JP3057928B2 - Circuit connection method - Google Patents

Circuit connection method

Info

Publication number
JP3057928B2
JP3057928B2 JP4277904A JP27790492A JP3057928B2 JP 3057928 B2 JP3057928 B2 JP 3057928B2 JP 4277904 A JP4277904 A JP 4277904A JP 27790492 A JP27790492 A JP 27790492A JP 3057928 B2 JP3057928 B2 JP 3057928B2
Authority
JP
Japan
Prior art keywords
conductive film
anisotropic conductive
ito electrode
pattern
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4277904A
Other languages
Japanese (ja)
Other versions
JPH06103821A (en
Inventor
幸男 山田
尚 安藤
陽子 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemicals Corp filed Critical Sony Chemicals Corp
Priority to JP4277904A priority Critical patent/JP3057928B2/en
Publication of JPH06103821A publication Critical patent/JPH06103821A/en
Application granted granted Critical
Publication of JP3057928B2 publication Critical patent/JP3057928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Liquid Crystal (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Combinations Of Printed Boards (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、端子間の接着接合等
に使用する異方性導電膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic conductive film used for bonding between terminals.

【0002】[0002]

【従来の技術】液晶パネルとTABとを接続する場合の
ように、2つの回路基板を接着すると共にその間の端子
を電気的に接続する方法の一つとして、従来より、異方
性導電膜を使用する方法が知られている。
2. Description of the Related Art As one method of bonding two circuit boards and electrically connecting terminals between them as in the case of connecting a liquid crystal panel and a TAB, an anisotropic conductive film has conventionally been used. The methods used are known.

【0003】異方性導電膜は、シート状の絶縁基材中に
導電粒子を分散させたものである。ここでシート状の絶
縁基材としては、一般にエポキシ系熱硬化型樹脂からな
るシートが使用されており、また、導電粒子としては、
半田粒子、ニッケル粒子等の金属粒子や樹脂粒子に金メ
ッキを施した粒子等が使用されている。
[0003] The anisotropic conductive film is obtained by dispersing conductive particles in a sheet-like insulating base material. Here, as the sheet-shaped insulating base material, a sheet made of an epoxy-based thermosetting resin is generally used, and as the conductive particles,
Metal particles such as solder particles and nickel particles, and particles obtained by plating resin particles with gold are used.

【0004】また、異方性導電膜の使用方法としては、
例えば液晶パネルのITO電極とTABとを接続する場
合、通常、まず液晶パネルのITO電極に異方性導電膜
を加熱加圧(予備圧着)し、次に予備圧着した異方性導
電膜上にTABを加熱加圧(本圧着)して、液晶パネル
とTABとを確実に接合すると共にこれらの端子間を導
電粒子により電気的に接合する。
[0004] In addition, as a method of using the anisotropic conductive film,
For example, when connecting an ITO electrode of a liquid crystal panel to TAB, usually, an anisotropic conductive film is first heated and pressurized (preliminarily press-bonded) to the ITO electrode of the liquid crystal panel, and then the anisotropic conductive film is preliminarily pressed onto the anisotropic conductive film. The TAB is heated and pressurized (finally press-bonded) to securely join the liquid crystal panel and the TAB and electrically connect these terminals with conductive particles.

