JP4709498B2 - Crystalline layered double hydroxide powder, method for producing the same, molded product, and method for immobilizing harmful substances - Google Patents

Crystalline layered double hydroxide powder, method for producing the same, molded product, and method for immobilizing harmful substances Download PDF

Info

Publication number
JP4709498B2
JP4709498B2 JP2004126083A JP2004126083A JP4709498B2 JP 4709498 B2 JP4709498 B2 JP 4709498B2 JP 2004126083 A JP2004126083 A JP 2004126083A JP 2004126083 A JP2004126083 A JP 2004126083A JP 4709498 B2 JP4709498 B2 JP 4709498B2
Authority
JP
Japan
Prior art keywords
layered double
double hydroxide
crystalline layered
hydroxide powder
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004126083A
Other languages
Japanese (ja)
Other versions
JP2005306667A (en
Inventor
淳司 山崎
舞 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Showa Kde Co Ltd
Original Assignee
Waseda University
Showa Kde Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Showa Kde Co Ltd filed Critical Waseda University
Priority to JP2004126083A priority Critical patent/JP4709498B2/en
Publication of JP2005306667A publication Critical patent/JP2005306667A/en
Application granted granted Critical
Publication of JP4709498B2 publication Critical patent/JP4709498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、結晶質層状複水酸化物粉末とその製造方法並びに成型体及び有害物質の固定化方法に関する。   The present invention relates to a crystalline layered double hydroxide powder, a method for producing the same, a molded body, and a method for immobilizing harmful substances.

層状複水酸化物とは、ハイドロタルサイトやハイドロカルマイトに代表されるような天然にも産する鉱物の総称であり、マグネシウム,カルシウム,アルミニウムなど、天然に豊富に存在する元素の水酸化物を主骨格としている。そして、例えば、ハイドロタルサイトは特許文献1、ハイドロカルマイトは特許文献2で示されているように、その合成も比較的容易に行うことができる。   Layered double hydroxide is a generic name for naturally occurring minerals such as hydrotalcite and hydrocalumite, and is a hydroxide of elements that are abundant in nature such as magnesium, calcium, and aluminum. Is the main skeleton. For example, as shown in Patent Document 1 for hydrotalcite and Patent Document 2 for hydrocalumite, the synthesis thereof can be performed relatively easily.

これら層状複水酸化物は、陰イオン交換作用を有していることが知られている。そして、この陰イオン交換作用によって、砒素,フッ素,ホウ素,セレン,六価クロム,亜硝酸イオンのような陰イオン系の有害物質を固定化することができれば、廃棄物の安全性向上技術、無害化環境改善技術において、汚染水の水質改善、有害物質の溶出防止、土壌改良、廃棄物処分場での有害物質の安定化促進、などに寄与できるものと期待される。
特公昭50−30039号公報 特開平4−154648号公報
These layered double hydroxides are known to have an anion exchange action. And if this anion exchange action can immobilize anionic harmful substances such as arsenic, fluorine, boron, selenium, hexavalent chromium and nitrite ion, it will improve the safety of waste, harmless It is expected to contribute to improving the quality of contaminated water, preventing leaching of harmful substances, improving soil, and promoting the stabilization of harmful substances at waste disposal sites.
Japanese Patent Publication No. 50-30039 JP-A-4-154648

しかし、従来の層状複水酸化物は、空気中の炭酸ガスや水中の炭酸イオンと優先的にイオン交換するために通常の方法では目的とする陰イオンとイオン交換せず、陰イオン系の有害物質の固定化において期待されるような効果は得られなかった。この原因は、従来の技術において製造される炭酸イオンが入った層状複水酸化物は、高結晶質であって且つ炭酸イオンを層間に含むことにより、結晶が大きく、陰イオン交換性能が低くなっているためと考えられる。   However, conventional layered double hydroxides are preferentially ion-exchanged with carbon dioxide in the air or carbonate ions in the water, so that they do not ion-exchange with the intended anion in the usual way, and are harmful to anions. The expected effect in immobilizing the substance was not obtained. This is because the layered double hydroxide containing carbonate ions produced in the prior art is highly crystalline and contains carbonate ions between the layers, resulting in large crystals and low anion exchange performance. It is thought that it is because.

そこで、本発明は上記問題点に鑑み、陰イオン吸着効果が高く、目的とする陰イオンとイオン交換する、結晶質層状複水酸化物粉末とその製造方法並びに成型体及び有害物質の固定化方法を提供することを目的とする。   Therefore, in view of the above problems, the present invention has a high anion adsorption effect and ion exchange with the target anion, a crystalline layered double hydroxide powder, a production method thereof, a molded body, and a method for immobilizing a harmful substance The purpose is to provide.

上記課題を解決するために、アルミニウムイオンを含むアルカリ性溶液にマグネシウムイオンを含む酸性溶液を一気に加えて混合し、生成した沈殿物を直ちに乾燥、又はろ過後に乾燥することで、結晶子サイズが20nm以下の層状複水酸化物が得られることを見出した。さらに、炭酸イオンを含まない原料を用いるなど、炭酸を含まない条件下で製造を行い、乾燥中に二酸化炭素との接触を避けることで、炭酸イオンを含まない結晶質層状複水酸化物粉末が得られることを見出し、本発明に想到した。   In order to solve the above problems, an acidic solution containing magnesium ions is added to an alkaline solution containing aluminum ions at a stretch and mixed, and the resulting precipitate is immediately dried or dried after filtration, so that the crystallite size is 20 nm or less. It was found that a layered double hydroxide was obtained. Furthermore, the production of the crystalline layered double hydroxide powder containing no carbonate ions is achieved by using a raw material that does not contain carbonate ions. The inventors have found out that the present invention can be obtained and have arrived at the present invention.

本発明の請求項1記載の結晶質層状複水酸化物粉末は、炭酸を含まない一般式[Mg 2+ 1−x Al 3+ (OH)][An− x/n・zHO](ここで、A n−はn価の陰イオン,0<x<1)で表され、結晶子サイズが20nm以下であることを特徴とする。 Crystalline layered double hydroxide powder according to claim 1 of the present invention have the general formula does not contain carbon [Mg 2+ 1-x Al 3+ x (OH) 2] [A n- x / n · zH 2 O] (Here , A n− is an n-valent anion, 0 <x <1), and the crystallite size is 20 nm or less.

本発明の請求項記載の成型体は、請求項1記載の結晶質層状複水酸化物粉末を成型したことを特徴とする。 Molded body according to claim 2, wherein the present invention is characterized in that molding a crystalline layered double hydroxide powder according to claim 1 Symbol placement.

