JP3046169B2 - Complex refrigerant circuit equipment - Google Patents

Complex refrigerant circuit equipment

Info

Publication number
JP3046169B2
JP3046169B2 JP5026732A JP2673293A JP3046169B2 JP 3046169 B2 JP3046169 B2 JP 3046169B2 JP 5026732 A JP5026732 A JP 5026732A JP 2673293 A JP2673293 A JP 2673293A JP 3046169 B2 JP3046169 B2 JP 3046169B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
refrigerant circuit
refrigerant
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5026732A
Other languages
Japanese (ja)
Other versions
JPH06241591A (en
Inventor
久孝 榎本
耕作 矢尾田
正毅 池内
耕一 根来
晃一 大畑
忠明 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Kansai Electric Power Co Inc
Priority to JP5026732A priority Critical patent/JP3046169B2/en
Publication of JPH06241591A publication Critical patent/JPH06241591A/en
Application granted granted Critical
Publication of JP3046169B2 publication Critical patent/JP3046169B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば冷却温度域の異
なる被冷却環境をそれぞれ冷却する、いわば蒸発器の冷
媒蒸発温度を異にする複数の冷媒回路と、冷熱を蓄熱す
るための蓄熱槽とを備えた複合型冷媒回路設備に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, a plurality of refrigerant circuits for cooling respective cooled environments having different cooling temperature ranges, that is, different refrigerant evaporation temperatures of evaporators, and a heat storage tank for storing cold heat. The present invention relates to a combined type refrigerant circuit equipment comprising:

【0002】[0002]

【従来の技術】従来、例えば食品加工センターや食品店
舗等における、被冷却環境たる冷蔵庫やショーケース等
を冷却する複合型冷媒回路設備の構成を図9に示す。同
図において、1は冷蔵側圧縮機(第1の圧縮機)、2は
冷蔵側凝縮器(第1の凝縮器)、3は5で示す冷蔵側蒸
発器(第1の蒸発器)へ供給する冷媒を断続するための
冷蔵側電磁弁、4は冷蔵側膨張弁(第1の絞り装置の一
例)、6はこれらを連通する冷蔵側の冷媒配管を示す。
さらに、7は例えば水等の蓄熱剤を収容した冷蔵側の蓄
熱槽、8は冷蔵側蓄熱用蒸発器(蓄熱用熱交換器)、9
は冷蔵側蓄熱用蒸発器8へ供給する冷媒を断続するため
の冷蔵側蓄熱用電磁弁、10は冷蔵側蓄熱用膨張弁(蓄
熱用絞り装置の一例)、11は冷蔵側過冷却用熱交換
器、12,13はそれぞれ冷蔵側過冷却切換電磁弁、1
4は冷媒配管6に連通され冷媒を冷蔵側過冷却用熱交換
器11へ迂回させて送るための冷蔵側過冷却用の冷媒配
管、15は冷媒配管6に並列に連通され冷蔵側蓄熱用蒸
発器8へ冷媒を送るための冷媒配管を示す。前記1〜1
5の符号を付した構成要素から、冷蔵側蒸発器5のおか
れた例えばショーケース(第1の被冷却環境の一例であ
って、例えば0℃を超える目標温度に設定されている)
を冷却する冷蔵側冷媒回路[(第1の冷媒回路の一
例)]が構成されている。
2. Description of the Related Art FIG. 9 shows a configuration of a conventional complex type refrigerant circuit equipment for cooling a refrigerator or a showcase as an environment to be cooled in, for example, a food processing center or a food store. In the figure, 1 is a refrigerator-side compressor (first compressor), 2 is a refrigerator-side condenser (first condenser), and 3 is a supply to a refrigerator-side evaporator (first evaporator) indicated by 5. A refrigeration-side solenoid valve for interrupting the refrigerant to be connected, 4 is a refrigeration-side expansion valve (an example of a first expansion device), and 6 is a refrigeration-side refrigerant pipe connecting these.
Further, 7 is a refrigeration-side heat storage tank containing a heat storage agent such as water, 8 is a refrigeration-side heat storage evaporator (heat storage heat exchanger), 9
Is a refrigeration-side heat storage solenoid valve for interrupting the refrigerant supplied to the refrigeration-side heat storage evaporator 8, 10 is a refrigeration-side heat storage expansion valve (an example of a heat storage throttle device), and 11 is a refrigeration-side supercooling heat exchanger. And 12 and 13 are refrigeration side supercooling switching solenoid valves and 1
Reference numeral 4 denotes a refrigerant pipe for refrigeration side supercooling which is communicated with the refrigerant pipe 6 and bypasses and sends the refrigerant to the refrigeration side supercooling heat exchanger 11. Reference numeral 15 denotes an evaporator for refrigeration side heat storage which is communicated in parallel with the refrigerant pipe 6. 2 shows a refrigerant pipe for sending a refrigerant to a vessel 8. 1 to 1
From the components denoted by reference numeral 5, for example, a showcase in which the refrigeration-side evaporator 5 is placed (an example of a first cooled environment, which is set to a target temperature exceeding 0 ° C., for example)
A refrigeration-side refrigerant circuit [(an example of a first refrigerant circuit)] that cools the refrigerant is configured.

【0003】また、21は冷凍側圧縮機(第2の圧縮
機)、22は冷凍側凝縮器(第2の凝縮器)、23は2
5で示す冷凍側蒸発器(第2の蒸発器)へ供給する冷媒
を断続するための冷凍側電磁弁、24は冷凍側膨張弁
(第2の絞り装置の一例)、26はこれらを連通する冷
凍側の冷媒配管を示す。さらに、27は例えば水等の蓄
熱剤を収容した冷凍側の蓄熱槽、28は冷凍側蓄熱用蒸
発器、29は冷凍側蓄熱用蒸発器28へ供給する冷媒を
断続するための冷凍側蓄熱用電磁弁、30は冷凍側蓄熱
用膨張弁、31は冷凍側過冷却用熱交換器(冷熱供給用
熱交換器)、32,33はそれぞれ冷凍側過冷却切換電
磁弁、34は冷媒配管26に連通され冷媒を冷凍側過冷
却用熱交換器31へ迂回させて送るための冷凍側過冷却
用の冷媒配管、35は冷媒配管26に並列に連通され冷
凍側蓄熱用蒸発器28へ冷媒を送るための冷媒配管を示
す。前記21〜35の符号を付した構成要素から、冷凍
側蒸発器25のおかれた例えば冷凍庫(第2の被冷却環
境の一例であって、例えば0℃以下の目標温度に設定さ
れている)を冷却する冷凍側冷媒回路[(第2の冷媒回
路の一例)]が構成されている。尚、ここでは店舗など
におけるショーケース、冷蔵庫、冷凍庫等の負荷側の機
器については図示を省略する。
[0003] Further, 21 is a refrigerating side compressor (second compressor), 22 is a refrigerating side condenser (second condenser), and 23 is 2
A refrigeration-side solenoid valve for interrupting the refrigerant supplied to the refrigeration-side evaporator (second evaporator) indicated by 5, 24 is a refrigeration-side expansion valve (an example of a second expansion device), and 26 communicates them. 3 shows a refrigerant pipe on the refrigeration side. Further, reference numeral 27 denotes a freezing-side heat storage tank containing a heat storage agent such as water, 28 denotes a freezing-side heat storage evaporator, and 29 denotes a freezing-side heat storage for intermittently supplying a refrigerant supplied to the freezing-side heat storage evaporator 28. Solenoid valve, 30 is a freezing-side heat storage expansion valve, 31 is a freezing-side supercooling heat exchanger (heat exchanger for supplying cold heat), 32 and 33 are freezing-side supercooling switching solenoid valves, respectively, and 34 is a refrigerant pipe 26. A refrigerant pipe for refrigeration-side supercooling for communicating and bypassing the refrigerant to the refrigeration-side supercooling heat exchanger 31, a refrigerant pipe 35 for communicating with the refrigerant pipe 26 in parallel to send refrigerant to the refrigeration-side heat storage evaporator 28. 1 shows a refrigerant pipe for use. From the components denoted by reference numerals 21 to 35, for example, a freezer in which the freezing-side evaporator 25 is placed (an example of a second cooled environment, which is set to a target temperature of 0 ° C. or lower, for example) A refrigeration-side refrigerant circuit [(an example of a second refrigerant circuit)] is configured to cool the refrigerant. It should be noted that illustrations of load-side devices such as showcases, refrigerators, freezers and the like in stores and the like are omitted here.

【0004】次に、従来設備の動作につき図9に基づい
て説明する。先ず、冷蔵側冷媒回路において、各冷蔵側
過冷却切換電磁弁12が閉止され冷蔵側過冷却切換電磁
弁13が開放された状態で、冷蔵側圧縮機1にて圧縮さ
れた高温、高圧のガス冷媒は、冷蔵側凝縮器2で冷却・
液化され、冷蔵側電磁弁3を経て冷蔵側膨張弁4で減圧
された後、冷蔵側蒸発器5に流入し蒸発・吸熱して、シ
ョーケースや冷蔵庫を冷却し、冷蔵側圧縮機1に還流す
る。以降同様のサイクルが繰り返される。そして、被冷
却環境を予め設定された目標温度にするために必要な冷
凍能力(この冷凍能力を「負荷」という)が増大した場
合には、冷蔵側過冷却切換電磁弁13を閉止し各冷蔵側
過冷却切換電磁弁12を開放することにより、冷蔵側凝
縮器2からの冷媒を冷蔵側過冷却用熱交換器11に導
き、予め冷蔵側の蓄熱槽7に蓄えられた冷熱を取り出し
てショーケース等の冷却に供する。なお、冷蔵側電磁弁
3は、ショーケース等に取り付けられた温度調節器(図
示せず)の出力結果を基に得た負荷の状態に応じて開閉
され、冷蔵側蒸発器5に流入させる冷媒液の供給を制御
する。一方、21から35に示す冷凍側冷媒回路の動作
については、冷凍側蒸発器25における冷媒の蒸発温度
が冷蔵側冷媒回路の冷蔵側蒸発器5における蒸発温度よ
りも低く設定されていることが異なるのみであって、他
については冷蔵側冷媒回路と同様につき、その説明を省
略する。
Next, the operation of the conventional equipment will be described with reference to FIG. First, in the refrigeration-side refrigerant circuit, the high-temperature, high-pressure gas compressed by the refrigeration-side compressor 1 in a state where each refrigeration-side subcooling switching electromagnetic valve 12 is closed and the refrigeration-side supercooling switching electromagnetic valve 13 is opened. The refrigerant is cooled by the refrigeration condenser 2
After being liquefied and decompressed by the refrigeration side expansion valve 4 via the refrigeration side solenoid valve 3, it flows into the refrigeration side evaporator 5, evaporates and absorbs heat, cools the showcase and the refrigerator, and returns to the refrigeration side compressor 1. I do. Thereafter, a similar cycle is repeated. When the refrigerating capacity required for setting the environment to be cooled to a preset target temperature (this refrigerating capacity is referred to as “load”) increases, the refrigerating-side supercooling switching electromagnetic valve 13 is closed and each refrigeration unit is closed. The refrigerant from the refrigeration-side condenser 2 is guided to the refrigeration-side supercooling heat exchanger 11 by opening the side-side supercooling switching solenoid valve 12, and the cold heat previously stored in the refrigeration-side heat storage tank 7 is taken out and displayed. Provide for cooling the case etc. The refrigeration-side solenoid valve 3 opens and closes according to the load condition obtained based on the output result of a temperature controller (not shown) attached to a showcase or the like, and causes the refrigerant to flow into the refrigeration-side evaporator 5. Controls liquid supply. On the other hand, the operation of the refrigeration-side refrigerant circuits 21 to 35 is different in that the evaporation temperature of the refrigerant in the refrigeration-side evaporator 25 is set lower than the evaporation temperature in the refrigeration-side evaporator 5 of the refrigeration-side refrigerant circuit. Only the other components are the same as those of the refrigeration-side refrigerant circuit, and a description thereof will be omitted.

【0005】[0005]

【発明が解決しようとする課題】冷凍側冷媒回路、すな
わちその蒸発器における冷媒の蒸発温度が低い冷媒回路
は、一般に、蒸発温度の高い冷蔵側冷媒回路に比べて、
冷凍効率が低いとされている。そして、上記のように、
従来の複合型冷媒回路設備は、目標とされる蒸発温度に
よって冷蔵側冷媒回路と冷凍側冷媒回路とが別個独立に
分離して構成されている。そのため、冷媒回路間で冷凍
効率に差があり、設備全体としての総合的な冷凍効率が
よいものとはいえなかった。
The refrigerant circuit on the refrigeration side, that is, the refrigerant circuit having a low evaporating temperature of the refrigerant in the evaporator, is generally in comparison with the refrigeration side refrigerant circuit having a high evaporating temperature.
It is said that the refrigeration efficiency is low. And, as mentioned above,
In the conventional combined refrigerant circuit equipment, the refrigeration-side refrigerant circuit and the refrigeration-side refrigerant circuit are separately and independently separated according to a target evaporation temperature. Therefore, there is a difference in refrigeration efficiency between the refrigerant circuits, and it cannot be said that the overall refrigeration efficiency of the entire equipment is good.

【0006】また、各冷媒回路における蓄熱用蒸発器と
過冷却用熱交換器との間の冷熱移動は蓄熱剤の自然対流
に委ねられているため、冷熱移動効率がよくなかった。
Further, since the cold transfer between the heat storage evaporator and the supercooling heat exchanger in each refrigerant circuit is left to natural convection of the heat storage agent, the cold transfer efficiency is not good.

【0007】さらに、蓄冷運転時において、被冷却環境
の冷却中に同時に余剰の冷熱が蓄冷されることがある
が、蓄熱用蒸発器の熱交換能力が大きすぎる場合には、
冷熱が必要以上に蓄冷されるので、被冷却環境に対する
冷却能力が激減する。これによって、ショーケースや冷
蔵庫に収納された例えば被冷却物の温度が上昇してしま
うことがあった。
Further, during the cold storage operation, excess cold heat may be stored at the same time as cooling the environment to be cooled. However, if the heat exchange capacity of the heat storage evaporator is too large,
Since the cold heat is stored more than necessary, the cooling capacity for the environment to be cooled is drastically reduced. As a result, the temperature of, for example, an object to be cooled stored in a showcase or a refrigerator may increase.

【0008】また、過冷却用熱交換器の熱交換能力が膨
張弁の能力制御範囲を越えた場合には、気液混合の冷媒
がそのまま圧縮機の吸入側に戻されて機械的な悪影響を
引き起こすことがあり、設備の信頼性を損なわせるとい
う問題があった。
If the heat exchange capacity of the supercooling heat exchanger exceeds the capacity control range of the expansion valve, the gas-liquid mixed refrigerant is returned to the suction side of the compressor as it is, and adversely affects mechanical effects. There is a problem that this may cause the reliability of the equipment to be reduced.

【0009】そして、蓄冷用熱交換器と過冷却用熱交換
器が別個独立に配備されているため、これらの熱交換器
にかかるイニシャルの製造コストが大きく、投資効果の
面からも改善の余地があった。
[0009] Since the regenerative heat exchanger and the subcooling heat exchanger are provided separately and independently, the initial production cost for these heat exchangers is large, and there is room for improvement in terms of investment effects. was there.

【0010】また、蒸発器における冷媒の蒸発温度が同
じであっても、被冷却環境の種類によって複数の系統の
冷媒回路が設けられている場合、それぞれの系統毎に被
冷却環境の負荷状態は一様でない場合が多く、各系統の
圧縮機毎の稼働率にばらつきがあり全ての圧縮機に係る
総合的な運転効率に改善の余地があった。
Further, even if the evaporation temperature of the refrigerant in the evaporator is the same, if a plurality of refrigerant circuits are provided depending on the type of the environment to be cooled, the load state of the environment to be cooled in each system is In many cases, it is not uniform, and the operating rates of the compressors of each system vary, and there is room for improvement in the overall operating efficiency of all the compressors.

【0011】本発明は以上のような従来技術の問題点を
解決するためなされてものであり、冷凍効率の高い冷媒
回路の余剰の冷熱を冷凍効率の低い冷媒回路に移動させ
ることにより、設備全体としての総合的な冷凍効率を向
上し得る複合型冷媒回路設備を提供することを目的とす
るものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and the entire facility is moved by transferring excess cold heat from a refrigerant circuit having a high refrigeration efficiency to a refrigerant circuit having a low refrigeration efficiency. It is an object of the present invention to provide a composite refrigerant circuit equipment capable of improving overall refrigeration efficiency.

【0012】また、複数の冷媒回路間での、余剰の冷熱
の冷熱移動効率の優れた複合型冷媒回路設備を提供する
ことを目的とするものである。
It is another object of the present invention to provide a composite refrigerant circuit having excellent cooling and heat transfer efficiency of surplus cold heat between a plurality of refrigerant circuits.

【0013】さらに、蓄冷運転時において被冷却環境の
冷却中に同時に余剰の冷熱を蓄冷する場合、蓄冷量の制
御を適切に行うことにより、ショーケースや冷蔵庫等に
対する冷却能力が減少して、これらに収納された被冷却
物の温度が上昇するのを防止できる複合型冷媒回路設備
を提供することを目的とするものである。
[0013] Further, in the case of storing surplus cold heat at the same time as cooling the environment to be cooled during the cold storage operation, by appropriately controlling the amount of cold storage, the cooling capacity for a showcase, a refrigerator or the like is reduced. It is an object of the present invention to provide a composite refrigerant circuit equipment that can prevent the temperature of the object to be cooled stored in the refrigerant circuit from rising.

【0014】また、気液混合の冷媒がそのまま圧縮機の
吸入側に戻されて機械的な悪影響を引き起こすといった
設備の信頼性を損なわせることのない複合型冷媒回路設
備を提供することを目的とするものである。
It is another object of the present invention to provide a composite refrigerant circuit system which does not impair the reliability of the system, in which the gas-liquid mixed refrigerant is returned to the suction side of the compressor as it is and causes mechanical adverse effects. Is what you do.

【0015】そして、蓄冷用熱交換器や過冷却用熱交換
器にかかるイニシャルの製造コストを低減化することの
できる複合型冷媒回路設備を提供することを目的とする
ものである。
It is another object of the present invention to provide a composite refrigerant circuit system capable of reducing the initial production cost of the heat exchanger for cold storage and the heat exchanger for supercooling.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するた
め、本発明による複合型冷媒回路設備は、以下のような
技術手段を講じたものである。すなわち、請求項1の発
明による複合型冷媒回路設備は、第1の圧縮機、第1の
凝縮器、第1の絞り装置、及び第1の被冷却環境を冷却
する第1の蒸発器を順次環状に接続してなる1系統以上
第1の冷媒回路と、前記第1の圧縮機、前記第1の凝
縮器、蓄熱用絞り装置及び蓄熱用熱交換器を順次接続し
てなる蓄熱用冷媒回路と、前記蓄熱用熱交換器と前記蓄
熱槽との間に介在して設けられ前記蓄熱槽の蓄熱剤を前
記蓄熱用熱交換器に循環させて前記蓄熱用冷媒回路の冷
媒と熱交換させる第1の蓄熱剤循環装置と、 前記蓄熱用
冷媒回路により前記蓄熱用熱交換器を介して冷熱を蓄冷
する蓄熱剤を収容した蓄熱槽と、第2の圧縮機、第2の
凝縮器、前記蓄熱槽の蓄熱剤からの冷熱を供給する冷熱
供給用熱交換器を有する第1の冷熱供給回路、第2の絞
り装置、及び前記第1の被冷却環境よりも低温にされる
第2の被冷却環境を冷却する第2の蒸発器を順次環状に
接続してなる1系統以上の第2の冷媒回路とを備えたこ
とをことを特徴とするものである。
Means for Solving the Problems In order to achieve the above object, the composite refrigerant circuit equipment according to the present invention employs the following technical means. That is, the combined refrigerant circuit equipment according to the first aspect of the present invention includes a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled. One or more systems connected in a ring
A first refrigerant circuit, the first compressor, and the first condenser
A heat storage refrigerant circuit in which a condenser, a heat storage expansion device, and a heat storage heat exchanger are sequentially connected; the heat storage heat exchanger;
The heat storage agent of the heat storage tank is interposed between the heat storage tank and the heat storage agent.
The refrigerant is circulated through the heat storage heat exchanger to cool the heat storage refrigerant circuit.
A first heat storage agent circulating device for exchanging heat with a medium;
A heat storage tank containing a heat storage agent for storing cold heat through the heat storage heat exchanger by the refrigerant circuit; and a second compressor, a second condenser, and cold heat for supplying cold heat from the heat storage agent in the heat storage tank.
A first cold heat supply circuit having a heat exchanger for supply , a second expansion device, and a second evaporator for cooling a second cooled environment which is cooled to a temperature lower than the first cooled environment. It is characterized by having one or more second refrigerant circuits connected in a ring.

