JP3056594B2 - 鉄−亜鉛合金電気メッキ法 - Google Patents

鉄−亜鉛合金電気メッキ法

Info

Publication number
JP3056594B2
JP3056594B2 JP4202828A JP20282892A JP3056594B2 JP 3056594 B2 JP3056594 B2 JP 3056594B2 JP 4202828 A JP4202828 A JP 4202828A JP 20282892 A JP20282892 A JP 20282892A JP 3056594 B2 JP3056594 B2 JP 3056594B2
Authority
JP
Japan
Prior art keywords
plating
plating solution
iron
zinc
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4202828A
Other languages
English (en)
Other versions
JPH0649699A (ja
Inventor
勇昭 小山
誠司 杉山
和範 永井
吉田  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4202828A priority Critical patent/JP3056594B2/ja
Publication of JPH0649699A publication Critical patent/JPH0649699A/ja
Application granted granted Critical
Publication of JP3056594B2 publication Critical patent/JP3056594B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、不溶性陽極を用いた鉄
−亜鉛合金電気メッキにおいて陽極酸化を起こしてメッ
キ液中に生成した不純物Fe3+イオンのFe2+イオンへ
の還元反応を促し、再びメッキセルに該メッキ液を返還
する鉄−亜鉛合金電気メッキ法に関するものである。
【0002】
【従来の技術】自動車用防錆鋼板は、亜鉛を主体にした
メッキ鋼板が従来から多用されているが、最近では防錆
性や塗装適合性さらには溶接性をより一層向上させた鉄
やニッケルあるいはクロムなどと亜鉛との2元系あるい
は3元系合金メッキ鋼板が開発されているが、中でも優
れた溶接性を保有する鉄−亜鉛合金メッキ鋼板が多く使
用され、その製造法も溶融メッキ法に較べ光沢性の利点
から電気メッキ法による製造法が一般化されている。さ
らに電気メッキ法には、メッキ金属を陽極とした可溶性
陽極型と、メッキ金属の電解液中に不溶性金属の陽極を
使用する不溶性陽極型とに分類されるが、メッキ操業の
安定性と連続性などに有利な不溶性陽極型が一般的に多
く使用されている。
【0003】不溶性陽極型の鉄−亜鉛合金電気メッキ法
は、Fe2+およびZn2+のイオンを含有した溶液を充満
したメッキセル中でメッキされるストリップを陰極にま
たその対面側に不溶性金属の陽極を設置してその間を通
電し、ストリップにFeおよびZnを析出させるメッキ
方法である。ところが、操業中の陽極においてメッキ溶
液中のFe2+イオンがFe3+イオンに酸化反応(Fe2+
→Fe3++e-)を起こし、そのFe3+イオンがメッキ
析出効率の低下や製品のメッキ外観性劣化など多くの問
題を引き起こすためメッキ溶液を極力低濃度に維持管理
する必要があった。
【0004】このため不溶性陽極型の鉄−亜鉛合金電気
メッキ法においては、例えば特開昭58−151849
号公報のように、メッキセルから送り出されたFe3+
オン濃度の高いメッキ溶液を、亜鉛粒子あるいは鉄粒子
の充填槽でFe2+イオンに還元した後再びメッキセルに
送り込む循環経路の技術が開発されている。しかしなが
ら、この方法ではその還元効率が陽極で発生するFe3+
イオンの生成速度に対して充分とは言えず、イオンバラ
ンスを適正維持するために定期的にメッキ溶液の一部を
廃棄しなければならない問題があった。
【0005】また、特開昭61−48599号公報で
は、金属鉄や金属亜鉛をイオン供給源とする場合はこれ