本発明の請求項記載の有害物質の固定化方法は、請求項1記載の結晶質層状複水酸化物粉末を、有害物質を含む対象物に添加することを特徴とする。 The method of immobilizing the toxic substances according to claim 3 of the present invention, the crystalline layered double hydroxide powder according to claim 1 Symbol placement, is characterized by adding to the object containing harmful substances.

本発明の請求項記載の結晶質層状複水酸化物粉末の製造方法は、請求項1記載の結晶質層状複水酸化物粉末を製造する方法であって、炭酸を含まない条件下で、マグネシウムイオンとアルミニウムイオンとを含む酸性溶液とアルカリを含むアルカリ性溶液を混合して沈殿を生成させる工程と、この沈殿を乾燥し粉末化する工程とを備え、混合するマグネシウムイオンとアルミニウムイオンのモル比を2:1〜5:1の範囲とすることを特徴とする。 The method for producing a crystalline layered double hydroxide powder according to claim 4 of the present invention is a method for producing the crystalline layered double hydroxide powder according to claim 1, wherein carbonic acid is not included. a step of producing a precipitate combined mixing an alkaline solution comprising an acidic solution and an alkaline containing magnesium ions and the aluminum ions, the precipitate and a step of powdered drying, mixed with magnesium ions and aluminum ions The molar ratio is in the range of 2: 1 to 5: 1 .

本発明の請求項記載の結晶質層状複水酸化物粉末の製造方法は、請求項1記載の結晶質層状複水酸化物粉末を製造する方法であって、炭酸を含まない条件下で、マグネシウムイオンを含む酸性溶液とアルミニウムイオンとを含むアルカリ性溶液を混合して沈殿を生成させる工程と、この沈殿を乾燥し粉末化する工程とを備え、混合するマグネシウムイオンとアルミニウムイオンのモル比を2:1〜5:1の範囲とすることを特徴とする。 The method for producing a crystalline layered double hydroxide powder according to claim 5 of the present invention is a method for producing the crystalline layered double hydroxide powder according to claim 1, wherein carbonic acid is not included. comprising a step of producing a precipitate combined mixing an alkaline solution containing an acidic solution and the aluminum ion containing magnesium ions, and a step of powdered drying the precipitate, the molar ratio of magnesium ion and aluminum ion mixing Is in the range of 2: 1 to 5: 1 .

本発明の請求項記載の結晶質層状複水酸化物粉末の製造方法は、請求項4又は5において、生成した沈殿を真空乾燥または凍結真空乾燥することを特徴とする。 The method for producing a crystalline layered double hydroxide powder according to claim 6 of the present invention is characterized in that, in claim 4 or 5 , the produced precipitate is vacuum dried or freeze vacuum dried.

本発明の結晶質層状複水酸化物粉末によれば、陰イオン交換能が優れており、目的とする陰イオンと効果的にイオン交換することができる。   According to the crystalline layered double hydroxide powder of the present invention, the anion exchange ability is excellent, and ion exchange with the intended anion can be effectively performed.

本発明の成形体によれば、ろ過材などに成形することで、工場廃液や汚水などから容易に有害物質を分離除去することができる。   According to the molded article of the present invention, it is possible to easily separate and remove harmful substances from factory waste liquid, sewage, etc. by molding into a filter medium.

本発明の有害物質の固定化方法によれば、結晶質層状複水酸化物粉末が目的とする陰イオンとイオン交換し、有害物質を固定化することができる。   According to the method for immobilizing a harmful substance of the present invention, the crystalline layered double hydroxide powder can be ion-exchanged with a target anion to immobilize the harmful substance.

本発明の結晶質層状複水酸化物粉末の製造方法によれば、炭酸化することなく結晶子サイズが小さい陰イオン交換能に優れた結晶質層状複水酸化物粉末を製造することができる。   According to the method for producing a crystalline layered double hydroxide powder of the present invention, a crystalline layered double hydroxide powder having a small crystallite size and excellent anion exchange ability can be produced without being carbonated.

また、本発明の結晶質層状覆水酸化物粉末は粉体であるため、吸着量、流体への分散性、充填性が優れている。また、粉末にすることで、結晶成長を抑えることができ、貯蔵安定性が高い。更に、粉体であることにより、スラリー状の場合と比べて、運搬が容易で、また有害物除去する対象物へ散布しやすく、取り扱い易いという効果がある。   Further, since the crystalline layered hydroxide powder of the present invention is a powder, it has excellent adsorption amount, fluid dispersibility, and filling properties. Moreover, by making it into powder, crystal growth can be suppressed and storage stability is high. Furthermore, since it is a powder, compared with the case of a slurry form, there exists an effect that it is easy to convey, and can be easily spread | dispersed to the target object which removes a harmful substance, and is easy to handle.

以下、本発明の結晶質層状複水酸化物粉末とその製造方法並びに成型体及び有害物質の固定化方法について説明する。   Hereinafter, the crystalline layered double hydroxide powder of the present invention, a production method thereof, a molded body, and a method for immobilizing a harmful substance will be described.

本発明における結晶質層状複水酸化物とは、一般式[M2+ 1-x3+ x(OH)2][An- x/n・zH2O](ここで、M2+は2価の金属陽イオン,M3+は3価の金属陽イオン,An-はn価の陰イオン,0<x<1)で表されるものであって、具体的には、ハイドロタルサイト,デラウテルサイト,リーベサイト,パイロオーライト,タコバイト,スチヒタイト,メイクスネライト,マナセアイト,バーバートナイト,クロルマグアルミナイト,ジョグレナイト,ハイドロカルマイトなどが挙げられる。本発明の結晶質層状複水酸化物は、炭酸を含んでおらず、結晶子サイズが20nm以下、平均結晶子サイズが10nm以下となっている。 The crystalline layered double hydroxide in the present invention is a general formula [M 2+ 1−x M 3+ x (OH) 2 ] [A n− x / n · zH 2 O] (where M 2+ the divalent metal cation, M 3+ is a trivalent metal cation, a n-n-valent anion, be those represented by 0 <x <1), specifically, Hydro Examples include talcite, delautersite, leebesite, pyroaulite, tacobite, suchihite, make snelite, manasseite, barbournite, chlormagaluminite, joglenite, hydrocalumite. The crystalline layered double hydroxide of the present invention does not contain carbonic acid, has a crystallite size of 20 nm or less, and an average crystallite size of 10 nm or less.