【0017】また、請求項2の発明による複合型冷媒回
路設備は、第1の圧縮機、第1の凝縮器、第1の絞り装
置、及び第1の被冷却環境を冷却する第1の蒸発器を順
次環状に接続してなる複数系統の第1の冷媒回路と、蓄
熱材を収容した蓄熱槽と、前記第1の圧縮機、前記第1
の凝縮器、蓄熱用絞り装置及び蓄熱用熱交換器を順次接
続してなる複数の蓄熱用冷媒回路と、前記第1の冷媒回
路の前記第1の凝縮器と第1の絞り装置との間に過冷却
用熱交換器を接続してなる複数の第2の冷熱供給回路
と、 前記蓄熱槽の蓄熱剤を前記蓄熱用熱交換器に並列に
循環させて前記蓄熱用冷媒回路の冷媒と熱交換させると
ともに、前記蓄熱槽の蓄熱剤を前記過冷却用熱交換器に
並列に循環させて第1の凝縮器からの冷媒に前記蓄熱槽
の蓄熱剤の冷熱を供給する第1の蓄熱剤循環装置と、
2の圧縮機、第2の凝縮器、前記蓄熱槽の蓄熱剤からの
冷熱を供給する冷熱供給用熱交換器を有する第1の冷熱
供給回路、第2の絞り装置、及び前記第1の被冷却環境
よりも低温にされる第2の被冷却環境を冷却する第2の
蒸発器を順次環状に接続してなる1系統以上の第2の冷
媒回路とを備えたことをことを特徴とするものである。
The combined refrigerant circuit equipment according to the second aspect of the present invention provides a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled. A plurality of first refrigerant circuits, which are sequentially connected in a ring shape, a heat storage tank containing a heat storage material, the first compressor, and the first compressor.
A plurality of heat storage refrigerant circuits sequentially connecting a condenser, a heat storage expansion device, and a heat storage heat exchanger; and the first refrigerant circuit.
Subcooling between the first condenser and the first throttle device in the path
Plurality of second cold heat supply circuits connected to a heat exchanger
And the heat storage agent in the heat storage tank in parallel with the heat storage heat exchanger.
When circulated to exchange heat with the refrigerant in the heat storage refrigerant circuit
In both cases, the heat storage agent in the heat storage tank is transferred to the supercooling heat exchanger.
The heat storage tank circulates in parallel to store the refrigerant from the first condenser.
A first heat storage agent circulating device for supplying cold heat of the heat storage agent, a second compressor, a second condenser, and a heat storage agent from the heat storage tank.
First cold heat having a cold heat supply heat exchanger for supplying cold heat
Supply circuit, a second throttle device, and the second of the first 1 or more systems formed by connecting the second second evaporator for cooling the cooled environment successively annularly also be cold from the cooled environment And two refrigerant circuits.

【0018】また、請求項3の発明による複合型冷媒回
路設備は、第1の圧縮機、第1の凝縮器、第1の絞り装
置、及び第1の被冷却環境を冷却する第1の蒸発器を順
次環状に接続してなる1系統以上の第1の冷媒回路と、
前記第1の圧縮機、前記第1の凝縮器、蓄熱用絞り装置
及び<切換式>蓄熱用熱交換器を順次接続してなり開閉
制御される1以上の蓄熱用冷媒回路と、前記蓄熱用冷媒
回路により前記蓄熱用熱交換器を介して冷熱を蓄冷する
蓄熱剤を収容した蓄熱槽と、前記第1の冷媒回路の前記
第1の凝縮器と第1の絞り装置との間に前記<切換 式>
蓄熱用熱交換器を接続してなり開閉制御される1以上の
第2の冷熱供給回路と、第2の圧縮機、第2の凝縮器、
前記蓄熱槽の蓄熱剤からの冷熱を供給する冷熱供給用熱
交換器を有する第1の冷熱供給回路、第2の絞り装置、
及び前記第1の被冷却環境よりも低温にされる第2の被
冷却環境を冷却する第2の蒸発器を順次環状に接続して
なる1系統以上の第2の冷媒回路とを備えたことをこと
を特徴とするものである。
The combined refrigerant circuit equipment according to the third aspect of the present invention provides a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled. One or more first refrigerant circuits formed by sequentially connecting the vessels in a ring,
Said first compressor, said first condenser, and heat storage expansion device and <switchable> 1 or more thermal storage refrigerant circuit that is opened and closed controlled becomes sequentially connecting the heat storing heat exchanger, for the heat storage Refrigerant
A heat storage tank containing a heat storage agent that stores cold heat through the heat storage heat exchanger by a circuit; and a heat storage tank of the first refrigerant circuit.
Wherein between the first condenser and the first throttle device <-selecting>
One or more heat storage heat exchangers are connected and controlled to open and close.
A second cold heat supply circuit, a second compressor, a second condenser,
Cold supply heat for supplying cold from the heat storage agent in the heat storage tank
A first cold heat supply circuit having an exchanger, a second expansion device,
And further comprising a first second second evaporator sequentially formed by connecting in a ring one or more systems of a second refrigerant circuit for cooling the cooled environment is a low temperature than the cooled environment It is characterized by the following.

【0019】また、請求項4の発明による複合型冷媒回
路設備は、請求項3に記載のものにおいて、前記蓄熱槽
の蓄熱剤を前記蓄熱用熱交換器に循環させて前記蓄熱用
冷媒回路の冷媒と熱交換させ、又は、前記第1の凝縮器
からの冷媒に前記蓄熱槽の蓄熱剤の冷熱を供給する第1
の蓄熱剤循環装置を備えたことをことを特徴とするもの
である。
[0019] The combined refrigerant circuit equipment according to the invention of claim 4 is the heat storage tank according to claim 3.
The heat storage agent is circulated through the heat storage heat exchanger to
Heat exchange with the refrigerant in the refrigerant circuit, or the first condenser
Supplying the cold energy of the heat storage agent in the heat storage tank to the refrigerant from the first
Wherein the heat storage agent circulating device is provided.

【0020】また、請求項5の発明による複合型冷媒回
路設備は、請求項1、2又は4に記載のものにおいて、
前記第1の冷媒回路の冷凍能力を検出する第1の冷凍能
力検出装置とこの第1の冷凍能力検出装置の出力に基
づいて前記第1の蓄熱剤循環装置の冷媒の流通量を制御
する第1の蓄熱剤循環量制御装置とを備えたことを特徴
とするものである。
The combined refrigerant circuit equipment according to the invention of claim 5 is the one according to claim 1, 2 or 4,
A first refrigeration function for detecting a refrigeration capacity of the first refrigerant circuit;
Force detection device and the output of the first refrigeration capacity detection device.
Controlling the flow rate of the refrigerant in the first heat storage agent circulating device
And a first heat storage agent circulation amount control device that performs
It is assumed that .

【0021】また、請求項6の発明による複合型冷媒回
路設備は、請求項5に記載のものにおいて、前記第1の
冷凍能力検出装置により前記第1の被冷却環境に与えら
れた冷凍能力を検出し、 前記第1の蓄熱剤循環量制御装
置により前記第1の冷媒回路の最大冷凍能力と前記検出
された冷凍能力との差に基づいて前記第1の蓄熱剤循環
装置による蓄熱剤の循環量を制御することを特徴とする
ものである。
According to a sixth aspect of the present invention , there is provided the combined refrigerant circuit equipment according to the fifth aspect, wherein
Given to the first environment to be cooled by the refrigerating capacity detecting device.
Detecting the refrigerating capacity, and controlling the first heat storage agent circulation amount control device.
The maximum refrigeration capacity of the first refrigerant circuit and the detection
The first heat storage agent circulation based on a difference from the set refrigerating capacity.
The amount of circulation of the heat storage agent by the device is controlled .

【0022】また、請求項7の発明による複合型冷媒回
路設備は、請求項3又は4に記載の ものにおいて、前記
蓄熱槽の蓄熱剤の蓄熱量を検出する蓄熱量検出装置と、
前記蓄熱量検出装置の出力に基づいて前記蓄熱用冷媒回
路と前記第2の冷熱供給回路との開閉を制御する冷媒流
路制御装置を備えたことを特徴とするものである。
The combined refrigerant circuit equipment according to the invention of claim 7 is the one according to claim 3 or 4 , wherein
A heat storage amount detection device that detects the heat storage amount of the heat storage agent in the heat storage tank,
Based on the output of the heat storage amount detection device, the heat storage refrigerant circuit
Refrigerant flow for controlling the opening and closing of the passage and the second cold heat supply circuit
A road control device is provided .

【0023】また、請求項8の発明による複合型冷媒回
路設備は、第1の圧縮機、第1の凝縮器、第1の絞り装
置、及び第1の被冷却環境を冷却する第1の蒸発器を順
次環状に接続してなる1系統以上の第1の冷媒回路と、
前記第1の圧縮機、前記第1の凝縮器、蓄熱用絞り装置
及び蓄熱用熱交換器を順次接続してなる蓄熱用冷媒回路
と、前記蓄熱用冷媒回路により前記蓄熱用熱交換器を介
して冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、第2の
圧縮機、第2の凝縮器、前記蓄熱槽内に配置され前記蓄
熱槽の蓄熱剤からの冷熱を供給する冷熱供給用熱交換器
を有する第1の冷熱供給回路、第2の絞り装置、及び前
記第1の被冷却環境よりも低温にされる第2の被冷却環
境を冷却する第2の蒸発器を順次環状に接続してなる
系統以上の第2の冷媒回路と備え、かつ、前記第1の冷
熱供給回路と並行に、前記第2の凝縮器から前記第2の
絞り装置に冷媒を制御可能に分流させるバイパス回路を
設けたことを特徴とするものである。
The combined refrigerant circuit equipment according to the invention of claim 8 includes a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled. One or more first refrigerant circuits formed by sequentially connecting the vessels in a ring,
The first compressor, the first condenser, the heat storage throttle device, and the heat storage refrigerant circuit sequentially connecting the heat storage heat exchanger, and the heat storage refrigerant circuit through the heat storage heat exchanger. A heat storage tank that contains a heat storage agent that stores cold heat, a second compressor, a second condenser, and the heat storage tank that is disposed in the heat storage tank.
Cold heat supply heat exchanger that supplies cold heat from the heat storage agent in the heat tank
A first cold-heat supply circuit having a second cooling device, and a second evaporator for cooling a second cooled environment to be cooled lower than the first cooled environment. Become one
A second refrigerant circuit of at least one system;
In parallel with the heat supply circuit, the second condenser
A bypass circuit for controllably diverting refrigerant to the expansion device
It is characterized by having been provided .

【0024】また、請求項9の発明による複合型冷媒回
路設備は、請求項8に記載のものにおいて、前記第2の
冷媒回路の冷凍能力を検出する第2の冷凍能力検出装置
と、 この第2の冷凍能力検出装置の出力に基づいて前記
第1の冷熱供給回路の冷媒の流通量を制御する第2の冷
媒流通量制御装置とを備えたことを特徴とするものであ
る。
According to a ninth aspect of the present invention , there is provided the combined refrigerant circuit equipment according to the eighth aspect, wherein
Second refrigerating capacity detecting device for detecting refrigerating capacity of refrigerant circuit
If, on the basis of the output of the second refrigeration capacity detecting device
The second chiller for controlling the flow rate of the refrigerant in the first chiller supply circuit
And a medium flow control device .

【0025】また、請求項10の発明による複合型冷媒
回路設備は、請求項9に記載のものにおいて、前記第2
の冷凍能力検出装置により前記第2の被冷却環境に与え
られた冷凍能力を検出し、 前記第2の冷媒流通量制御装
置により前記第2の冷媒回路の最大冷凍能力と前記検出
された冷凍能力との差に基づいて前記第1の冷熱供給回
路の冷媒の流通量を制御することを特徴とするものであ
る。
According to a tenth aspect of the present invention , there is provided the combined refrigerant circuit equipment according to the ninth aspect, wherein
To the second environment to be cooled by the refrigerating capacity detecting device of
Detecting the resulting refrigeration capacity, the second refrigerant flow amount control instrumentation
The maximum refrigeration capacity of the second refrigerant circuit and the detection
The first cooling / heating supply circuit based on the difference from the set refrigeration capacity.
It is characterized in that the amount of refrigerant flowing through the road is controlled .

【0026】また、請求項11の発明による複合型冷媒
回路設備は、第1の圧縮機、第1の凝縮器、第1の絞り
装置、及び第1の被冷却環境を冷却する第1の蒸発器を
順次環状に接続してなる1系統以上の第1の冷媒回路
と、前記第1の圧縮機、前記第1の凝縮器、蓄熱用絞り
装置及び蓄熱用熱交換器を順次接続してなる蓄熱用冷媒
回路と、前記蓄熱用冷媒回路により前記蓄熱用熱交換器
を介して冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、第
2の圧縮機、第2の凝縮器、前記蓄熱槽の蓄熱剤からの
冷熱を供給する冷熱供給用熱交換器を有する第1の冷熱
供給回路、第2の絞り装置、及び前記第1の被冷却環境
よりも低温にされる第2の被冷却環境を冷却する第2の
蒸発器を順次環状に接続してなる1系統以上の第2の冷
媒回路と、前記冷熱供給用熱交換器と前記蓄熱槽との間
に介在して設けられ前記蓄熱槽からの蓄熱剤を前記冷熱
供給用熱交換器に循環させて前記第2の冷媒回路の冷媒
と熱交換させる第2の蓄熱剤循環装置と、 前記第2の冷
媒回路の冷凍能力を検出する第2の冷凍能力検出装置
この第2の冷凍能力検出装置の出力に基づいて前記
第2の蓄熱剤循環装置の冷媒の流通量を制御する第2の
蓄熱剤循環量制御装置とを備えたことを特徴とするもの
である。
According to the eleventh aspect of the present invention, there is provided a combined refrigerant circuit system comprising: a first compressor, a first condenser, a first throttle device, and a first evaporator for cooling a first environment to be cooled. The first compressor circuit , the first condenser, the heat storage throttle device, and the heat storage heat exchanger are sequentially connected to one or more first refrigerant circuits formed by sequentially connecting the heat exchangers in a ring. A heat storage refrigerant circuit, a heat storage tank containing a heat storage agent that stores cold heat through the heat storage heat exchanger by the heat storage refrigerant circuit , a second compressor, a second condenser, and a heat storage tank. From heat storage
First cold heat having a cold heat supply heat exchanger for supplying cold heat
Supply circuit, a second throttle device, and the second of the first 1 or more systems formed by connecting the second second evaporator for cooling the cooled environment successively annularly also be cold from the cooled environment 2 between the refrigerant circuit, the cold heat supply heat exchanger and the heat storage tank.
The heat storage agent from the heat storage tank is interposed
The refrigerant in the second refrigerant circuit is circulated through the supply heat exchanger.
A second heat storage agent circulating device for exchanging heat with the second refrigerant;
Second refrigerating capacity detection device for detecting refrigerating capacity of medium circuit
If, on the basis of the output of the second refrigeration capacity detecting device
A second control unit that controls the flow rate of the refrigerant in the second heat storage agent circulating device
And a heat storage agent circulation amount control device .

【0027】また、請求項12の発明による複合型冷媒
回路設備は、請求項11に記載のものにおいて、前記第
2の冷凍能力検出装置により前記第2の被冷却環境に与
えられた冷凍能力を検出し、 前記第2の蓄熱剤循環量制
御装置により前記第2の冷媒回路の最大冷凍能力と前記
検出された冷凍能力との差に基づいて前記第2の蓄熱剤
循環装置による蓄熱剤の循環量を制御することを特徴と
するものである。
[0027] According to a twelfth aspect of the present invention , there is provided the combined refrigerant circuit equipment according to the eleventh aspect, wherein
2 to the second environment to be cooled by the refrigerating capacity detecting device.
Detecting the obtained refrigerating capacity and performing the second heat storage agent circulation
The maximum refrigeration capacity of the second refrigerant circuit and the
The second heat storage agent based on a difference from the detected refrigerating capacity;
Controls the amount of heat storage agent circulated by the circulator.
Is what you do.

【0028】また、請求項13の発明による複合型冷媒
回路設備は、第1の圧縮機、第1の凝縮器、第1の絞り
装置、及び第1の被冷却環境を冷却する第1の蒸発器を
順次環状に接続してなる1系統以上の第1の冷媒回路
と、 前記第1の圧縮機、前記第1の凝縮器、蓄熱用絞り
装置及び蓄熱用熱交換器を順次接続してなる蓄熱用冷媒
回路と、 前記蓄熱用冷媒回路により前記蓄熱用熱交換器
を介して冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、
2の圧縮機、前記蓄熱槽の蓄熱剤からの冷熱を供給する
冷熱供給用熱交換器を有する第1の冷熱供給回路、第2
の絞り装置、及び前記第1の被冷却環境よりも低温にさ
れる第2の被冷却環境を冷却する第2の蒸発器を順次環
状に接続してなる1系統以上の第2の冷媒回路とを備
え、 前記冷熱供給用熱交換器を前記第2の冷媒回路の凝
縮器として機能させることを特徴とするものである。
The combined refrigerant circuit equipment according to the thirteenth aspect of the present invention includes a first compressor, a first condenser, and a first throttle.
An apparatus and a first evaporator for cooling a first cooled environment.
One or more first refrigerant circuits sequentially connected in a ring
And the first compressor, the first condenser, and a heat storage throttle
Heat storage refrigerant consisting of a heat exchanger and a heat storage heat exchanger connected in sequence
Circuit, and the heat storage heat exchanger by the heat storage refrigerant circuit
A heat storage tank containing a heat storage agent for storing cold heat through the
2 supplies the cold heat from the heat storage agent in the heat storage tank
A first cold heat supply circuit having a cold heat supply heat exchanger,
And a lower temperature device than the first cooled environment.
A second evaporator for cooling a second cooled environment to be cooled.
And one or more second refrigerant circuits connected in a shape.
The heat exchanger for supplying cold heat is connected to the second refrigerant circuit.
It is characterized by functioning as a compressor .

【0029】また、請求項14の発明による複合型冷媒
回路設備は、請求項1〜13のいずれかに記載のものに
おいて、前記第1の冷媒回路における第1の蒸発器の冷媒
蒸発温度が前記第2の冷媒回路における第2の蒸発器の
冷媒蒸発温度より高く設定されたことを特徴とするもの
である。
The combined refrigerant circuit equipment according to the invention of claim 14 is the one according to any one of claims 1 to 13.
The refrigerant of the first evaporator in the first refrigerant circuit
The evaporation temperature of the second evaporator in the second refrigerant circuit
It is characterized by being set higher than the refrigerant evaporation temperature .