らの金属とメッキ溶液の相対流速を20cm/sec以
上にする事でFe3+イオンの還元効率を高め、さらにメ
ッキ溶液中にポリオキシエチレン系誘導体化合物、ポリ
オキシプロピレン系誘導体化合物の少量を添加する事で
還元効率を一層高め、鉄−亜鉛メッキ相の析出不良欠陥
を防止した鉄系または亜鉛系合金電気メッキのイオン補
給方法が開発されている。ところが、鉄−亜鉛合金電気
メッキにおける本発明者らの実験結果によるとメッキ溶
液中にポリオキシエチレン系誘導体化合物のような有機
物質が存在すると、メッキ層において鉄の析出率が増加
し相対的に亜鉛の析出率が低下する。
【0006】その結果、所要目的の合金組成のメッキ層
が得られず、合金組成の変化により均一なメッキ外観性
が得られない問題があった。さらに、特開昭60−96
787号公報でも、鉄−亜鉛合金メッキ硫酸塩溶液にD
DS(Dihydroxy−Diphenyl−Sul
fone)、ENSA,ENの1種または2種以上を添
加する鉄−亜鉛合金電気メッキ方法が紹介されている。
すなわち、硫酸塩溶液中にDDSなどの有機物質を添加
する事によって、Fe−Zn電析挙動を正常析出挙動に
近づける(Feの析出率を高める)事ができ、その結
果、適正電流密度範囲の拡大やメッキ効率の向上が計ら
れるというものである。しかしながら、このようなメッ
キ法も有機物質を含有するため、前記と同様に、合金組
成が一様なメッキ層が得られない問題があった。
【0007】
【発明が解決しようとする課題】これらの問題はメッキ
溶液に存在する有機物質の種類や濃度によってその影響
度が異なり、この原因について本発明者らは次のように
考察している。鉄−亜鉛合金メッキの析出形態におい
て、電気化学的にメッキされ難い卑金属の亜鉛は、より
メッキされ易い貴金属の鉄よりも優先的に析出する特性
(いわゆる異常型析出)を持っている。これはストリッ
プ(陰極)界面のPHが電解時に発生するH 2ガスで上
昇し、ストリップ界面に亜鉛の水酸化物皮膜を形成され
るために、Fe2+イオンがこの皮膜を介して析出しなけ
ればならない(鉄の析出が阻害される)点に原因があっ
た。
【0008】一方、有機物質は上記した亜鉛の水酸化物
皮膜を薄くする作用を有するためのFe2+イオンを析出
し易くするが、その反面では有機物質の種類や濃度によ
って合金組成が異なるメッキ層を生成する原因にもな
る。このような原因の現象は鉄−亜鉛合金メッキのみに
ならずニッケル、コバルトなどの鉄族金属と亜鉛との合
金メッキの如く異常型析出を示すメッキ全般に共通した
現象である。
【0009】図5は、鉄および亜鉛のイオン濃度が異な
る硫酸塩浴中で不溶性陽極を使用して鉄−亜鉛合金メッ
キを施した場合のメッキ溶液中に存在するENSA(E
thoxylated α−Naphtol Sulf
onic Acid)とEN(Ethoxylated
α−Naphtol)の濃度とメッキ層中のFe析出
率の関係を示したものである。すなわち、何れの鉄およ
び亜鉛のイオン濃度についても、メッキ溶液中の有機物
質濃度が高いほど、メッキ層中のFe析出率が高くな
る。また、この結果は、メッキ溶液中にPAS(Pol
y AmineSulfur)やクエン酸二アモンの有
機物質を1種または2種さらにENSAやENなどを選
択的に投入した場合も同様の結果を得ている。
【0010】さらにまたメッキ溶液中への有機物質の添
加には、次に述べるような問題もあった。現在ユーザー
が要求する多岐にわたるメッキ鋼板は、設備費の節減か
ら、共用のメッキセルにメッキ品種毎に専用のメッキ溶
液循環系統(タンク、配管)を接続し切り換える方式の
メッキラインで、複数種類のメッキ鋼板を造り分ける作
業で生産されている。つまり、メッキ品種の切り換え毎
にメッキセルから先行するメッキ溶液を抜き、水の洗浄
を数回繰替えした後、後行品種のメッキ溶液を導入する
メッキ方法を行っている。ところが、ストリップ案内ロ
ールや電極懸垂具などを内蔵するメッキセル内の狭隘な
場所に残存する有機物質まで完全に洗浄する事は殆ど不
可能であり、このため有機物質を添加しないメッキ鋼板
の製造にまで悪影響を及ぼし兼ねない問題があった。
【0011】
【課題を解決するための手段】本発明は、上記したこれ
までの問題を解消する事を目的としたもので、メッキ溶
液中に溶解される有機物質の添加をFe−Zn合金を優
先的に析出するに必要な量に留め、余剰な有機物質を積
極的に除去する鉄−亜鉛合金電気メッキ法を提供するも
のである。その要旨は、不溶性陽極を用いた鉄−亜鉛合
金電気メッキ中に陽極酸化を起こして生成したFe3+
オンを含有するメッキ液を、メッキセルから供出し、E
NSA、EN、PAS、クエン酸二アンモンの有機物質
を1種または2種以上を投入してFe3+イオンをFe2+
イオンに還元反応を助長せしめた後、該有機物質を除去
し、該メッキ液を再びメッキセルに返還する鉄−亜鉛合
金電気メッキ法である。
【0012】以下本発明について図面に従って詳細に説
明する。図1は、本発明法の一実施例を水平型メッキ装
置で示す。1はメッキセルである。メッキセル1は、メ
ッキされるストリップ2を走行させ、該ストリップ1を
介して上下に対峙する如く不溶性陽極3が配置されてい
る。4はメッキ溶液吹き込みヘッダーである。すなわ
ち、メッキセル1は走行する陰極のストリップ2と不溶
性陽極3の間の間隙に、メッキ溶液吹き込みヘッダー4
よりメッキ溶液を吹き込みながら通電し、ストリップ2
をメッキする構造に構成されている。5はメッキ溶液貯
蔵タンクで、メッキ溶液吹き込みヘッダー4のメッキ溶
液供給パイプ6と、メッキセル1で供出されたメッキ溶
液を導入するメッキ溶液戻りパイプ7を連接している。
【0013】すなわち、メッキ溶液は、メッキ溶液貯蔵
タンク5とメッキセル1を循環して流れる。メッキ溶液
貯蔵タンク5には、メッキ溶液が所定の液組成と濃度に
管理するために、Zn2+イオンやFe2+イオンなどの供
給除去装置が連接されている。8はZn2+イオン供給装
置(金属亜鉛溶解装置)、9はFe2+イオン供給装置
(金属鉄溶解装置)で、それぞれの供給装置には有機物
質投入装置10が連接されている。さらにZn2+イオン
供給装置8とFe2+イオン供給装置9には過剰な有機物
質を除去する例えば活性炭を充填した装置11と、Zn
2+イオンリッチなZn2+メッキ溶液循環タンク12とF
2+イオンリッチなFe2+メッキ溶液循環タンク13が
連接されている。
【0014】すなわち、本発明は、鉄−亜鉛合金電気メ
ッキ中に陽極酸化を起こして生成したFe3+イオンを含
有してメッキセル1からメッキ溶液貯蔵タンク5を経て
Zn 2+イオン供給装置8とFe2+イオン供給装置9に送
りこまれたメッキ溶液に、ENSA、EN、PAS、ク
エン酸二アンモンの有機物質を1種または2種以上を投
入してFe3+イオンをFe2+イオンに還元反応を助長せ
しめた後、該有機物質を除去し、再びメッキ溶液貯蔵タ
ンク5に戻ってメッキセル1に返還するメッキ溶液フロ
ーの鉄−亜鉛合金電気メッキ法である。次に本発明の実
施例について説明をする。
【0015】
【実施例】不溶性陽極型の鉄−亜鉛合金メッキでの実施
例(メッキ液総量40m3 、メッキ液中のイオン濃度、
Fe2+80g/l、Zn2+50g/l(各々適正範囲は
±5g/l)、Free H2SO415g/l、液温6
0℃、メッキに必要なZn2+の供給速度は150kg/
h、陽極酸化によるFe3+の生成速度は219kg/
h、また有機物質は金属亜鉛溶解装置にて投入)により
本発明の効果を具体的に説明する。本実施例では陽極酸
化で生成するFe3+219kg/hのうちの12%に相
当する26kg/hが陰極においてFe2+へ還元される
(Fe3++e -→Fe2+)での差分193kg/hのF
3+を金属亜鉛溶解装置8においてFe2+に還元し、且
つメッキに必要なZn2+の供給速度150kg/hを満
足する必要がある。
【0016】図2に、金属亜鉛溶解装置8においてFe
3+がFe2+に還元される効率と同装置においてメッキ液
中に投入する有機物質濃度の関係を示す。ここで還元効
率は、次のように定義する。還元効率=(Fe3+のFe
2+への還元溶解によるZn溶解量)/(Fe3+のFe2+
への還元溶解によるZn溶解量+H+によるZn溶解
量)。また、投入した有機物質はENSAとENの等量
混合物である。図から判るように有機物質を投入しない
状態での還元効率は約45%であるが有機物質の濃度を
高くしていくと還元効率が上昇していく。以下に、還元
効率の向上効果を実際のイオンバランスを図3で説明す
る。
【0017】本実施例では金属亜鉛溶解装置において還
元が必要なFe3+は193kg/hであり、これを金属
亜鉛溶解反応Zn+2Fe3+→Zn2++2Fe2+で還元
する場合、還元溶解による金属亜鉛の溶解量は112k
g/hとなる(1モルのZnで2モルのFe3+が還元さ
れる)。この時に有機物質の投入なしでは前記の如く還
元効率45%であるからH+による金属亜鉛の溶解量は
137kg/h(112/0.45−112)となり、
金属亜鉛溶解装置における総亜鉛溶解量は249kg/
hとなる。これはメッキに必要なZn2+の供給量150
kg/hより99kg/hも過剰であり、約2hでメッ
キ液中のZn2+濃度が適正範囲を越える(∵過剰供給量
99kg/hによるメッキ液中のZn2+濃度上昇量は約
2.5g/l/hであるから2hで濃度上限値55g/
lに達する)。従って、1回/2hの頻度でメッキ液の
廃棄、濃度調整操作を行わねばならない。
【0018】一方、金属亜鉛溶解装置においてメッキ液
中にENSAとENの等量混合物を約10ppm投入す
ると還元効率は75%に上昇し、H+による金属亜鉛の
溶解量は38kg/h(112/0.75−112)と
なり、還元溶解による金属亜鉛溶解量112kg/hと
合わせて金属亜鉛溶解装置における総亜鉛溶解量は15
0kg/hとなる。これはメッキに必要なZn2+の供給
量150kg/hと等価である。即ち、メッキに必要な
Zn2+供給量の確保と陽極酸化で生成したFe 3+全量の
Fe2+への還元を金属亜鉛の過剰溶解なしで実現する、
つまり液中イオンバランスのセルフコントロールを実現
することができる。また、金属亜鉛および金属鉄の溶解
装置に投入する有機物質は前記ENSAとENの等量混
合物以外にも同様の効果を有するものがあり、例えばE
NSA、EN各々単独でも良いしPAS、PEG等多く
の有機物質が有効である。
【0019】次に、溶解装置8にてZn2+イオンの補給
とFe3+のFe2+への還元を行ったメッキ液からの有機
物質の除去について説明する。図4は有機物質除去装置
11におけるメッキ液中有機物質濃度の変化(除去状
況)である。装置入口において約10ppmであった有
機物質濃度は吸着剤層を通過するにつれて漸減し装置出
口においてはほぼ完全に吸着除去されている。ここで使
用した吸着剤は吸着剤としては最も一般的なヤシ殻活性
炭であるがこれ以外にも有機物質の吸着能を有し、且つ
それ自身はメッキ液に対し安定である物質、例えば液体
クロマトグラフにおいて固定相として使用される有機物
質吸着剤等でも同様の効果が得られる。
【0020】
【発明の効果】以上、説明したように本発明によれば、
不溶性陽極を用いた鉄−亜鉛合金電気メッキにおいて陽
極酸化によって発生するメッキ液中のFe3+イオン全量
を、Fe2+イオン供給装置である金属鉄および金属亜鉛
の溶解装置においてFe2+に還元することが、メッキ液
中のイオンバランスを一定に維持した状態で実現できる
と同時に、還元処理後のメッキ液中の有機物質をほぼ完
全に吸着除去してメッキセルに供給することで従来法の
問題点を解消することができる。
【図面の簡単な説明】
【図1】本発明法の一実施例を水平型メッキ装置にて示
す図、
【図2】金属亜鉛溶解装置におけるメッキ溶液中の有機
物質(ENSA+EN)とFe 3+の還元効率を示す図、
【図3】Fe3+の還元効率向上の際のイオンバランスを
示す図、
【図4】有機物質除去装置におけるメッキ溶液中の有機
物質(ENSA+EN)濃度変化を示す図、
【図5】メッキ溶液中に存在する有機物質(ENSA+
EN)濃度とメッキ層中のFe析出率の関係を示す図で
ある。
【符号の説明】
1 メッキセル 2 ストリップ 3 不活性陽極 4 ヘッダー 5 メッキ溶液貯蔵タンク 6 メッキ溶液供給パイプ 7 メッキ溶液戻りパイプ 8 Zn2+イオン供給装置 9 Fe2+イオン供給装置 10 有機物質投入装置 11 活性炭を充填した装置 12 Zn2+メッキ溶液循環タンク
フロントページの続き (72)発明者 吉田 誠 福岡県北九州市戸畑区飛幡町1番1号 新日本製鐵株式会社 八幡製鐵所内 (56)参考文献 特開 昭58−61300(JP,A) 特開 昭60−96787(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25D 21/18 C25D 3/56

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】 不溶性陽極を用いた鉄−亜鉛合金電気メ
    ッキ中に陽極酸化を起こして生成したFe3+イオンを含
    有するメッキ液を、メッキセルから供出し、ENSA
    (Ethoxylated α−Naphtol Su
    lfonicAcid)EN(Ethoxylated
    α−Naphtol)、PAS(Poly Amin
    e Sulfur)、クエン酸二アンモンの有機物質を
    1種または2種以上を投入しFe3+イオンをFe2+イオ
    ンに還元反応を助長せしめた後、該有機物質を除去し、
    該メッキ液を再びメッキセルに返還する事を特徴とする
    鉄−亜鉛合金電気メッキ法。
JP4202828A 1992-07-30 1992-07-30 鉄−亜鉛合金電気メッキ法 Expired - Fee Related JP3056594B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4202828A JP3056594B2 (ja) 1992-07-30 1992-07-30 鉄−亜鉛合金電気メッキ法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4202828A JP3056594B2 (ja) 1992-07-30 1992-07-30 鉄−亜鉛合金電気メッキ法

Publications (2)

Publication Number Publication Date
JPH0649699A JPH0649699A (ja) 1994-02-22
JP3056594B2 true JP3056594B2 (ja) 2000-06-26

Family

ID=16463868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4202828A Expired - Fee Related JP3056594B2 (ja) 1992-07-30 1992-07-30 鉄−亜鉛合金電気メッキ法

Country Status (1)

Country Link
JP (1) JP3056594B2 (ja)

Also Published As

Publication number Publication date
JPH0649699A (ja) 1994-02-22

Similar Documents

Publication Publication Date Title
JP3455709B2 (ja) めっき方法とそれに用いるめっき液前駆体
CN101146934A (zh) 具有滤过膜的碱性电镀浴
KR20110032540A (ko) 니켈플래쉬 도금용액, 전기아연강판 및 이의 제조방법
JP3056594B2 (ja) 鉄−亜鉛合金電気メッキ法
US5198095A (en) Method for continuously manganese-electroplating or manganese-alloy-electroplating steel sheet
JP5861176B2 (ja) 亜鉛−ニッケル合金めっき液並びにめっき方法
JPS6023200B2 (ja) 鉄−亜鉛合金電気メツキ鋼板の製造装置
US6921472B1 (en) Process for the solution of metals into an electrolytic deposition solution and solution plant operating such process
KR20210035972A (ko) 전기도금 용액용 착화제 및 이를 포함하는 전기도금 용액
JPH11200099A (ja) 不溶性陽極を用いるめっき方法およびめっき装置
US6022467A (en) Electrolytic tin plating process with reduced sludge production
EP4317537A1 (en) Method for removing ferric ions from sulfate-based iron electroplating solution
JPS60155697A (ja) 鉄−亜鉛合金電気めつき方法
JPS586792B2 (ja) アエンイオンノメツキヨクヘノキヨウキユウホウホウ
JPS6028918B2 (ja) 片面亜鉛系電気メッキ鋼板の非メッキ面の後処理方法
JP3032148B2 (ja) 粒状金属錫溶解液および錫めっき方法
JPH0125839B2 (ja)
JPS6344837B2 (ja)
JPH0841693A (ja) Cr3+イオンを含有するめっき浴の管理方法
JP3082985B2 (ja) 連続電気めっき設備
JP2616024B2 (ja) 電極損傷度合いの小さい電気亜鉛系めっき鋼板の製造方法
JPH04218700A (ja) 電気亜鉛めっき浴の調整方法
JPH0849099A (ja) 亜鉛−クロム系電気めっき方法
JPH02236297A (ja) 鉄系電着方法及び装置
JPS58133395A (ja) 片面亜鉛系電気メツキ鋼板の非メツキ面の後処理方法

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000404

LAPS Cancellation because of no payment of annual fees