なお、前記2価の金属陽イオンM2+がマグネシウムイオンMg2+、前記3価の陽イオンM3+がアルミニウムイオンAl3+である場合は、ハイドロタルサイトであり、ハイドロタルサイトの一般式は、Mg2+ 1-xAl3+ x(OH)2(An-x/n・zH2Oである。そして、結晶質のハイドロタルサイトの最も一般的な組成では、アルミニウムイオンとマグネシウムイオンのモル比が1:3(x=0.25)となっていることが知られている。 In addition, when the divalent metal cation M 2+ is magnesium ion Mg 2+ and the trivalent cation M 3+ is aluminum ion Al 3+ , it is a hydrotalcite. The formula is Mg 2+ 1-x Al 3+ x (OH) 2 (A n− ) x / n · zH 2 O. In the most common composition of crystalline hydrotalcite, it is known that the molar ratio of aluminum ions to magnesium ions is 1: 3 (x = 0.25).

また、前記2価の金属陽イオンM2+がカルシウムイオンCa2+である場合は、ハイドロカルマイトである。 Further, when the divalent metal cation M 2+ is a calcium ion Ca 2+ , it is a hydrocalumite.

つぎに、本発明の結晶質層状複水酸化物粉末の第一の製造方法について説明する。まず、炭酸を含まない条件下で、2価の金属陽イオンと3価の金属陽イオンとを含む酸性溶液とアルカリを含むアルカリ性溶液を一気に混合して沈殿を生成させる。   Next, the first method for producing the crystalline layered double hydroxide powder of the present invention will be described. First, under conditions not containing carbonic acid, an acidic solution containing a divalent metal cation and a trivalent metal cation and an alkaline solution containing an alkali are mixed at a time to form a precipitate.

なお、炭酸を含まない条件下とは、前記2価の金属陽イオンM2+と前記3価の陽イオンM3+の原料、アルカリに炭酸を含まないことを意味する。用いる水も脱炭酸したものを用いるのが好ましいが、脱炭酸していない普通の水でも本発明の結晶質層状複水酸化物粉末は製造可能である。さらに、これ以降の工程においても炭酸の存在しない条件で結晶質層状複水酸化物粉末を製造することが好ましい。 The condition not containing carbonic acid means that the divalent metal cation M 2+ and the raw material of the trivalent cation M 3+ and alkali do not contain carbonic acid. It is preferable to use water that has been decarboxylated, but the crystalline layered double hydroxide powder of the present invention can be produced even with ordinary water that has not been decarboxylated. Furthermore, it is preferable to produce the crystalline layered double hydroxide powder under the conditions where carbonic acid does not exist in the subsequent steps.

また、前記2価の金属陽イオンM2+と前記3価の陽イオンM3+を含む酸性溶液を調製する際には、硝酸や塩酸を添加して酸性としてもよい。 Further, when preparing an acidic solution containing the divalent metal cation M 2+ and the trivalent cation M 3+ , it may be made acidic by adding nitric acid or hydrochloric acid.

ここで、前記2価の金属陽イオンM2+がマグネシウムイオンMg2+、前記3価の陽イオンM3+がアルミニウムイオンAl3+である場合を例にとって説明すると、マグネシウムイオンのマグネシウム源としては、酸もしくは水に可溶性のマグネシウム化合物であれば天然に産するものでも、合成されたもののいずれでもよく、特定の物質に限定されるものではない。例えば、水酸化マグネシウム,酸化マグネシウム,硝酸マグネシウム,塩化マグネシウムなどを用いることができ、これらマグネシウム源はいずれかを単独に用いても、2種以上を組み合わせて用いていてもよい。 Here, the case where the divalent metal cation M 2+ is a magnesium ion Mg 2+ and the trivalent cation M 3+ is an aluminum ion Al 3+ will be described as an example. As long as it is a magnesium compound that is soluble in acid or water, it may be either naturally produced or synthesized, and is not limited to a specific substance. For example, magnesium hydroxide, magnesium oxide, magnesium nitrate, magnesium chloride and the like can be used, and these magnesium sources may be used alone or in combination of two or more.

また、アルミニウムイオン源としては、酸、アルカリ、もしくは水に可溶性のアルミニウム化合物であれば天然に産するものでも、合成されたもののいずれでもよく、特定の物質に限定されるものではない。例えば、水酸化アルミニウム、酸化アルミニウム、アルミニウム酸化水酸化物、アルミン酸ナトリウム、硝酸アルミニウム、塩化アルミニウムなどを用いることができ、これらアルミニウム源はいずれかを単独に用いても、2種以上を組み合わせて用いていてもよい。   The aluminum ion source may be either a naturally occurring or synthesized one as long as it is an aluminum compound that is soluble in acid, alkali, or water, and is not limited to a specific substance. For example, aluminum hydroxide, aluminum oxide, aluminum oxide hydroxide, sodium aluminate, aluminum nitrate, aluminum chloride and the like can be used. These aluminum sources can be used alone or in combination of two or more. May be used.

ここで、アルミニウムイオンとマグネシウムイオンからなるハイドロタルサイトの一般式は、Mg2+ 1-xAl3+ x(OH)2(An-x/n・zH2Oであり、結晶質のハイドロタルサイトの最も一般的な組成では、マグネシウムイオンとアルミニウムイオンのモル比が3:1(x=0.25)となっているので、酸性溶液中のマグネシウムイオンとアルミニウムイオンのモル比は、2:1〜5:1の範囲とするのが好ましい。この範囲とすることによって、アルミニウム源とマグネシウム源を無駄にすることなく、物質収支的に有利に結晶質層状複水酸化物粉末を製造することができる。 Here, the general formula of hydrotalcite composed of aluminum ions and magnesium ions is Mg 2+ 1-x Al 3+ x (OH) 2 (A n− ) x / n · zH 2 O, which is crystalline. In the most common composition of hydrotalcite, the molar ratio of magnesium ions to aluminum ions is 3: 1 (x = 0.25), so the molar ratio of magnesium ions to aluminum ions in the acidic solution is A range of 2: 1 to 5: 1 is preferable. By setting it as this range, the crystalline layered double hydroxide powder can be produced advantageously in terms of mass balance without wasting the aluminum source and the magnesium source.

2価の金属陽イオンと3価の金属陽イオンとを含む酸性溶液と混合するための、アルカリを含むアルカリ性溶液としては、pHが8〜14のものを用いるのが好ましい。また、混合の際、アルカリ性溶液を激しく攪拌することによって、速やかに結晶子サイズの小さい結晶質層状複水酸化物が生成する。結晶質層状複水酸化物の結晶子サイズが小さいので、混合時に溶液はコロイド状となる。なお、酸性溶液とアルカリ性溶液の混合の方法としては、酸性溶液をアルカリ性溶液へ一気に加えて混合するか、酸性溶液をアルカリ性溶液へ滴下して混合するのが好ましいが、これら以外の方法であってもよい。   As an alkaline solution containing an alkali for mixing with an acidic solution containing a divalent metal cation and a trivalent metal cation, a solution having a pH of 8 to 14 is preferably used. Further, during mixing, the alkaline solution is vigorously stirred to quickly produce a crystalline layered double hydroxide having a small crystallite size. Since the crystallite size of the crystalline layered double hydroxide is small, the solution becomes colloidal when mixed. In addition, as a method of mixing the acidic solution and the alkaline solution, it is preferable to add the acidic solution to the alkaline solution and mix them at once, or drop the acidic solution into the alkaline solution and mix them, but other methods are possible. Also good.

