JP3075620B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3075620B2
JP3075620B2 JP03354314A JP35431491A JP3075620B2 JP 3075620 B2 JP3075620 B2 JP 3075620B2 JP 03354314 A JP03354314 A JP 03354314A JP 35431491 A JP35431491 A JP 35431491A JP 3075620 B2 JP3075620 B2 JP 3075620B2
Authority
JP
Japan
Prior art keywords
film
capacitor
silicon film
silicon
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03354314A
Other languages
Japanese (ja)
Other versions
JPH05175450A (en
Inventor
弘樹 黒木
正志 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP03354314A priority Critical patent/JP3075620B2/en
Publication of JPH05175450A publication Critical patent/JPH05175450A/en
Application granted granted Critical
Publication of JP3075620B2 publication Critical patent/JP3075620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は半導体装置の製造方法
に係り、詳しくはDRAMメモリセルのように半導体基
板上にキャパシタを形成する方法に関する。
The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming a capacitor on a semiconductor substrate such as a DRAM memory cell.

【0002】[0002]

【従来の技術】図2に従来のスタック型(積層型)DR
AMメモリセルの製造方法を示す。まず図2(a)に示
すようにシリコン基板1の表面部にLOCOS法により
厚いフィールド酸化膜2を選択的に形成し、素子分離を
行う。次に基板1の露出表面にゲート絶縁膜となる薄い
酸化膜3を形成し、さらに全面にゲート電極を形成する
ためのポリシリコンを形成する。そして、このポリシリ
コンにPOCl3 を拡散源としてリンをドープして導電性を
持たせた後、ゲートホトリソと異方性エッチングを行っ
てポリシリコンをパターニングすることによりゲート電
極4を形成する。この時同時に酸化膜3もゲート電極4
と同一パターンにパターニングする。次に、ゲート電極
4をマスクとしてヒ素(75As+ )を基板1にイオン注入
することによりソース・ドレイン5を形成する。これで
トランスファゲートトランジスタが完成する。
2. Description of the Related Art FIG. 2 shows a conventional stack type (laminated type) DR.
A method for manufacturing an AM memory cell will be described. First, as shown in FIG. 2A, a thick field oxide film 2 is selectively formed on a surface portion of a silicon substrate 1 by a LOCOS method to perform element isolation. Next, a thin oxide film 3 serving as a gate insulating film is formed on the exposed surface of the substrate 1, and polysilicon for forming a gate electrode is formed on the entire surface. Then, after doping the polysilicon with phosphorus using POCl 3 as a diffusion source to impart conductivity, the polysilicon is patterned by performing anisotropic etching with gate photolithography to form the gate electrode 4. At this time, the oxide film 3 is simultaneously formed on the gate electrode 4.
And the same pattern as above. Next, arsenic (75 As +) to form the source and drain 5 by implanting ions into the substrate 1 using the gate electrode 4 as a mask. Thus, the transfer gate transistor is completed.

【0003】次に全面に図2(b)に示すようにCVD
SiO2膜6を成長させ、これに、ホトリソと異方性エッチ
ングによってコンタクトホール7を開ける。その後、コ
ンタクトホール7部分を含む全面にキャパシタのストレ
ージ電極形成のためのポリシリコンを形成し、POCl3
拡散源としてリンをポリシリコンにドープし導電性を持
たせ、さらにそのポリシリコンをホトリソ・エッチング
によってパターニングすることによりキャパシタのスト
レージ電極8を形成する。その後、ストレージ電極8の
表面にキャパシタ絶縁膜となる薄い熱酸化膜9を形成し
た後、キャパシタのプレート電極となるためのポリシリ
コンを全面に形成し、POCl3 を拡散源としてリンをポリ
シリコンにドープし導電性をもたせる。その後、そのポ
リシリコンをホトリソ・エッチングでパターニングする
ことによりキャパシタのプレート電極10を形成する。
以上でキャパシタが完成する。
[0003] Next, as shown in FIG.
A SiO 2 film 6 is grown, and a contact hole 7 is formed in the SiO 2 film 6 by photolithography and anisotropic etching. Thereafter, polysilicon for forming the storage electrode of the capacitor is formed on the entire surface including the contact hole 7 portion, the polysilicon is doped with phosphorus by using POCl 3 as a diffusion source to have conductivity, and the polysilicon is further subjected to photolithography. The storage electrode 8 of the capacitor is formed by patterning by etching. Thereafter, a thin thermal oxide film 9 serving as a capacitor insulating film is formed on the surface of the storage electrode 8, and then polysilicon for forming a plate electrode of the capacitor is formed on the entire surface, and phosphorus is converted to polysilicon using POCl 3 as a diffusion source. Doped to make it conductive. Thereafter, the polysilicon is patterned by photolithographic etching to form a plate electrode 10 of the capacitor.
Thus, the capacitor is completed.