【0030】[0030]

【作用】この発明による複合型冷媒回路設備では、冷却
温度の異なる複数の被冷却環境をそれぞれ冷却する複数
の冷媒回路間で、冷凍効率の高い高冷却温度側である第
1の冷媒回路からの余剰の冷熱を、蓄熱用熱交換器を介
して蓄熱槽の蓄熱剤に蓄冷し、蓄熱槽を介して冷凍効率
の低い低冷却温度側である第2の冷媒回路へ移動させる
ことができる。その結果、設備全体として冷凍効率の向
上化を図ることができる。
In the combined refrigerant circuit equipment according to the present invention, a plurality of refrigerant circuits, each of which cools a plurality of environments to be cooled having different cooling temperatures, are connected between the first refrigerant circuit having a high refrigeration efficiency and a high cooling temperature. The surplus cold heat can be stored in the heat storage agent in the heat storage tank via the heat storage heat exchanger, and can be transferred to the second refrigerant circuit on the low cooling temperature side with low refrigeration efficiency via the heat storage tank. As a result, the refrigeration efficiency of the entire facility can be improved.

【0031】また、第1の冷媒回路からの余剰の冷熱
を、蓄熱槽を通じて第2の冷媒回路へ移動[い]得る
のはもとより、第1の冷媒回路の余剰の冷熱量(第1の
圧縮機の入口圧力や被冷却環境温度等の物理量に対応)
に応じて、第1の冷媒回路から蓄熱用熱交換器への冷媒
流通量を制御することができる。それによって、余剰冷
熱の蓄冷量を制御することができる。
Further, excess cold from the first refrigerant circuit, as well to be moved [have] to the second refrigerant circuit through the heat storage tank, cold heat amount of the surplus first refrigerant circuit (first Corresponds to physical quantities such as compressor inlet pressure and temperature of the environment to be cooled)
Accordingly, the amount of refrigerant flowing from the first refrigerant circuit to the heat storage heat exchanger can be controlled. Thereby, the amount of cold storage of surplus cold heat can be controlled.

【0032】逆に、第2の冷媒回路で不足した冷凍能力
(第2の圧縮機の入口圧力や被冷却環境温度等の物理量
に対応)に応じて、第2の冷媒回路から蓄熱用熱交換器
への冷媒流通量を制御することができる。これによっ
て、蓄熱槽から受け取る冷熱量を制御することができ
る。
Conversely, heat exchange for heat storage from the second refrigerant circuit is performed in accordance with the refrigeration capacity insufficient in the second refrigerant circuit (corresponding to the physical quantity such as the inlet pressure of the second compressor and the temperature of the environment to be cooled). The amount of refrigerant flowing to the vessel can be controlled. Thereby, the amount of cold received from the heat storage tank can be controlled.

【0033】また、第1の蓄熱剤循環装置と第2の蓄熱
剤循環装置により、蓄熱槽との間で冷熱の出し入れを行
う蓄熱用熱交換器及び冷熱供給用熱交換器のそれぞれに
向けて、蓄熱槽からの蓄熱剤を強制的に循環させること
ができる。従って、冷熱移動効率を向上させることがで
きる。
Further, the first heat storage agent circulating device and the second heat storage agent circulating device are directed to a heat storage heat exchanger and a cold heat supply heat exchanger for transferring cold heat to and from the heat storage tank. The heat storage agent from the heat storage tank can be forcibly circulated. Therefore, the cold heat transfer efficiency can be improved.

【0034】そして、第1の冷凍能力検出装置からの物
理量に対応した第1の冷媒回路における余剰の冷熱量に
応じて、第1の蓄熱剤循環量制御装置が第1の蓄熱剤循
環装置による蓄熱剤の循環量を制御する。そのため、第
1の冷媒回路からの余剰の冷熱の蓄熱量を制御すること
ができる。
Then, the first heat storage agent circulating amount control device is controlled by the first heat storage agent circulating device in accordance with the surplus amount of cooling heat in the first refrigerant circuit corresponding to the physical amount from the first refrigeration capacity detecting device. Control the circulation amount of the heat storage agent. Therefore, the amount of heat storage of the surplus cold heat from the first refrigerant circuit can be controlled.

【0035】逆に、第2の冷凍能力検出装置からの物理
量に対応した第2の冷媒回路における不足の冷凍能力に
応じて、第2の蓄熱剤循環量制御装置が第2の蓄熱剤循
環装置による蓄熱剤の循環量を制御する。これによっ
て、第2の冷媒回路において不足した冷凍能力の賄い量
を制御することができる。
Conversely, the second heat storage agent circulating amount control device controls the second heat storage agent circulating device in accordance with the insufficient refrigeration capacity in the second refrigerant circuit corresponding to the physical quantity from the second refrigeration capacity detection device. Controls the circulation amount of the heat storage agent. As a result, it is possible to control the amount of the insufficient refrigeration capacity in the second refrigerant circuit.

【0036】また、蓄熱剤の蓄熱量は蓄熱量検出装置に
より検出される。この検出された蓄熱量に応じて、冷媒
流路制御装置が冷媒流路を切り換えることにより、第1
の冷媒回路に接続された1台の蓄熱用熱交換器が蒸発器
又は凝縮器として使い分けられる。従って、熱交換器に
かかるイニシャルの製造コストを低減化することができ
る。
The heat storage amount of the heat storage agent is detected by a heat storage amount detecting device. The refrigerant flow path control device switches the refrigerant flow path in accordance with the detected heat storage amount, so that the first
One heat exchanger for heat storage connected to the refrigerant circuit is used as an evaporator or a condenser. Therefore, it is possible to reduce the initial production cost of the heat exchanger.

【0037】そして、第2の凝縮器が、蓄熱剤からの冷
熱を第2の冷媒回路に供給可能に蓄熱槽に設けられたの
で、第2の圧縮機からの高温の冷媒は第2の凝縮器にて
蓄熱槽からの蓄熱剤の冷熱によって直接的に凝縮され更
に過冷却される。これにより、蓄熱剤の冷熱を効率よく
利用することができる。加えて、熱交換器にかかるイニ
シャルの製造コストを低減化することができる。
Since the second condenser is provided in the heat storage tank so as to be able to supply cold heat from the heat storage agent to the second refrigerant circuit, the high-temperature refrigerant from the second compressor is subjected to the second condensation. In the vessel, the heat is directly condensed by the heat of the heat storage agent from the heat storage tank and further supercooled. Thereby, the cold heat of the heat storage agent can be used efficiently. In addition, it is possible to reduce the initial production cost of the heat exchanger.

【0038】[0038]

【実施例】実施例1. 図1はこの発明の実施例1による複合型冷媒回路設備を
示す構成図であり、1〜6,8〜10,15,21〜2
6、及び31は前記した従来設備と同一のものである。
そして、冷蔵側圧縮機(第1の圧縮機)1、冷蔵側凝縮
器(第1の凝縮器)2、冷蔵側膨張弁(第1の絞り装
置)4、及び冷蔵側蒸発器(第1の蒸発器)5を順次環
状に接続して冷蔵側の第1の冷媒回路(又は第1の主回
路)を構成している。また、冷蔵側圧縮機(第1の圧縮
機)1、冷蔵側凝縮器(第1の凝縮器)2、冷蔵側蓄熱
用膨張弁(蓄熱用絞り装置)10及び冷蔵側蓄熱用蒸発
器(蓄熱用熱交換器)8を順次接続して蓄熱用冷媒回路
(又は副回路)を構成している。そして、この冷蔵側の
第1の冷媒回路と蓄熱用冷媒回路とにより冷蔵側の第1
の被冷却側冷媒回路を構成している。
[Embodiment 1] FIG. 1 is a configuration diagram showing a composite refrigerant circuit equipment according to a first embodiment of the present invention, wherein 1 to 6, 8 to 10, 15, 21 and 2 are used.
6 and 31 are the same as the above-mentioned conventional equipment.
Then , the refrigeration side compressor (first compressor) 1 and the refrigeration side condensation
(First condenser) 2, refrigeration-side expansion valve (first throttle device)
4) and the refrigerating side evaporator (first evaporator) 5
Connected to the first refrigerant circuit on the refrigeration side (or the first main circuit).
Road). In addition, the refrigeration side compressor (first compression
Machine) 1, refrigeration-side condenser (first condenser) 2, refrigeration-side heat storage
Expansion valve (throttle device for heat storage) 10 and refrigeration side heat storage evaporation
(Heat exchanger for heat storage) 8 are connected in order, and a refrigerant circuit for heat storage
(Or a sub-circuit). And this refrigerated side
The first refrigerant circuit and the refrigerant circuit for heat storage use the first refrigerant circuit on the refrigeration side.
Of the refrigerant circuit to be cooled.

【0039】また、37は水等の蓄熱剤を収容した蓄熱
槽、34aは蓄熱槽37内に配備された冷凍側冷媒回路
の冷凍側過冷却用熱交換器(冷熱供給用熱交換器)31
を冷凍側凝縮器(第2の凝縮器)22と冷凍側電磁弁2
3との間の冷媒管路26に直列に連通する冷媒配管であ
る。即ち、冷凍側冷却用熱交換器31と冷媒配管34
aとを備えてなる構成が第1の冷熱供給回路の一例であ
る。そして、冷凍側圧縮機(第2の圧縮機)21、冷凍
側凝縮器(第2の凝縮器)22、冷凍側過冷却用熱交換
器31を有する第1の冷熱供給回路、冷凍側膨張弁(第
2の絞り装置) 24、及び冷凍側蒸発器(第2の蒸発
器)25を順次環状に接続して冷凍側の第2の冷媒回路
(又は第2の主回路)を構成している。 そしてこの冷凍
側では、第2の冷媒回路自体で冷凍側の第2の被冷却側
冷媒回路を構成している。 また特に、この複合型冷媒回
路設備では、冷蔵側冷媒回路の冷蔵側蓄熱用蒸発器8
も、蓄熱剤を介して前記冷凍側過冷却用熱交換器31に
対し熱移動可能に前記蓄熱槽37内に配備されている。
Reference numeral 37 denotes a heat storage tank containing a heat storage agent such as water, and 34a denotes a refrigeration-side supercooling heat exchanger (heat exchanger for supplying cold heat) of a refrigeration-side refrigerant circuit provided in the heat storage tank 37.
To the refrigeration-side condenser (second condenser) 22 and the refrigeration-side solenoid valve 2
3 is a refrigerant pipe that communicates in series with the refrigerant pipe 26 between them. That is, the refrigeration side subcooling heat exchanger 31 and the refrigerant pipe 34
The configuration including a is an example of the first cold heat supply circuit. Then , the refrigeration side compressor (second compressor) 21
Side condenser (second condenser) 22, heat exchange for freezing side supercooling
Refrigeration-side expansion valve (first
2 throttling device) 24 and the freezing side evaporator (second evaporator)
Unit 25 is sequentially connected in a ring shape, and a second refrigerant circuit on the refrigeration side
(Or a second main circuit). And this frozen
On the side, the second cooled side of the refrigeration side in the second refrigerant circuit itself
It constitutes a refrigerant circuit. Further, in particular, in the combined refrigerant circuit equipment, the refrigeration-side heat storage evaporator 8 of the refrigeration-side refrigerant circuit is provided.
The heat storage tank 37 is also provided in the heat storage tank 37 so as to transfer heat to the freezing-side subcooling heat exchanger 31 via a heat storage agent.

【0040】次に、この実施例における複合型冷媒回路
設備の動作について、説明する。ここで、例えば冷蔵側
冷媒回路において、冷蔵側圧縮機1や冷蔵側凝縮器2
は、被冷却環境(ショーケース等)について予め設定さ
れている最大負荷(最大冷凍能力の一例)を賄えるよう
に設計されているため、ショーケース等に与えられる負
荷が減少すると、前記最大負荷とそのときショーケース
等に与えられた負荷との差として、余剰の冷凍能力を生
じる。この複合型冷媒回路設備によれば、この余剰の冷
凍能力に対応する量の冷媒液が、冷蔵側蓄熱用電磁弁
9、冷蔵側蓄熱用膨張弁10を通じて冷蔵側蓄熱用蒸発
器8に供給され、これによって前記余剰の冷凍能力が冷
熱として蓄熱槽37内の蓄熱剤に蓄冷される。一方、冷
凍側冷媒回路においては、冷凍側圧縮機21で圧縮され
た高温、高圧のガス冷媒は、冷凍側凝縮器22で液化さ
れた後、冷凍側過冷却用の冷媒配管34aを通じて蓄熱
槽37内の冷凍側過冷却用熱交換器31に供給され蓄熱
剤を介して冷却される。これによって、より低い温度に
冷却された冷媒が冷凍側電磁弁23等から冷凍側蒸発器
25に供給される。このように、余剰の冷凍能力とし
て、冷蔵側冷媒回路から蓄熱槽37の蓄熱剤に蓄えられ
た冷熱は、共用される蓄熱槽37の蓄熱剤を介して冷凍
側冷媒回路にて消費される。従って、冷蔵側蒸発器5で
の冷媒の蒸発温度が高い、すなわち運転効率の高い冷蔵
側冷媒回路で余剰になった冷熱が蓄冷される一方で、こ
の冷熱は冷凍側蒸発器25での冷媒の蒸発温度が低い、
すなわち運転効率の低い冷凍側冷媒回路で利用されるた
め、冷蔵側冷媒回路及び冷凍側冷媒回路を含めた設備全
体としての総合的な冷凍効率を、向上化させることがで
きる。また、1基の蓄熱槽ですむため、蓄熱槽にかかる
構成を簡素化できる。
Next, the operation of the combined refrigerant circuit equipment in this embodiment will be described. Here, for example, in the refrigeration side refrigerant circuit, the refrigeration side compressor 1 and the refrigeration side condenser 2
Is designed to cover a preset maximum load (an example of a maximum refrigeration capacity) for an environment to be cooled (a showcase or the like). Therefore, when the load applied to the showcase or the like decreases, the maximum load and the maximum load are reduced. At that time, a surplus refrigeration capacity is generated as a difference from the load applied to the showcase or the like. According to this combined refrigerant circuit equipment, an amount of refrigerant liquid corresponding to the surplus refrigeration capacity is supplied to the refrigeration-side heat storage evaporator 8 through the refrigeration-side heat storage solenoid valve 9 and the refrigeration-side heat storage expansion valve 10. Thereby, the excess refrigerating capacity is stored as cold heat in the heat storage agent in the heat storage tank 37. On the other hand, in the refrigeration-side refrigerant circuit, the high-temperature, high-pressure gas refrigerant compressed by the refrigeration-side compressor 21 is liquefied by the refrigeration-side condenser 22, and then is passed through the refrigeration-side supercooling refrigerant pipe 34a. It is supplied to the refrigeration side subcooling heat exchanger 31 in the inside and is cooled via the heat storage agent. Thereby, the refrigerant cooled to a lower temperature is supplied to the freezing side evaporator 25 from the freezing side solenoid valve 23 and the like. As described above, the cold stored in the heat storage agent in the heat storage tank 37 from the refrigeration side refrigerant circuit as the excess refrigeration capacity is consumed in the refrigeration side refrigerant circuit via the shared heat storage agent in the heat storage tank 37. Therefore, while the evaporation temperature of the refrigerant in the refrigeration-side evaporator 5 is high, that is, surplus cold heat is stored in the refrigeration-side refrigerant circuit with high operation efficiency, this cold heat is generated by the refrigerant in the refrigeration-side evaporator 25. Low evaporation temperature,
That is, since it is used in the refrigeration-side refrigerant circuit with low operation efficiency, the overall refrigeration efficiency of the entire equipment including the refrigeration-side refrigerant circuit and the refrigeration-side refrigerant circuit can be improved. Further, since only one heat storage tank is required, the configuration of the heat storage tank can be simplified.

【0041】なお、要約すると本実施例による複合型冷
媒回路設備は、以下のような技術手段を講じたものであ
る。 すなわち、本実施例1による複合型冷媒回路設備
は、第1の圧縮機、第1の凝縮器、第1の絞り装置、及
び第1の被冷却環境を冷却する第1の蒸発器を順次環状
に接続してなる第1の冷媒回路と、第1の冷媒回路に第
1の絞り装置及び第1の蒸発器と並列に蓄熱用絞り装置
及び蓄熱用熱交換器を順次接続してなる蓄熱用冷媒回路
と、蓄熱用熱交換器を介して第1の冷媒回路の最大冷凍
能力と第1の被冷却環境の所要の冷凍能力との差に対応
した冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、第2の
圧縮機、第2の凝縮器、第2の絞り装置、及び第1の被
冷却環境よりも低温にされる第2の被冷却環境を冷却す
る第2の蒸発器を順次環状に接続してなる第2の冷媒回
路と、第2の冷媒回路の第2の凝縮器と第2の蒸発器と
の間に接続され蓄熱槽の蓄熱剤からの冷熱を第2の冷媒
回路に供給する冷熱供給用熱交換器を有する第1の冷熱
供給回路とを具備してなるものである。
It should be noted that, in summary, the composite cooling according to this embodiment is
The medium circuit equipment has the following technical measures.
You. That is, the composite refrigerant circuit equipment according to the first embodiment.
Comprises a first compressor, a first condenser, a first throttle device, and
And the first evaporator for cooling the first environment to be cooled is sequentially annular.
And a first refrigerant circuit connected to the first refrigerant circuit.
And a throttle device for heat storage in parallel with the first throttle device and the first evaporator
Storage refrigerant circuit connected in order and heat storage heat exchanger
Maximum refrigeration of the first refrigerant circuit via the heat storage heat exchanger.
Corresponds to the difference between the capacity and the required refrigeration capacity of the first cooled environment
A heat storage tank containing a heat storage agent for storing the cooled cold;
A compressor, a second condenser, a second throttle device, and a first condenser.
Cooling a second cooled environment to be lower than the cooling environment
A second refrigerant circuit formed by sequentially connecting second evaporators in a ring shape.
A second condenser and a second evaporator of the second refrigerant circuit;
Between the heat storage agent in the heat storage tank and the second refrigerant
First cold heat having a heat exchanger for supplying cold heat to a circuit
And a supply circuit.

【0042】実施例2. 図2はこの発明の実施例2による複合型冷媒回路設備を
示す構成図であって、その構成は前記実施例1のものと
ほとんど同じであるが、次に示す構成要素を備えた点で
異なる。冷蔵側冷媒回路において、42は冷蔵側圧縮機
1の吸入側の冷媒配管に接続され冷媒ガスの吸い込み
圧力を検出する圧力検出器(第1の冷凍能力検出装置の
一例)、43は圧力検出器42で検出された圧力検出値
を基に制御演算を行う制御装置、44は冷媒配管15に
設けられ制御装置43の演算結果に基づいて冷蔵側蓄熱
用蒸発器8に流入させる冷媒流量を調整する流量調整弁
(この流量調整弁44と前記制御装置43を備えてなる
構成が第1の冷媒流通量制御装置の一例)である。ま
た、冷凍側冷媒回路において、26aは冷凍側凝縮器2
2からの冷媒を冷凍側過冷却用熱交換器(冷熱供給用熱
交換器)31を迂回して流通させるための冷媒配管、4
5は冷凍側圧縮機21の吸入側の冷媒配管に接続され冷
媒ガスの吸い込み圧力を検出する圧力検出器(第2の冷
凍能力検出装置の一例)、46は圧力検出器45で検出
された圧力検出値を基に制御演算を行う制御装置、57
は冷媒配管26aに設けられ制御装置46の演算結果に
基づいて冷凍側過冷却熱交換器31に流入させる冷媒流
量を調整する流量調整弁(この流量調整弁57、前記制
御装置46、及び冷媒配管26aを備えてなる構成が第
2の冷媒流通量制御装置の一例)である。
Embodiment 2 FIG. FIG. 2 is a configuration diagram showing a composite type refrigerant circuit equipment according to a second embodiment of the present invention. The configuration is almost the same as that of the first embodiment, except that the following components are provided. . In the refrigeration-side refrigerant circuit, reference numeral 42 denotes a pressure detector (an example of a first refrigeration capacity detection device) which is connected to the refrigerant pipe 6 on the suction side of the refrigeration-side compressor 1 and detects a suction pressure of refrigerant gas; A control device for performing a control operation based on the pressure detection value detected by the heater 42 is provided in the refrigerant pipe 15 and adjusts the flow rate of the refrigerant flowing into the refrigeration-side heat storage evaporator 8 based on the operation result of the control device 43. (A configuration including the flow control valve 44 and the control device 43 is an example of a first refrigerant flow control device). In the refrigeration-side refrigerant circuit, 26a is the refrigeration-side condenser 2
The refrigerant from step 2 is cooled by the heat exchanger for subcooling on the refrigeration side (
Exchanger) refrigerant pipe for bypassing and circulating 31;
Reference numeral 5 denotes a pressure detector (an example of a second refrigeration capacity detection device) which is connected to the refrigerant pipe on the suction side of the refrigeration-side compressor 21 and detects the suction pressure of the refrigerant gas, and 46 denotes the pressure detected by the pressure detector 45 A control device for performing a control operation based on the detected value, 57
Is a flow control valve provided in the refrigerant pipe 26a to adjust the flow rate of the refrigerant flowing into the refrigeration-side subcooling heat exchanger 31 based on the calculation result of the control device 46 (the flow control valve 57, the control device 46, the refrigerant pipe The configuration including 26a is an example of the second refrigerant flow control device).