ここで、アルカリ性溶液に含まれるアルカリとしては、水溶液をアルカリ性とするものであればよく、特定の物質に限定されるものではない。例えば、水酸化ナトリウム,水酸化カリウム,水酸化カルシウム,アンモニア水,ほう酸ナトリウム,ほう酸カリウムなどを用いることができる。これらアルカリはいずれかを単独に用いても、2種以上を組み合わせて用いていてもよい。   Here, the alkali contained in the alkaline solution is not limited to a specific substance as long as the aqueous solution is alkaline. For example, sodium hydroxide, potassium hydroxide, calcium hydroxide, aqueous ammonia, sodium borate, potassium borate and the like can be used. Any of these alkalis may be used alone or in combination of two or more.

2価の金属陽イオンと3価の金属陽イオンとを含む酸性溶液とアルカリを含むアルカリ性溶液を一気に混合して沈殿を生成させたら、つぎに、この沈殿を直ちに固液分離する。固液分離の方法としては、吸引ろ過,遠心分離,凍結融解・ろ過などの常法を用いることができる。このように、沈殿を直ちに固液分離することによって、結晶質層状複水酸化物の結晶が成長することがなく、結晶子サイズが20nm以下、平均結晶子サイズが10nmに制御される。なお、固液分離後、固相を水で洗浄することによって、より確実に結晶の成長を止め、結晶子サイズを20nm以下とすることができる。   When an acidic solution containing a divalent metal cation and a trivalent metal cation and an alkaline solution containing an alkali are mixed at a time to form a precipitate, the precipitate is then immediately solid-liquid separated. As a method of solid-liquid separation, conventional methods such as suction filtration, centrifugation, freeze thawing and filtration can be used. Thus, by immediately solid-liquid separating the precipitate, the crystalline layered double hydroxide crystal does not grow, and the crystallite size is controlled to 20 nm or less and the average crystallite size is controlled to 10 nm. After solid-liquid separation, the solid phase is washed with water, so that crystal growth can be more reliably stopped and the crystallite size can be reduced to 20 nm or less.

つぎに、この固液分離によって得られた固相を乾燥し粉末化する。乾燥の方法としては、結晶質層状複水酸化物の炭酸化を防ぐために、真空乾燥,凍結真空乾燥が好ましい。あるいは、速やかに熱風乾燥させてもよい。   Next, the solid phase obtained by the solid-liquid separation is dried and powdered. As a drying method, vacuum drying or freeze vacuum drying is preferable in order to prevent carbonation of the crystalline layered double hydroxide. Alternatively, it may be quickly dried with hot air.

なお、固液分離の工程を省略して、沈殿生成後、そのまま乾燥してもよい。この場合、乾燥後、不純物を除去するために、乾燥して得られた粉末を水などで洗浄するのが好ましい。また、固液分離の工程を行った場合においても、乾燥後、不純物を除去するために、乾燥して得られた粉末を水などで洗浄してもよい。   Note that the solid-liquid separation step may be omitted, and the precipitate may be dried as it is after the formation of the precipitate. In this case, in order to remove impurities after drying, it is preferable to wash the powder obtained by drying with water or the like. Even when a solid-liquid separation step is performed, the powder obtained by drying may be washed with water or the like in order to remove impurities after drying.

このようにして得られる本発明の結晶質層状複水酸化物粉末は、結晶子サイズが20nm以下、平均結晶子サイズが10nmとなっている。結晶子サイズが20nmを超えると炭酸イオン以外のアニオン吸着効果としての陰イオン交換性能が急激に低下するため好ましくないが、本発明の結晶質層状複水酸化物粉末は結晶子サイズが20nm以下であり、高い陰イオン交換性能を有する。   The crystalline layered double hydroxide powder of the present invention thus obtained has a crystallite size of 20 nm or less and an average crystallite size of 10 nm. When the crystallite size exceeds 20 nm, the anion exchange performance as an anion adsorbing effect other than carbonate ions is abruptly deteriorated. However, the crystalline layered double hydroxide powder of the present invention has a crystallite size of 20 nm or less. Yes, with high anion exchange performance.

また、この結晶質層状覆水酸化物粉末は粉体であるため、吸着量、流体への分散性、充填性が優れている。また、粉末にすることで、結晶成長を抑えることができ、貯蔵安定性が高い。更に、粉体であることにより、スラリー状の場合と比べて、運搬が容易で、また有害物除去する対象物へ散布しやすく、取り扱い易いという効果を有する。   In addition, since the crystalline layered hydroxide powder is a powder, it has excellent adsorption amount, dispersibility in fluid, and filling properties. Moreover, by making it into powder, crystal growth can be suppressed and storage stability is high. Furthermore, since it is a powder, compared with the case of a slurry form, it has the effect that it is easy to carry, is easy to spread on the target object from which harmful substances are removed, and is easy to handle.

つぎに、本発明の結晶質層状複水酸化物粉末の第二の製造方法について説明する。この第二の方法は、2価の金属陽イオンを含む酸性溶液を調製し、3価の金属陽イオンとを含むアルカリ性溶液調製し、これら酸性溶液とアルカリ性溶液とを一気に混合して沈殿を生成させる。これ以外の工程は、上記第一の方法と同様であるので、その詳細な説明を省略する。この方法においても、結晶子サイズが20nm以下であり、高い陰イオン交換性能を有する結晶質層状複水酸化物粉末を製造することができる。   Next, a second method for producing the crystalline layered double hydroxide powder of the present invention will be described. In this second method, an acidic solution containing a divalent metal cation is prepared, an alkaline solution containing a trivalent metal cation is prepared, and the acidic solution and the alkaline solution are mixed together to form a precipitate. Let Since the other steps are the same as those in the first method, detailed description thereof is omitted. Also in this method, a crystalline layered double hydroxide powder having a crystallite size of 20 nm or less and high anion exchange performance can be produced.

本発明の結晶質層状複水酸化物粉末は、有害物質の固定化に使用することができる。例えば、本発明の結晶質層状複水酸化物粉末をそのまま、または水などの液体に分散させたスラリーとして有害物質を含んだ汚染土壌などの対象物に散布,混合などして添加することで、有害物質を結晶質層状複水酸化物粉末に固定させ、無毒化することができる。   The crystalline layered double hydroxide powder of the present invention can be used for immobilization of harmful substances. For example, by adding the crystalline layered double hydroxide powder of the present invention as it is or as a slurry dispersed in a liquid such as water to a target object such as contaminated soil containing harmful substances, Hazardous substances can be fixed on the crystalline layered double hydroxide powder and detoxified.

また、本発明の結晶質層状複水酸化物粉末を成型してろ過材とし、このろ過材で有害物質を含んだ廃液や汚水などの対象物をろ過することによって、対象物に含まれる有害物質をろ過材に固定させ、対象物から容易に有害物質を分離除去することができる。このろ過材などの成型品を製造する場合には、本発明の結晶質層状複水酸化物粉末のみを成型してもよいが、公知の有機または無機のバインダーを配合して成型してもよい。成型方法としては、造粒,押し出し,流し込み,プレスなどの常法を用いることができる。あるいは、既存のフィルターに本発明の結晶質層状複水酸化物粉末を塗布するなどして担持させて、ろ過材としてもよい。   In addition, the crystalline layered double hydroxide powder of the present invention is molded into a filter medium, and the filter medium is used to filter a target object such as waste liquid or sewage containing a harmful substance, thereby including a target substance contained in the target object. Can be fixed to the filter medium, and harmful substances can be easily separated and removed from the object. In the case of producing a molded product such as this filter material, only the crystalline layered double hydroxide powder of the present invention may be molded, or it may be molded by blending a known organic or inorganic binder. . As the molding method, conventional methods such as granulation, extrusion, pouring, and pressing can be used. Alternatively, it may be supported on an existing filter by applying the crystalline layered double hydroxide powder of the present invention or the like to provide a filter medium.

以上のように、本発明の結晶質層状複水酸化物粉末は、炭酸を含まない一般式[M2+ 1-x3+ x(OH)2][An- x/n・zH2O](ここで、M2+は2価の金属陽イオン,M3+は3価の金属陽イオン,An-はn価の陰イオン,0<x<1)で表され、結晶子サイズが20nm以下であるから、結晶の表面積の総和が大きくなり、その結果、陰イオン交換性能が優れたものとなり、目的とする陰イオンと効果的にイオン交換することができる。 As described above, the crystalline layered double hydroxide powder of the present invention has the general formula [M 2 + 1−x M 3+ x (OH) 2 ] [A n− x / n · zH 2 without carbonic acid. O] (wherein, M 2+ is a divalent metal cation, M 3+ is a trivalent metal cation, a n-n-valent anion, 0 <x <1) is represented by crystallite Since the size is 20 nm or less, the sum of the surface areas of the crystals is increased, and as a result, the anion exchange performance is excellent, and the target anions can be effectively ion-exchanged.

また、本発明の成型体は、本発明の結晶質層状複水酸化物粉末を成型したので、対象物に含まれる有害物質を成型品に固定させ、対象物から容易に有害物質を分離除去することができる。   Further, since the molded body of the present invention is formed by molding the crystalline layered double hydroxide powder of the present invention, the harmful substances contained in the object are fixed to the molded product, and the harmful substances are easily separated and removed from the object. be able to.

また、本発明の有害物質の固定化方法は、本発明の結晶質層状複水酸化物粉末を、有害物質を含む対象物に添加するので、結晶質層状複水酸化物粉末が目的とする陰イオンとイオン交換して有害物質が結晶質層状複水酸化物粉末に固定され、対象物を無毒化することができる。   In the method for immobilizing a harmful substance of the present invention, the crystalline layered double hydroxide powder of the present invention is added to an object containing a harmful substance, so that the crystalline layered double hydroxide powder is the target negative. By exchanging ions with ions, harmful substances are fixed to the crystalline layered double hydroxide powder, and the object can be detoxified.

また、本発明の結晶質層状複水酸化物粉末の製造方法は、炭酸を含まない条件下で、2価の金属陽イオンと3価の金属陽イオンとを含む酸性溶液とアルカリを含むアルカリ性溶液を一気に混合して沈殿を生成させる工程、あるいは、2価の金属陽イオンを含む酸性溶液と3価の金属陽イオンとを含むアルカリ性溶液を一気に混合して沈殿を生成させる工程と、この沈殿を直ちに乾燥し粉末化する工程とを備えたので、炭酸化することなく結晶子サイズが小さい陰イオン交換能に優れた結晶質層状複水酸化物粉末を製造することができる。   The method for producing a crystalline layered double hydroxide powder according to the present invention includes an acidic solution containing a divalent metal cation and a trivalent metal cation and an alkaline solution containing an alkali under a condition not containing carbonic acid. A step of generating a precipitate by mixing at a time, or a step of generating a precipitate by mixing an acidic solution containing a divalent metal cation and an alkaline solution containing a trivalent metal cation at once. A crystalline layered double hydroxide powder having a small crystallite size and excellent anion exchange ability without carbonation can be produced.

また、混合する2価の金属陽イオンと3価の金属陽イオンのモル比を2:1〜5:1の範囲とするので、2価の金属陽イオンと3価の金属陽イオンの原料を無駄にすることなく、物質収支的に有利にハイドロタルサイト様物質を製造することができる。   Further, since the molar ratio of the divalent metal cation to the trivalent metal cation to be mixed is in the range of 2: 1 to 5: 1, the raw material of the divalent metal cation and the trivalent metal cation is used. A hydrotalcite-like material can be produced advantageously in terms of material balance without being wasted.

さらに、生成した沈殿を真空乾燥または凍結真空乾燥するので、確実に結晶質層状複水酸化物の炭酸化を防ぐことができる。   Furthermore, since the produced precipitate is vacuum-dried or freeze-dried, carbonation of the crystalline layered double hydroxide can be surely prevented.

以上、本発明の結晶質層状複水酸化物粉末とその製造方法並びに成型体及び有害物質の固定化方法について説明してきたがこれに限られず、本発明の思想を逸脱しない範囲で種々の変形実施が可能である。   As described above, the crystalline layered double hydroxide powder of the present invention, the production method thereof, the molded body, and the method of immobilizing a harmful substance have been described. Is possible.

以下に、より具体的に本発明の結晶質層状複水酸化物粉末とその製造方法並びに成型体及び有害物質の固定化方法について説明する。   Hereinafter, the crystalline layered double hydroxide powder of the present invention, the production method thereof, the molded product and the method of immobilizing harmful substances will be described more specifically.

2価の金属陽イオンとしてのマグネシウムイオン、3価の金属陽イオンとしてアルミニウムイオンを用いた。マグネシウム源として硝酸マグネシウム六水和物1molと、アルミニウム源として硝酸アルミニウム九水和物0.5molを1Lの蒸留水に溶かして酸性溶液を調製した。そして、水酸化ナトリウム3.5molを1Lの蒸留水に溶かしてアルカリ性溶液を作成した。このアルカリ性溶液に酸性溶液を一気に加えると、即座にゲル状の沈殿物が生成した。この混合溶液をそのまま真空乾燥装置(中央化工機社製:振動乾燥機VH型)で乾燥することで粉末が得られた。このように真乾燥装置を用いて乾燥すると、粉砕工程を経ずに粉末が得られるため、以下に述べる実施例2の場合と比較して粉砕工程の一つを省略することができる。このようにして得られた粉末は層状複水酸化物の他に硝酸ナトリウムを含むために、40℃のお湯で1分間洗浄後、定量濾紙No.5Cでろ過した。そのろ過残分を更に熱風乾燥機で110℃×1時間乾燥し、平工ミルで30秒粉砕し粉末製品を得た。得られた粉末はX線回折装置による解析により、炭酸を含まない結晶質層状複水酸化物であることを確認した。   Magnesium ions as divalent metal cations and aluminum ions as trivalent metal cations were used. An acidic solution was prepared by dissolving 1 mol of magnesium nitrate hexahydrate as a magnesium source and 0.5 mol of aluminum nitrate nonahydrate as an aluminum source in 1 L of distilled water. And 3.5 mol of sodium hydroxide was dissolved in 1 L of distilled water to prepare an alkaline solution. When an acidic solution was added to the alkaline solution all at once, a gel-like precipitate was immediately formed. The mixed solution was dried as it was with a vacuum drying apparatus (manufactured by Chuo Kakoki Co., Ltd .: vibration dryer VH type) to obtain a powder. Thus, when dried using a true drying apparatus, a powder is obtained without passing through the pulverization step, so that one of the pulverization steps can be omitted as compared with the case of Example 2 described below. Since the powder thus obtained contains sodium nitrate in addition to the layered double hydroxide, it was washed with hot water at 40 ° C. for 1 minute, and then quantified filter paper No. Filtered with 5C. The filtered residue was further dried at 110 ° C. for 1 hour with a hot air dryer and pulverized with a flat work mill for 30 seconds to obtain a powder product. The obtained powder was confirmed to be a crystalline layered double hydroxide not containing carbonic acid by analysis using an X-ray diffractometer.

また、X線回折装置を用いシェラーの方法により結晶子サイズを求めたところ、結晶子サイズは20nm以下であって、平均結晶子サイズは10nm以下となっていることが確認された。   Further, when the crystallite size was determined by the Scherrer method using an X-ray diffractometer, it was confirmed that the crystallite size was 20 nm or less and the average crystallite size was 10 nm or less.

実施例1と同様にゲル状の沈殿を生成させ、定量濾紙No.5Cでろ過した。そのろ過残分を熱風乾燥機で110℃×2時間乾燥した。本実施例によると、実施例1の真空乾燥を用いる場合と比較して、容易に乾燥を行うことができる。そして得られた塊を平工ミルで30秒粗粉砕してから硝酸ナトリウムを除くために40℃のお湯で1分間洗浄後、定量濾紙No.5Cでろ過した。そのろ過残分を更に熱風乾燥機で110℃×1時間乾燥し、平工ミルで30秒粉砕し粉末製品を得た。得られた粉末はX線回折装置による解析により炭酸を含まない結晶質層状複水酸化物であることを確認した。   A gel-like precipitate was produced in the same manner as in Example 1, and the quantitative filter paper No. Filtered with 5C. The filtration residue was dried with a hot air dryer at 110 ° C. for 2 hours. According to the present embodiment, it is possible to easily perform the drying as compared with the case of using the vacuum drying of the first embodiment. The resulting mass was coarsely pulverized for 30 seconds with a flat mill and then washed with hot water at 40 ° C. for 1 minute to remove sodium nitrate. Filtered with 5C. The filtered residue was further dried at 110 ° C. for 1 hour with a hot air dryer and pulverized with a flat work mill for 30 seconds to obtain a powder product. The obtained powder was confirmed to be a crystalline layered double hydroxide containing no carbonic acid by analysis using an X-ray diffractometer.

また、X線回折装置を用いシェラーの方法により結晶子サイズを求めたところ、結晶子サイズは20nm以下であって、平均結晶子サイズは10nm以下となっていることが確認された。   Further, when the crystallite size was determined by the Scherrer method using an X-ray diffractometer, it was confirmed that the crystallite size was 20 nm or less and the average crystallite size was 10 nm or less.

マグネシウム源として、市販の軽焼マグネシアを硝酸(30%液)1Lに攪拌しながら少しずつほぼ中性になるまで加えた。この溶液1Lには3.5molのマグネシウムイオンが存在した。次いでアルミニウム源として、廃水酸化アルミニウムゲル400gを水酸化ナトリウム水溶液(3mol/l)2Lに加えて攪拌した。この溶液2Lには1.5molのアルミニウムイオンが存在した。これらのアルミニウムイオンを含むアルカリ性溶液にマグネシウムを含む酸性溶液を一気に加えると、即座にゲル状の沈殿物が生成した。以下、実施例1と同様にして粉末を得た。得られた粉末はX線回折装置による解析により炭酸を含まない結晶質層状複水酸化物であることを確認した。   As a magnesium source, commercially available light-burned magnesia was added to 1 L of nitric acid (30% solution) little by little until it became almost neutral. In 1 L of this solution, 3.5 mol of magnesium ions were present. Next, 400 g of waste aluminum hydroxide gel was added to 2 L of an aqueous sodium hydroxide solution (3 mol / l) as an aluminum source and stirred. In 2 L of this solution, 1.5 mol of aluminum ions were present. When an acidic solution containing magnesium was added to the alkaline solution containing these aluminum ions all at once, a gel-like precipitate was immediately formed. Thereafter, a powder was obtained in the same manner as in Example 1. The obtained powder was confirmed to be a crystalline layered double hydroxide containing no carbonic acid by analysis using an X-ray diffractometer.

また、X線回折装置を用いシェラーの方法により結晶子サイズを求めたところ、結晶子サイズは20nm以下であって、平均結晶子サイズは10nm以下となっていることが確認された。   Further, when the crystallite size was determined by the Scherrer method using an X-ray diffractometer, it was confirmed that the crystallite size was 20 nm or less and the average crystallite size was 10 nm or less.

実施例1で得られた粉末100重量部にアルミナセメントを20部添加した粉体100部に対し、水30部を添加しフジパウダル社製遊星ミキサーで15分間混合した。その後、日東精機社製真空押出機で直径3mmに押出し、更に長さ10mmに切断した。得られた成型品を熱風乾燥機で60℃×1時間乾燥し、円柱形の成型体とした。   30 parts of water was added to 100 parts of powder obtained by adding 20 parts of alumina cement to 100 parts by weight of the powder obtained in Example 1, and mixed for 15 minutes with a planetary mixer manufactured by Fuji Powder Co., Ltd. Then, it was extruded to a diameter of 3 mm by a vacuum extruder manufactured by Nitto Seiki Co., Ltd. and further cut to a length of 10 mm. The obtained molded product was dried with a hot air dryer at 60 ° C. for 1 hour to obtain a cylindrical molded body.

上記実施例1〜4で作成された粉末,成型体を用いて、六価クロムとホウ素の吸着効果について試験を行なった。   Using the powders and molded bodies prepared in Examples 1 to 4 above, tests were conducted on the adsorption effect of hexavalent chromium and boron.

また、比較例として、有害陰イオン物質(砒素,フッ素,ホウ素,セレン,六価クロム,シアン,リン,硫酸,亜硝酸など)や有害重金属の除去,回収,不溶性化,無毒化を目的として市販されているハイドロタルサイト粉末を用いた。   In addition, as comparative examples, commercially available for the purpose of removing, recovering, insolubilizing, and detoxifying harmful anionic substances (arsenic, fluorine, boron, selenium, hexavalent chromium, cyan, phosphorus, sulfuric acid, nitrous acid, etc.) and harmful heavy metals Used hydrotalcite powder.

試験方法としては、所定の濃度の六価クロムおよびホウ素の標準溶液100mlを複数のプラスチック製ビーカー中に分取し、これに上記実施例1〜3で作成された粉末,成型体,または比較例の市販品について、それぞれ別々に1g加え、常温でマグネットスターラーで1時間攪拌した。その後、定量濾紙No.5Cでろ過し、ろ液中の六価クロムとホウ素の濃度を分光光度計にて測定した。また、実施例4で作成された成型体については、所定の濃度の六価クロムおよびホウ素の標準溶液100mlに対して3.0g加え、常温で1時間攪拌した。   As a test method, 100 ml of a standard solution of hexavalent chromium and boron having a predetermined concentration was dispensed into a plurality of plastic beakers, and the powders, molded bodies, or comparative examples prepared in Examples 1 to 3 were used for this. 1 g of each was added separately, and stirred at room temperature with a magnetic stirrer for 1 hour. Then, quantitative filter paper No. The mixture was filtered with 5C, and the concentrations of hexavalent chromium and boron in the filtrate were measured with a spectrophotometer. Moreover, about the molded object produced in Example 4, 3.0g was added with respect to 100 ml of standard solutions of the hexavalent chromium and boron of predetermined density | concentration, and it stirred at normal temperature for 1 hour.

この試験の結果を表1に示す。比較例では六価クロムの吸着はほとんど確認されず、ホウ素の吸着効果も良好とはいえなかったが、実施例1〜4の粉末,成型体を用いた場合には、六価クロムとホウ素の双方において、極めて良好な吸着効果が確認された。また、実施例4の成型体は、1時間攪拌しても崩壊することがなかった。   The results of this test are shown in Table 1. In the comparative example, almost no adsorption of hexavalent chromium was confirmed, and the adsorption effect of boron was not good, but when the powders and molded bodies of Examples 1 to 4 were used, hexavalent chromium and boron In both cases, a very good adsorption effect was confirmed. Further, the molded body of Example 4 did not collapse even after stirring for 1 hour.

Claims (6)

炭酸を含まない一般式[Mg 2+ 1−x Al 3+ (OH)][An− x/n・zHO](ここで、A n−はn価の陰イオン,0<x<1)で表され、結晶子サイズが20nm以下であることを特徴とする結晶質層状複水酸化物粉末。 Formula that does not contain carbonate [Mg 2+ 1-x Al 3+ x (OH) 2] [A n- x / n · zH 2 O] ( wherein, A n-n-valent anion, 0 <x < A crystalline layered double hydroxide powder represented by 1) having a crystallite size of 20 nm or less. 請求項1記載の結晶質層状複水酸化物粉末を成型したことを特徴とする成型体。 Molded article characterized by being molded crystalline layered double hydroxide powder according to claim 1 Symbol placement. 請求項1記載の結晶質層状複水酸化物粉末を、有害物質を含む対象物に添加することを特徴とする有害物質の固定化方法。 The method of immobilizing the toxic substances, characterized in that the crystalline layered double hydroxide powder according to claim 1 Symbol placement, it is added to the object containing harmful substances. 請求項1記載の結晶質層状複水酸化物粉末を製造する方法であって、炭酸を含まない条件下で、マグネシウムイオンとアルミニウムイオンとを含む酸性溶液とアルカリを含むアルカリ性溶液を混合して沈殿を生成させる工程と、この沈殿を乾燥し粉末化する工程とを備え、混合するマグネシウムイオンとアルミニウムイオンのモル比を2:1〜5:1の範囲とすることを特徴とする結晶質層状複水酸化物粉末の製造方法。 A method of manufacturing a crystalline layered double hydroxide powder according to claim 1, under conditions that do not contain carbonate, engaged mixing an alkaline solution comprising an acidic solution and an alkaline containing magnesium ions and the aluminum ions comprising a step of producing a precipitate, and a step of powdered drying the precipitate, the molar ratio of the mixed magnesium ions and the aluminum ions 2: 1 to 5: crystalline, characterized in that the first range A method for producing a layered double hydroxide powder. 請求項1記載の結晶質層状複水酸化物粉末を製造する方法であって、炭酸を含まない条件下で、マグネシウムイオンを含む酸性溶液とアルミニウムイオンとを含むアルカリ性溶液を混合して沈殿を生成させる工程と、この沈殿を乾燥し粉末化する工程とを備え、混合するマグネシウムイオンとアルミニウムイオンのモル比を2:1〜5:1の範囲とすることを特徴とする結晶質層状複水酸化物粉末の製造方法。 A method of manufacturing a crystalline layered double hydroxide powder according to claim 1, under conditions that do not contain carbonate, the precipitate combined mixing an alkaline solution containing an acidic solution and the aluminum ion containing magnesium ions comprising a step of generating and the step of powdered drying the precipitate, the molar ratio of the mixed magnesium ions and the aluminum ions 2: 1 to 5: crystalline layered double, characterized in that the first range Method for producing hydroxide powder. 生成した沈殿を真空乾燥または凍結真空乾燥することを特徴とする請求項4又は5記載の結晶質層状複水酸化物粉末の製造方法。 6. The method for producing a crystalline layered double hydroxide powder according to claim 4 or 5, wherein the produced precipitate is vacuum dried or freeze vacuum dried.
JP2004126083A 2004-04-21 2004-04-21 Crystalline layered double hydroxide powder, method for producing the same, molded product, and method for immobilizing harmful substances Expired - Lifetime JP4709498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004126083A JP4709498B2 (en) 2004-04-21 2004-04-21 Crystalline layered double hydroxide powder, method for producing the same, molded product, and method for immobilizing harmful substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004126083A JP4709498B2 (en) 2004-04-21 2004-04-21 Crystalline layered double hydroxide powder, method for producing the same, molded product, and method for immobilizing harmful substances

Publications (2)

Publication Number Publication Date
JP2005306667A JP2005306667A (en) 2005-11-04
JP4709498B2 true JP4709498B2 (en) 2011-06-22

Family

ID=35435844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004126083A Expired - Lifetime JP4709498B2 (en) 2004-04-21 2004-04-21 Crystalline layered double hydroxide powder, method for producing the same, molded product, and method for immobilizing harmful substances

Country Status (1)

Country Link
JP (1) JP4709498B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124192A1 (en) 2016-12-27 2018-07-05 日本国土開発株式会社 Layered double hydroxide molded body and method for manufacturing same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101169481B1 (en) * 2004-03-16 2012-07-27 니폰 고쿠도 가이하츠 가부시키가이샤 Hydrotalcite-like substance, process for producing the same and method of immobilizing hazardous substance
JP5684773B2 (en) * 2005-12-20 2015-03-18 日本化学工業株式会社 How to collect heavy metal ions
WO2008015784A1 (en) * 2006-07-31 2008-02-07 Jdc Corporation Hydrotalcite-like particulate material and method for production thereof
JP5144918B2 (en) * 2006-11-17 2013-02-13 日本国土開発株式会社 Soil purification apparatus and soil purification method using hydrotalcite-like substance
JP2009034564A (en) * 2007-07-31 2009-02-19 Jdc Corp Adsorbent for substance x that ionizes in alkaline solution, and method for isolating the same
JP5078009B2 (en) * 2007-09-10 2012-11-21 国立大学法人東京工業大学 Ultra-high-strength hardened cement and method for producing the same
JP5388927B2 (en) * 2010-03-30 2014-01-15 太平洋セメント株式会社 Heavy metal adsorbent for wastewater treatment
JP5548016B2 (en) * 2010-04-19 2014-07-16 オルガノ株式会社 Method for producing dry cation exchange resin and dry cation exchange resin produced by the production method
JP2017119256A (en) * 2015-12-28 2017-07-06 日本国土開発株式会社 Silica adsorbent and method for producing the same
JP6749759B2 (en) * 2015-12-28 2020-09-02 日本国土開発株式会社 Biomaterial adsorbent, method for producing the same, and resin, fiber, clothes, filter and mask containing the biomaterial adsorbent
JP6652836B2 (en) * 2015-12-28 2020-02-26 日本国土開発株式会社 Deodorant using layered double hydroxide and method for producing the same
HUE059653T2 (en) * 2016-12-27 2022-12-28 Japan Dev & Construction Water purification apparatus and water purification method using layered double hydroxide
JP7309120B2 (en) * 2019-12-12 2023-07-18 日本国土開発株式会社 Liquid filter and liquid treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004053A1 (en) * 1999-07-08 2001-01-18 Mizusawa Industrial Chemicals, Ltd. Composite polybasic salt, process for producing the same, and use
JP2004099391A (en) * 2002-09-11 2004-04-02 Mizusawa Ind Chem Ltd Method of manufacturing layered double hydroxide
WO2005087664A1 (en) * 2004-03-16 2005-09-22 Waseda University Hydrotalcite-like substance, process for producing the same and method of immobilizing hazardous substance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004053A1 (en) * 1999-07-08 2001-01-18 Mizusawa Industrial Chemicals, Ltd. Composite polybasic salt, process for producing the same, and use
JP2004099391A (en) * 2002-09-11 2004-04-02 Mizusawa Ind Chem Ltd Method of manufacturing layered double hydroxide
WO2005087664A1 (en) * 2004-03-16 2005-09-22 Waseda University Hydrotalcite-like substance, process for producing the same and method of immobilizing hazardous substance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124192A1 (en) 2016-12-27 2018-07-05 日本国土開発株式会社 Layered double hydroxide molded body and method for manufacturing same
WO2018124191A1 (en) 2016-12-27 2018-07-05 日本国土開発株式会社 Filtration body using layered double hydroxide and method for manufacturing said filtration body

Also Published As

Publication number Publication date
JP2005306667A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP4036237B2 (en) Hydrotalcite-like substance, method for producing the same, and method for immobilizing harmful substances
JP4709498B2 (en) Crystalline layered double hydroxide powder, method for producing the same, molded product, and method for immobilizing harmful substances
Cheng et al. Phosphate adsorption from sewage sludge filtrate using zinc–aluminum layered double hydroxides
TWI597243B (en) Hazardous material handling materials and methods of their manufacture, handling of hazardous materials
JP5905669B2 (en) Hazardous material treatment material and method
JP5482979B2 (en) Adsorbent
JP5317293B2 (en) Method for producing anion-exchange layered double hydroxide
CN103170302B (en) Active aluminum oxide fluoride-removal adsorbing material with different surface characteristics as well as preparation method and application thereof
KR20010000709A (en) adsorbent for water treatment
JP2006212597A (en) Water treatment agent
CN101516780B (en) Hydrotalcite-like particulate material and method for production thereof
JP5363817B2 (en) Liquid processing apparatus and liquid processing method using hydrotalcite-like granular material
JP5671437B2 (en) Adsorbent manufacturing method
JP7256493B2 (en) Method for producing adsorbent containing fine hydrotalcite
CN103303996B (en) Application of activated aluminum oxide defluorination adsorbing material with different surface features
EP3448826B1 (en) A granular composition and filter for purification of water
JP2009034564A (en) Adsorbent for substance x that ionizes in alkaline solution, and method for isolating the same
WO2017081857A1 (en) Adsorption-member support body
JP4863192B2 (en) Layered double hydroxides with high anion exchange ability and high carbon dioxide contamination resistance and their synthesis
JP6818286B1 (en) Method of insolubilizing fluorine and / or arsenic contained in mud and earth and sand
KR20050110695A (en) Adsorbent and process for producing the same
JP2015051416A (en) Manufacturing method of adsorbent, and the adsorbent manufactured by the method
JP6724340B2 (en) Silicon titanate molding
JP4189652B2 (en) Adsorbent
JP2015196146A (en) Phosphorus recovery material for phosphorus-containing water and phosphorus recovery method using the phosphorus recovery material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110318

R150 Certificate of patent or registration of utility model

Ref document number: 4709498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350