【0005】この場合、ITO電極上に異方性導電膜を
予備圧着した後、TABなどの導電パターンとの位置合
せを行うために、ITO電極のパターンを認識する必要
がある。このパターンを認識する工程は、図2に示した
ように、異方性導電膜1xを貼着した液晶パネル2上の
ITO電極3を、CCDカメラ4を使用して同軸光で撮
影し、二値化画像として画像処理してITO電極3のパ
ターンを認識するものである。
In this case, after the anisotropic conductive film is pre-pressed on the ITO electrode, it is necessary to recognize the pattern of the ITO electrode in order to perform alignment with a conductive pattern such as TAB. In the step of recognizing this pattern, as shown in FIG. 2, an ITO electrode 3 on the liquid crystal panel 2 to which the anisotropic conductive film 1x is adhered is photographed by coaxial light using a CCD camera 4, and This is to recognize the pattern of the ITO electrode 3 by performing image processing as a digitized image.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
予備圧着された異方性導電膜1xは透明であるため、パ
ターンを認識する工程において、カメラ4から出た光
は、図2に矢印で示したように、ITO電極3だけでな
く異方性導電膜1xの表面でも反射するため、カメラ4
で得られる画像は、ITO電極3が存在する部分と存在
しない部分とのコントラストが低下したものとなり、十
分に二値化画像として画像処理できないという問題があ
った。
However, since the conventional pre-pressed anisotropic conductive film 1x is transparent, the light emitted from the camera 4 in the step of recognizing the pattern is indicated by an arrow in FIG. As described above, since light is reflected not only on the ITO electrode 3 but also on the surface of the anisotropic conductive film 1x, the camera 4
In the image obtained by the method, the contrast between the portion where the ITO electrode 3 exists and the portion where the ITO electrode 3 does not exist is reduced, and there is a problem that the image cannot be sufficiently processed as a binarized image.

【0007】このようなコントラストの問題に対して
は、ゴム系異方性導電膜を使用すると、ゴム成分により
その異方性導電膜が白色化しているので、ITO電極が
存在する部分と存在しない部分とのコントラストを改善
することが可能となる。即ち、図3に示したように、カ
メラ4から出た光のうちITO電極3が存在しない部分
に入射した光は、ゴム系異方性導電膜1y内で散乱する
ので、この異方性導電膜1yの表面で反射した光がその
ままカメラ4に再入射することを防止でき、ITO電極
3が存在する部分と存在しない部分とのコントラストを
改善することが可能となる。しかし、ゴム系異方性導電
膜は電気的特性や耐熱特性が乏しく、実用上使用するこ
とが好ましくないという問題があった。
With respect to such a problem of contrast, when a rubber-based anisotropic conductive film is used, the anisotropic conductive film is whitened due to a rubber component, so that the portion where the ITO electrode is present does not exist. It is possible to improve the contrast with the part. That is, as shown in FIG. 3, the light emitted from the camera 4 and incident on the portion where the ITO electrode 3 does not exist is scattered in the rubber-based anisotropic conductive film 1y. The light reflected on the surface of the film 1y can be prevented from re-entering the camera 4 as it is, and the contrast between the portion where the ITO electrode 3 exists and the portion where the ITO electrode 3 does not exist can be improved. However, the rubber-based anisotropic conductive film has poor electrical and heat-resistant properties, and has a problem that it is not preferable for practical use.

【0008】また、異方性導電膜を白色化してITO電
極が存在する部分と存在しない部分とのコントラストを
改善するために、異方性導電膜に顔料を入れることも考
えられるが、顔料が絶縁性フィラーとして機能するので
導電性を阻害し、導電膜として使用することができなく
なる。
In order to whiten the anisotropic conductive film and improve the contrast between the portion where the ITO electrode exists and the portion where the ITO electrode does not exist, it is conceivable to add a pigment to the anisotropic conductive film. Since it functions as an insulating filler, it inhibits conductivity and cannot be used as a conductive film.