【0004】その後、図2(c)に示すように全面にB
PSG膜11を成長させ、900℃程度の熱処理を行っ
て表面の平坦化を図る。その後、BPSG膜11および
CVDSiO2膜6にホトリソ・エッチングによってコンタ
クトホール12を形成し、さらにアルミのスパッタとホ
トリソ・エッチングによるパターニングを行うことによ
りビット線13を形成する。
Thereafter, as shown in FIG.
The PSG film 11 is grown, and a heat treatment at about 900 ° C. is performed to planarize the surface. Thereafter, a contact hole 12 is formed in the BPSG film 11 and the CVD SiO 2 film 6 by photolithography and etching, and a bit line 13 is formed by patterning by sputtering of aluminum and photolithography.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の製造方法では、高集積化、基板の縮小化に
よりキャパシタのストレージ電極8が縮小されると、充
分なキャパシタ容量が得られず、ホールドタイム不良が
生じ、デバイス特性の劣化、歩留りの低下という問題が
生じる。
However, in the conventional manufacturing method as described above, if the storage electrode 8 of the capacitor is reduced due to high integration and a reduction in the size of the substrate, a sufficient capacitance cannot be obtained. A hold time defect occurs, which causes problems such as deterioration of device characteristics and reduction in yield.

【0006】この発明は上記の点に鑑みなされたもの
で、キャパシタ電極が縮小されても該電極の表面積を大
きくとることができ、充分なキャパシタ容量が得られる
半導体装置の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a method of manufacturing a semiconductor device capable of obtaining a large surface area of a capacitor electrode even if the capacitor electrode is reduced, thereby obtaining a sufficient capacitor capacitance. With the goal.

【0007】[0007]

【課題を解決するための手段】この発明では、大きな凹
凸を有する第1の膜を形成し、さらにその上に、小さな
凹凸を有する第2の膜を形成して、この2層膜でキャパ
シタの下部電極を形成する。
According to the present invention, a first film having large irregularities is formed, and a second film having small irregularities is further formed thereon. A lower electrode is formed.

【0008】[0008]

【作用】上記形成法によれば、キャパシタ下部電極の表
面形状は、第1の膜による大きな凹凸の上に第2の膜に
よる小さな凹凸が乗った形となり、したがって、下部電
極が縮小されても、上記2種類の凹凸により下部電極の
表面積を格段に大きくすることができる。したがって、
その後下部電極上にキャパシタ絶縁膜を形成し、さらに
上部電極を形成してキャパシタを完成させれば、キャパ
シタ平面積が縮小されても充分なキャパシタ容量を得る
ことができる。
According to the above-mentioned forming method, the surface shape of the capacitor lower electrode has a shape in which small irregularities due to the second film ride on large irregularities due to the first film. The surface area of the lower electrode can be significantly increased by the above two types of unevenness. Therefore,
Thereafter, by forming a capacitor insulating film on the lower electrode and further forming an upper electrode to complete the capacitor, a sufficient capacitance of the capacitor can be obtained even if the area of the capacitor is reduced.

【0009】[0009]

【実施例】以下この発明の一実施例を図1を参照して説
明する。一実施例は、この発明をDRAMメモリセルの
キャパシタ形成に応用した場合である。勿論、この発明
は、他のキャパシタ形成にも利用できる。
An embodiment of the present invention will be described below with reference to FIG. In one embodiment, the present invention is applied to the formation of a capacitor of a DRAM memory cell. Of course, the present invention can be used for other capacitor formation.

【0010】図1(a)において、21はシリコン基板
であり、このシリコン基板21にフィールド酸化膜22
を形成して素子分離後、該基板21にトランスファゲー
トトランジスタを形成する。このトランスファゲートト
ランジスタはゲート酸化膜23、ゲート電極24、ソー
ス・ドレイン拡散層25からなり、詳細な製造法は従来
と同一である。その後、基板21上の全面に層間絶縁膜
としてCVDSiO2膜26を成長させ、これにコンタクト
ホール27を開ける。
In FIG. 1A, reference numeral 21 denotes a silicon substrate.
Is formed, and a transfer gate transistor is formed on the substrate 21. This transfer gate transistor is composed of a gate oxide film 23, a gate electrode 24, and a source / drain diffusion layer 25, and the detailed manufacturing method is the same as that of the related art. Thereafter, a CVD SiO 2 film 26 is grown on the entire surface of the substrate 21 as an interlayer insulating film, and a contact hole 27 is formed in the film.