【0043】引き続き、実施例2による複合型冷媒回路
設備の動作について、説明する。尚、この複合型冷媒回
路設備における各冷媒回路の基本的な冷凍サイクル動作
は、実施例1の場合と同じである。ところで、被冷却環
境に対する負荷、即ち被冷却環境に与えられた冷凍能力
が変化すると、それに対応する物理量(圧縮機吸入側の
圧力、被冷却環境の温度等)も変化する。例えば、冷蔵
側冷媒回路での負荷が減少すると、余剰の冷凍能力が大
きくなる。そして、前記余剰の冷凍能力に対応して、冷
蔵側圧縮機1の吸入側の圧力が変化する。このときの圧
力は圧力検出器42により検出され圧力検出値として制
御装置43に出力される。そこで、制御装置43は前記
圧力検出値に基づいて流量調整弁44の開度を演算し流
量調整弁44に出力し、その開度を大きくする。これに
よって、この余剰の冷凍能力に相当する量の冷媒液が、
冷蔵側蓄熱用電磁弁9、冷蔵側蓄熱用膨張弁10を通じ
て冷蔵側蓄冷用熱交換器8に供給され、前記冷媒液の冷
熱が蓄熱槽37の蓄熱剤に蓄冷される。このように、余
剰能力が大きい場合には、流量調整弁44の開度を大き
くして、冷蔵側蓄冷用熱交換器8に流入する冷媒量を増
加させることにより、蓄冷能力が大きくされる。逆に、
例えば冷蔵側冷媒回路での負荷が増加して余剰の冷凍能
力が小さくなった場合、流量調整弁44の開度を小さく
して、冷蔵側蓄冷用熱交換器8に流入させる冷媒量を減
らすことにより、蓄冷能力を小さくすることができる。
このように、実施例2の複合型冷媒回路設備によれば、
余剰の冷凍能力に応じてその余剰の冷凍能力に相当する
量の冷熱を効率よく蓄冷することができる。従って、冷
蔵側蓄冷用蒸発器8において過剰に蓄冷されることがな
いので、ショーケース等におかれた冷蔵側蒸発器5に与
えられる冷凍能力の不足を引き起こすことがなく、ショ
ーケース等に収容された冷蔵食品等を、それにとって不
都合な温度に昇温させることもない。
Next, the operation of the combined refrigerant circuit equipment according to the second embodiment will be described. Note that the basic refrigeration cycle operation of each refrigerant circuit in the composite refrigerant circuit equipment is the same as that in the first embodiment. When the load on the environment to be cooled, that is, the refrigerating capacity given to the environment to be cooled changes, the corresponding physical quantity (pressure on the compressor suction side, temperature of the environment to be cooled, etc.) also changes. For example, when the load in the refrigeration-side refrigerant circuit decreases, the excess refrigeration capacity increases. Then, the pressure on the suction side of the refrigeration-side compressor 1 changes according to the surplus refrigeration capacity. The pressure at this time is detected by the pressure detector 42 and output to the control device 43 as a detected pressure value. Therefore, the control device 43 calculates the opening of the flow control valve 44 based on the detected pressure value, outputs the calculated opening to the flow control valve 44, and increases the opening. Thereby, the amount of the refrigerant liquid corresponding to the surplus refrigeration capacity is
The refrigerant is supplied to the refrigerating-side regenerative heat exchanger 8 through the refrigerating-side heat storing electromagnetic valve 9 and the refrigerating-side heat storing expansion valve 10, and the cold heat of the refrigerant liquid is stored in the heat storage agent in the heat storage tank 37. As described above, when the surplus capacity is large, the opening degree of the flow control valve 44 is increased to increase the amount of refrigerant flowing into the refrigeration-side cold storage heat exchanger 8, thereby increasing the cold storage capacity. vice versa,
For example, when the load on the refrigeration side refrigerant circuit increases and the surplus refrigeration capacity decreases, the opening degree of the flow control valve 44 is reduced to reduce the amount of refrigerant flowing into the refrigeration side regenerator 8. Thereby, the cold storage capacity can be reduced.
Thus, according to the composite refrigerant circuit equipment of the second embodiment,
According to the surplus refrigeration capacity, it is possible to efficiently store the amount of cold heat corresponding to the surplus refrigeration capacity. Therefore, since the refrigerating-side regenerative evaporator 8 is not excessively regeneratively stored, the refrigerating capacity provided to the refrigerating-side evaporator 5 placed in a showcase or the like does not become insufficient, and is stored in the showcase or the like. The temperature of the stored refrigerated food or the like is not raised to a temperature that is inconvenient for it.

【0044】他方、冷凍側冷媒回路においても、前記冷
蔵側冷媒回路と同様に効率のよい制御を行うことができ
る。例えば、冷凍蔵側冷媒回路での負荷が増大して必要
とされる冷凍能力が大きくなった場合には、圧力検出器
45からの圧力検出値を基に制御装置46により演算・
出力された開度指令によって、流量調整弁57の開度が
小さくされ冷凍側過冷却用熱交換器31への冷媒の流通
量が大きくされる。これによって、蓄熱槽37の冷熱が
多量に冷凍側冷媒回路で利用される。逆に、負荷が減少
して必要とする冷凍能力が小さくなった場合には、流量
調整弁57の開度が大きくされて冷凍側過冷却熱交換器
31を迂回する冷媒量が大きくされる。このように、実
施例2の複合型冷媒回路設備によれば、冷凍側冷媒回路
で必要とされる冷凍能力に応じてこの必要な冷凍能力に
相当する量の冷熱を効率よく蓄熱剤から取り出すことが
できる。尚、この複合型冷媒回路設備においては、各冷
媒回路をそれぞれ単独に制御させるようにしてもよい
し、蓄熱槽37の蓄熱量によっては両冷媒回路の双方を
同時に制御させることも可能である。
On the other hand, in the refrigerating-side refrigerant circuit, efficient control can be performed similarly to the refrigerating-side refrigerant circuit. For example, when the load on the freezing-side refrigerant circuit is increased and the required refrigerating capacity is increased, the control unit 46 calculates and calculates the pressure based on the pressure detection value from the pressure detector 45.
According to the output opening degree command, the opening degree of the flow control valve 57 is reduced, and the flow rate of the refrigerant to the freezing-side subcooling heat exchanger 31 is increased. As a result, a large amount of cold energy of the heat storage tank 37 is used in the refrigeration-side refrigerant circuit. Conversely, when the required refrigeration capacity decreases due to a decrease in the load, the opening of the flow control valve 57 is increased, and the amount of refrigerant bypassing the refrigeration-side subcooling heat exchanger 31 is increased. As described above, according to the combined refrigerant circuit equipment of the second embodiment, in accordance with the refrigeration capacity required in the refrigeration side refrigerant circuit, the amount of cold heat corresponding to the required refrigeration capacity is efficiently extracted from the heat storage agent. Can be. In this combined refrigerant circuit equipment, each refrigerant circuit may be independently controlled, or both refrigerant circuits may be simultaneously controlled depending on the amount of heat stored in the heat storage tank 37.

【0045】なお、要約すると本実施例による複合型冷
媒回路設備は、以下のような技術手段を講じたものであ
る。 すなわち、本実施例2による複合型冷媒回路設備
は、第1の冷媒回路と、蓄熱用冷媒回路と、蓄熱槽と、
第2の冷媒回路と、第1の冷熱供給回路とを備えたもの
において、 第1の被冷却環境に与えられた冷凍能力に対
応する物理量を検出する第1の冷凍能力検出装置と、第
1の冷媒回路の最大冷凍能力と検出された物理量に対応
する冷凍能力との差に基づいて第1の冷媒回路から蓄熱
用熱交換器への冷媒の流通量を制御する第1の冷媒流通
量制御装置とを具備してなるものである。 また、第2の
被冷却環境に与えられた冷凍能力に対応する物理量を検
出する第2の冷凍能力検出装置と、第2の冷媒回路の最
大冷凍能力と検出された物理量に対応する冷凍能力との
差に基づいて第2の冷媒回路から冷熱供給用熱交換器へ
の冷媒の流通量を制御する第2の冷媒流通量制御装置と
を具備してなるものである。
It should be noted that, in summary, the composite cooling according to the present embodiment
The medium circuit equipment has the following technical measures.
You. That is, the composite refrigerant circuit equipment according to the second embodiment.
A first refrigerant circuit, a heat storage refrigerant circuit, a heat storage tank,
Provided with a second refrigerant circuit and a first cold heat supply circuit
In the above, the refrigeration capacity given to the first cooled environment is
A first refrigeration capacity detection device for detecting a corresponding physical quantity;
Corresponds to the maximum refrigeration capacity of 1 refrigerant circuit and the detected physical quantity
Heat from the first refrigerant circuit based on the difference
Refrigerant flow for controlling the flow rate of refrigerant to the heat exchanger
And a quantity control device. Also, the second
Check the physical quantity corresponding to the refrigeration capacity given to the environment to be cooled.
A second refrigeration capacity detection device for detecting
Large refrigeration capacity and refrigeration capacity corresponding to the detected physical quantity
From the second refrigerant circuit to the cold heat supply heat exchanger based on the difference
A second refrigerant flow rate control device for controlling the flow rate of the refrigerant
It is provided with.

【0046】実施例3. 図3はこの発明の実施例3による複合型冷媒回路設備を
示す構成図であって、その構成は前記実施例1,2のも
のとほとんど同じであるが、次に示す構成要素を備えた
点で異なる。冷蔵側冷媒回路において、8aは蓄熱槽3
7の外部に配備され冷蔵側冷媒回路の余剰の冷熱を蓄冷
するための冷蔵側蓄熱用蒸発器(蓄熱用熱交換器)、4
3aは圧力検出器42で検出された圧力検出値を基に制
御演算を行う制御装置、47は冷蔵側蓄熱用蒸発器8a
を経由するように環状に蓄熱槽37に接続された水配
管、48は水配管47に設けられ蓄熱槽37内の水を冷
蔵側蓄熱用蒸発器8aに循環させるポンプ(このポンプ
48と前記水配管47を備えてなる構成が第1の蓄熱剤
循環装置の一例)、49は制御装置43aの演算結果を
基にポンプ48の回転数を制御するためのインバータ
(このインバータ49と制御装置43aを備えてなる構
成が第1の蓄熱剤循環量制御装置の一例)である。ま
た、冷凍側冷媒回路において、31aは蓄熱槽37の外
部に配備され冷熱を冷凍側冷媒回路に取り出すための冷
凍側過冷却用熱交換器(冷熱供給用熱交換器)、46b
は圧力検出器45で検出された圧力検出値を基に制御演
算を行う制御装置、50は冷凍側過冷却用熱交換器31
aを経由するように環状に蓄熱槽37に接続された水配
管、51は水配管50に設けられ蓄熱槽37内の水を冷
凍側過冷却用熱交換器31aに循環させるポンプ(この
ポンプ51と前記水配管50を備えてなる構成が第2の
蓄熱剤循環装置の一例)、52は制御装置46bの演算
結果を基にポンプ51の回転数を制御するためのインバ
ータ(このインバータ52と制御装置46bを備えてな
る構成が第2の蓄熱剤循環量制御装置の一例)である。
尚、この複合型冷媒回路設備における各冷媒回路の基本
的な冷凍サイクルの動作は、実施例1,2の場合と同じ
である。
Embodiment 3 FIG. FIG. 3 is a configuration diagram showing a composite refrigerant circuit equipment according to Embodiment 3 of the present invention. The configuration is almost the same as that of Embodiments 1 and 2, except that the following components are provided. Different. In the refrigeration-side refrigerant circuit, 8a is a heat storage tank 3
7, a refrigeration-side heat storage evaporator (heat storage heat exchanger) for storing surplus cold heat of the refrigeration-side refrigerant circuit;
3a is a control device for performing a control operation based on the pressure detection value detected by the pressure detector 42, and 47 is a refrigeration-side heat storage evaporator 8a
A water pipe is connected to the heat storage tank 37 in an annular shape so as to pass through the pump. A pump 48 is provided in the water pipe 47 and circulates water in the heat storage tank 37 to the refrigeration-side heat storage evaporator 8a (the pump 48 and the water A configuration including a pipe 47 is an example of a first heat storage agent circulating device), and 49 is an inverter for controlling the rotation speed of the pump 48 based on the calculation result of the control device 43a. The configuration provided is an example of the first heat storage agent circulation amount control device). In the refrigeration-side refrigerant circuit, reference numeral 31a denotes a refrigeration-side supercooling heat exchanger (cold heat supply heat exchanger) which is provided outside the heat storage tank 37 and takes out cold heat to the refrigeration-side refrigerant circuit.
Is a control device for performing control calculation based on the pressure detection value detected by the pressure detector 45, and 50 is a refrigeration-side subcooling heat exchanger 31.
A water pipe 51 is connected to the heat storage tank 37 in an annular shape so as to pass through the water pipe 50. A pump 51 is provided in the water pipe 50 and circulates water in the heat storage tank 37 to the freezing-side subcooling heat exchanger 31a (the pump 51). Is an example of a second heat storage agent circulating device including the water pipe 50), and 52 is an inverter for controlling the rotation speed of the pump 51 based on the calculation result of the control device 46b (with the inverter 52 and the control unit). The configuration including the device 46b is an example of the second heat storage agent circulation amount control device).
Note that the basic operation of the refrigeration cycle of each refrigerant circuit in the combined refrigerant circuit equipment is the same as in the first and second embodiments.

【0047】次に、この実施例3による複合型冷媒回路
設備の動作について、説明する。先ず、冷蔵側冷媒回路
において、例えば負荷が減少して余剰の冷凍能力を生じ
ると、余剰の冷凍能力に相当する冷媒が、冷蔵側蓄熱用
電磁弁9、冷蔵側蓄熱用膨張弁10を通じて冷蔵側蓄熱
用蒸発器(蓄熱用熱交換器)8aに供給される。この冷
媒は、ポンプ48によって冷蔵側蓄熱用蒸発器8a内の
水配管47を流通する水と熱交換されて、蓄熱槽37に
蓄冷される。そして、余剰の冷凍能力に相当して変化す
る、冷蔵側圧縮機1の吸入側の圧力は圧力検出器42
(第1の冷凍能力検出装置)により検出される。そこ
で、余剰の冷凍能力が大きい場合、制御装置43aは圧
力検出値を基にポンプ48の回転数を増加させるように
インバータ49を制御する。これによって、冷蔵側蓄熱
用蒸発器8aを流通する水量を増加させることにより、
蓄冷能力が大きくされる。逆に、余剰の冷凍能力が小さ
い場合には、ポンプ48の回転数を低下させて、冷蔵側
蓄熱用蒸発器8aを流通する水量を減らすことにより、
蓄冷能力が小さくされる。このように、余剰の冷凍能力
に応じて、冷蔵側蓄熱用蒸発器8aへの水の循環量を制
御することにより、余剰の冷凍能力に相当する量の冷熱
を効率よく蓄冷することができる。即ち、実施例2の場
合と同様に、冷蔵側蓄熱用蒸発器8aにおいて過剰に蓄
冷されることがないので、ショーケース等におかれた冷
蔵側蒸発器5に与えられる冷凍能力の不足をひきおこす
ことがなく、ショーケース等に収容された冷蔵食品等を
不都合な温度に昇温させることもない。
Next, the operation of the combined refrigerant circuit equipment according to the third embodiment will be described. First, in the refrigeration-side refrigerant circuit, for example, when the load is reduced to generate an extra refrigeration capacity, the refrigerant corresponding to the extra refrigeration capacity is passed through the refrigeration-side heat storage solenoid valve 9 and the refrigeration-side heat storage expansion valve 10 to the refrigeration side. The heat is supplied to the heat storage evaporator (heat storage heat exchanger) 8a. The refrigerant exchanges heat with water flowing through a water pipe 47 in the refrigeration-side heat storage evaporator 8 a by a pump 48, and is stored in the heat storage tank 37. Then, the pressure on the suction side of the refrigeration-side compressor 1, which changes corresponding to the excess refrigeration capacity, is
(First refrigeration capacity detection device) . Therefore, when the excess refrigeration capacity is large, the control device 43a controls the inverter 49 to increase the rotation speed of the pump 48 based on the detected pressure value. Thereby, by increasing the amount of water flowing through the refrigeration-side heat storage evaporator 8a,
The cold storage capacity is increased. Conversely, when the surplus refrigeration capacity is small, the number of water flowing through the refrigeration-side heat storage evaporator 8a is reduced by reducing the rotation speed of the pump 48,
The cold storage capacity is reduced. As described above, by controlling the amount of water circulating to the refrigeration-side heat storage evaporator 8a in accordance with the surplus refrigeration capacity, it is possible to efficiently store cold heat in an amount corresponding to the surplus refrigeration capacity. That is, as in the case of the second embodiment, since the refrigerating side heat storage evaporator 8a does not excessively store cold, the refrigerating capacity given to the refrigerating side evaporator 5 placed in a showcase or the like is insufficient. There is no need to raise the temperature of refrigerated food and the like stored in a showcase or the like to an inconvenient temperature.

【0048】他方、冷凍側冷媒回路においては、例え
ば、冷凍蔵側冷媒回路での負荷が増大して必要とする冷
凍能力が大きくなった場合、圧力検出器45(第2の冷
凍能力検出装置)からの圧力検出値による制御装置46
bの演算結果に基づいて、ポンプ51の回転数を増加さ
せるようにインバータ52を制御する。これによって、
冷凍側[蓄冷]過冷却用熱交換器(冷熱供給用熱交換
器)31aを流通する水量を増加させることにより、冷
凍側冷媒回路への冷熱の取り出し量が大きくされる。逆
に、必要とする冷凍能力が小さくなった場合には、ポン
プ51の回転数を低下させて、冷凍側[蓄冷]過冷却
熱交換器31aを流通する水量を減らすことにより、冷
熱の取り出し量が小さくされる。このように、冷凍側冷
媒回路で必要な冷凍能力に応じて、冷凍側[蓄熱用蒸発
器]過冷却用熱交換器31aへの水の循環量を制御する
ことにより、必要な冷凍能力に相当する量の冷熱を水か
ら効率よく取り出して冷凍側冷媒回路に与えることがで
きる。尚、この複合型冷媒回路設備においては、実施例
2の場合と同様に、各冷媒回路をそれぞれ単独に制御さ
せるようにしてもよいし、蓄熱槽37の蓄熱量によって
は両冷媒回路の双方を同時に制御させることも可能であ
る。
On the other hand, in the refrigerating-side refrigerant circuit, for example, when the load on the refrigerating-side refrigerant circuit increases and the required refrigerating capacity increases, the pressure detector 45 (the second refrigerant)
Control device 46 based on the pressure detection value from the freezing ability detection device)
Based on the calculation result of b, the inverter 52 is controlled so as to increase the rotation speed of the pump 51. by this,
Refrigeration side [ cool storage] Subcooling heat exchanger (Cold heat supply heat exchange
By increasing the amount of water flowing through the device 31a, the amount of cold heat taken out to the freezing-side refrigerant circuit is increased. Conversely, when the required refrigerating capacity is reduced, the rotation speed of the pump 51 is reduced to reduce the amount of water flowing through the refrigerating-side [ cooling ] supercooling heat exchanger 31a, thereby extracting cold heat. The amount is reduced. Thus, by controlling the amount of water circulating to the refrigeration-side [heat-storage evaporator] subcooling heat exchanger 31a in accordance with the refrigeration capacity required in the refrigeration-side refrigerant circuit, the refrigeration capacity is equivalent to the required refrigeration capacity. A small amount of cold heat can be efficiently extracted from water and given to the refrigeration-side refrigerant circuit. In this combined type refrigerant circuit facility, each refrigerant circuit may be controlled independently, as in the case of the second embodiment, or both of the refrigerant circuits may be controlled depending on the amount of heat stored in the heat storage tank 37. It is also possible to control at the same time.

【0049】なお、要約すると本実施例による複合型冷
媒回路設備は、以下のような技術手段を講じたものであ
る。 すなわち、本実施例3による複合型冷媒回路設備
は、第1の冷媒回路と、蓄熱用冷媒回路と、蓄熱槽と、
第2の冷媒回路と、第1の冷熱供給回路とを備えたもの
において、 蓄熱用熱交換器と蓄熱槽との間に介在して設
けられ蓄熱槽からの蓄熱剤を循環させて蓄熱用熱交換器
の冷媒からの冷媒を蓄熱剤に与える第1の蓄熱剤循環装
置と、冷熱供給用熱交換器と蓄熱槽との間に介在して設
けられ蓄熱槽からの蓄熱剤を循環させて冷熱供給用熱交
換器の冷媒に冷熱を与える第2の蓄熱剤循環装置とを具
備してなるものである。 また、本実施例3による複合型
冷媒回路設備は、上記に加えて、 第1の被冷却環境に与
えられた冷凍能力に対応する物理量を検出する第1の冷
凍能力検出装置と、第1の冷媒回路の最大冷凍能力と検
出された物理量に対応する冷凍能力との差に基づいて第
1の蓄熱剤循環装置による蓄熱剤の循環量を制御する第
1の蓄熱剤循環量制御装置とを具備してなるものであ
る。 さらに、第2の被冷却環境に与えられた冷凍能力に
対応する物理量を検出する第2の冷凍能力検出装置と、
第2の冷媒回路の最大冷凍能力と検出された物理量に対
応する冷凍能力との差に基づいて第2の蓄熱剤循環装置
による蓄熱剤の循環量を制御する第2の蓄熱剤循環量制
御装置とを具備してなるものである。
It should be noted that, in summary, the composite cooling according to the present embodiment
The medium circuit equipment has the following technical measures.
You. That is, the composite refrigerant circuit equipment according to the third embodiment.
A first refrigerant circuit, a heat storage refrigerant circuit, a heat storage tank,
Provided with a second refrigerant circuit and a first cold heat supply circuit
At the heat storage heat exchanger and the heat storage tank.
Heat storage heat exchanger by circulating the heat storage agent from the heat storage tank
Heat storage agent circulating device for providing a storage medium with a refrigerant from a first refrigerant
Between the cold storage heat exchanger and the heat storage tank.
Circulating the heat storage agent from the heat storage tank
A second heat storage agent circulating device for applying cold to the refrigerant of the heat exchanger.
It is provided. The composite type according to the third embodiment
In addition to the above, the refrigerant circuit equipment may provide the first environment to be cooled.
The first refrigeration for detecting a physical quantity corresponding to the obtained refrigeration capacity
And the maximum refrigeration capacity of the first refrigerant circuit.
Based on the difference from the refrigeration capacity
The second method for controlling the circulation amount of the heat storage agent by the first heat storage agent circulating device
And a heat storage agent circulation amount control device.
You. Furthermore, the refrigeration capacity given to the second cooled environment
A second refrigeration capacity detection device for detecting a corresponding physical quantity;
The maximum refrigeration capacity of the second refrigerant circuit and the detected physical quantity
A second heat storage agent circulating device based on a difference from the corresponding refrigeration capacity
Heat storage agent circulation amount control for controlling heat storage agent circulation amount
And a control device.

【0050】実施例4. 図4はこの発明の実施例4による複合型冷媒回路設備に
おける冷蔵側冷媒回路の要部を示す構成図である。尚、
図において、この複合型冷媒回路設備では、複数の系統
の冷蔵側冷媒回路をそなえており、これらの冷蔵側冷媒
回路の基本的な冷凍サイクル回路や冷凍側冷媒回路につ
いては図示していないが、これらは例えば実施例3のも
のとほとんど同じである。この実施例4による複合型冷
媒回路設備では、それぞれ複数の系統の冷蔵側蓄熱用蒸
発器(蓄熱用熱交換器)8a、冷蔵側過冷却用熱交換器
11aが蓄熱槽37外に配備されている。そして、各冷
蔵側蓄熱用蒸発器8aは冷媒配管15を介して各系統の
冷蔵側冷媒回路の冷媒配管6(図3参照)にそれぞれ並
列に接続されている。また、各冷蔵側過冷却用熱交換器
11aも冷媒配管14を介して各系統の冷媒配管6(図
9参照;この場合、必要となる冷蔵側過冷却切換電磁弁
12,13も不図示)にそれぞれ直列に接続されてい
る。また、各冷蔵側蓄熱用蒸発器8a及び各冷蔵側過冷
却用熱交換器11aと蓄熱槽37とは水配管47aを介
してそれぞれ並列に循環状で接続されている。尚、12
aは各冷蔵側過冷却用熱交換器11aへの冷媒供給を断
続制御するための冷蔵側過冷却切換電磁弁である。
Embodiment 4 FIG. FIG. 4 is a configuration diagram showing a main part of a refrigeration-side refrigerant circuit in a combined-type refrigerant circuit facility according to Embodiment 4 of the present invention. still,
In the figure, the combined refrigerant circuit equipment has a plurality of refrigeration-side refrigerant circuits, and a basic refrigeration cycle circuit and a refrigeration-side refrigerant circuit of these refrigeration-side refrigerant circuits are not shown. These are almost the same as those of the third embodiment, for example. In the combined refrigerant circuit equipment according to the fourth embodiment, a plurality of refrigeration-side heat storage evaporators (heat storage heat exchangers) 8a and a plurality of refrigeration-side supercooling heat exchangers 11a are provided outside the heat storage tank 37. I have. Each of the refrigerating-side heat storage evaporators 8a is connected in parallel to a refrigerant pipe 6 (see FIG. 3) of a refrigerating-side refrigerant circuit of each system via a refrigerant pipe 15. Further, each of the refrigerating side subcooling heat exchangers 11a is also connected to the refrigerant pipe 6 of each system via the refrigerant pipe 14 (see FIG. 9; in this case, the necessary refrigerating side subcooling switching solenoid valves 12, 13 are not shown). Are connected in series. In addition, each refrigerating-side heat-storage evaporator 8a and each refrigerating-side subcooling heat exchanger 11a and the heat storage tank 37 are connected in a circulating manner in parallel via a water pipe 47a. In addition, 12
a is a refrigeration-side supercooling switching solenoid valve for intermittently controlling the supply of refrigerant to each refrigeration-side subcooling heat exchanger 11a.

【0051】次に、この実施例4による複合型冷媒回路
設備の動作について、説明する。例えばある系統の冷蔵
側冷媒回路において負荷が減少したとき、余剰の冷凍能
力に相当する冷媒液が、その系統の冷蔵側蓄熱用電磁弁
9、冷蔵側蓄熱用膨張弁10を通じて冷蔵側蓄熱用蒸発
器8aに供給される。この冷媒はポンプ48によって各
冷蔵側蓄熱用熱交換器8a内の水配管47aを流通する
水と熱交換され、これによって冷媒の冷熱が蓄熱槽37
に蓄冷される。逆に、例えばある系統の負荷が増大して
冷凍能力が不足した場合には、その系統の冷蔵側過冷却
切換電磁弁12aを作動させることにより、高温、高圧
の冷媒は、冷凍側過冷却用の冷媒配管14を通じて冷蔵
側過冷却用熱交換器11aに供給される。そして、この
冷媒は、ポンプ48の駆動により各系統の冷蔵側過冷却
用熱交換器11a及び冷蔵側蓄熱用蒸発器8a内の水配
管47aを流通する水と熱交換されて冷却される。これ
によって、水に蓄えられている冷熱が冷蔵側過冷却用熱
交換器11aを通して取り出される。この場合、冷凍能
力が余剰となった系統や冷凍能力が不足する系統が混在
したとしても、それぞれの系統の冷蔵側冷媒回路におけ
る冷凍能力の過不足は、各系統の冷蔵側過冷却用熱交換
器11a及び冷蔵側蓄熱用蒸発器8aに共通の水配管4
7aを流通する水を介して冷熱をやりとりすることによ
り、平準化される。即ち、各系統毎の圧縮機の稼働率の
ばらつきも平準化される。従って、複数の系統の冷蔵側
冷媒回路に対して冷蔵を行う複合型冷媒回路設備全体と
して、冷凍効率の向上化を図ることができる。尚、この
実施例4では、複数系統の冷蔵側冷媒回路が配備された
例を示したが、複数系統の冷凍側冷媒回路が配備された
ものにも適用できるのは言うまでもない。更に、複数系
統の冷蔵側冷媒回路及び複数系統の冷凍側回路が配備さ
れたものにも適用でき、この場合、蓄熱槽37に接続さ
れる水配管を冷蔵側(水配管47aに相当)と冷凍側と
で共通化することによって、設備全体の効率化が図れ
る。
Next, the operation of the combined refrigerant circuit equipment according to the fourth embodiment will be described. For example, when the load is reduced in a refrigeration side refrigerant circuit of a certain system, the refrigerant liquid corresponding to the excess refrigeration capacity evaporates for the refrigeration side heat storage through the refrigeration side heat storage solenoid valve 9 and the refrigeration side heat storage expansion valve 10 of the system. Is supplied to the vessel 8a. This refrigerant exchanges heat with water flowing through a water pipe 47a in each refrigeration-side heat storage heat exchanger 8a by a pump 48.
It is stored cold. Conversely, for example, when the load of a certain system increases and the refrigeration capacity becomes insufficient, the high-temperature, high-pressure refrigerant is supplied to the refrigeration-side Is supplied to the refrigeration-side subcooling heat exchanger 11a through the refrigerant pipe 14 of FIG. The refrigerant is cooled by exchanging heat with water flowing through a water pipe 47a in the refrigerating side supercooling heat exchanger 11a and the refrigerating side heat storage evaporator 8a of each system by driving the pump 48. Thereby, the cold stored in the water is extracted through the refrigeration-side subcooling heat exchanger 11a. In this case, even if there is a system in which the refrigeration capacity is excessive or a system in which the refrigeration capacity is insufficient, the excess or insufficiency of the refrigeration capacity in the refrigeration-side refrigerant circuit of each system is caused by the heat exchange for refrigeration-side supercooling of each system. Water pipe 4 common to the heater 11a and the refrigeration-side heat storage evaporator 8a
Leveling is performed by exchanging cold heat through the water flowing through 7a. That is, the variation in the operating rate of the compressor for each system is also leveled. Therefore, the refrigeration efficiency can be improved as a whole of the combined refrigerant circuit equipment that performs refrigeration for a plurality of refrigeration-side refrigerant circuits. In the fourth embodiment, an example is shown in which a plurality of refrigeration-side refrigerant circuits are provided. However, it is needless to say that the present invention can be applied to a case in which a plurality of refrigeration-side refrigerant circuits are provided. Furthermore, the present invention can also be applied to a system in which a plurality of refrigeration-side refrigerant circuits and a plurality of refrigeration-side circuits are provided. In this case, the water pipe connected to the heat storage tank 37 is connected to the refrigeration side (corresponding to the water pipe 47a). By making the equipment common, the efficiency of the entire equipment can be improved.

【0052】実施例5. 図5はこの発明の実施例5による複合型冷媒回路設備に
おける冷蔵側冷媒回路を示す構成図である。尚、これま
で述べた各実施例の構成要素と共通の構成要素には、同
一の符号を付しその説明を割愛する。図において、8b
は冷蔵側冷媒回路における余剰の冷熱を蓄熱槽37に蓄
冷するための冷蔵側蓄熱用蒸発器(蓄熱用熱交換器)
ある。特に、この冷蔵側蓄熱用蒸発器8bには、冷蔵側
冷媒回路の冷媒配管6にそれぞれ並列に接続された複数
(ここでは、3列)の冷媒配管15の一部が内蔵され、
この内蔵された冷媒配管15の近接位置に熱交換可能に
配設された水配管47bが蓄熱槽37に循環状に接続さ
れている。また、43bは圧力検出器(第1の冷凍能力
検出装置)42で検出された圧力検出値を基に制御演算
を行い各冷媒配管15に設けられた冷蔵側蓄熱用電磁弁
9をそれぞれ開閉制御するための制御装置である。
Embodiment 5 FIG. FIG. 5 is a configuration diagram showing a refrigeration-side refrigerant circuit in a combined-type refrigerant circuit facility according to Embodiment 5 of the present invention. Note that the same reference numerals are given to the same components as those of the embodiments described above, and the description thereof will be omitted. In the figure, 8b
Denotes a refrigeration-side heat storage evaporator (heat storage heat exchanger) for storing excess cold heat in the refrigeration-side refrigerant circuit in the heat storage tank 37. In particular, a part of a plurality (here, three rows) of refrigerant pipes 15 connected in parallel to the refrigerant pipes 6 of the refrigeration side refrigerant circuit are built in the refrigeration side heat storage evaporator 8b, respectively.
A water pipe 47b, which is disposed near the built-in refrigerant pipe 15 so as to be able to exchange heat, is connected to the heat storage tank 37 in a circulating manner. 43b is a pressure detector (first refrigeration capacity)
(Detection device) This is a control device for performing a control calculation based on the pressure detection value detected by 42 and controlling the opening and closing of the refrigeration-side heat storage solenoid valves 9 provided in each refrigerant pipe 15.

【0053】次に、この実施例5による複合型冷媒回路
設備の動作について、説明する。例えば冷蔵側冷媒回路
において負荷が減少したとき、余剰の冷凍能力に相当す
る冷媒液が、各冷蔵側蓄熱用電磁弁9、各冷蔵側蓄熱用
膨張弁10を通じて冷蔵側蓄熱用蒸発器8bに供給され
る。この冷媒はポンプ48によって冷蔵側蓄熱用蒸発器
8b内の水配管47bを流通する水と熱交換され、これ
によって冷媒の冷熱が蓄熱槽37に蓄冷される。このと
き、余剰の冷凍能力に相当して変化する、冷蔵側圧縮機
1の吸入側の圧力は圧力検出器42により検出される。
そこで、余剰の冷凍能力が大きい場合には、制御装置4
3bは圧力検出値を基に、開放すべき冷蔵側蓄熱用電磁
弁9の数を増加させるように、各冷蔵側蓄熱用電磁弁9
に開閉信号を出力する。これによって、冷蔵側蓄熱用蒸
発器8bを流通する冷媒の総量を増加させることによ
り、蓄冷能力が大きくされる。逆に、余剰の冷凍能力が
小さい場合には、開放すべき冷蔵側蓄熱用電磁弁9の数
を減少させて、冷蔵側蓄熱用蒸発器8bを流通する冷媒
の総量を減らすことにより、蓄冷能力が小さくされる。
このように、余剰の冷凍能力に応じて、冷蔵側蓄熱用蒸
発器8bへの冷媒の流通量を制御することにより、余剰
の冷凍能力に相当する量の冷熱を冷媒から受け取ること
ができる。しかも、冷媒からの冷熱は、ポンプ48の駆
動によって水配管47bを流通する水により効率よく蓄
熱槽37に蓄冷される。これによって、ショーケース等
に収容された冷蔵食品等に悪影響を及ぼすことがなく、
これらの冷蔵食品等に対する温度維持精度の向上化が図
れるのは、前記した実施例3による場合と同様である。
尚、この実施例5では、冷蔵側冷媒回路からの余剰の冷
熱を蓄冷する例を示したが、無論、冷凍側冷媒回路にお
いて蓄熱槽37の冷熱を取り出す場合の構成にも適用で
きる。
Next, the operation of the combined refrigerant circuit equipment according to the fifth embodiment will be described. For example, when the load is reduced in the refrigeration side refrigerant circuit, the refrigerant liquid corresponding to the excess refrigeration capacity is supplied to the refrigeration side heat storage evaporator 8b through each refrigeration side heat storage solenoid valve 9 and each refrigeration side heat storage expansion valve 10. Is done. The refrigerant exchanges heat with the water flowing through the water pipe 47b in the refrigeration-side heat storage evaporator 8b by the pump 48, whereby the heat of the refrigerant is stored in the heat storage tank 37. At this time, the pressure on the suction side of the refrigerating-side compressor 1, which changes corresponding to the excess refrigerating capacity, is detected by the pressure detector 42.
Therefore, when the surplus refrigeration capacity is large, the control device 4
3b, each refrigeration-side heat storage solenoid valve 9 is increased based on the detected pressure value so as to increase the number of refrigeration-side heat storage solenoid valves 9 to be opened.
Output an open / close signal. Thereby, the cold storage capacity is increased by increasing the total amount of refrigerant flowing through the refrigeration-side heat storage evaporator 8b. Conversely, when the surplus refrigeration capacity is small, the number of the refrigeration-side heat storage solenoid valves 9 to be opened is reduced to reduce the total amount of refrigerant flowing through the refrigeration-side heat storage evaporator 8b. Is reduced.
As described above, by controlling the flow rate of the refrigerant to the refrigeration-side heat storage evaporator 8b according to the surplus refrigeration capacity, it is possible to receive from the refrigerant an amount of cold heat corresponding to the surplus refrigeration capacity. In addition, the cold heat from the refrigerant is efficiently stored in the heat storage tank 37 by the water flowing through the water pipe 47b by driving the pump 48. As a result, there is no adverse effect on refrigerated food and the like stored in the showcase and the like,
The improvement of the temperature maintenance accuracy for these refrigerated foods and the like can be achieved as in the case of the third embodiment.
In the fifth embodiment, an example in which the excess cold heat from the refrigeration-side refrigerant circuit is stored is described. However, it is needless to say that the present invention can be applied to a configuration in which the refrigeration-side refrigerant circuit extracts the cold heat from the heat storage tank 37.

【0054】実施例6. 図6はこの発明の実施例6による複合型冷媒回路設備に
おける冷蔵側冷媒回路を示す構成図である。尚、これま
で述べた各実施例の構成要素と共通の構成要素には、同
一の符号を付しその説明を省略する。図において、8c
は冷蔵側冷媒回路における余剰の冷熱を蓄熱槽37に蓄
冷したり蓄熱槽37の冷熱を冷蔵側冷媒回路に供給する
ための冷蔵側切換式熱交換器(蓄熱用熱交換器兼過冷却
用熱交換器)である。この冷蔵側切換式熱交換器8cに
は、冷蔵側冷媒回路の冷媒配管6に並列に接続された冷
蔵側蓄熱用の冷媒配管15の一部が内蔵されている。特
に、この冷媒配管15の冷蔵側蓄熱用膨張弁10と冷蔵
側切換式熱交換器8c入側の間の配管と、冷蔵側切換式
熱交換器8c出側の配管とに、冷蔵側過冷却用の冷媒配
管14がそれぞれ分岐して接続されている。この冷蔵側
過冷却用の冷媒配管14と冷蔵側切換式熱交換器8cと
を備えてなる構成が第2の冷熱供給回路の一例である。
また、12bは前記冷媒配管15内の冷媒の流通を断続
させる冷蔵側切換電磁弁であり、12,13は冷蔵側過
冷却切換電磁弁である。
Embodiment 6 FIG. FIG. 6 is a configuration diagram showing a refrigeration-side refrigerant circuit in a combined-type refrigerant circuit facility according to Embodiment 6 of the present invention. Note that the same reference numerals are given to the same components as those of the embodiments described so far, and description thereof will be omitted. In the figure, 8c
Is a refrigeration-side switchable heat exchanger (heat exchanger for heat storage and supercooling) for storing excess cold heat in the refrigeration side refrigerant circuit in the heat storage tank 37 and supplying the cold heat of the heat storage tank 37 to the refrigeration side refrigerant circuit.
Heat exchanger) . The refrigeration-side switching heat exchanger 8c includes a part of a refrigeration-side heat storage refrigerant pipe 15 connected in parallel to the refrigeration-side refrigerant circuit refrigerant pipe 6. In particular, refrigeration-side subcooling is provided for the piping between the refrigeration-side heat storage expansion valve 10 and the refrigeration-side switching heat exchanger 8c on the refrigerant pipe 15 and the piping on the exit side of the refrigeration-side switching heat exchanger 8c. Refrigerant pipes 14 are branched and connected. This refrigerated side
A supercooling refrigerant pipe 14 and a refrigeration-side switching heat exchanger 8c;
Is an example of the second cold heat supply circuit.
Reference numeral 12b denotes a refrigeration-side switching solenoid valve for interrupting the flow of the refrigerant in the refrigerant pipe 15, and reference numerals 12 and 13 denote refrigeration-side supercooling switching electromagnetic valves.

【0055】次に、この実施例6による複合型冷媒回路
設備の動作について、説明する。先ず、冷蔵側冷媒回路
においては、各冷蔵側過冷却切換電磁弁12及び冷蔵側
切換電磁弁12b(それぞれ回路開閉装置の一例)が閉
止され冷蔵側過冷却切換電磁弁13(回路開閉装置の一
例)が開放された状態で、冷凍サイクルの運転が開始さ
れると、冷蔵側蒸発器5によりショーケース等の冷却が
行われる。そして、負荷が減少して余剰の冷凍能力が生
じると、図示せぬ制御装置(冷媒流路制御装置の一例)
によって冷蔵側切換電磁弁12bが開放される。これに
よって、冷蔵側凝縮器2からの冷媒が冷蔵側蓄熱用の冷
媒配管15に導かれ冷蔵側蓄熱用電磁弁9及び冷蔵側蓄
熱用膨張弁10を通して冷蔵側切換式熱交換器8cに流
入し水配管47をを流通する水と熱交換されることによ
り、余剰の冷熱が蓄熱槽37に蓄冷される。即ち、この
場合、冷蔵側切換式熱交換器8cは、冷蔵側蓄熱用蒸発
器として機能する。
Next, the operation of the combined refrigerant circuit equipment according to the sixth embodiment will be described. First, in the refrigeration-side refrigerant circuit, each refrigeration-side subcooling switching electromagnetic valve 12 and refrigeration-side switching electromagnetic valve 12b (one example of a circuit opening and closing device) are closed, and the refrigeration-side supercooling switching electromagnetic valve 13 (one example of a circuit opening and closing device) When the operation of the refrigeration cycle is started in a state where the refrigeration cycle is opened, the cooling of the showcase or the like is performed by the refrigeration-side evaporator 5. Then, when the load decreases and an excess refrigeration capacity is generated, a control device (not shown) (an example of a refrigerant flow control device)
Thereby, the refrigerating side switching electromagnetic valve 12b is opened. Thereby, the refrigerant from the refrigeration side condenser 2 is guided to the refrigeration side heat storage refrigerant pipe 15 and flows into the refrigeration side switching type heat exchanger 8c through the refrigeration side heat storage solenoid valve 9 and the refrigeration side heat storage expansion valve 10. By performing heat exchange with water flowing through the water pipe 47, excess cold heat is stored in the heat storage tank 37. That is, in this case, the refrigeration-side switching heat exchanger 8c functions as a refrigeration-side heat storage evaporator.

【0056】逆に、負荷が増加して冷蔵側冷媒回路本来
の最大冷凍能力を超えると、各冷蔵側過冷却切換電磁弁
12が開放され、冷蔵側過冷却切換電磁弁13及び冷蔵
側切換電磁弁12bが閉止される。これによって、冷蔵
側凝縮器2からの冷媒は、冷媒配管14を通して冷蔵側
切換式熱交換器8cに流入し水配管47(この水配管4
7とポンプ48により第1の蓄熱剤循環装置を構成す
る)を流通する水と熱交換されることにより、蓄熱槽3
7の冷熱を受けて冷却された後、冷蔵側蒸発器5に導か
れる。即ち、この場合、冷蔵側切換式熱交換器8cは、
冷蔵側過冷却用熱交換器として機能する。このとき、冷
蔵側膨張弁4による冷凍能力制御可能範囲と、冷蔵側蒸
発器5における熱交換能力と、負荷量との相対関係によ
っては、冷媒が冷蔵側蒸発器5において完全に蒸発しな
いまま液状で冷蔵側圧縮機1に吸入されるといった不都
合な状態に陥る場合がある。このような状態の場合、圧
力検出器42(第1の冷凍能力検出装置)からの圧力検
出値を基に、制御装置43aがこの状態を演算・検知
し、この検知結果に応じてインバータ49(このインバ
ータ49と制御装置43aにより第1の蓄熱剤循環量制
御装置を構成する)及びポンプ48を制御して冷蔵側切
換式熱交換器8cへの水循環量を制御する。これによっ
て、冷媒に対する冷蔵側切換式熱交換器8cでの過冷却
能力が調整される。その結果、冷媒が液状のままで冷蔵
側圧縮機1に吸入されるといった不都合を回避すること
ができる。前記したように、この実施例に係る複合型冷
媒回路設備によれば、負荷量に応じて冷蔵側切換式熱交
換器8cの機能が、蓄熱用蒸発器の機能と過冷却用熱交
換器の機能とに切り換えられるので、ひとつの冷蔵側切
換式熱交換器8cを蓄熱用蒸発器及び過冷却用熱交換器
として共用することができる。従って、熱交換器に係る
イニシャルの製造コストを低減化することができる。ま
た、過冷却時には運転状態を検知しながらそのときの運
転状態に応じて過冷却量が制御されるので、冷媒が液状
のままで冷蔵側圧縮機1に戻るのを防止でき、当該実施
例装置の信頼性が向上する。尚、この実施例6でも冷蔵
側冷媒回路に関する例を示したが、このような構成は当
然ながら冷凍側冷媒回路にも適用できる。
Conversely, when the load increases and exceeds the original maximum refrigerating capacity of the refrigeration side refrigerant circuit, each refrigeration side supercooling switching electromagnetic valve 12 is opened, and the refrigeration side supercooling switching electromagnetic valve 13 and the refrigeration side switching electromagnetic valve. Valve 12b is closed. Thereby, the refrigerant from the refrigeration-side condenser 2 flows into the refrigeration-side switching heat exchanger 8c through the refrigerant pipe 14 and flows into the water pipe 47 (the water pipe 4).
7 and a pump 48 constitute a first heat storage agent circulating device.
By being water heat exchange which flows through the that), the heat storage tank 3
After being cooled by receiving the cold of 7, it is led to the refrigeration evaporator 5. That is, in this case, the refrigeration-side switching heat exchanger 8c is
Functions as a heat exchanger for subcooling on the refrigeration side. At this time, depending on the relative relationship between the refrigeration capacity controllable range of the refrigeration side expansion valve 4, the heat exchange capacity of the refrigeration side evaporator 5, and the load amount, the refrigerant is not completely vaporized in the refrigeration side evaporator 5 without being evaporated. In some cases, it may be in an inconvenient state such as being sucked into the refrigeration-side compressor 1. In such a state, the control device 43a calculates and detects this state based on the pressure detection value from the pressure detector 42 (first refrigeration capacity detection device) , and according to the detection result, the inverter 49 ( This inva
The first heat storage agent circulation amount is controlled by the heater 49 and the controller 43a.
Control unit) and the pump 48 to control the amount of water circulating to the refrigerating-side switching heat exchanger 8c. Thereby, the supercooling capacity of the refrigerant in the refrigeration-side switching heat exchanger 8c is adjusted. As a result, it is possible to avoid such a disadvantage that the refrigerant is sucked into the refrigeration compressor 1 in a liquid state. As described above, according to the combined refrigerant circuit equipment according to this embodiment, the function of the refrigeration-side switching heat exchanger 8c is changed according to the load amount, and the function of the heat storage evaporator and the function of the supercooling heat exchanger are changed. Since the function can be switched to the function, one refrigeration-side switching heat exchanger 8c can be shared as the heat storage evaporator and the supercooling heat exchanger. Therefore, the manufacturing cost of the initials related to the heat exchanger can be reduced. In addition, since the amount of supercooling is controlled in accordance with the operation state while detecting the operation state at the time of supercooling, it is possible to prevent the refrigerant from returning to the refrigeration-side compressor 1 in a liquid state, and Reliability is improved. In the sixth embodiment, an example relating to the refrigeration side refrigerant circuit is shown, but such a configuration can naturally be applied to the refrigeration side refrigerant circuit.

【0057】実施例7. 図7はこの発明の実施例7による複合型冷媒回路設備に
おける冷蔵側冷媒回路を示す構成図である。尚、これま
で述べた各実施例の構成要素と共通の構成要素には、同
一の符号を付しその説明を省略する。図において、53
は蓄熱槽37に配設され蓄熱槽37内の水の温度を検出
する温度検出器(蓄熱量検出装置の一例)、54は温度
検出器53からの検出信号に基づいて各冷蔵側過冷却切
換電磁弁12、冷蔵側過冷却切換電磁弁13、及び冷蔵
側切換電磁弁12bを開閉制御する制御装置(冷媒流路
制御装置の一例)である。
Embodiment 7 FIG. FIG. 7 is a configuration diagram showing a refrigeration-side refrigerant circuit in a combined-type refrigerant circuit facility according to Embodiment 7 of the present invention. Note that the same reference numerals are given to the same components as those of the embodiments described so far, and description thereof will be omitted. In the figure, 53
Is a temperature detector (an example of a heat storage amount detection device) that is disposed in the heat storage tank 37 and detects the temperature of water in the heat storage tank 37. Reference numeral 54 denotes each refrigeration-side subcooling switch based on a detection signal from the temperature detector 53. This is a control device (an example of a refrigerant flow path control device) that controls opening and closing of the electromagnetic valve 12, the refrigeration-side supercooling switching electromagnetic valve 13, and the refrigeration-side switching electromagnetic valve 12b.

【0058】次に、この実施例による複合型冷媒回路設
備の動作について、説明する。蓄熱槽37内の水の容量
は一定であるので、蓄熱槽37内の水の温度から容易に
蓄熱槽37の蓄冷量を求めることができる。しかしなが
ら、特に、蓄熱槽37における蓄冷量が過少の場合、例
えば冷蔵側冷媒回路で冷凍能力が必要になった場合、こ
のとき必要な冷媒の過冷却を十分に行うことができな
い。そこで、例えば蓄熱槽37における最低蓄冷量を予
め定めておき、蓄熱槽37内の蓄冷量が前記最低蓄冷量
に相当する蓄冷量を下回り且つ冷蔵側冷媒回路の冷凍能
力に余裕があったとき、制御装置54が各冷蔵側過冷却
切換電磁弁12を閉止するとともに、冷蔵側過冷却切換
電磁弁13及び冷蔵側切換電磁弁12bを開放するよう
になっている。これによって、冷蔵側切換式熱交換器8
cが蓄熱用冷媒回路により蓄熱用蒸発器(蓄熱用熱交換
器)として働き、冷蔵側冷媒回路での余剰の冷熱を第1
の蓄熱剤循環装置である水配管47及びポンプ48を介
して蓄熱槽37に蓄冷する。
Next, the operation of the combined refrigerant circuit equipment according to this embodiment will be described. Since the volume of water in the heat storage tank 37 is constant, the amount of cold storage in the heat storage tank 37 can be easily obtained from the temperature of the water in the heat storage tank 37. However, in particular, when the amount of cold storage in the heat storage tank 37 is too small, for example, when the refrigeration capacity is required in the refrigeration-side refrigerant circuit, the necessary refrigerant cannot be sufficiently cooled at this time. Therefore, for example, when the minimum amount of cold storage in the heat storage tank 37 is determined in advance, and when the amount of cold storage in the heat storage tank 37 is lower than the amount of cold storage corresponding to the minimum amount of cold storage and there is room in the refrigerating capacity of the refrigeration-side refrigerant circuit, The controller 54 closes each refrigeration-side supercooling switching electromagnetic valve 12 and opens the refrigeration-side supercooling switching electromagnetic valve 13 and the refrigeration-side switching electromagnetic valve 12b. Thereby, the refrigeration-side switching heat exchanger 8
c is a heat storage evaporator (heat storage heat exchange ) by the heat storage refrigerant circuit.
Acts as a vessel), an excess of cold in cold-side refrigerant circuit first
Is stored in the heat storage tank 37 via a water pipe 47 and a pump 48 as a heat storage agent circulating device .

【0059】一方、蓄熱槽37内の蓄冷量が前記最低蓄
冷量に相当する蓄冷量以上になると、制御装置54は各
冷蔵側過冷却切換電磁弁12を開放するとともに、冷蔵
側過冷却切換電磁弁13及び冷蔵側切換電磁弁12bを
閉止する。これによって、冷蔵側切換式熱交換器8cは
冷熱を取り出すための過冷却用の熱交換器として働き、
蓄熱槽37の冷熱を、第1の蓄熱剤循環装置である水配
管47及びポンプ48を介して第2の冷熱供給回路の
媒配管14の冷媒に与える。このように冷却された冷媒
は冷蔵側電磁弁3、冷蔵側膨張弁4、冷蔵側蒸発器5に
順次供給され、これによって冷蔵側冷媒回路で必要とさ
れる冷凍能力を補充する。このように、この実施例に係
る複合型冷媒回路設備によれば、蓄熱槽37の蓄冷量に
応じて、冷蔵側切換式熱交換器8cの機能が蓄熱用蒸発
器の機能と過冷却用熱交換器の機能とに切り換えられる
ので、ひとつの冷蔵側切換式熱交換器8cを蓄熱用蒸発
器又は過冷却用熱交換器として切換可能に共用すること
ができる。従って、熱交換器に係るイニシャルの製造コ
ストを低減化することができる。
On the other hand, when the amount of cold storage in the heat storage tank 37 becomes equal to or more than the amount of cold storage corresponding to the minimum amount of cold storage, the control device 54 opens each refrigeration-side supercooling switching electromagnetic valve 12 and sets the refrigeration-side supercooling switching electromagnetic valve. The valve 13 and the refrigeration-side switching electromagnetic valve 12b are closed. As a result, the refrigeration-side switching heat exchanger 8c functions as a supercooling heat exchanger for extracting cold heat,
The heat of the heat storage tank 37 is supplied to the refrigerant in the cooling pipe 14 of the second cold heat supply circuit via the water pipe 47 and the pump 48 as the first heat storage agent circulating device . The refrigerant thus cooled is sequentially supplied to the refrigeration-side electromagnetic valve 3, the refrigeration-side expansion valve 4, and the refrigeration-side evaporator 5, thereby replenishing the refrigeration capacity required in the refrigeration-side refrigerant circuit. As described above, according to the combined refrigerant circuit equipment according to this embodiment, the function of the refrigerating-side switching heat exchanger 8c is changed to the function of the heat storage evaporator and the function of the supercooling heat in accordance with the amount of cold storage in the heat storage tank 37. Since it can be switched to the function of an exchanger, one refrigeration-side switching heat exchanger 8c can be switchably used as a heat storage evaporator or a supercooling heat exchanger. Therefore, the manufacturing cost of the initials related to the heat exchanger can be reduced.

【0060】なお、要約すると本実施例による複合型冷
媒回路設備は、以下のような技術手段を講じたものであ
る。 すなわち、本実施例7による複合型冷媒回路設備
は、第1の冷媒回路と、蓄熱用冷媒回路と、蓄熱槽と、
第2の冷媒回路と、第1の冷熱供給回路とを備えたもの
において、 第1の冷媒回路の第1の凝縮器と第1の絞り
装置との間に直列に接続されるとともに流路開閉自在の
回路開閉装置を有してなり第1の凝縮器からの冷媒を蓄
熱用熱交換器に迂回させて蓄熱槽の蓄熱剤の冷熱を第1
の冷媒回路に供給する第2の冷熱供給回路と、蓄熱槽の
蓄熱剤の蓄熱量を検出する蓄熱量検出装置と、蓄熱剤の
検出された蓄熱量に基づいて回路開閉装置を開閉して冷
媒の流路を蓄熱用冷媒回路と第2の冷熱供給回路とに切
り換える冷媒流路制御装置とを具備してなるものであ
る。
It should be noted that, in summary, the composite cooling according to this embodiment
The medium circuit equipment has the following technical measures.
You. That is, the composite refrigerant circuit equipment according to the seventh embodiment.
A first refrigerant circuit, a heat storage refrigerant circuit, a heat storage tank,
Provided with a second refrigerant circuit and a first cold heat supply circuit
, The first condenser and the first throttle of the first refrigerant circuit
It is connected in series with the device and can open and close the flow path.
A circuit opening / closing device for storing the refrigerant from the first condenser;
The heat of the heat storage agent in the heat storage tank is bypassed to the heat exchanger for heat and
A second cold heat supply circuit for supplying the refrigerant circuit of
A heat storage amount detection device for detecting the heat storage amount of the heat storage agent;
Open / close the circuit switch based on the detected heat storage to cool
The medium flow path is connected to the heat storage refrigerant circuit and the second cold heat supply circuit.
And a refrigerant flow control device to be replaced.
You.

【0061】実施例8. 図8はこの発明の実施例8による複合型冷媒回路設備を
示す構成図である。尚、図においてこれまで述べた各実
施例の構成要素と共通の構成要素には、同一の符号を付
しその説明を省略する。この実施例による複合型冷媒回
路設備は、図1に示した実施例1による複合型冷媒回路
設備と基本的構成をほぼ同様とし、構成上の相違点は、
冷凍側凝縮器の機能も併有する冷凍側過冷却用熱交換器
(冷熱供給用熱交換器)31aが前記冷凍側過冷却用熱
交換器31(図1参照)に替えて蓄熱槽37内に配備さ
れたことと、これに伴って冷凍側凝縮器22(第2の凝
縮器)(図1参照)を省略した構成が採られたことであ
る。
Embodiment 8 FIG. FIG. 8 is a configuration diagram showing a combined refrigerant circuit equipment according to Embodiment 8 of the present invention. In the drawings, the same reference numerals are given to the same components as those of the embodiments described above, and the description thereof will be omitted. The composite refrigerant circuit equipment according to this embodiment has substantially the same basic configuration as the composite refrigerant circuit equipment according to the first embodiment shown in FIG.
A heat exchanger for subcooling on the refrigeration side that also has the function of a condenser on the refrigeration side
(Heat exchanger for supplying cold heat) 31a was provided in the heat storage tank 37 instead of the heat exchanger 31 for supercooling on the refrigeration side (see FIG. 1) . 2
Configuration is omitted condenser) (see FIG. 1) it is that was taken.

【0062】この実施例に係る複合型冷媒回路設備によ
る基本的動作は実施例1のものとほぼ同様である。従っ
て、冷蔵側冷媒回路から蓄熱槽37に蓄えられた冷熱
は、冷凍側冷媒回路にて消費される。既に述べたよう
に、冷熱は、冷蔵側蒸発器5における冷媒の蒸発温度の
高いすなわち冷凍効率の高い冷蔵側冷媒回路から蓄冷さ
れ、冷凍側蒸発器25における冷媒の蒸発温度の低いす
なわち冷凍効率の低い冷凍側冷媒回路で利用される。こ
の場合、冷凍側過冷却用熱交換器31aにおいて、特に
冷凍側圧縮機21からの高温の冷媒は蓄熱槽37内の水
と直接的に熱交換されて凝縮され更に過冷却されるの
で、蓄熱槽37の冷熱を効率よく利用することができ
る。加えて、冷凍側過冷却用熱交換器31aは冷凍側凝
縮器と冷凍側過冷却用熱交換器を兼用しているので、熱
交換器にかかるイニシャルの製造コストを低減化するこ
とができる。
The basic operation of the combined refrigerant circuit equipment according to this embodiment is almost the same as that of the first embodiment. Therefore, the cold stored in the heat storage tank 37 from the refrigeration side refrigerant circuit is consumed by the refrigeration side refrigerant circuit. As described above, the cold heat is stored in the refrigeration-side refrigerant circuit having a high refrigerant evaporation temperature in the refrigeration-side evaporator 5, that is, a high refrigeration efficiency, and a low refrigerant evaporation temperature in the refrigeration-side evaporator 25, that is, the refrigeration efficiency. Used in low refrigeration side refrigerant circuits. In this case, in the freezing-side supercooling heat exchanger 31a, particularly, the high-temperature refrigerant from the freezing-side compressor 21 is directly heat-exchanged with water in the heat storage tank 37, condensed, and further supercooled. The cold heat of the tank 37 can be used efficiently. In addition, since the refrigerating-side subcooling heat exchanger 31a also serves as the refrigerating-side condenser and the refrigerating-side subcooling heat exchanger, it is possible to reduce the manufacturing cost of the initials for the heat exchanger.

【0063】なお、要約すると本実施例による複合型冷
媒回路設備は、以下のような技術手段を講じたものであ
る。 すなわち、本実施例8による複合型冷媒回路設備
は、第1の圧縮機、第1の凝縮器、第1の絞り装置、及
び第1の被冷却環境を冷却する第1の蒸発器を順次環状
に接続してなる第1の冷媒回路と、第1の冷媒回路に第
1の絞り装置及び第1の蒸発器と並列に蓄熱用絞り装置
及び蓄熱用熱交換器を順次接続してなる蓄熱用冷媒回路
と、蓄熱用熱交換器を介して第1の冷媒回路の最大冷凍
能力と第1の被冷却環境の所要の冷凍能力との差に対応
した冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、第2の
圧縮機、第2の凝縮器、第2の絞り装置、及び第1の被
冷却環境よりも低温にされる第2の被冷却環境を冷却す
る第2の蒸発器を順次環状に接続してなる第2の冷媒回
路とを備えた複合型冷媒回路設備において、第2の凝縮
器を、蓄熱剤からの冷熱を第2の冷媒回路に供給可能に
蓄熱槽に設けたことを特徴とするものである。
It should be noted that, in summary, the composite cooling according to the present embodiment
The medium circuit equipment has the following technical measures.
You. That is, the composite refrigerant circuit equipment according to the eighth embodiment.
Comprises a first compressor, a first condenser, a first throttle device, and
And the first evaporator for cooling the first environment to be cooled is sequentially annular.
And a first refrigerant circuit connected to the first refrigerant circuit.
And a throttle device for heat storage in parallel with the first throttle device and the first evaporator
Storage refrigerant circuit connected in order and heat storage heat exchanger
Maximum refrigeration of the first refrigerant circuit via the heat storage heat exchanger.
Corresponds to the difference between the capacity and the required refrigeration capacity of the first cooled environment
A heat storage tank containing a heat storage agent for storing the cooled cold;
A compressor, a second condenser, a second throttle device, and a first condenser.
Cooling a second cooled environment to be lower than the cooling environment
A second refrigerant circuit formed by sequentially connecting second evaporators in a ring shape.
In the combined refrigerant circuit equipment with
Can supply cold heat from the heat storage agent to the second refrigerant circuit
It is characterized by being provided in a heat storage tank.

【0064】[0064]

【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0065】冷却温度の異なる複数の被冷却環境をそれ
ぞれ冷却する複数の冷媒回路間で、冷凍効率の高い高冷
却温度側(第1の)の冷媒回路からの余剰の冷熱を、蓄
熱槽の蓄熱剤を介して冷凍効率の低い低冷却温度側(第
2の)の冷媒回路へ移動させるようにしたので、設備全
体として総合的な冷凍効率の向上化を図ることができ
る。
Excessive cold heat from the high-cooling-temperature-side (first) refrigerant circuit having high refrigeration efficiency is transferred to the heat storage tank between a plurality of refrigerant circuits for cooling a plurality of cooled environments having different cooling temperatures. Since the refrigerant is moved to the low cooling temperature side (second) refrigerant circuit having a low refrigeration efficiency via the agent, the overall refrigeration efficiency can be improved as a whole facility.

【0066】更に、高冷却温度側(第1の)の冷媒回路
の余剰の冷熱量((第1の)圧縮機の入口圧力や被冷却
環境温度等の物理量に対応)に応じて、蓄熱用熱交換器
への第1の冷媒回路からの冷媒流通量を制御するように
したので、余剰冷熱の蓄熱量を制御することができる。
従って、例えば蓄冷用熱交換器において過剰に蓄冷され
ることがないので、第1の被冷却環境におかれた冷蔵側
蒸発器に与えられる冷凍能力の不足をひきおこすことが
なく、第1の被冷却環境をそれにとって不都合な温度に
昇温させることもない。
Further, according to the excess amount of cold heat in the refrigerant circuit on the high cooling temperature side (first) (corresponding to the physical quantity such as the inlet pressure of the (first) compressor and the temperature of the environment to be cooled), Since the amount of refrigerant flowing from the first refrigerant circuit to the heat exchanger is controlled, it is possible to control the amount of heat storage of excess cold heat.
Therefore, for example, since the cold storage heat exchanger is not excessively stored, the shortage of the refrigerating capacity provided to the refrigeration-side evaporator placed in the first cooled environment does not occur, and the first cooled storage evaporator does not. It is not necessary to raise the cooling environment to a temperature which is inconvenient for it.

【0067】逆に、低冷却温度側(第2の)の冷媒回路
の不足した冷凍能力((第2の)圧縮機の入口圧力や被
冷却環境温度等の物理量に対応)に応じて、第2の冷媒
回路から蓄熱用熱交換器への冷媒流通量を制御するよう
にしたので、蓄熱槽から受け取る冷熱量を制御すること
ができる。
On the other hand, depending on the insufficient refrigerating capacity of the refrigerant circuit on the low cooling temperature side (second) (corresponding to physical quantities such as the inlet pressure of the (second) compressor and the temperature of the environment to be cooled), Since the amount of refrigerant flowing from the second refrigerant circuit to the heat storage heat exchanger is controlled, the amount of cold heat received from the heat storage tank can be controlled.

【0068】更に、蓄熱剤に対し冷熱の出し入れを行う
蓄熱用熱交換器及び冷熱供給用熱交換器のそれぞれに向
けて、蓄熱槽からの蓄熱剤を強制的に循環させるように
したので、冷熱移動効率の向上化を図ることができる。
Further, since the heat storage agent from the heat storage tank is forcibly circulated toward each of the heat storage heat exchanger and the cold heat supply heat exchanger for transferring cold heat into and out of the heat storage agent, The movement efficiency can be improved.

【0069】そして、第1の冷媒回路における余剰の冷
熱量に応じて、蓄熱槽から蓄熱用熱交換器への蓄熱剤の
循環量を制御するようにしたので、この余剰の冷熱の蓄
熱量を制御することができる。
The amount of circulation of the heat storage agent from the heat storage tank to the heat storage heat exchanger is controlled according to the amount of surplus cold heat in the first refrigerant circuit. Can be controlled.

【0070】逆に、第2の冷媒回路において不足する冷
凍能力に応じて、蓄熱槽から冷熱供給用熱交換器への蓄
熱剤の循環量を制御するようにしたので、この不足した
冷凍能力の賄い量を制御することができる。
Conversely, the circulation amount of the heat storage agent from the heat storage tank to the heat exchanger for supplying cold heat is controlled according to the refrigeration capacity that is insufficient in the second refrigerant circuit. It is possible to control the amount of funding.

【0071】また、第1の冷媒回路に接続された1台の
蓄熱用熱交換器を、蓄熱剤の蓄熱量に応じて、蓄熱用の
蒸発器又は過冷却用の熱交換器として合理的に使い分け
るようにしたので、熱交換器にかかるイニシャルの製造
コストを低減化することができる。
Further, one heat storage heat exchanger connected to the first refrigerant circuit can be rationally used as a heat storage evaporator or a supercooling heat exchanger according to the heat storage amount of the heat storage agent. Since the heat exchangers are selectively used, the manufacturing cost of the initials required for the heat exchanger can be reduced.

【0072】そして、第2の冷媒回路の第2の凝縮器の
冷媒と蓄熱槽の蓄熱剤とを熱交換させるようにしたの
で、蓄熱槽に蓄冷された冷熱を効率よく利用することが
できる。加えて、第2の凝縮器が、本来の凝縮器及び過
冷却用の熱交換器として兼用されるので、熱交換器にか
かるイニシャルの製造コストを低減化することができ
る。
Since the refrigerant in the second condenser of the second refrigerant circuit and the heat storage agent in the heat storage tank exchange heat, the cold stored in the heat storage tank can be used efficiently. In addition, since the second condenser is also used as the original condenser and the heat exchanger for supercooling, it is possible to reduce the manufacturing cost of the initials required for the heat exchanger.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施例1による複合型冷媒回路設
備を示す構成図である。
FIG. 1 is a configuration diagram showing a complex-type refrigerant circuit facility according to Embodiment 1 of the present invention.

【図2】 この発明の実施例2による複合型冷媒回路設
備を示す構成図である。
FIG. 2 is a configuration diagram showing a composite refrigerant circuit facility according to Embodiment 2 of the present invention.

【図3】 この発明の実施例3による複合型冷媒回路設
備を示す構成図である。
FIG. 3 is a configuration diagram showing a complex-type refrigerant circuit facility according to Embodiment 3 of the present invention.

【図4】 この発明の実施例4による複合型冷媒回路設
備における冷蔵側冷媒回路の要部を示す構成図である。
FIG. 4 is a configuration diagram showing a main part of a refrigeration-side refrigerant circuit in a combined-type refrigerant circuit facility according to Embodiment 4 of the present invention.

【図5】 この発明の実施例5による複合型冷媒回路設
備における冷蔵側冷媒回路を示す構成図である。
FIG. 5 is a configuration diagram showing a refrigeration-side refrigerant circuit in a combined-type refrigerant circuit facility according to Embodiment 5 of the present invention.

【図6】 この発明の実施例6による複合型冷媒回路設
備における冷蔵側冷媒回路を示す構成図である。
FIG. 6 is a configuration diagram illustrating a refrigeration-side refrigerant circuit in a combined-type refrigerant circuit facility according to Embodiment 6 of the present invention.

【図7】 この発明の実施例7による複合型冷媒回路設
備における冷蔵側冷媒回路を示す構成図である。
FIG. 7 is a configuration diagram showing a refrigeration-side refrigerant circuit in a combined-type refrigerant circuit facility according to Embodiment 7 of the present invention.

【図8】 この発明の実施例8による複合型冷媒回路設
備を示す構成図である。
FIG. 8 is a configuration diagram showing a complex type refrigerant circuit equipment according to Embodiment 8 of the present invention.

【図9】 従来の複合型冷媒回路設備を示す構成図であ
る。
FIG. 9 is a configuration diagram showing a conventional composite refrigerant circuit facility.

【符号の説明】 1 冷蔵側圧縮機(第1の圧縮機) 2 冷蔵側凝縮器(第1の凝縮器) 3 冷蔵側電磁弁 4 冷蔵側膨張弁(第1の絞り装置) 5 冷蔵側蒸発器(第1の蒸発器) 6 冷媒配管 8 冷蔵側蓄熱用蒸発器(蓄熱用熱交換器) 8a 冷蔵側蓄熱用蒸発器(蓄熱用熱交換器) 8b 冷蔵側蓄熱用蒸発器(蓄熱用熱交換器) 8c 冷蔵側切換式熱交換器(蓄熱用熱交換器) 9 冷蔵側蓄熱用電磁弁 10 冷蔵側蓄熱用膨張弁(蓄熱用絞り装置) 12 冷蔵側過冷却切換電磁弁 12b 冷蔵側切換電磁弁 13 冷蔵側過冷却切換電磁弁 14 冷媒配管 15 冷媒配管 21 冷凍側圧縮機(第2の圧縮機) 22 冷凍側凝縮器(第2の凝縮器) 23 冷凍側電磁弁 24 冷凍側膨張弁(第2の絞り装置) 25 冷凍側蒸発器(第2の蒸発器) 26 冷媒配管 26a 冷媒配管 31 冷凍側過冷却用熱交換器(冷熱供給用熱交換器) 31a 冷凍側過冷却用熱交換器(冷熱供給用熱交換
器) 34a 冷媒配管 37 蓄熱槽 42 圧力検出器(第1の冷凍能力検出装置) 43 制御装置(第1の冷媒流通量制御装置) 43a 制御装置 43b 制御装置 44 流量調整弁 45 圧力検出器(第2の冷凍能力検出装置) 46 制御装置(第2の冷媒流通量制御装置) 46b 制御装置 47 水配管 47b 水配管 48 ポンプ(第1の蓄熱剤循環装置) 49 インバータ 50 水配管 51 ポンプ(第2の蓄熱剤循環装置) 52 インバータ 53 温度検出器 54 制御装置 57 流量調整弁
[Description of Signs] 1 Refrigeration-side compressor (first compressor) 2 Refrigeration-side condenser (first condenser) 3 Refrigeration-side solenoid valve 4 Refrigeration-side expansion valve (first throttle device) 5 Refrigeration-side evaporation (First evaporator) 6 Refrigerant piping 8 Refrigeration-side heat storage evaporator (heat storage heat exchanger) 8a Refrigeration-side heat storage evaporator (heat storage heat exchanger) 8b Refrigeration-side heat storage evaporator (heat storage heat) exchanger) 8c refrigerating side switching type heat exchanger (heat storing heat exchanger) 9 refrigerating side heat storage electromagnetic valve 10 refrigerating side heat storage expansion valve (throttle heat storage device) 12 refrigerating side subcooling switching solenoid valve 12b refrigerating side switching Solenoid valve 13 Refrigeration-side supercooling switching electromagnetic valve 14 Refrigerant pipe 15 Refrigerant pipe 21 Refrigeration-side compressor (second compressor) 22 Refrigeration-side condenser (second condenser) 23 Refrigeration-side electromagnetic valve 24 Refrigeration-side expansion valve (Second throttle device) 25 Freezing side evaporator (second evaporator) 26 Refrigerant pipe 26a Refrigerant pipe 31 Freezing-side supercooling heat exchanger (cold heat supply heat exchanger) 31a Freezing-side supercooling heat exchanger (cold heat supply heat exchange)
Vessel) 34a refrigerant pipe 37 heat storage tank 42 pressure detector (first refrigeration capacity detecting device) 43 control device (first refrigerant flow amount control device) 43a controller 43b control device 44 flow regulating valve 45 pressure detector (No. 2 refrigeration capacity detection device) 46 control device (second refrigerant flow control device) 46b control device 47 water pipe 47b water pipe 48 pump (first heat storage agent circulation device) 49 inverter 50 water pipe 51 pump (second) 52 ) Inverter 53 Temperature detector 54 Control device 57 Flow control valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池内 正毅 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (72)発明者 根来 耕一 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (72)発明者 大畑 晃一 大阪市北区堂島二丁目2番2号 三菱電 機株式会社 関西支社内 (72)発明者 中野 忠明 大阪市北区堂島二丁目2番2号 三菱電 機株式会社 関西支社内 (56)参考文献 特開 昭64−6650(JP,A) 特開 平2−251051(JP,A) 特開 平3−255852(JP,A) 特開 昭64−90962(JP,A) 特開 平5−52435(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 5/00 F25B 1/00 321 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masatake Ikeuchi 6-66, Tehira, Wakayama City Mitsubishi Electric Corporation Wakayama Works (72) Inventor Koichi Negoro 6-5-66, Tehira Wakayama City Mitsubishi Electric (72) Inventor Koichi Ohata 2-2-2 Dojima, Kita-ku, Osaka City Mitsubishi Electric Corporation Kansai Branch Office (72) Inventor Tadaaki Nakano 2-2-2, Dojima, Kita-ku, Osaka Mitsubishi Electric Corporation Kansai Branch Office (56) References JP-A-64-6650 (JP, A) JP-A-2-251051 (JP, A) JP-A-3-255852 (JP, A) JP-A 64-64 90962 (JP, A) JP-A-5-52435 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 5/00 F25B 1/00 321

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、及び第1の被冷却環境を冷却する第1の蒸発器
を順次環状に接続してなる1系統以上の第1の冷媒回路
と、前記第1の圧縮機、前記第1の凝縮器 、蓄熱用絞り装置
及び蓄熱用熱交換器を順次接続してなる蓄熱用冷媒回路
と、前記蓄熱用熱交換器と前記蓄熱槽との間に介在して設け
られ前記蓄熱槽の蓄熱剤を前記蓄熱用熱交換器に循環さ
せて前記蓄熱用冷媒回路の冷媒と熱交換させる第1の蓄
熱剤循環装置と、 前記蓄熱用冷媒回路により 前記蓄熱用熱交換器を介して
冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、 第2の圧縮機、第2の凝縮器、前記蓄熱槽の蓄熱剤から
の冷熱を供給する冷熱供給用熱交換器を有する第1の冷
熱供給回路、第2の絞り装置、及び前記第1の被冷却環
境よりも低温にされる第2の被冷却環境を冷却する第2
の蒸発器を順次環状に接続してなる1系統以上の第2の
冷媒回路とを備えたことをことを特徴とする複合型冷媒
回路設備。
1. One or more systems in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled are sequentially connected in a ring shape . A first refrigerant circuit, a heat storage refrigerant circuit in which the first compressor, the first condenser, the heat storage expansion device and the heat storage heat exchanger are sequentially connected, and the heat storage heat exchanger. Provided between the heat storage tank
The heat storage agent in the heat storage tank is circulated to the heat storage heat exchanger.
A first storage unit for exchanging heat with the refrigerant of the heat storage refrigerant circuit.
A heating agent circulating device, a heat storage tank containing a heat storage agent for storing cold heat through the heat storage heat exchanger by the heat storage refrigerant circuit , a second compressor, a second condenser, and a heat storage tank. From heat storage agent
The first cooling device having a cold heat supply heat exchanger for supplying cold heat
A heat supply circuit , a second expansion device, and a second cooling device for cooling a second cooled environment to be lower in temperature than the first cooled environment.
Composite refrigerant circuit equipment, characterized in that in that a second refrigerant circuit of the evaporator successively formed by connecting in a ring one or more systems.
【請求項2】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、及び第1の被冷却環境を冷却する第1の蒸発器
を順次環状に接続してなる複数系統の第1の冷媒回路
と、 蓄熱材を収容した蓄熱槽と、前記第1の圧縮機、前記第1の凝縮器 、蓄熱用絞り装置
及び蓄熱用熱交換器を順次接続してなる複数の蓄熱用冷
媒回路と、前記第1の冷媒回路の前記第1の凝縮器と第1の絞り装
置との間に過冷却用熱交換器を接続してなる複数の第2
の冷熱供給回路と、 前記蓄熱槽の蓄熱剤を前記蓄熱用熱交換器に並列に循環
させて前記蓄熱用冷媒回路の冷媒と熱交換させるととも
に、 前記蓄熱槽の蓄熱剤を前記過冷却用熱交換器に並列に循
環させて第1の凝縮器からの冷媒に前記蓄熱槽の蓄熱剤
の冷熱を供給する第1の蓄熱剤循環装置と、 第2の圧縮機、第2の凝縮器、前記蓄熱槽の蓄熱剤から
の冷熱を供給する冷熱供給用熱交換器を有する第1の冷
熱供給回路、第2の絞り装置、及び前記第1の被冷却環
境よりも低温にされる第2の被冷却環境を冷却する第2
の蒸発器を順次環状に接続してなる1系統以上の第2の
冷媒回路とを備えたことをことを特徴とする複合型冷媒
回路設備。
2. A multi-system system comprising a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled, which are sequentially connected in a ring shape. A first refrigerant circuit, a heat storage tank containing a heat storage material, and a plurality of heat storage refrigerants sequentially connected to the first compressor, the first condenser, the heat storage expansion device, and the heat storage heat exchanger. Circuit, the first condenser and the first throttle device of the first refrigerant circuit
Sub-cooling heat exchangers connected to the
And the heat storage agent in the heat storage tank is circulated in parallel to the heat storage heat exchanger.
And heat exchange with the refrigerant in the heat storage refrigerant circuit.
Then, the heat storage agent in the heat storage tank is circulated in parallel to the supercooling heat exchanger.
The heat storage agent in the heat storage tank is circulated to the refrigerant from the first condenser.
From the first heat storage agent circulating device for supplying the cold heat of the second compressor, the second condenser, and the heat storage agent in the heat storage tank.
The first cooling device having a cold heat supply heat exchanger for supplying cold heat
A heat supply circuit , a second expansion device, and a second cooling device for cooling a second cooled environment to be lower in temperature than the first cooled environment.
Composite refrigerant circuit equipment, characterized in that in that a second refrigerant circuit of the evaporator successively formed by connecting in a ring one or more systems.
【請求項3】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、及び第1の被冷却環境を冷却する第1の蒸発器
を順次環状に接続してなる1系統以上の第1の冷媒回路
と、前記第1の圧縮機、前記第1の凝縮器 、蓄熱用絞り装置
及び蓄熱用熱交換器を順次接続してなり開閉制御される
1以上の蓄熱用冷媒回路と、前記蓄熱用冷媒回路により 前記蓄熱用熱交換器を介して
冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、前記第1の冷媒回路の前記第1の凝縮器と第1の絞り装
置との間に前記蓄熱用熱交換器を接続してなり開閉制御
される1以上の第2の冷熱供給回路と、 第2の圧縮機、第2の凝縮器、前記蓄熱槽の蓄熱剤から
の冷熱を供給する冷熱供給用熱交換器を有する第1の冷
熱供給回路、第2の絞り装置、及び前記第1の被冷却環
境よりも低温にされる第2の被冷却環境を冷却する第2
の蒸発器を順次環状に接続してなる1系統以上の第2の
冷媒回路とを備えたことをことを特徴とする複合型冷媒
回路設備。
3. One or more systems in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled are sequentially connected in a ring shape. A first refrigerant circuit, the first compressor, the first condenser, the heat storage throttle device, and the heat storage heat exchanger are sequentially connected to each other and are opened and closed.
1 or more and the thermal storage refrigerant circuit, a heat storage tank that houses a heat storage agent to cold storage cold heat through the thermal storage heat exchanger by the heat accumulating refrigerant circuit, said first condenser of the first refrigerant circuit And the first drawer
Open / close control by connecting the heat storage heat exchanger between the
From the at least one second cold heat supply circuit, the second compressor, the second condenser, and the heat storage agent in the heat storage tank.
The first cooling device having a cold heat supply heat exchanger for supplying cold heat
A heat supply circuit , a second expansion device, and a second cooling device for cooling a second cooled environment to be lower in temperature than the first cooled environment.
Composite refrigerant circuit equipment, characterized in that in that a second refrigerant circuit of the evaporator successively formed by connecting in a ring one or more systems.
【請求項4】 前記蓄熱槽の蓄熱剤を前記蓄熱用熱交換
器に循環させて前記蓄熱用冷媒回路の冷媒と熱交換さ
せ、又は、前記第1の凝縮器からの冷媒に前記蓄熱槽の
蓄熱剤の冷熱を供給する第1の蓄熱剤循環装置を備えた
ことをことを特徴とする請求項3に記載の複合型冷媒回
路設備。
4. A heat exchanger for storing heat in the heat storage tank.
Heat exchange with the refrigerant in the heat storage refrigerant circuit
Or the refrigerant from the first condenser in the heat storage tank
Provided with a first heat storage agent circulating device for supplying cold heat of the heat storage agent
The composite refrigerant circuit equipment according to claim 3, wherein:
【請求項5】 前記第1の冷媒回路の冷凍能力を検出す
る第1の冷凍能力検出装置とこの第1の冷凍能力検出装置の出力に基づいて前記第1
の蓄熱剤循環装置の冷媒の流通量を制御する第1の蓄熱
剤循環量制御装置とを備えたことを特徴とする 請求項
1、2又は4に記載の複合型冷媒回路設備
5. A method for detecting a refrigerating capacity of the first refrigerant circuit.
A first refrigeration capacity detection device, and the first refrigeration capacity detection device based on an output of the first refrigeration capacity detection device.
Heat storage for controlling the flow rate of the refrigerant in the heat storage agent circulation device of the first embodiment
Claims, characterized in that a material circulation quantity control device
5. The composite refrigerant circuit equipment according to 1, 2, or 4 .
【請求項6】 前記第1の冷凍能力検出装置により前記
第1の被冷却環境に与えられた冷凍能力を検出し、 前記第1の蓄熱剤循環量制御装置により前記第1の冷媒
回路の最大冷凍能力と前記検出された冷凍能力との差に
基づいて前記第1の蓄熱剤循環装置による蓄熱剤の循環
量を制御することを特徴とする請求項5に記載の複合型
冷媒回路設備
6. The apparatus according to claim 1, wherein
Refrigeration capacity given to the first cooled environment is detected, and the first refrigerant is controlled by the first heat storage agent circulation amount control device.
The difference between the maximum refrigeration capacity of the circuit and the detected refrigeration capacity
Circulation of the heat storage agent by the first heat storage agent circulating device based on the
The composite type according to claim 5, wherein the amount is controlled.
Refrigerant circuit equipment .
【請求項7】 前記蓄熱槽の蓄熱剤の蓄熱量を検出する
蓄熱量検出装置と、 前記蓄熱量検出装置の出力に基づいて前記蓄熱用冷媒回
路と前記第2の冷熱供給回路との開閉を制御する冷媒流
路制御装置を備えたことを特徴とする請求項3又は4に
記載の複合型冷媒回路設備
7. The amount of heat stored in the heat storage agent in the heat storage tank is detected.
A heat storage amount detection device, and the heat storage refrigerant circuit based on an output of the heat storage amount detection device.
Refrigerant flow for controlling the opening and closing of the passage and the second cold heat supply circuit
A road control device is provided.
The combined refrigerant circuit equipment described in the above .
【請求項8】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、及び第1の被冷却環境を冷却する第1の蒸発器
を順次環状に接続してなる1系統以上の第1の冷媒回路
と、前記第1の圧縮機、前記第1の凝縮器 、蓄熱用絞り装置
及び蓄熱用熱交換器を順次接続してなる蓄熱用冷媒回路
と、前記蓄熱用冷媒回路により 前記蓄熱用熱交換器を介して
冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、 第2の圧縮機、第2の凝縮器、前記蓄熱槽内に配置され
前記蓄熱槽の蓄熱剤からの冷熱を供給する冷熱供給用熱
交換器を有する第1の冷熱供給回路、第2の絞り装置、
及び前記第1の被冷却環境よりも低温にされる第2の被
冷却環境を冷却する第2の蒸発器を順次環状に接続して
なる1系統以上の第2の冷媒回路と備え、かつ、前記第
1の冷熱供給回路と並行に、前記第2の凝縮器から前記
第2の絞り装置に冷媒を制御可能に分流させるバイパス
回路を設けたことを特徴とする複合型冷媒回路設備
8. One or more systems in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled are sequentially connected in a ring shape . A first refrigerant circuit, a heat storage refrigerant circuit in which the first compressor, the first condenser, a heat storage expansion device, and a heat storage heat exchanger are sequentially connected; and the heat storage refrigerant circuit A heat storage tank containing a heat storage agent that stores cold heat through a heat storage heat exchanger; a second compressor, a second condenser, and the heat storage tank.
Cold supply heat for supplying cold from the heat storage agent in the heat storage tank
A first cold heat supply circuit having an exchanger, a second expansion device,
And one or more second refrigerant circuits sequentially connected in a ring shape with a second evaporator for cooling a second cooled environment that is cooled to a temperature lower than the first cooled environment, and The said
In parallel with the first cold supply circuit, the second condenser
A bypass for controllably diverting the refrigerant to the second expansion device
A composite refrigerant circuit equipment comprising a circuit .
【請求項9】 前記第2の冷媒回路の冷凍能力を検出す
る第2の冷凍能力検出装置と、 この第2の冷凍能力検出装置の出力に基づいて前記第1
の冷熱供給回路の冷媒の流通量を制御する第2の冷媒流
通量制御装置とを備えたことを特徴とする請求項8に記
載の複合型冷媒回路設備
9. A method for detecting a refrigerating capacity of the second refrigerant circuit.
A second refrigeration capacity detection device based on the output of the second refrigeration capacity detection device.
Refrigerant flow for controlling the amount of refrigerant flowing through the cold heat supply circuit
9. The apparatus according to claim 8, further comprising a traffic control device.
Complex refrigerant circuit equipment described above .
【請求項10】 前記第2の冷凍能力検出装置により前
記第2の被冷却環境に与えられた冷凍能力を検出し、 前記第2の冷媒流通量制御装置により前記第2の冷媒回
路の最大冷凍能力と前記検出された冷凍能力との差に基
づいて前記第1の冷熱供給回路の冷媒の流通量を制御す
ることを特徴とする請求項9に記載の複合型冷媒回路設
10. The apparatus according to claim 1, wherein
The refrigeration capacity given to the second environment to be cooled is detected, and the second refrigerant circulation control device detects the refrigeration capacity.
Based on the difference between the maximum refrigeration capacity of the road and the detected refrigeration capacity.
Controlling the flow rate of the refrigerant in the first cold heat supply circuit.
10. The composite refrigerant circuit according to claim 9, wherein:
Equipment .
【請求項11】 第1の圧縮機、第1の凝縮器、第1の
絞り装置、及び第1の被冷却環境を冷却する第1の蒸発
器を順次環状に接続してなる1系統以上の第1の冷媒回
路と、前記第1の圧縮機、前記第1の凝縮器 、蓄熱用絞り装置
及び蓄熱用熱交換器を順次接続してなる蓄熱用冷媒回路
と、前記蓄熱用冷媒回路により 前記蓄熱用熱交換器を介して
冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、 第2の圧縮機、第2の凝縮器、前記蓄熱槽の蓄熱剤から
の冷熱を供給する冷熱供給用熱交換器を有する第1の冷
熱供給回路、第2の絞り装置、及び前記第1の被冷却環
境よりも低温にされる第2の被冷却環境を冷却する第2
の蒸発器を順次環状に接続してなる1系統以上の第2の
冷媒回路と、前記冷熱供給用熱交換器と前記蓄熱槽との間に介在して
設けられ前記蓄熱槽からの蓄熱剤を前記冷熱供給用熱交
換器に循環させて前記第2の冷媒回路の冷媒と熱交換さ
せる第2の蓄熱剤循環装置と、 前記第2の冷媒回路の冷凍能力を検出する第2の冷凍能
力検出装置とこの第2の冷凍能力検出装置の出力に基づいて前記第2
の蓄熱剤循環装置の冷媒の流通量を制御する第2の蓄熱
剤循環量制御装置とを備えたことを特徴とする複合型冷
媒回路設備
11. One or more systems in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first cooled environment are sequentially connected in a ring shape . A first refrigerant circuit, a heat storage refrigerant circuit in which the first compressor, the first condenser, a heat storage expansion device, and a heat storage heat exchanger are sequentially connected; and the heat storage refrigerant circuit A heat storage tank containing a heat storage agent for storing cold heat through a heat storage heat exchanger; a second compressor, a second condenser, and a heat storage agent in the heat storage tank.
The first cooling device having a cold heat supply heat exchanger for supplying cold heat
A heat supply circuit , a second expansion device, and a second cooling device for cooling a second cooled environment to be lower in temperature than the first cooled environment.
And at least one second refrigerant circuit in which the evaporators are sequentially connected in a ring, and the second refrigerant circuit is interposed between the cold heat supply heat exchanger and the heat storage tank.
The heat storage agent from the heat storage tank is
Circulates through the heat exchanger and exchanges heat with the refrigerant in the second refrigerant circuit.
A second heat storage agent circulating device, and a second refrigeration capacity for detecting a refrigeration capacity of the second refrigerant circuit.
Force detecting device and the second refrigeration capacity detecting device
Heat storage for controlling the flow rate of the refrigerant in the heat storage agent circulating device of the present invention
Combined refrigeration characterized by comprising an agent circulation amount control device
Medium circuit equipment .
【請求項12】 前記第2の冷凍能力検出装置により前
記第2の被冷却環境に与えられた冷凍能力を検出し、 前記第2の蓄熱剤循環量制御装置により前記第2の冷媒
回路の最大冷凍能力と前記検出された冷凍能力との差に
基づいて前記第2の蓄熱剤循環装置による蓄熱剤の循環
量を制御することを特徴とする請求項11に記載の複合
型冷媒回路設備
12. The apparatus according to claim 1, wherein
Detecting the refrigeration capacity given to the second environment to be cooled, and controlling the second refrigerant by the second heat storage agent circulation amount control device;
The difference between the maximum refrigeration capacity of the circuit and the detected refrigeration capacity
Of the heat storage agent by the second heat storage agent circulating device based on the
The composite of claim 11, wherein the amount is controlled.
Type refrigerant circuit equipment .
【請求項13】 第1の圧縮機、第1の凝縮器、第1の
絞り装置、及び第1の被冷却環境を冷却する第1の蒸発
器を順次環状に接続してなる1系統以上の第1の冷媒回
路と、 前記第1の圧縮機、前記第1の凝縮器、蓄熱用絞り装置
及び蓄熱用熱交換器を順次接続してなる蓄熱用冷媒回路
と、 前記蓄熱用冷媒回路により前記蓄熱用熱交換器を介して
冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、 第2の圧縮機、前記蓄熱槽の蓄熱剤からの冷熱を供給す
る冷熱供給用熱交換器を有する第1の冷熱供給回路、第
2の絞り装置、及び前記第1の被冷却環境よりも低温に
される第2の被冷却環境を冷却する第2の蒸発器を順次
環状に接続してなる1系統以上の第2の冷媒回路とを備
え、 前記冷熱供給用熱交換器を前記第2の冷媒回路の凝縮器
として機能させることを特徴とする複合型冷媒回路設
13. The first compressor, the first condenser, the first compressor,
Expansion device, and first evaporation for cooling the first cooled environment
One or more first refrigerant circuits formed by sequentially connecting the
Path, the first compressor, the first condenser, and a heat storage throttle device
Storage refrigerant circuit connected in order and heat storage heat exchanger
When, through the thermal storage heat exchanger by the heat accumulating refrigerant circuit
A heat storage tank containing a heat storage agent for storing cold heat, a second compressor, and cold heat supplied from the heat storage agent in the heat storage tank.
A first cold heat supply circuit having a cold heat supply heat exchanger,
And a lower temperature than the first cooled environment.
The second evaporator for cooling the second environment to be cooled
And one or more second refrigerant circuits connected in a ring.
The heat exchanger for supplying cold heat is connected to a condenser of the second refrigerant circuit.
Composite refrigerant circuit, characterized by functioning as
Equipment .
【請求項14】 前記第1の冷媒回路における第1の蒸発
器の冷媒蒸発温度が前記第2の冷媒回路における第2の
蒸発器の冷媒蒸発温度より高く設定されたことを特徴と
する請求項1〜13のいずれかに記載の複合型冷媒回路
設備
14. A first evaporation in the first refrigerant circuit.
The refrigerant evaporating temperature of the vessel is the second in the second refrigerant circuit.
It is set higher than the refrigerant evaporation temperature of the evaporator.
A composite refrigerant circuit according to any one of claims 1 to 13.
Equipment .
JP5026732A 1993-02-16 1993-02-16 Complex refrigerant circuit equipment Expired - Lifetime JP3046169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5026732A JP3046169B2 (en) 1993-02-16 1993-02-16 Complex refrigerant circuit equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5026732A JP3046169B2 (en) 1993-02-16 1993-02-16 Complex refrigerant circuit equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11830999A Division JP3453324B2 (en) 1999-04-26 1999-04-26 Complex refrigerant circuit equipment

Publications (2)

Publication Number Publication Date
JPH06241591A JPH06241591A (en) 1994-08-30
JP3046169B2 true JP3046169B2 (en) 2000-05-29

Family

ID=12201487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5026732A Expired - Lifetime JP3046169B2 (en) 1993-02-16 1993-02-16 Complex refrigerant circuit equipment

Country Status (1)

Country Link
JP (1) JP3046169B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303440A (en) * 2001-03-30 2002-10-18 Sanyo Electric Co Ltd Ice storage system
JP2016125730A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Heat storage type air conditioner

Also Published As

Publication number Publication date
JPH06241591A (en) 1994-08-30

Similar Documents

Publication Publication Date Title
JP2894421B2 (en) Thermal storage type air conditioner and defrosting method
JP3085296B2 (en) Refrigeration equipment
AU4798899A (en) Refrigeration system
EP3995758A1 (en) Heat exchange unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
KR20180010095A (en) A system for combining refrigerator and air conditioner, and control method thereof
JP3731174B2 (en) Refrigeration cycle
JPH11201569A (en) Refrigerating machine
JP3046169B2 (en) Complex refrigerant circuit equipment
JP3499171B2 (en) Thermal storage cooling system
JP3453324B2 (en) Complex refrigerant circuit equipment
JP3284582B2 (en) Heat storage type air conditioner and cool storage device for air conditioner
JP3465297B2 (en) vending machine
JP2000240980A (en) Refrigerator/air conditioner
JP2757660B2 (en) Thermal storage type air conditioner
GB2541607A (en) Refrigeration cycle device
JP2000337716A (en) Multiple refrigerant circuit facility combined
CN217274926U (en) Refrigerating system and refrigerating equipment with same
JP2013092342A (en) Refrigerating device
EP3995760B1 (en) Thermal storage unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
EP3995761A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method forcontrolling a refrigerant circuit
WO2022097680A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method for controlling a refrigerant circuit
JP3614626B2 (en) Air conditioner and method of operating air conditioner
JPH09280668A (en) Composite refrigerant circuit equipment
JPH02287063A (en) Apparatus and operation method for heat pump of direct-expansion heat-storage type
JP2712882B2 (en) Cool storage refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 13

EXPY Cancellation because of completion of term