【0009】この発明は以上のような従来技術の課題を
解決しようとするものであり、異方性導電膜を予備圧着
した後に行うパターンを認識する工程において、異方性
導電膜の電気的熱的特性を低下させることなく、パター
ン画像が良好なコントラストで得られるようにすること
を目的としている。
SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned problems of the prior art. In the step of recognizing a pattern performed after preliminarily pressing an anisotropic conductive film, an electric heat of the anisotropic conductive film is used. It is an object of the present invention to obtain a pattern image with good contrast without deteriorating target characteristics.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明は、エポキシ樹脂とシリコーン変性エポ
キシ樹脂とを含む熱硬化型樹脂に導電粒子が分散されて
いる白色化した異方性導電膜を、その白色化状態を保持
しながらガラス基板のITO電極上に予備圧着し、ガラ
ス基板側からITO電極パターンを画像認識し、その画
像認識結果に従って異方性導電膜上にITO電極に接続
すべき回路基板を配置した後に、本圧着することを特徴
とする回路接続方法を提供する。
In order to achieve the above object, the present invention provides an epoxy resin and a silicone-modified epoxy resin.
The whitened anisotropic conductive film , in which conductive particles are dispersed in a thermosetting resin containing xylene resin , maintains its whitening state
Pre-press on the ITO electrode of the glass substrate
Image recognition of the ITO electrode pattern from the substrate side
Connect to ITO electrode on anisotropic conductive film according to image recognition result
After placing the circuit board to be mounted, it is fully bonded.
Circuit connection method is provided.

【0011】この発明において、異方性導電膜に含有さ
せるシリコーン変性エポキシ樹脂としては、分子中にエ
ポキシ基を少なくとも1つ有するシリコーン樹脂であれ
ば種々のものを使用することができ、その分子量にも特
に制限はない。シリコーン変性エポキシ樹脂の含有量と
しては、異方性導電膜に含まれるエポキシ樹脂100重
量部に対して1〜25重量部とすることが好ましい。エ
ポキシ樹脂100重量部に対して1重量部未満である
と、シリコーン変性エポキシ樹脂を添加することによる
白色化の程度が低く、パターンを認識する工程における
コントラストを十分に改善することが難しい。一方、2
5重量部を超えて添加すると、異方性導電膜の成膜性や
導通信頼性が低下する。
In the present invention, as the silicone-modified epoxy resin to be contained in the anisotropic conductive film, various silicone resins having at least one epoxy group in the molecule can be used. There is no particular limitation. The content of the silicone-modified epoxy resin is preferably 1 to 25 parts by weight based on 100 parts by weight of the epoxy resin contained in the anisotropic conductive film. If the amount is less than 1 part by weight with respect to 100 parts by weight of the epoxy resin, the degree of whitening by adding the silicone-modified epoxy resin is low, and it is difficult to sufficiently improve the contrast in the step of recognizing the pattern. Meanwhile, 2
If it is added in excess of 5 parts by weight, the film formability and conduction reliability of the anisotropic conductive film will be reduced.

【0012】この発明の異方性導電膜は、シリコーン変
性エポキシ樹脂を含有する以外は、エポキシ樹脂を含む
熱硬化型樹脂に導電粒子を分散させた従来の異方性導電
膜と同様に構成することができる。
The anisotropic conductive film of the present invention has the same structure as a conventional anisotropic conductive film in which conductive particles are dispersed in a thermosetting resin containing an epoxy resin, except that a silicone-modified epoxy resin is contained. be able to.

【0013】[0013]

【作用】この発明の異方性導電膜は、エポキシ樹脂を含
む熱硬化型樹脂の他にシリコーン変性エポキシ樹脂を含
有するが、このシリコーン変性エポキシ樹脂は異方性導
電膜を構成するその他エポキシ樹脂との相溶性が低いた
め、予備圧着程度の加熱加圧条件下では異方性導電膜は
白色化している。したがって、異方性導電膜を予備圧着
した後に行うパターンを認識する工程において、図1に
示したように、カメラ4から出た光のうちITO電極3
が存在しない部分に入射した光は、異方性導電膜1内で
散乱するので、図2に示したように異方性導電膜1xの
表面で反射した光がそのままカメラ4に再入射すること
を防止できる。よって、ITO電極3が存在する部分と
存在しない部分とのコントラストを改善することが可能
となる。
The anisotropic conductive film of the present invention contains a silicone-modified epoxy resin in addition to a thermosetting resin containing an epoxy resin. Therefore, the anisotropic conductive film is white under heating and pressing conditions of about the preliminary pressure bonding. Therefore, in the step of recognizing the pattern performed after the pre-compression bonding of the anisotropic conductive film, as shown in FIG.
Since the light incident on the portion where no is present is scattered in the anisotropic conductive film 1, the light reflected on the surface of the anisotropic conductive film 1x must be re-entered into the camera 4 as shown in FIG. Can be prevented. Therefore, it is possible to improve the contrast between the portion where the ITO electrode 3 exists and the portion where the ITO electrode 3 does not exist.

【0014】[0014]

【実施例】以下、この発明を実施例に基づいて具体的に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments.

【0015】実施例1〜7及び比較例1〜7 フェノキシ樹脂(東都化成(株)製、YP50)40重
量部、ビスフェノールA型エポキシ樹脂(油化シェル
(株)製、Ep828)40重量部、エポキシシランカ
ップリング剤(日本ユニカ(株)製、A187)2重量
部、潜在性硬化剤(旭化成(株)製、Hx3748)1
8重量部、平均粒径8μmの半田粒子(千住金属(株)
製、スパークルミクロンNo1)20重量部、及び表1
に示した各種添加剤を配合して実施例及び比較例の異方
性導電膜を作成し、そのパターン認識性、導通信頼性、
ガラス転移点Tg、接着力、成膜性を次のように評価し
た。これらの結果も表1に示した。
Examples 1 to 7 and Comparative Examples 1 to 7 40 parts by weight of a phenoxy resin (YP50, manufactured by Toto Kasei Co., Ltd.), 40 parts by weight of a bisphenol A type epoxy resin (Ep828, manufactured by Yuka Shell Co., Ltd.) 2 parts by weight of epoxy silane coupling agent (A187, manufactured by Nihon Yunika Co., Ltd.), 1 latent curing agent (Hx3748, manufactured by Asahi Kasei Corporation)
8 parts by weight, average particle size 8 μm solder particles (Senju Metal Co., Ltd.)
Manufactured by Sparkle Micron No. 1) 20 parts by weight, and Table 1
The anisotropic conductive films of Examples and Comparative Examples were prepared by blending the various additives shown in
The glass transition point Tg, adhesive strength, and film formability were evaluated as follows. These results are also shown in Table 1.

【0016】(パターン認識性)0.1mmピッチのI
TOパターンを形成したガラス上に厚さ25μmの異方
性導電膜を80℃、3Kg/cmで予備圧着し、同軸
光を用いて実体顕微鏡(オリンパス光学(株)製、SZ
H−1LLB)によりガラス側から撮影し、その画像に
おいてITOパターンが明確に認識できる場合を
「○」、不明確にしか認識できないものを「△」、認識
できない場合を「×」と評価した。
(Pattern Recognition) I at a pitch of 0.1 mm
An anisotropic conductive film having a thickness of 25 μm was preliminarily pressed at 80 ° C. and 3 kg / cm 2 on glass having a TO pattern formed thereon, and a stereoscopic microscope (SZ, manufactured by Olympus Optical Co., Ltd.) was used with coaxial light.
H-1LLB) was taken from the glass side. In the image, the case where the ITO pattern was clearly recognizable was evaluated as “○”, the case where the ITO pattern was recognized only indefinitely was evaluated as “Δ”, and the case where the ITO pattern was not recognized was evaluated as “X”.

【0017】(導通信頼性)0.1mmピッチのパター
ンを形成した厚さ75μmのユーピレックス基材からな
り、半田メッキ処理(鉛:錫=9:1)したTABと、
0.1mmピッチのITOパターンを形成したガラスと
を、異方性導電膜を介して170℃、40Kg/cm
で20秒間加熱圧着し、85℃、85%RHで1000
時間エージングした後の導通抵抗を測定し、その抵抗が
10Ω未満を「○」、10Ω以上〜50Ω未満を
「△」、50Ω以上を「×」と評価した。
(Conduction Reliability) TAB made of a 75 μm thick Iupirex base material having a pattern of 0.1 mm pitch and subjected to solder plating (lead: tin = 9: 1);
Glass having an ITO pattern with a pitch of 0.1 mm is interposed between the glass and an anisotropic conductive film at 170 ° C. and 40 kg / cm 2.
At 20 ° C for 20 seconds and at 1000C at 85 ° C and 85% RH.
The conduction resistance after the time aging was measured, and the resistance was evaluated as “」 ”when the resistance was less than 10Ω,“ Δ ”when the resistance was 10Ω or more and less than 50Ω, and“ X ”when the resistance was 50Ω or more.

【0018】(ガラス転移点Tg)異方性導電膜を17
0℃、20秒間で硬化させ、硬化後の動的弾性率をバイ
ブロン(オリエンテック(株)製、レオバイブロンDD
V−01FP)を使用して測定した。
(Glass transition point Tg)
The composition was cured at 0 ° C. for 20 seconds, and the dynamic elastic modulus after curing was measured using Vibron (Ryovibron DD, manufactured by Orientec Co., Ltd.).
V-01FP).

【0019】(接着力)導通信頼性の評価と同様にTA
BとITOパターンを形成したガラスとを接着し、引張
速度50mm/min、90°ピールで引き剥がすとき
の接着力を測定した。
(Adhesive force) As in the evaluation of conduction reliability, TA
B and the glass on which the ITO pattern was formed were adhered, and the adhesive force when peeling off at a pulling speed of 50 mm / min and 90 ° peel was measured.

【0020】(成膜性)異方性導電膜形成用組成物を剥
離フィルムにコーティングし、乾燥させた後の状態を、
平滑でムラのなかったものを「○」、ややムラのあった
ものを「△」、ムラやはじきのあったものを「×」と評
価した。
(Formability) The state after the composition for forming an anisotropic conductive film is coated on a release film and dried is as follows:
A sample which was smooth and free of unevenness was evaluated as “○”, a sample having slight unevenness was evaluated as “△”, and a sample having unevenness and repelling was evaluated as “×”.

【0021】表1に示したように、シリコーン変性エポ
キシ樹脂が含まれていても、その配合量が少なく異方性
導電膜が実質的に白色化していない場合(比較例2)に
はパターン認識性が劣り、過剰に配合した場合(比較例
3)には、ガラス転移点が低くなり、成膜性も低下し、
導通信頼性が劣っていた。また、シリコーン変性エポキ
シ樹脂に代えてゴム変性エポキシ樹脂を使用した場合
(比較例4)には、異方性導電膜が白色化せず、パター
ン認識ができず、ガラス転移点も低かった。シリコーン
変性エポキシ樹脂に代えてエポキシ変性ポリブタジエン
を使用した場合(比較例5)にも、異方性導電膜が白色
化せず、パターン認識ができなかった。エポキシ基のな
いシリコーン樹脂を使用した場合(比較例6)には、パ
ターン認識は良好であったが、ガラス転移点が低く、成
膜性も低いために導通信頼性が劣っていた。白色フィラ
ーとして酸化チタンを配合した場合(比較例7)には、
このフィラーが導電粒子による導通を阻害するので、導
通信頼性が低下していた。
As shown in Table 1, even when the silicone-modified epoxy resin is contained, the amount of the silicone-modified epoxy resin is small, and when the anisotropic conductive film is not substantially whitened (Comparative Example 2), pattern recognition is performed. When the composition is inferior and is excessively compounded (Comparative Example 3), the glass transition point is lowered, and the film forming property is also reduced.
The conduction reliability was poor. When a rubber-modified epoxy resin was used instead of the silicone-modified epoxy resin (Comparative Example 4), the anisotropic conductive film did not turn white, pattern recognition was impossible, and the glass transition point was low. Also in the case where an epoxy-modified polybutadiene was used in place of the silicone-modified epoxy resin (Comparative Example 5), the anisotropic conductive film did not whiten and the pattern could not be recognized. When a silicone resin having no epoxy group was used (Comparative Example 6), the pattern recognition was good, but the glass transition point was low and the film-forming property was low, so that the conduction reliability was poor. When titanium oxide was blended as a white filler (Comparative Example 7),
Since the filler impedes conduction by the conductive particles, conduction reliability has been reduced.

【0022】[0022]

【表1】 表中の注 (*1)次式の両末端エポキシ変性リシコーン樹脂(MW100
0)、チッソ(株)製、FM5511
[Table 1] Notes in the table (* 1) Both ends epoxy-modified ricone cone resin (MW100
0), manufactured by Chisso Corporation, FM5511

【0023】[0023]

【化1】 (*2)(*1)と同様の式の両末端エポキシ変性リシコーン樹
脂(MW5000)、チッソ(株)製、FM5521 (*3)(*1)と同様の式の両末端エポキシ変性リシコーン樹
脂(MW10000)、チッソ(株)製、FM5525 (*4)次式の片末端エポキシ変性リシコーン樹脂(MW500
0)、チッソ(株)製、FM0521
Embedded image (* 2) Both ends epoxy-modified ricone cone resin (MW5000) of the same formula as (* 1), manufactured by Chisso Corporation, FM5521 (* 3) Both ends epoxy-modified ricone resin of the same formula as (* 1) ( MW10000), manufactured by Chisso Co., Ltd., FM5525 (* 4) One-terminal epoxy-modified ricone cone resin of the following formula (MW500
0), manufactured by Chisso Corporation, FM0521

【0024】[0024]

【化2】 (*5)油化シェル(株)製、R151 (*6)出光石油化学(株)製、PR45EPI (*7)次式のシリコーン樹脂(MW5000)、チッソ(株)
製、FM1121
Embedded image (* 5) Yuka Shell Co., Ltd., R151 (* 6) Idemitsu Petrochemical Co., Ltd., PR45EPI (* 7) Silicone resin (MW5000) of the following formula, Chisso Corporation
Made, FM1121

【0025】[0025]

【化3】 (*8)堺化学工業(株)製、R−GX−2 また、異方性導電膜の白色化の程度とパターン認識性と
の関係を明らかにするために、実施例2及び比較例1の
異方性導電膜について、図4に示したように、厚さ25
μmに形成した各異方性導電膜1を厚さ1.1mmのガ
ラス5に予備圧着し、可視紫外分光光度計(大塚電子
(株)製、MCPD−1000)6を使用し、波長50
0〜600nmにおける反射率を測定した。その結果、
異方性導電膜をガラス上に付着させなかった場合の反射
率を100%としたときの実施例の反射率は50%と低
い値を示したのに対し、比較例1の反射率は65%と高
い値を示した。この結果から反射率が50%と低く、十
分に白色化していると異方性導電膜はパターン認識性に
優れたものとなるが、反射率が65%と高い場合にはパ
ターン認識性が劣ることが確認できた。
Embedded image (* 8) R-GX-2 manufactured by Sakai Chemical Industry Co., Ltd. Further, in order to clarify the relationship between the degree of whitening of the anisotropic conductive film and the pattern recognition, Example 2 and Comparative Example 1 were used. As shown in FIG.
Each anisotropic conductive film 1 formed to a thickness of μm is preliminarily pressed on a glass 5 having a thickness of 1.1 mm, and a visible ultraviolet spectrophotometer (MCPD-1000, manufactured by Otsuka Electronics Co., Ltd.) 6 is used to obtain a wavelength of 50 μm.
The reflectance at 0 to 600 nm was measured. as a result,
When the reflectance when the anisotropic conductive film was not deposited on the glass was 100%, the reflectance of the example was as low as 50%, whereas the reflectance of Comparative Example 1 was 65%. %. The results show that the reflectance is as low as 50% and that the anisotropic conductive film is excellent in pattern recognition if sufficiently whitened, but poor in pattern recognition if the reflectance is as high as 65%. That was confirmed.

【0026】[0026]

【発明の効果】この発明によれば、異方性導電膜の電気
的熱的特性を低下させることなく、異方性導電膜を白色
化させているので、異方性導電膜を予備圧着した後に行
うパターンを認識する工程において、パターン画像が良
好なコントラストで得られるようになる。
According to the present invention, the anisotropic conductive film is whitened without deteriorating the electrical and thermal characteristics of the anisotropic conductive film. In a later step of recognizing a pattern, a pattern image can be obtained with good contrast.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の異方性導電膜を貼着した液晶パネル
のパターンを認識する工程の説明図である。
FIG. 1 is an explanatory diagram of a step of recognizing a pattern of a liquid crystal panel to which an anisotropic conductive film of the present invention is attached.

【図2】従来の異方性導電膜を貼着した液晶パネルのパ
ターンを認識する工程の説明図である。
FIG. 2 is an explanatory diagram of a process of recognizing a pattern of a liquid crystal panel to which a conventional anisotropic conductive film is adhered.

【図3】従来の異方性導電膜を貼着した液晶パネルのパ
ターンを認識する工程の説明図である。
FIG. 3 is an explanatory diagram of a step of recognizing a pattern of a liquid crystal panel to which a conventional anisotropic conductive film is attached.

【図4】異方性導電膜の反射率の測定方法の説明図であ
る。
FIG. 4 is an explanatory diagram of a method for measuring the reflectance of an anisotropic conductive film.

【符号の説明】[Explanation of symbols]

1 異方性導電膜 2 液晶パネル 3 ITO電極 4 カメラ DESCRIPTION OF SYMBOLS 1 Anisotropic conductive film 2 Liquid crystal panel 3 ITO electrode 4 Camera

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H04N 5/66 102 H04N 5/66 102Z H05K 3/36 H05K 3/36 A (56)参考文献 特開 平4−215209(JP,A) 特開 平4−254398(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 5/16 C08K 3/02 C08L 63/00 C09J 9/02 G02F 1/1345 H04N 5/66 102 H05K 3/36 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI H04N 5/66 102 H04N 5/66 102Z H05K 3/36 H05K 3/36 A (56) References JP-A-4-215209 (JP) , A) JP-A-4-254398 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01B 5/16 C08K 3/02 C08L 63/00 C09J 9/02 G02F 1/1345 H04N 5/66 102 H05K 3/36

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 エポキシ樹脂とシリコーン変性エポキシ
樹脂とを含む熱硬化型樹脂に導電粒子が分散されている
白色化した異方性導電膜を、その白色化状態を保持しな
がらガラス基板のITO電極上に予備圧着し、ガラス基
板側からITO電極パターンを画像認識し、その画像認
識結果に従って異方性導電膜上にITO電極に接続すべ
き回路基板を配置した後に、本圧着することを特徴とす
る回路接続方法
1. An epoxy resin and a silicone-modified epoxy
Conductive particles are dispersed in thermosetting resin containing resin
The anisotropic conductive film whitening, Do retained its white state
Pre-compression bonding on the ITO electrode of the glass substrate
Image recognition of the ITO electrode pattern from the plate side, and the image recognition
Should be connected to the ITO electrode on the anisotropic conductive film according to the knowledge
After the circuit board has been placed,
Circuit connection method .
【請求項2】 シリコーン変性エポキシ樹脂が、エポキ
シ樹脂100重量部に対し1〜25重量部含まれてい
請求項1記載の回路接続方法
2. A silicone-modified epoxy resin, Tei Ru claim 1 circuit connecting method according contains 1 to 25 parts by weight per 100 parts by weight of the epoxy resin.
JP4277904A 1992-09-22 1992-09-22 Circuit connection method Expired - Lifetime JP3057928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4277904A JP3057928B2 (en) 1992-09-22 1992-09-22 Circuit connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4277904A JP3057928B2 (en) 1992-09-22 1992-09-22 Circuit connection method

Publications (2)

Publication Number Publication Date
JPH06103821A JPH06103821A (en) 1994-04-15
JP3057928B2 true JP3057928B2 (en) 2000-07-04

Family

ID=17589915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4277904A Expired - Lifetime JP3057928B2 (en) 1992-09-22 1992-09-22 Circuit connection method

Country Status (1)

Country Link
JP (1) JP3057928B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7123798B2 (en) 2002-03-29 2006-10-17 Ngk Insulators, Ltd. Optical device and method of producing the same
US7308174B2 (en) 2002-12-20 2007-12-11 Ngk Insulators, Ltd. Optical device including a filter member for dividing a portion of signal light
US7321703B2 (en) 2002-12-20 2008-01-22 Ngk Insulators, Ltd. Optical device
WO2004057679A1 (en) * 2002-12-20 2004-07-08 Ngk Insulators, Ltd. Optical device
US7195402B2 (en) 2002-12-20 2007-03-27 Ngk Insulators, Ltd. Optical device
JP4031804B2 (en) 2003-06-02 2008-01-09 日本碍子株式会社 Optical device
KR101419229B1 (en) * 2007-11-28 2014-07-15 엘지디스플레이 주식회사 Display device and method of manufacturing the same
DE102008014690A1 (en) * 2008-03-18 2009-09-24 Conti Temic Microelectronic Gmbh Process for the production of circuit carriers
JP2009242508A (en) * 2008-03-31 2009-10-22 Asahi Kasei E-Materials Corp Adhesive and bonded body
JP5857410B2 (en) * 2011-02-04 2016-02-10 住友ベークライト株式会社 Manufacturing method of semiconductor device
CN110776849A (en) * 2019-10-23 2020-02-11 烟台德邦科技有限公司 Double-component high/low temperature resistant conductive adhesive and preparation method thereof
KR20220039206A (en) * 2020-09-22 2022-03-29 ㈜ 엘프스 Self-sealing type conductive connection material, bonding module including same, and manufacturing method thereof

Also Published As

Publication number Publication date
JPH06103821A (en) 1994-04-15

Similar Documents

Publication Publication Date Title
JP3057928B2 (en) Circuit connection method
JP4935592B2 (en) Thermosetting conductive paste
CN101690426B (en) Connector, manufacture method for connector and anisotropic conductive film to be used therein
CN1950912A (en) Adhesive for connecting circuit
CN101946371A (en) Connecting film, bonded body and method for manufacturing the bonded body
JP3408301B2 (en) Anisotropic conductive film
CN101836515B (en) Anisotropically conductive adhesive
JPH0623349B2 (en) Anisotropic conductive adhesive
JP2009105361A (en) Circuit connecting material, circuit connection structure, and its manufacturing method
WO2012074015A1 (en) Anisotropic conductive material and method for manufacturing same
JPH10226773A (en) Anisotropically conductive film
JPH06295617A (en) Anithotropic conductive adhesive compound
JP3418492B2 (en) Anisotropic conductive film
JP3620751B2 (en) Anisotropic conductive film
JPH1064331A (en) Conductive paste, electric circuit using conductive paste, and manufacture of electric circuit
JP3769152B2 (en) Conductive paste
KR20150060683A (en) Anisotropic conductive film, connection method, and connected body
JP3508558B2 (en) Anisotropic conductive adhesive film
JP3150054B2 (en) Anisotropic conductive film
JP2007018760A (en) Anisotropic conduction film for glass base plate connection
JP3480754B2 (en) Method for producing anisotropic conductive film
JPH05117419A (en) Anisotropically conductive film
WO2016052130A1 (en) Anisotropic conductive film and bonding method
JP2003049152A (en) Adhesive for connecting circuit, connecting method using the same and connecting structure
JPH03166284A (en) Electrically conductive adhesive

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 13