【0011】これ以後がキャパシタ形成工程であり、ま
ず図1(a)に示すように、基板上の全面に下部電極の
第1の膜として、大きな凹凸を有するシリコン膜28を
形成する。このシリコン膜28は、例えば温度575
℃,圧力0.2Torrで、SiH4(シラン)ガスを用いてLP
CVD(減圧化学気相成長)法によりアモルファスシリ
コンを100nm厚に形成し、引き続き真空中で15分ア
ニールを行うことによって形成される。この場合の条件
では約0.2μmの凹凸となる。次に、一旦、上記構造体
をLPCVD炉から取り出してシリコン膜28を大気に
曝した後、シリコン膜28上に下部電極の第2の膜とし
て、小さな凹凸を有するシリコン膜29を形成する。こ
のシリコン膜29は、例えば温度570℃,圧力0.2To
rrで、SiH4ガスを用いて30nm程度LPCVD法により
アモルファスシリコンを形成し、引き続いて真空中で5
分アニールすることによって形成される。この場合の条
件では、約30nmの凹凸となる。
The subsequent steps are a capacitor forming step. First, as shown in FIG. 1A, a silicon film 28 having large irregularities is formed as a first film of a lower electrode on the entire surface of a substrate. The silicon film 28 has a temperature of 575, for example.
LP using SiH 4 (silane) gas at ℃, pressure 0.2 Torr
It is formed by forming amorphous silicon to a thickness of 100 nm by a CVD (Low Pressure Chemical Vapor Deposition) method and subsequently performing annealing in a vacuum for 15 minutes. Under the conditions in this case, the unevenness is about 0.2 μm. Next, once the structure is taken out of the LPCVD furnace and the silicon film 28 is exposed to the atmosphere, a silicon film 29 having small irregularities is formed on the silicon film 28 as a second film of the lower electrode. The silicon film 29 is formed, for example, at a temperature of 570 ° C. and a pressure of 0.2
At rr, amorphous silicon is formed by LPCVD using SiH 4 gas to a thickness of about 30 nm.
Formed by minute annealing. Under the conditions in this case, the unevenness is about 30 nm.

【0012】しかる後、シリコン膜29,28に不純物
を導入して導電性をもたせた後、これらシリコン膜2
9,28を図1(b)に示すようにパターニングするこ
とにより、2層膜構造のキャパシタ下部電極30を形成
する。この下部電極30の表面形状は、シリコン膜28
による大きな凹凸の上にシリコン膜29による小さな凹
凸が乗った形となり、2種類の凹凸で表面積が増大され
ている。
Then, after introducing impurities into the silicon films 29 and 28 to make them conductive, the silicon films 2
By patterning 9 and 28 as shown in FIG. 1B, a capacitor lower electrode 30 having a two-layer film structure is formed. The surface shape of the lower electrode 30 is
Small irregularities due to the silicon film 29 are superimposed on the large irregularities due to the above, and the surface area is increased by the two kinds of irregularities.

【0013】なお、前記シリコン膜28,29の形成法
および形成条件は上記方法や条件に限ったものではな
く、他の方法や条件でもよい。ただし、大きな凹凸を有
するシリコン膜28は、0.05μmから0.2μmの凹凸
で形成する。これより凹凸が大きいと、全体が平坦とな
り、表面積増加の効果は小さくなり、これより小さい
と、引き続いて形成する小さな凹凸を有するシリコン膜
29によって凹部が埋められて、表面積増加の効果が小
さくなる。また、小さな凹凸を有するシリコン膜29は
0.01μmから0.05μmの凹凸で形成する。これより
大きい凹凸だと、下層の大きな凹凸を有するシリコン膜
28の凹部が埋められ、これより小さい凹凸だと表面積
増加の効果が小さくなる。また、上記製造法ではシリコ
ン膜28の形成後、一旦LPCVD炉から出してシリコ
ン膜28を大気に曝しており、これはシリコン膜28の
表面に自然酸化膜を形成することにより、上部にシリコ
ン膜29を成長させる際、下のシリコン膜28の結晶成
長と不連続にして新しい成長の核を形成可能とし、その
結果、下のシリコン膜28に影響されない、小さな凹凸
を有する前記シリコン膜29を形成可能とするものであ
るが、大気に曝す代わりに同じLPCVD炉で酸素を流
して自然酸化膜を形成してもよい。自然酸化膜は、シリ
コン膜29,28に不純物を導入するためのイオン注入
やその後の熱処理により破壊されるため下部電極30の
導電性に悪影響を与えることはない。
The method and conditions for forming the silicon films 28 and 29 are not limited to the above methods and conditions, but may be other methods and conditions. However, the silicon film 28 having large unevenness is formed with an unevenness of 0.05 μm to 0.2 μm. If the unevenness is larger than this, the entire surface becomes flat and the effect of increasing the surface area is reduced. If the unevenness is smaller than this, the concave portion is filled with the subsequently formed silicon film 29 having small unevenness, and the effect of increasing the surface area is reduced. . The silicon film 29 having small irregularities is
It is formed with irregularities of 0.01 μm to 0.05 μm. If the unevenness is larger than this, the concave portion of the silicon film 28 having the large unevenness in the lower layer is filled, and if the unevenness is smaller than this, the effect of increasing the surface area is reduced. In the above manufacturing method, after the silicon film 28 is formed, the silicon film 28 is once taken out of the LPCVD furnace and exposed to the atmosphere. This is because a natural oxide film is formed on the surface of the silicon film 28 so that the silicon film 28 When growing the silicon film 29, the crystal growth of the underlying silicon film 28 is discontinuous and a new growth nucleus can be formed. As a result, the silicon film 29 having small irregularities which is not affected by the underlying silicon film 28 is formed. Although it is possible, a natural oxide film may be formed by flowing oxygen in the same LPCVD furnace instead of exposing to the atmosphere. The natural oxide film is destroyed by ion implantation for introducing impurities into the silicon films 29 and 28 or by a subsequent heat treatment, so that the conductivity of the lower electrode 30 is not adversely affected.

【0014】以上のようにして下部電極30を形成した
ら、次に図1(c)に示すように下部電極30の表面に
キャパシタ絶縁膜として薄い熱酸化膜31を形成し、さ
らにその上に上部電極32をポリシリコンで形成してキ
ャパシタを完成させる。さらに全体に中間絶縁膜33を
形成し、コンタクトホール34を開け、ビット線35を
形成してDRAMメモリセルを完成させる。
After the lower electrode 30 is formed as described above, a thin thermal oxide film 31 is formed as a capacitor insulating film on the surface of the lower electrode 30 as shown in FIG. The electrode 32 is formed of polysilicon to complete the capacitor. Further, an intermediate insulating film 33 is formed entirely, a contact hole 34 is opened, and a bit line 35 is formed to complete a DRAM memory cell.

【0015】[0015]

【発明の効果】以上詳細に説明したようにこの発明によ
れば、大きい凹凸を有する第1の膜上に小さい凹凸を有
する第2の膜を形成して、大きい凹凸の上に小さい凹凸
が乗った表面形状にキャパシタの下部電極を形成するよ
うにしたので、キャパシタの平面積が縮小されても下部
電極の表面積を増大させて、充分なキャパシタ容量を得
ることができる。したがって、例えばDRAMメモリセ
ルにおいてホールドタイム不良が発生せず、デバイス特
性の向上、歩留りの向上を図ることができる。
As described above in detail, according to the present invention, the second film having the small unevenness is formed on the first film having the large unevenness, and the small unevenness is placed on the large unevenness. Since the lower electrode of the capacitor is formed in the shape of the surface, even if the plane area of the capacitor is reduced, the surface area of the lower electrode can be increased and a sufficient capacitance of the capacitor can be obtained. Therefore, for example, a hold time defect does not occur in the DRAM memory cell, and the device characteristics and the yield can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例を示す工程断面図である。FIG. 1 is a process sectional view showing one embodiment of the present invention.

【図2】従来のスタック型DRAMメモリセルの製造方
法を示す工程断面図である。
FIG. 2 is a process sectional view showing a method for manufacturing a conventional stacked DRAM memory cell.

【符号の説明】[Explanation of symbols]

28 シリコン膜 29 シリコン膜 30 下部電極 28 silicon film 29 silicon film 30 lower electrode

フロントページの続き (56)参考文献 特開 平5−13677(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 27/108 H01L 21/822 H01L 21/8242 H01L 27/04 Continuation of the front page (56) References JP-A-5-13677 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 27/108 H01L 21/822 H01L 21/8242 H01L 27 / 04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に、凹凸を有する第1のシリコン
膜を形成する工程と、 前記第1のシリコン膜の表面上に酸化膜を形成する工程
と、 前記酸化膜の表面上に、前記第1のシリコン膜の凹凸よ
りも小さな凹凸を有する第2のシリコン膜を形成する工
程と、 前記酸化膜を破壊する工程とを含むことを特徴とする半
導体装置の製造方法。
A step of forming a first silicon film having irregularities on a substrate, a step of forming an oxide film on a surface of the first silicon film, and a step of forming an oxide film on a surface of the oxide film. A method for manufacturing a semiconductor device, comprising: a step of forming a second silicon film having irregularities smaller than the irregularities of a first silicon film; and a step of destroying the oxide film.
【請求項2】 請求項1記載の半導体装置の製造方法に
おいて、 前記第1のシリコン膜及び前記第2のシリコン膜は、と
もに減圧CVD炉内で、SiH4を反応させることにより形成
されることを特徴とする半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein both the first silicon film and the second silicon film are formed by reacting SiH 4 in a low-pressure CVD furnace. A method for manufacturing a semiconductor device, comprising:
【請求項3】 請求項1乃至2記載の半導体装置の製造方
法において、 前記酸化膜は、前記基板と前記第1のシリコン膜とを大
気に曝す、又は減圧CVD炉内で SiH4とO2を反応させるこ
とにより形成されることを特徴とする半導体装置の製造
方法。
3. The method for manufacturing a semiconductor device according to claim 1, wherein the oxide film is formed by exposing the substrate and the first silicon film to the atmosphere or by using SiH 4 and O 2 in a low-pressure CVD furnace. A method for manufacturing a semiconductor device, characterized by being formed by reacting
JP03354314A 1991-12-20 1991-12-20 Method for manufacturing semiconductor device Expired - Fee Related JP3075620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03354314A JP3075620B2 (en) 1991-12-20 1991-12-20 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03354314A JP3075620B2 (en) 1991-12-20 1991-12-20 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH05175450A JPH05175450A (en) 1993-07-13
JP3075620B2 true JP3075620B2 (en) 2000-08-14

Family

ID=18436716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03354314A Expired - Fee Related JP3075620B2 (en) 1991-12-20 1991-12-20 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3075620B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2671833B2 (en) * 1994-11-11 1997-11-05 日本電気株式会社 Semiconductor device and manufacturing method thereof
US5856007A (en) * 1995-07-18 1999-01-05 Sharan; Sujit Method and apparatus for forming features in holes, trenches and other voids in the manufacturing of microelectronic devices
JP2785766B2 (en) * 1995-09-29 1998-08-13 日本電気株式会社 Method for manufacturing semiconductor device
KR100486215B1 (en) * 1997-10-22 2006-04-28 삼성전자주식회사 Method for fabricating semiconductor capacitor having a underelectrode formed fine refracted surface
JP2002043547A (en) * 2000-07-28 2002-02-08 Nec Kyushu Ltd Semiconductor device and production method therefor

Also Published As

Publication number Publication date
JPH05175450A (en) 1993-07-13

Similar Documents

Publication Publication Date Title
JP2761685B2 (en) Method for manufacturing semiconductor device
JP2795313B2 (en) Capacitive element and method of manufacturing the same
JP2771964B2 (en) Method for manufacturing capacitor of semiconductor device
JP2671833B2 (en) Semiconductor device and manufacturing method thereof
JPH07202028A (en) Manufacture of capacitor for dram cell
JPH08204145A (en) Method of manufacturing semiconductor device
JP3075620B2 (en) Method for manufacturing semiconductor device
JPH03139882A (en) Manufacture of semiconductor storage device
JP2894361B2 (en) Semiconductor device and manufacturing method thereof
JP3173472B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPH05175458A (en) Semiconductor storage device and its manufacture
JPH05251658A (en) Manufacture of semiconductor device
JP3027743B2 (en) Manufacturing method of stacked capacitor for DRAM
JP2787170B2 (en) Semiconductor memory device and method of manufacturing the same
JPH0278270A (en) Semiconductor memory device and manufacture thereof
JP2846055B2 (en) Method for manufacturing semiconductor device
JPH0344068A (en) Manufacture of semiconductor device
JP3200593B2 (en) Semiconductor device
JP3078109B2 (en) Method for manufacturing semiconductor device
JPH0685195A (en) Manufacture of semiconductor storage device
JPH11145425A (en) Manufacture of semiconductor element and semiconductor device
JPH02281654A (en) Semiconductor memory device
JP3196373B2 (en) Method for manufacturing semiconductor device
JPH05129204A (en) Formation of polycrystalline silicon film
JPH01260857A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080609

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees