2+ ) and an acidic aqueous solution containing n-valent anions and an alkaline aqueous solution containing trivalent metal cations (M 3+ ) and alkali metal elements (A + ) so that the reaction system always has a pH of 8 or less. In addition, by adjusting the molar ratio of A + / M 2+ to a range of 2.5 to 3.0 and mixing all at once, it has a high anion exchange ability, such as carbon dioxide, carbonate ion, sulfate ion, nitrate ion, chloride On are those such as are found also obtained expected anion exchange capacity of the layered double hydroxide which exerts in the present environment, and more specifically as follows.
本発明の請求項1記載の発明は、2価の金属陽イオン(MgThe invention according to claim 1 of the present invention is a divalent metal cation (Mg).
2+2+
)ならびに3価の金属陽イオン(Al) And trivalent metal cations (Al
3+3+
)ならびに下記のn価の陰イオンが存在する酸性溶液とアルカリ金属元素(Na) And the following acidic solutions and alkali metal elements (Na
++
)が存在するアルカリ性水溶液とを反応系が常にpH8以下となるように(Na) In an alkaline aqueous solution so that the reaction system always has a pH of 8 or less (Na
++
)/(Mg) / (Mg
2+2+
)のモル比を2.5〜3.0の範囲に調整して一気に混合することで得られる層状複水酸化物であって、) Is a layered double hydroxide obtained by adjusting the molar ratio in the range of 2.5 to 3.0 and mixing at once.
一般式[MgGeneral formula [Mg
2+2+
1−x1-x
AlAl
3+3+
xx
(OH)(OH)
22
][An‐] [An-
x/nx / n
・zH・ ZH
22
O](ここで、An−は、硝酸イオン、塩酸イオンもしくは硫酸イオンからなるn価の陰イオン、0<x<1)で表されることを特徴とする高い陰イオン交換能を有する炭酸汚染し難い安定性に優れた層状複水酸化物である。O] (where An- is an n-valent anion composed of nitrate ion, hydrochloric acid ion or sulfate ion, 0 <x <1) It is a layered double hydroxide that is difficult to achieve and has excellent stability.
本発明の請求項2記載の発明は、2価の金属陽イオン(MgThe invention according to claim 2 of the present invention is a divalent metal cation (Mg
2+2+
)ならびに下記のn価の陰イオンが存在する酸性溶液と3価の金属陽イオン(Al) And the following acidic solutions containing n-valent anions and trivalent metal cations (Al
3+3+
)ならびにアルカリ金属元素(Na) And alkali metal elements (Na
++
)が存在するアルカリ性水溶液とを反応系が常にpH8以下となるように(Na) In an alkaline aqueous solution so that the reaction system always has a pH of 8 or less (Na
++
)/(Mg) / (Mg
2+2+
)のモル比を2.5〜3.0の範囲に調整して一気に混合することで得られる層状複水酸化物であって、) Is a layered double hydroxide obtained by adjusting the molar ratio in the range of 2.5 to 3.0 and mixing at once.
一般式[MgGeneral formula [Mg
2+2+
1−x1-x
AlAl
3+3+
xx
(OH)(OH)
22
][An‐] [An-
x/nx / n
・zH・ ZH
22
O](ここで、An−は、硝酸イオン、塩酸イオンもしくは硫酸イオンからなるn価の陰イオン、0<x<1)で表されることを特徴とする高い陰イオン交換能を有する炭酸汚染し難い安定性に優れた層状複水酸化物である。O] (where An- is an n-valent anion composed of nitrate ion, hydrochloric acid ion or sulfate ion, 0 <x <1) It is a layered double hydroxide that is difficult to achieve and has excellent stability.
(削除) (Delete)
(削除) (Delete)
(削除) (Delete)
本発明の請求項3記載の発明は、請求項1あるいは請求項2記載の層状複水酸化物において、有害陰イオンを含む水溶液に炭酸イオン、硝酸イオン、塩化物イオン、硫酸イオンの存在があっても効率的に有害陰イオンを固定することのできることを特徴とするものである。The invention according to claim 3 of the present invention is the layered double hydroxide according to claim 1 or 2, wherein the aqueous solution containing harmful anions contains carbonate ions, nitrate ions, chloride ions and sulfate ions. However, harmful anions can be efficiently fixed.
本発明の請求項4記載の発明は、請求項1あるいは請求項2記載の層状複水酸化物において、結晶子サイズが8〜12nmであることを特徴とするものである。The invention according to claim 4 of the present invention is characterized in that in the layered double hydroxide according to claim 1 or 2, the crystallite size is 8 to 12 nm.
(削除) (Delete)
(削除) (Delete)
本発明の請求項5記載の発明は、2価の金属陽イオン(MgThe invention according to claim 5 of the present invention is a divalent metal cation (Mg 2+2+ )ならびに3価の金属陽イオン(Al) And trivalent metal cations (Al 3+3+ )ならびに硝酸イオン、塩酸イオンもしくは硫酸イオンからなるn価の陰イオンが存在する酸性溶液とアルカリ金属元素(Na) And an acidic solution containing an n-valent anion consisting of nitrate ion, hydrochloric acid ion or sulfate ion and an alkali metal element (Na ++ )が存在するアルカリ性水溶液とを反応系が常にpH8以下となるように(Na) In an alkaline aqueous solution so that the reaction system always has a pH of 8 or less (Na ++ )/(Mg) / (Mg 2+2+ )のモル比を2.5〜3.0の範囲に調整して一気に混合して合成することを特徴とする請求項1記載の層状複水酸化物の合成方法である。The layered double hydroxide synthesis method according to claim 1, wherein the synthesis is performed by adjusting the molar ratio in the range of 2.5 to 3.0 and mixing all at once.
本発明の請求項6記載の発明は、2価の金属陽イオン(MgThe invention according to claim 6 of the present invention is a divalent metal cation (Mg). 2+2+ )ならびに硝酸イオン、塩酸イオンもしくは硫酸イオンからなるn価の陰イオンが存在する酸性溶液と3価の金属陽イオン(Al) And an acidic solution in which an n-valent anion consisting of nitrate ion, hydrochloride ion or sulfate ion is present and a trivalent metal cation (Al 3+3+ )ならびにアルカリ金属元素(Na) And alkali metal elements (Na ++ )が存在するアルカリ性水溶液とを反応系が常にpH8以下となるように(Na) In an alkaline aqueous solution so that the reaction system always has a pH of 8 or less (Na ++ )/(Mg) / (Mg 2+2+ )のモル比を2.5〜3.0の範囲に調整して一気に混合して合成することを特徴とする請求項2記載の層状複水酸化物の合成方法である。3) The method for synthesizing a layered double hydroxide according to claim 2, wherein the synthesis is performed by adjusting the molar ratio in the range of 2.5 to 3.0 and mixing all at once.
(削除) (Delete)
(削除) (Delete)
本発明の請求項1および請求項2記載の層状複水酸化物は、中性条件下で反応を進めることができ、空気中もしくは水中の二酸化炭素や炭酸イオンによる炭酸汚染が起こり難く、期待された有害な陰イオン吸着能力を長期間に亘り維持でき、安定性に優れていることで、例えば、除去率80%以上のホウ素吸着能を2ヶ月以上に亘って維持する性能を持つという顕著な効果を奏する。 The layered double hydroxide according to claims 1 and 2 of the present invention is expected to be capable of proceeding under neutral conditions and is unlikely to be contaminated with carbon dioxide or carbonate ions in air or water. It was detrimental over can be maintained a long period of time an anion adsorbing ability, it is excellent in stability, for example, significant that has the capability of maintaining over boron adsorbing ability of removal of 80% or more than 2 months There is an effect.
(削除) (Delete)
(削除) (Delete)
(削除) (Delete)
本発明の請求項3記載の層状複水酸化物は、請求項1あるいは請求項2記載の層状複水酸化物において、有害陰イオンを含む廃液などの水溶液に炭酸イオン、硝酸イオン、塩化物イオン、硫酸イオンなどの存在があっても効率的に有害陰イオンを固定することのできることで、従来層状複水酸化物では有効に処理することのできなかった各種廃液などについても適切な無害化処理等を行うことができるようになるというさらなる顕著な効果を奏する。 The layered double hydroxide according to claim 3 of the present invention is the layered double hydroxide according to claim 1 or claim 2 , wherein carbonate ions, nitrate ions, chloride ions are added to an aqueous solution such as a waste liquid containing harmful anions. In addition, since harmful anions can be efficiently fixed even in the presence of sulfate ions, etc., appropriate detoxification treatment is also possible for various waste liquids that could not be treated effectively with conventional layered double hydroxides. And the like .
本発明の請求項4記載の層状複水酸化物は、請求項1あるいは請求項2記載の層状複水酸化物において、結晶子サイズが8〜12nmとなり、所望の結晶子サイズの高機能層状複水酸化物を得ることが可能となるというさらなる顕著な効果を奏する。 The layered double hydroxide according to claim 4 of the present invention is the layered double hydroxide according to claim 1 or 2, wherein the crystallite size is 8 to 12 nm, and the highly functional layered double hydroxide having a desired crystallite size is obtained. There is a further remarkable effect that a hydroxide can be obtained.
本発明の請求項5記載の発明は、2価の金属陽イオン(MgThe invention according to claim 5 of the present invention is a divalent metal cation (Mg
2+2+
)ならびに3価の金属陽イオン(Al) And trivalent metal cations (Al
3+3+
)ならびに硝酸イオン、塩酸イオンもしくは硫酸イオンからなるn価の陰イオンが存在する酸性溶液とアルカリ金属元素(Na) And an acidic solution containing an n-valent anion consisting of nitrate ion, hydrochloric acid ion or sulfate ion and an alkali metal element (Na
++
)が存在するアルカリ性水溶液とを反応系が常にpH8以下となるように(Na) In an alkaline aqueous solution so that the reaction system always has a pH of 8 or less (Na
++
)/(Mg) / (Mg
2+2+
)のモル比を2.5〜3.0の範囲に調整して一気に混合して合成することを特徴とする請求項1記載の層状複水酸化物の合成方法であり、The layered double hydroxide synthesis method according to claim 1, wherein the mixture is synthesized by mixing at a stretch by adjusting the molar ratio of
中性条件下で反応を進めることができ、空気中もしくは水中の二酸化炭素や炭酸イオンによる炭酸汚染が起こり難く、期待された有害な陰イオン吸着能力を長期間に亘り維持でき、安定性に優れていることで、例えば、除去率80%以上のホウ素吸着能を2ヶ月以上に亘って維持する性能を持つという顕著な効果を奏する。 The reaction can proceed under neutral conditions, carbon dioxide contamination in the air or water is unlikely to occur, the expected harmful anion adsorption capacity can be maintained over a long period of time, and excellent stability Therefore, for example, it has a remarkable effect that it has a performance of maintaining a boron adsorption capacity with a removal rate of 80% or more for two months or more.
本発明の請求項6記載の発明は、2価の金属陽イオン(MgThe invention according to claim 6 of the present invention is a divalent metal cation (Mg).
2+2+
)ならびに硝酸イオン、塩酸イオンもしくは硫酸イオンからなるn価の陰イオンが存在する酸性溶液と3価の金属陽イオン(Al) And an acidic solution in which an n-valent anion consisting of nitrate ion, hydrochloride ion or sulfate ion is present and a trivalent metal cation (Al
3+3+
)ならびにアルカリ金属元素(Na) And alkali metal elements (Na
++
)が存在するアルカリ性水溶液とを反応系が常にpH8以下となるように(Na) In an alkaline aqueous solution so that the reaction system always has a pH of 8 or less (Na
++
)/(Mg) / (Mg
2+2+
)のモル比を2.5〜3.0の範囲に調整して一気に混合して合成することを特徴とする請求項2記載の層状複水酸化物の合成方法であり、3) is a method for synthesizing a layered double hydroxide according to claim 2, characterized by adjusting the molar ratio in the range of 2.5 to 3.0 and mixing at once.
適切な中性条件下で反応を進めることができ、空気中もしくは水中の二酸化炭素や炭酸イオンによる炭酸汚染が起こり難く、期待された有害な陰イオン吸着能力を長期間に亘り維持でき、安定性に優れていることで、例えば、除去率80%以上のホウ素吸着能を2ヶ月以上に亘って維持する性能を持つという顕著な効果を奏する。The reaction can proceed under appropriate neutral conditions, carbon dioxide contamination in the air or water is unlikely to occur, and the expected harmful anion adsorption capacity can be maintained over a long period of time. For example, it has a remarkable effect that it has a performance of maintaining a boron adsorption capacity with a removal rate of 80% or more for two months or more.
(削除) (Delete)
(削除) (Delete)
上記においては、反応系を常にpH8以下とすることを条件としているが、より好ましい発明効果を実現するためにはpH6〜7となるように調整することが望ましい。 In the above, it is a condition that the reaction system is always set to pH 8 or lower. However, in order to realize a more preferable invention effect, it is desirable to adjust the pH to 6-7.
上記のような本発明の具体的な実施の形態を、本発明独自の層状複水酸化物の合成方法、保存安定性ならびに有害陰イオン吸着性能について添付図面および各実施例の記載を解して説明する。 Specific embodiments of the present invention as described above will be described with reference to the accompanying drawings and the description of each example regarding the synthesis method, storage stability and harmful anion adsorption performance of the layered double hydroxide unique to the present invention. explain.
(実施例1)
Na/Mgモル比3.0
2価の金属陽イオンとしてのマグネシウムイオン、3価の金属陽イオンとしてアルミニウムイオンを用いた。マグネシウム源として硝酸マグネシウム六水和物1molと、アルミニウム源として硝酸アルミニウム九水和物0.5molを1Lの水に溶かして酸性溶液を調整した。
Example 1
Na / Mg molar ratio 3.0
Magnesium ions as divalent metal cations and aluminum ions as trivalent metal cations were used. An acidic solution was prepared by dissolving 1 mol of magnesium nitrate hexahydrate as a magnesium source and 0.5 mol of aluminum nitrate nonahydrate as an aluminum source in 1 L of water.
そして、水酸化ナトリウム3.0molを1Lの水に溶かしてアルカリ性溶液を作成した。この酸性溶液とアルカリ性溶液を一気に混合、攪拌すると、即座にゲル状の沈殿物が生成し、スラリーが得られた。このスラリーを固液分離すると、そのろ液のpHは6.4であり、酸とアルカリの完全な中和が起こって得られたスラリーである。 Then, 3.0 mol of sodium hydroxide was dissolved in 1 L of water to prepare an alkaline solution. When the acidic solution and the alkaline solution were mixed and stirred all at once, a gel-like precipitate was immediately generated, and a slurry was obtained. When this slurry is subjected to solid-liquid separation, the pH of the filtrate is 6.4, and the slurry is obtained by complete neutralization of acid and alkali.
このスラリーをろ過・洗浄、乾燥、粉砕することで層状複水酸化物粉末が得られた。得られた粉末はX線回折装置による分析により、その面間隔が8.94Åであって結晶子サイズが11.2nmであることを確認した。
図1は、このような合成工程を示したチャート図である。
The slurry was filtered, washed, dried and pulverized to obtain a layered double hydroxide powder. The obtained powder was confirmed by analysis with an X-ray diffractometer to have a face spacing of 8.94 mm and a crystallite size of 11.2 nm .
FIG. 1 is a chart showing such a synthesis process.
(実施例2)
上記実施例1による合成の層状複水酸化物粉末10gを市販の炭酸水(飲料用)100mlに添加して1時間攪拌し、ろ過、乾燥し、炭酸汚染された層状複水酸化物粉末を得た。
(Example 2)
10 g of the layered double hydroxide powder synthesized according to Example 1 above was added to 100 ml of commercially available carbonated water (for beverage), stirred for 1 hour, filtered and dried to obtain a carbonated contaminated layered double hydroxide powder. It was.
得られた粉末は、X線回折装置による分析により、その面間隔が8.16Åであって結晶子サイズが7.7nmであることを確認した。なお、この実施例は炭酸汚染された場合の影響について検証するために行ったものである。 The obtained powder was confirmed by analysis with an X-ray diffractometer to have a surface spacing of 8.16 mm and a crystallite size of 7.7 nm . In addition, this Example was performed in order to verify about the influence at the time of carbon dioxide contamination.
(比較例1)
Na/Mgモル比3.5
2価の金属陽イオンとしてのマグネシウムイオン、3価の金属陽イオンとしてアルミニウムイオンを用いた。マグネシウム源として硝酸マグネシウム六水和物1molと、アルミニウム源として硝酸アルミニウム九水和物0.5molを1Lの水に溶かして酸性溶液を調整した。
(Comparative Example 1)
Na / Mg molar ratio 3.5
Magnesium ions as divalent metal cations and aluminum ions as trivalent metal cations were used. An acidic solution was prepared by dissolving 1 mol of magnesium nitrate hexahydrate as a magnesium source and 0.5 mol of aluminum nitrate nonahydrate as an aluminum source in 1 L of water.
そして、水酸化ナトリウム3.5molを1Lの水に溶かしてアルカリ性溶液を作成した。
この酸性溶液とアルカリ性溶液を一気に混合、攪拌すると、即座にゲル状の沈殿物が生成し、スラリーが得られた。このスラリーを固液分離すると、そのろ液のpHは13.5でアルカリが過剰に残留している。
And 3.5 mol of sodium hydroxide was dissolved in 1 L of water to prepare an alkaline solution.
When the acidic solution and the alkaline solution were mixed and stirred all at once, a gel-like precipitate was immediately generated, and a slurry was obtained. When this slurry is subjected to solid-liquid separation, the pH of the filtrate is 13.5 and excessive alkali remains.
このスラリーをろ過・洗浄、乾燥、粉砕することで層状複水酸化物粉末が得られた。得られた粉末はX線回折装置による分析により、その面間隔が7.89Åであって結晶子サイズが8.8nmであることを確認した。
この比較例1における層状複水酸化物を得るための工程をチャート図としたのが図2である。
The slurry was filtered, washed, dried and pulverized to obtain a layered double hydroxide powder. The obtained powder was confirmed by analysis with an X-ray diffractometer to have a surface spacing of 7.89 mm and a crystallite size of 8.8 nm .
FIG. 2 is a chart showing the process for obtaining the layered double hydroxide in Comparative Example 1.
(比較例2)
上記比較例1による合成の層状複水酸化物粉末10gを市販の炭酸水(飲料用)100mlに添加して1時間攪拌し、ろ過、乾燥し、炭酸汚染された層状複水酸化物粉末を得た。得られた粉末は、X線回折装置による分析により、その面間隔が7.79Åであって結晶子サイズが8.6nmであることを確認した。
(Comparative Example 2)
10 g of the layered double hydroxide powder synthesized according to Comparative Example 1 above was added to 100 ml of commercially available carbonated water (for beverages), stirred for 1 hour, filtered and dried to obtain a carbonated contaminated layered double hydroxide powder. It was. The obtained powder was confirmed by analysis with an X-ray diffractometer to have a surface spacing of 7.79 mm and a crystallite size of 8.6 nm .
(分析1)
上記実施例1〜2および比較例1〜2で作成された粉末を用いて、CHNレコーダーによる炭素含有量分析を行った。
この分析結果を下記する表1に示す。
(Analysis 1)
Using the powders prepared in Examples 1-2 and Comparative Examples 1-2, carbon content analysis was performed using a CHN recorder.
The analysis results are shown in Table 1 below.
下記の表1の分析結果から、実施例1が最も炭素含有量が少なく、実施例2は炭酸に汚染され、炭素含有量が増えていることが理解される。
また、比較例1は実施例1についで炭素含有量が少ないが、比較例2は炭酸にかなり汚染され、実施例2を上回る炭素含有量となっていることが理解される。
From the analysis results shown in Table 1 below, it is understood that Example 1 has the least carbon content, and Example 2 is contaminated with carbonic acid, resulting in an increase in the carbon content.
Further, it is understood that Comparative Example 1 has a low carbon content after Example 1, but Comparative Example 2 is considerably contaminated with carbonic acid and has a carbon content higher than that of Example 2.
(試験1)
上記実施例1〜2および比較例1〜2で作成された粉末を用いて、六価クロム、ホウ素、フッ素の吸着効果について試験を行った。
なお、ここでの比較例3としては、有害陰イオン物質の除去、不溶性化、無毒化を目的として市販されているハイドロタルサイト粉末を用いた。
(Test 1)
Using the powders prepared in Examples 1 and 2 and Comparative Examples 1 and 2, the adsorption effect of hexavalent chromium, boron and fluorine was tested.
As Comparative Example 3 here, a commercially available hydrotalcite powder was used for the purpose of removing harmful anionic substances, insolubilization, and detoxification.
試験方法としては、所定の濃度の六価クロム、ホウ素およびフッ素の標準溶液100mlを複数のビーカーに分取し、これに上記実施例1〜4で作成された粉末または比較例の市販品について、それぞれ別々に1g加え、常温でマグネチックスターラーで1時間攪拌した。その後、ろ過し、ろ液中の六価クロム、ホウ素およびフッ素の濃度を分光光度計にて測定した。
この試験結果を表1に示す。
As a test method, 100 ml of a standard solution of hexavalent chromium, boron and fluorine having a predetermined concentration was dispensed into a plurality of beakers. 1 g of each was added separately and stirred at room temperature with a magnetic stirrer for 1 hour. Thereafter, the mixture was filtered, and the concentrations of hexavalent chromium, boron and fluorine in the filtrate were measured with a spectrophotometer.
The test results are shown in Table 1.
実施例の粉末すべてにおいて比較例よりも高い吸着効果を示している。また、炭酸による汚染で吸着効果が低くなっているが、実施例1と比較例1とを比べると、実施例1は炭酸による汚染が起こりにくく、例え実施例2のように汚染されても依然として高い吸着効果を示していることが理解される。 All the powders of the examples show a higher adsorption effect than the comparative examples. Moreover, although the adsorption effect is low due to contamination by carbonic acid, when Example 1 is compared with Comparative Example 1, Example 1 is less likely to be contaminated by carbonic acid, and even if it is contaminated as in Example 2, it still remains. It is understood that it shows a high adsorption effect.
(対照1)
上記実施例1および比較例1の粉末において、陰イオン吸着能力の径時変化の対照確認をおこなった。その結果を添付する図3に示す。
(Control 1)
In the powders of Example 1 and Comparative Example 1 above, a comparison of the time-dependent changes in anion adsorption capacity was performed. The result is shown in FIG.
図示から明らかなように、本発明の実施例1は合成から2ヶ月経ってもホウ素吸着能力に変化がないのに対し、比較例1は大幅にその性能が落ちていることが理解される。 As is apparent from the figure, it is understood that Example 1 of the present invention has no change in the boron adsorption capacity even after 2 months from the synthesis, whereas Comparative Example 1 has a significant decrease in performance.
(実施例3)
Na/Mgモル比3.0
2価の金属陽イオンとしてマグネシウムイオン、3価の金属陽イオンとしてアルミニウムイオンを用いた。マグネシウム源として塩化マグネシウム六水和物1molと、アルミニウム源として塩化アルミニウム六水和物0.5molを1Lの水に溶かして酸性溶液を調整した。
(Example 3)
Na / Mg molar ratio 3.0
Magnesium ions were used as divalent metal cations, and aluminum ions were used as trivalent metal cations. An acidic solution was prepared by dissolving 1 mol of magnesium chloride hexahydrate as a magnesium source and 0.5 mol of aluminum chloride hexahydrate as an aluminum source in 1 L of water.
そして、水酸化ナトリウム3.0molを1Lの水に溶かしてアルカリ性溶液を作成した。この酸性溶液とアルカリ性溶液を一気に混合、攪拌すると、即座にゲル状の沈殿物が生成し、スラリーが得られた。このスラリーを固液分離すると、そのろ液のpHは6.97であり、酸とアルカリの完全な中和が起こって得られたスラリーである。 Then, 3.0 mol of sodium hydroxide was dissolved in 1 L of water to prepare an alkaline solution. When the acidic solution and the alkaline solution were mixed and stirred all at once, a gel-like precipitate was immediately generated, and a slurry was obtained. When this slurry is subjected to solid-liquid separation, the pH of the filtrate is 6.97, and the slurry is obtained by complete neutralization of acid and alkali.
このスラリーをろ過・洗浄・乾燥・粉砕することで層状複水酸化物粉末が得られた。得られた粉末はX線回折装置による分析により、その面間隔が7.79Åであって結晶子サイズが10.4nmであることを確認した。 The slurry was filtered, washed, dried and pulverized to obtain a layered double hydroxide powder. The obtained powder was analyzed by an X-ray diffractometer to confirm that the interplanar spacing was 7.79 mm and the crystallite size was 10.4 nm .
(実施例4)
上記実施例3による合成の層状複水酸化物粉末10gを市販の炭酸水(飲料用)100mlに添加して1時間攪拌し、ろ過、乾燥し、炭酸汚染された層状複水酸化物粉末を得た。
Example 4
10 g of the layered double hydroxide powder synthesized according to Example 3 above was added to 100 ml of commercially available carbonated water (for beverages), stirred for 1 hour, filtered and dried to obtain a carbonated contaminated layered double hydroxide powder. It was.
得られた粉末は、X線回折装置による分析により、その面間隔が7.70Åであって結晶子サイズが10.4nmであることを確認した。なお、この実施例は炭酸汚染された場合の影響について検証するために行ったものである。 The obtained powder was confirmed by analysis with an X-ray diffractometer to have a surface spacing of 7.70 mm and a crystallite size of 10.4 nm . In addition, this Example was performed in order to verify about the influence at the time of carbon dioxide contamination.
(実施例5)
Na/Mgモル比2.5
2価の金属陽イオンとしてのマグネシウムイオン、3価の金属陽イオンとしてアルミニウムイオンを用いた。マグネシウム源として塩化マグネシウム5水和物1molと、アルミニウム源として塩化アンモニウム6水和物0.5molを1Lの水に溶かして酸性溶液を調整した。
(Example 5)
Na / Mg molar ratio 2.5
Magnesium ions as divalent metal cations and aluminum ions as trivalent metal cations were used. An acidic solution was prepared by dissolving 1 mol of magnesium chloride pentahydrate as a magnesium source and 0.5 mol of ammonium chloride hexahydrate as an aluminum source in 1 L of water.
そして、水酸化ナトリウム2.5molを1Lの水に溶かしてアルカリ性溶液を作成した。この酸性溶液とアルカリ性溶液とを一気に混合、攪拌すると、即座にゲル状の沈殿物が生成し、スラリーが得られた。このスラリーを固液分離すると、そのろ液のpHは6.31であった。 Then, 2.5 mol of sodium hydroxide was dissolved in 1 L of water to prepare an alkaline solution. When the acidic solution and the alkaline solution were mixed and stirred all at once, a gel-like precipitate was immediately generated, and a slurry was obtained. When this slurry was subjected to solid-liquid separation, the pH of the filtrate was 6.31.
このスラリーをろ過・洗浄・乾燥・粉砕することで層状複水酸化物粉末が得られた。得られた粉末はX線回折装置による分析により、その面間隔が7.83Åであって結晶子サイズが9.5nmであることを確認した。 The slurry was filtered, washed, dried and pulverized to obtain a layered double hydroxide powder. The obtained powder was confirmed by analysis with an X-ray diffractometer to have a face spacing of 7.83 mm and a crystallite size of 9.5 nm.
(実施例6)
上記実施例5による合成の層状複水酸化物粉末10gを市販の炭酸水(飲料用)100mlに添加して1時間攪拌し、ろ過、乾燥し、炭酸汚染された層状複水酸化物粉末を得た。
(Example 6)
10 g of the layered double hydroxide powder synthesized according to Example 5 above was added to 100 ml of commercially available carbonated water (for beverage), stirred for 1 hour, filtered and dried to obtain a carbonated contaminated layered double hydroxide powder. It was.
得られた粉末は、X線回折装置による分析により、その面間隔が7.72Åであって結晶子サイズが8.4nmであることを確認した。なお、この実施例は炭酸汚染された場合の影響について検証するために行ったものである。 The obtained powder was confirmed by analysis with an X-ray diffractometer to have a surface spacing of 7.72 mm and a crystallite size of 8.4 nm . In addition, this Example was performed in order to verify about the influence at the time of carbon dioxide contamination.
(比較例4)
Na/Mgモル比3.2
2価の金属陽イオンとしてのマグネシウムイオン、3価の金属陽イオンとしてアルミニウムイオンを用いた。マグネシウム源として塩化マグネシウム六水和物1molと、アルミニウム源として塩化アルミニウム六水和物0.5molを1Lの水に溶かして酸性溶液を調整した。
(Comparative Example 4)
Na / Mg molar ratio 3.2
Magnesium ions as divalent metal cations and aluminum ions as trivalent metal cations were used. An acidic solution was prepared by dissolving 1 mol of magnesium chloride hexahydrate as a magnesium source and 0.5 mol of aluminum chloride hexahydrate as an aluminum source in 1 L of water.
そして、水酸化ナトリウム3.2molを1Lの水に溶かしてアルカリ性溶液を作成した。
この酸性溶液とアルカリ性溶液を一気に混合、攪拌すると、即座にゲル状の沈殿物が生成し、スラリーが得られた。このスラリーを固液分離すると、そのろ液のpHは9.07でアルカリが過剰に残留している。
Then, 3.2 mol of sodium hydroxide was dissolved in 1 L of water to prepare an alkaline solution.
When the acidic solution and the alkaline solution were mixed and stirred all at once, a gel-like precipitate was immediately generated, and a slurry was obtained. When this slurry is subjected to solid-liquid separation, the pH of the filtrate is 9.07 and excessive alkali remains.
このスラリーをろ過・洗浄、乾燥、粉砕することで層状複水酸化物粉末が得られた。得られた粉末はX線回折装置による分析により、その面間隔が7.78Åであって結晶子サイズが10.8nmであることを確認した。 The slurry was filtered, washed, dried and pulverized to obtain a layered double hydroxide powder. The obtained powder was confirmed by analysis with an X-ray diffractometer to have a surface spacing of 7.78 mm and a crystallite size of 10.8 nm.
(比較例5)
上記比較例4による合成の層状複水酸化物粉末10gを市販の炭酸水(飲料用)100mlに添加して1時間攪拌し、ろ過、乾燥し、炭酸汚染された層状複水酸化物粉末を得た。
得られた粉末は、X線回折装置による分析により、その面間隔が7.71Åであって結晶子サイズが10.5nmであることを確認した。
(Comparative Example 5)
10 g of the layered double hydroxide powder synthesized according to Comparative Example 4 above was added to 100 ml of commercially available carbonated water (for beverages), stirred for 1 hour, filtered and dried to obtain a carbonated contaminated layered double hydroxide powder. It was.
The obtained powder was confirmed by analysis with an X-ray diffractometer to have a surface spacing of 7.71 mm and a crystallite size of 10.5 nm .
(比較例6)
Na/Mgモル比3.3
2価の金属陽イオンとしてのマグネシウムイオン、3価の金属陽イオンとしてアルミニウムイオンを用いた。マグネシウム源として塩化マグネシウム六水和物1molと、アルミニウム源として塩化アルミニウム六水和物0.5molを1Lの水に溶かして酸性溶液を調整した。
(Comparative Example 6)
Na / Mg molar ratio 3.3
Magnesium ions as divalent metal cations and aluminum ions as trivalent metal cations were used. An acidic solution was prepared by dissolving 1 mol of magnesium chloride hexahydrate as a magnesium source and 0.5 mol of aluminum chloride hexahydrate as an aluminum source in 1 L of water.
そして、水酸化ナトリウム3.3molを1Lの水に溶かしてアルカリ性溶液を作成した。
この酸性溶液とアルカリ性溶液を一気に混合、攪拌すると、即座にゲル状の沈殿物が生成し、スラリーが得られた。このスラリーを固液分離すると、そのろ液のpHは11.38でアルカリが過剰に残留している。
Then, 3.3 mol of sodium hydroxide was dissolved in 1 L of water to prepare an alkaline solution.
When the acidic solution and the alkaline solution were mixed and stirred all at once, a gel-like precipitate was immediately generated, and a slurry was obtained. When this slurry is subjected to solid-liquid separation, the pH of the filtrate is 11.38, and the alkali remains excessively.
このスラリーをろ過・洗浄、乾燥、粉砕することで層状複水酸化物粉末が得られた。得られた粉末はX線回折装置による分析により、面間隔が7.79Åであって結晶子サイズが11.0nmであることを確認した。 The slurry was filtered, washed, dried and pulverized to obtain a layered double hydroxide powder. The obtained powder was confirmed by analysis with an X-ray diffractometer to have a surface spacing of 7.79 mm and a crystallite size of 11.0 nm .
(比較例7)
上記比較例6による合成の層状複水酸化物粉末10gを市販の炭酸水(飲料用)100mlに添加して1時間攪拌し、ろ過、乾燥し、炭酸汚染された層状複水酸化物粉末を得た。
得られた粉末はX線回折装置による分析により、その面間隔が7.73Åであって結晶子サイズが11.4nmであることを確認した。
(Comparative Example 7)
10 g of the layered double hydroxide powder synthesized according to Comparative Example 6 above was added to 100 ml of commercially available carbonated water (for beverages), stirred for 1 hour, filtered and dried to obtain a carbonated contaminated layered double hydroxide powder. It was.
The obtained powder was analyzed by an X-ray diffractometer, and it was confirmed that the face spacing was 7.73 mm and the crystallite size was 11.4 nm .
(比較例8)
Na/Mgモル比3.5
2価の金属陽イオンとしてのマグネシウムイオン、3価の金属陽イオンとしてのアルミニウムイオンを用いた。マグネシウム源として塩化マグネシウム六水和物1molと、アルミニウム源として塩化アルミニウム六水和物0.5mol.を1Lの水に溶かして酸性溶液を調整した。
(Comparative Example 8)
Na / Mg molar ratio 3.5
Magnesium ions as divalent metal cations and aluminum ions as trivalent metal cations were used. Magnesium chloride hexahydrate 1 mol as the magnesium source, and aluminum chloride hexahydrate 0.5 mol. As the aluminum source. Was dissolved in 1 L of water to prepare an acidic solution.
そして、水酸化ナトリウム3.5molを1Lの水に溶かしてアルカリ水溶液を作成した。この酸性溶液とアルカリ性溶液を一気に混合、攪拌すると、即座にゲル状の沈殿物が生成し、スラリーが得られた。このスラリーを固液分離すると、そのろ液のpHは12.66でアルカリが過剰に残留している。 Then, 3.5 mol of sodium hydroxide was dissolved in 1 L of water to prepare an alkaline aqueous solution. When the acidic solution and the alkaline solution were mixed and stirred all at once, a gel-like precipitate was immediately generated, and a slurry was obtained. When this slurry is subjected to solid-liquid separation, the pH of the filtrate is 12.66 and excessive alkali remains.
このスラリーをろ過・洗浄、乾燥、粉砕することで層状複水酸化物粉末が得られた。
得られた粉末はX線回折装置による分析により、その面間隔が7.76Åであって結晶子サイズが12.0nmであることを確認した。
The slurry was filtered, washed, dried and pulverized to obtain a layered double hydroxide powder.
The obtained powder was analyzed by an X-ray diffractometer to confirm that the interplanar spacing was 7.76 mm and the crystallite size was 12.0 nm .
(比較例9)
上記比較例8による合成の層状風水酸化物粉末10gを市販の炭酸水(飲料用)100mlに添加して1時間攪拌し、ろ過、乾燥し、炭酸汚染された層状複水酸化物粉末を得た。
得られた粉末はX線回折装置による分析により、その面間隔が7.71Åであって結晶子サイズが12.2nmであることを確認した。
(Comparative Example 9)
10 g of the layered wind hydroxide powder synthesized according to Comparative Example 8 above was added to 100 ml of commercially available carbonated water (for beverages), stirred for 1 hour, filtered and dried to obtain a carbonated contaminated layered double hydroxide powder. .
The obtained powder was confirmed by analysis with an X-ray diffractometer to have a surface spacing of 7.71 mm and a crystallite size of 12.2 nm .
(比較例10)
Na/Mgモル比2.0
2価の金属陽イオンとしてのマグネシウムイオン、3価の金属陽イオンとしてアルミニウムイオンを用いた。マグネシウム源として塩化マグネシウム六水和物1molと、アルミニウム源として塩化アルミニウム六水和物0.5molを1Lの水に溶かして酸性溶液を調整した。
(Comparative Example 10)
Na / Mg molar ratio 2.0
Magnesium ions as divalent metal cations and aluminum ions as trivalent metal cations were used. An acidic solution was prepared by dissolving 1 mol of magnesium chloride hexahydrate as a magnesium source and 0.5 mol of aluminum chloride hexahydrate as an aluminum source in 1 L of water.
そして、水酸化ナトリウム2.0molを1Lの水に溶かしてアルカリ性溶液を作成した。
この酸性溶液とアルカリ性溶液を一気に混合、攪拌すると、即座にゲル状の沈殿物は生成し、スラリーが得られた。このスラリーを固液分離すると、そのろ液のpHは6.62である。
Then, 2.0 mol of sodium hydroxide was dissolved in 1 L of water to prepare an alkaline solution.
When this acidic solution and alkaline solution were mixed and stirred all at once, a gel-like precipitate was immediately generated, and a slurry was obtained. When this slurry is subjected to solid-liquid separation, the pH of the filtrate is 6.62.
このスラリーをろ過、洗浄、乾燥、粉砕することで層状複水酸化物粉末が得られた。
得られた粉末はX線回折装置による分析により、その面間隔が7.82Åであって結晶子サイズが9.1nmであることを確認した。また、目的物以外にギブサイト(水酸化アルミニウム)が生成していることが確認された。
The slurry was filtered, washed, dried, and pulverized to obtain a layered double hydroxide powder.
The obtained powder was confirmed by analysis with an X-ray diffractometer to have a surface spacing of 7.82 mm and a crystallite size of 9.1 nm . Further, it was confirmed that gibbsite (aluminum hydroxide) was generated in addition to the target product.
(比較例11)
上記比較例10による合成の層状複水酸化物粉末10gを市販の炭酸水(飲料用)100mlに添加して1時間攪拌し、ろ過、乾燥し、炭酸汚染された層状複水酸化物粉末を得た。
得られた粉末は、X線回折装置による分析により、その面間隔が7.69Åであって結晶子サイズが9.2nmであることを確認した。
(Comparative Example 11)
10 g of the layered double hydroxide powder synthesized in Comparative Example 10 above was added to 100 ml of commercially available carbonated water (for beverages), stirred for 1 hour, filtered and dried to obtain a carbonated contaminated layered double hydroxide powder. It was.
The obtained powder was confirmed by analysis with an X-ray diffractometer to have a surface spacing of 7.69 mm and a crystallite size of 9.2 nm .
(分析1)
上記実施例3〜6および比較例4〜9で作成された粉末を用いて、CHNレコーダーによる炭素含有量分析を行った。
この分析結果を下記する表2に示す。
(Analysis 1)
Using powder created in Examples 3-6 and Comparative Examples 4-9 were subjected to carbon content analysis by CHN recorders.
The analysis results are shown in Table 2 below.
下記の表2の分析結果から、実施例3が最も炭素含有量が少なく、実施例4は炭酸汚に汚染され、炭素含有量が増えていることが理解される。
また、実施例5は実施例3に次いで炭素含有量が少なく、実施例6は炭酸に汚染され、炭素含有量が増えていることが理解される。
比較例4〜9は実施例3〜6より炭素含有量が多く、合成時のNa/Mgモル比の増加に伴って炭素含有量が増えていることが理解できる。
From the analysis results in Table 2 below, it is understood that Example 3 has the least carbon content, and Example 4 is contaminated with carbon dioxide and the carbon content is increased.
In addition, it is understood that Example 5 has the second smallest carbon content after Example 3, and Example 6 is contaminated with carbonic acid and has an increased carbon content.
Comparative Examples 4 to 9 have a higher carbon content than Examples 3 to 6, and it can be understood that the carbon content increases with an increase in the Na / Mg molar ratio during synthesis.
(試験1)
上記実施例3〜6および比較例4〜9で作成された粉末を用いて、ホウ素、フッ素の吸着効果について試験を行った。
(Test 1)
Using the powders prepared in Examples 3 to 6 and Comparative Examples 4 to 9, the boron and fluorine adsorption effects were tested.
試験方法としては、10mmol /Lの濃度のホウ素(108ppm)およびフッ素(190ppm)の標準溶液100mlを複数のビーカーに分取し、こりに上記実施例3〜6および比較例4〜9で作成された粉末について、それぞれ別々に1g加え、常温でマグネチックスターラーで所定の時間攪拌した。その後、ろ過し、ろ液中のホウ素およびフッ素の濃度を分光光度計にて測定した。
この試験結果を表2および図4に示す。
As a test method, 100 ml of a standard solution of boron (108 ppm) and fluorine (190 ppm) at a concentration of 10 mmol / L was dispensed into a plurality of beakers, and this was prepared in Examples 3-6 and Comparative Examples 4-9. 1 g of each powder was added separately and stirred at room temperature with a magnetic stirrer for a predetermined time. Thereafter, the mixture was filtered, and the concentrations of boron and fluorine in the filtrate were measured with a spectrophotometer.
The test results are shown in Table 2 and FIG.
実施例の粉末すべてにおいて比較例よりも高い吸着効果を示している。また、炭酸による汚染で吸着効果が低くなっているが、実施例3および5と比較例とを比べると、実施例は炭酸による汚染が起こりにくく、例え実施例4および6のように汚染されても依然として高い吸着効果を示していることが理解される。 All the powders of the examples show a higher adsorption effect than the comparative examples. In addition, although the adsorption effect is low due to contamination by carbonic acid, when Examples 3 and 5 are compared with Comparative Examples, the Example is less likely to be contaminated by carbonic acid, and is contaminated as in Examples 4 and 6. It is understood that the high adsorption effect is still exhibited.
(対照2)
上記実施例3および比較例8の粉末において、陰イオン吸着能力の経時変化の対照確認を行った。その結果を添付する図5に示す。
(Control 2)
In the powders of Example 3 and Comparative Example 8 above, a comparative confirmation of changes with time in the anion adsorption capacity was performed. The result is shown in FIG.
図示から明らかな用に、本発明の実施例3は合成から90日経ってもホウ素吸着能力の低下率13.9%に対し、比較例8は45.1%と大幅に落ちていることが理解される。 As is apparent from the figure, Example 3 of the present invention shows that the decrease rate of boron adsorption capacity is 13.9% even after 90 days from the synthesis, whereas Comparative Example 8 is significantly reduced to 45.1%. Understood.
上記したような本発明によるときは、その優れた陰イオン交換能によって、有害陰イオン(砒素、六価クロム、弗素、硼素など)を効率的に固定化することができ、各種廃棄物の安全性向上技術、無害化環境技術において長期間に亘って安定的に効果を発揮することができる。 According to the present invention as described above, harmful anions (arsenic, hexavalent chromium, fluorine, boron, etc.) can be efficiently immobilized by their excellent anion exchange ability, and safety of various wastes The effect can be stably demonstrated over a long period of time in the technology for improving the performance and the detoxifying environmental technology.
また、同様に各種の汚染水の水質改善、有害物質の溶出防止、土壌改良などに寄与することが期待でき、多くの分野において応用することが可能である。 Similarly, it can be expected to contribute to improving the quality of various contaminated water, preventing leaching of harmful substances, improving soil, etc., and can be applied in many fields.
したがって、本発明の層状複水酸化物とその合成方法は産業上の利用可能性において非常に優れたものであると理解されるべきものである。 Therefore, it should be understood that the layered double hydroxide and the synthesis method of the present invention are very excellent in industrial applicability.
Claims (6)
一般式[MgGeneral formula [Mg 2+2+ 1−x1-x AlAl 3+3+ xx (OH)(OH) 22 ][An‐] [An- x/nx / n ・zH・ ZH 22 O](ここで、An−は、硝酸イオン、塩酸イオンもしくは硫酸イオンからなるn価の陰イオン、0<x<1)で表されることを特徴とする高い陰イオン交換能を有する炭酸汚染し難い安定性に優れた層状複水酸化物。O] (where An- is an n-valent anion composed of nitrate ion, hydrochloric acid ion or sulfate ion, 0 <x <1) Layered double hydroxide with excellent stability that is difficult to achieve.
一般式[MgGeneral formula [Mg 2+2+ 1−x1-x AlAl 3+3+ xx (OH)(OH) 22 ][An‐] [An- x/nx / n ・zH・ ZH 22 O](ここで、An−は、硝酸イオン、塩酸イオンもしくは硫酸イオンからなるn価の陰イオン、0<x<1)で表されることを特徴とする高い陰イオン交換能を有する炭酸汚染し難い安定性に優れた層状複水酸化物。O] (where An- is an n-valent anion composed of nitrate ion, hydrochloric acid ion or sulfate ion, 0 <x <1) Layered double hydroxide with excellent stability that is difficult to achieve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005158900A JP4863192B2 (en) | 2005-05-31 | 2005-05-31 | Layered double hydroxides with high anion exchange ability and high carbon dioxide contamination resistance and their synthesis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005158900A JP4863192B2 (en) | 2005-05-31 | 2005-05-31 | Layered double hydroxides with high anion exchange ability and high carbon dioxide contamination resistance and their synthesis |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006334456A JP2006334456A (en) | 2006-12-14 |
JP4863192B2 true JP4863192B2 (en) | 2012-01-25 |
Family
ID=37555458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005158900A Active JP4863192B2 (en) | 2005-05-31 | 2005-05-31 | Layered double hydroxides with high anion exchange ability and high carbon dioxide contamination resistance and their synthesis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4863192B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4621102B2 (en) * | 2005-09-29 | 2011-01-26 | 敏雄 霜田 | Method for continuous synthesis of hydrotalcite compound and apparatus therefor |
JP2010059005A (en) * | 2008-09-02 | 2010-03-18 | Kanazawa Inst Of Technology | Composite body and method for producing the same |
WO2021070446A1 (en) * | 2019-10-11 | 2021-04-15 | 日本国土開発株式会社 | Method for treating liquid |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5030039B1 (en) * | 1967-07-17 | 1975-09-27 | ||
JP3677139B2 (en) * | 1997-02-18 | 2005-07-27 | 道夫 加島 | Cement mortar for concrete deterioration control |
JP2000024658A (en) * | 1998-07-08 | 2000-01-25 | Kaisui Kagaku Kenkyusho:Kk | Dephosphorizing agent for water and method for removing phosphorus and regeneration thereof |
EP1112960A4 (en) * | 1999-07-08 | 2003-08-27 | Mizusawa Industrial Chem | Composite polybasic salt, process for producing the same, and use |
JP4348426B2 (en) * | 2002-08-29 | 2009-10-21 | 独立行政法人産業技術総合研究所 | Highly selective dephosphorizing agent and method for producing the same |
JP2004167408A (en) * | 2002-11-21 | 2004-06-17 | Aisin Takaoka Ltd | Hydrotalcite-like compound for removing phosphoric acid ion and method for producing the same |
-
2005
- 2005-05-31 JP JP2005158900A patent/JP4863192B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2006334456A (en) | 2006-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cheng et al. | Phosphate adsorption from sewage sludge filtrate using zinc–aluminum layered double hydroxides | |
Koilraj et al. | Phosphate uptake behavior of ZnAlZr ternary layered double hydroxides through surface precipitation | |
Tezuka et al. | Studies on selective adsorbents for oxo-anions. Nitrate ion-exchange properties of layered double hydroxides with different metal atoms | |
JP5482979B2 (en) | Adsorbent | |
EP3502058A1 (en) | Method for producing lanthanide-doped layered double hydroxides | |
US20080255400A1 (en) | Hydrotalcite-Like Substance, Process for Producing the Same and Method of Immobilizing Hazardous Substance | |
EP2014358A1 (en) | Preparation of hydrotalcite-like adsorbents useful for the adsorption of anionic materials | |
JP6180235B2 (en) | Hydrogen peroxide and ozone decomposition catalyst, hydrogen peroxide and ozone decomposition method | |
TW200942323A (en) | Selective adsorbent and process for producing the same | |
JP5201680B2 (en) | Hydrotalcite-like granular material and method for producing the same | |
Oladoja et al. | Towards the development of a reactive filter from green resource for groundwater defluoridation | |
JP7256493B2 (en) | Method for producing adsorbent containing fine hydrotalcite | |
JP5336932B2 (en) | Water purification material, water purification method, phosphate fertilizer precursor and method for producing phosphate fertilizer precursor | |
JP4709498B2 (en) | Crystalline layered double hydroxide powder, method for producing the same, molded product, and method for immobilizing harmful substances | |
WO2018124190A1 (en) | Water purification apparatus and water purification method using layered double hydroxide | |
JP4863192B2 (en) | Layered double hydroxides with high anion exchange ability and high carbon dioxide contamination resistance and their synthesis | |
CN103303996A (en) | Application of activated aluminum oxide defluorination adsorbing material with different surface features | |
JP5110463B2 (en) | Method for producing magnetic nanocomplex material having anion adsorptivity and magnetism | |
Tsuji | SeO32−-selective properties of inorganic materials synthesized by the soft chemical process | |
JP5484702B2 (en) | Water purification material and water purification method using the same | |
EP4201512A1 (en) | Method for producing iron-based layered double hydroxides and oxides | |
JP2008029985A (en) | Apparatus for regenerating anion adsorbent and method of regenerating anion adsorbent using the same | |
JP6551171B2 (en) | Method for producing stabilized Schwartermanite | |
Theiss | Synthesis and characterisation of layered double hydroxides and their application for water purification | |
JP2909336B2 (en) | Decomposer for free chlorine in water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050531 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070821 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20071016 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080530 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110405 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110531 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110531 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111025 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111101 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141118 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4863192 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |