JPH06241591A - Composite refrigerant circuit facility - Google Patents

Composite refrigerant circuit facility

Info

Publication number
JPH06241591A
JPH06241591A JP2673293A JP2673293A JPH06241591A JP H06241591 A JPH06241591 A JP H06241591A JP 2673293 A JP2673293 A JP 2673293A JP 2673293 A JP2673293 A JP 2673293A JP H06241591 A JPH06241591 A JP H06241591A
Authority
JP
Japan
Prior art keywords
heat storage
heat
refrigerant
refrigerant circuit
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2673293A
Other languages
Japanese (ja)
Other versions
JP3046169B2 (en
Inventor
Hisataka Enomoto
久孝 榎本
Kosaku Yaoda
耕作 矢尾田
Masaki Ikeuchi
正毅 池内
Koichi Negoro
耕一 根来
Koichi Ohata
晃一 大畑
Tadaaki Nakano
忠明 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Kansai Electric Power Co Inc
Priority to JP5026732A priority Critical patent/JP3046169B2/en
Publication of JPH06241591A publication Critical patent/JPH06241591A/en
Application granted granted Critical
Publication of JP3046169B2 publication Critical patent/JP3046169B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To improve total refrigerating efficiency of an entire facility by moving excessive cold heat of a refrigerant circuit having a high refrigerating efficiency to a refrigerant circuit having a low refrigerating efficiency. CONSTITUTION:Using this composite refrigerant circuit, excess refrigerating capacity of a cold storage side refrigerant circuit is stored as cold in cold accumulator of a heat storage tank 37 through a cold storage side heat storage evaporator 8 irrespective of consumption in a cold storage side evaporator 5 of a cold storage side refrigerant circuit having a high refrigerating efficiency. This cold is supplied to a refrigerating side refrigerant circuit having a low refrigerating efficiency through a refrigerating side subcooling heat exchanger 31 of the tank 37, and consumed by a refrigerating side evaporator 25 of a refrigerating side refrigerant circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば冷却温度域の異
なる被冷却環境をそれぞれ冷却する、いわば蒸発器の冷
媒蒸発温度を異にする複数の冷媒回路と、冷熱を蓄熱す
るための蓄熱槽とを備えた複合型冷媒回路設備に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, a plurality of refrigerant circuits that cool different environments to be cooled in different cooling temperature ranges, that is, different refrigerant evaporation temperatures of an evaporator, and a heat storage tank for storing cold heat. The present invention relates to a composite type refrigerant circuit facility including:

【0002】[0002]

【従来の技術】従来、例えば食品加工センターや食品店
舗等における、被冷却環境たる冷蔵庫やショーケース等
を冷却する複合型冷媒回路設備の構成を図9に示す。同
図において、1は冷蔵側圧縮機(第1の圧縮機)、2は
冷蔵側凝縮器(第1の凝縮器)、3は5で示す冷蔵側蒸
発器(第1の蒸発器)へ供給する冷媒を断続するための
冷蔵側電磁弁、4は冷蔵側膨張弁(第1の絞り装置の一
例)、6はこれらを連通する冷蔵側の冷媒配管を示す。
さらに、7は例えば水等の蓄熱剤を収容した冷蔵側の蓄
熱槽、8は冷蔵側蓄熱用蒸発器(蓄熱用熱交換器)、9
は冷蔵側蓄熱用蒸発器8へ供給する冷媒を断続するため
の冷蔵側蓄熱用電磁弁、10は冷蔵側蓄熱用膨張弁(蓄
熱用絞り装置の一例)、11は冷蔵側過冷却用熱交換
器、12,13はそれぞれ冷蔵側過冷却切換電磁弁、1
4は冷媒配管6に連通され冷媒を冷蔵側過冷却用熱交換
器11へ迂回させて送るための冷蔵側過冷却用の冷媒配
管、15は冷媒配管6に並列に連通され冷蔵側蓄熱用蒸
発器8へ冷媒を送るための冷媒配管を示す。前記1〜1
5の符号を付した構成要素から、冷蔵側蒸発器5のおか
れた例えばショーケース(第1の被冷却環境の一例であ
って、例えば0℃を超える目標温度に設定されている)
を冷却する冷蔵側冷媒回路(第1の冷媒回路の一例)が
構成されている。
2. Description of the Related Art Conventionally, FIG. 9 shows the structure of a composite refrigerant circuit facility for cooling a refrigerator, a showcase, or the like, which is an environment to be cooled, such as a food processing center or a food store. In the figure, 1 is a refrigeration side compressor (first compressor), 2 is a refrigeration side condenser (first condenser), and 3 is a refrigeration side evaporator (first evaporator) indicated by 5. A solenoid valve for refrigerating on and off for refrigerating side, a refrigerating side expansion valve (an example of a first expansion device), and 6 a refrigerating side refrigerant pipe communicating these.
Further, 7 is a refrigerating-side heat storage tank that stores a heat storage agent such as water, 8 is a refrigerating-side heat storage evaporator (heat storage heat exchanger), and 9
Is a solenoid valve for heat storage on the refrigeration side for connecting and disconnecting the refrigerant to be supplied to the evaporator 8 for heat storage on the refrigeration side, 10 is an expansion valve for heat storage on the refrigeration side (an example of a throttle device for heat storage), and 11 is heat exchange for supercooling on the refrigeration side. Refrigerator, 12 and 13 are refrigeration side supercooling switching solenoid valve, 1 respectively
Reference numeral 4 denotes a refrigerant pipe for refrigerating-side supercooling, which is communicated with the refrigerant pipe 6 and bypasses the refrigerant to the refrigerating-side supercooling heat exchanger 11, and 15 is connected in parallel with the refrigerant pipe 6, and evaporates for refrigerating-side heat storage. The refrigerant piping for sending a refrigerant to container 8 is shown. 1 to 1
From the components denoted by reference numeral 5, for example, a showcase where the refrigerating side evaporator 5 is placed (an example of the first environment to be cooled, for example, a target temperature exceeding 0 ° C. is set)
A refrigerating-side refrigerant circuit (an example of a first refrigerant circuit) that cools the refrigerant is configured.

【0003】また、21は冷凍側圧縮機(第2の圧縮
機)、22は冷凍側凝縮器(第2の凝縮器)、23は2
5で示す冷凍側蒸発器(第2の蒸発器)へ供給する冷媒
を断続するための冷凍側電磁弁、24は冷凍側膨張弁
(第2の絞り装置の一例)、26はこれらを連通する冷
凍側の冷媒配管を示す。さらに、27は例えば水等の蓄
熱剤を収容した冷凍側の蓄熱槽、28は冷凍側蓄熱用蒸
発器、29は冷凍側蓄熱用蒸発器28へ供給する冷媒を
断続するための冷凍側蓄熱用電磁弁、30は冷凍側蓄熱
用膨張弁、31は冷凍側過冷却用熱交換器(冷熱供給用
熱交換器)、32,33はそれぞれ冷凍側過冷却切換電
磁弁、34は冷媒配管26に連通され冷媒を冷凍側過冷
却用熱交換器31へ迂回させて送るための冷凍側過冷却
用の冷媒配管、35は冷媒配管26に並列に連通され冷
凍側蓄熱用蒸発器28へ冷媒を送るための冷媒配管を示
す。前記21〜35の符号を付した構成要素から、冷凍
側蒸発器25のおかれた例えば冷凍庫(第2の被冷却環
境の一例であって、例えば0℃以下の目標温度に設定さ
れている)を冷却する冷凍側冷媒回路(第2の冷媒回路
の一例)が構成されている。尚、ここでは店舗などにお
けるショーケース、冷蔵庫、冷凍庫等の負荷側の機器に
ついては図示を省略する。
Reference numeral 21 is a refrigeration side compressor (second compressor), 22 is a refrigeration side condenser (second condenser), and 23 is 2.
A freezing side solenoid valve for connecting and disconnecting the refrigerant to be supplied to the freezing side evaporator (second evaporator) shown by 5, 24 is a freezing side expansion valve (an example of a second expansion device), and 26 communicates these. The refrigerant piping on the freezing side is shown. Further, 27 is a freezing side heat storage tank containing a heat storage agent such as water, 28 is a freezing side heat storage evaporator, and 29 is a freezing side heat storage for intermittently supplying a refrigerant to the freezing side heat storage evaporator 28. An electromagnetic valve, 30 is a freezing side heat storage expansion valve, 31 is a freezing side supercooling heat exchanger (cooling heat supply heat exchanger), 32 and 33 are freezing side supercooling switching electromagnetic valves, and 34 is a refrigerant pipe 26. Refrigerant piping for freezing side supercooling for communicating and bypassing the refrigerant to the heat exchanger 31 for subcooling on the freezing side, 35 is communicated in parallel to the refrigerant pipe 26 and sends the refrigerant to the evaporator 28 for heat storage on the freezing side. The refrigerant piping for is shown. From the components denoted by the reference numerals 21 to 35, for example, a freezer in which the freezing side evaporator 25 is placed (an example of a second environment to be cooled, which is set to a target temperature of 0 ° C. or less, for example) A refrigerating-side refrigerant circuit (an example of a second refrigerant circuit) for cooling the refrigerant is configured. Here, illustration of load-side devices such as showcases, refrigerators, and freezers in stores is omitted.

【0004】次に、従来設備の動作につき図9に基づい
て説明する。先ず、冷蔵側冷媒回路において、各冷蔵側
過冷却切換電磁弁12が閉止され冷蔵側過冷却切換電磁
弁13が開放された状態で、冷蔵側圧縮機1にて圧縮さ
れた高温、高圧のガス冷媒は、冷蔵側凝縮器2で冷却・
液化され、冷蔵側電磁弁3を経て冷蔵側膨張弁4で減圧
された後、冷蔵側蒸発器5に流入し蒸発・吸熱して、シ
ョーケースや冷蔵庫を冷却し、冷蔵側圧縮機1に還流す
る。以降同様のサイクルが繰り返される。そして、被冷
却環境を予め設定された目標温度にするために必要な冷
凍能力(この冷凍能力を「負荷」という)が増大した場
合には、冷蔵側過冷却切換電磁弁13を閉止し各冷蔵側
過冷却切換電磁弁12を開放することにより、冷蔵側凝
縮器2からの冷媒を冷蔵側過冷却用熱交換器11に導
き、予め冷蔵側の蓄熱槽7に蓄えられた冷熱を取り出し
てショーケース等の冷却に供する。なお、冷蔵側電磁弁
3は、ショーケース等に取り付けられた温度調節器(図
示せず)の出力結果を基に得た負荷の状態に応じて開閉
され、冷蔵側蒸発器5に流入させる冷媒液の供給を制御
する。一方、21から35に示す冷凍側冷媒回路の動作
については、冷凍側蒸発器25における冷媒の蒸発温度
が冷蔵側冷媒回路の冷蔵側蒸発器5における蒸発温度よ
りも低く設定されていることが異なるのみであって、他
については冷蔵側冷媒回路と同様につき、その説明を省
略する。
Next, the operation of the conventional equipment will be described with reference to FIG. First, in the refrigerating-side refrigerant circuit, high-temperature, high-pressure gas compressed by the refrigerating-side compressor 1 with each refrigerating-side supercooling switching solenoid valve 12 closed and the refrigerating-side supercooling switching solenoid valve 13 opened. Refrigerant is cooled in the refrigerator side condenser 2.
After being liquefied and decompressed by the refrigeration expansion valve 4 through the refrigeration solenoid valve 3, it flows into the refrigeration evaporator 5 to evaporate and absorb heat, cool the showcase and refrigerator, and return to the refrigeration compressor 1. To do. The same cycle is repeated thereafter. When the refrigerating capacity required to bring the environment to be cooled to the preset target temperature (this refrigerating capacity is referred to as "load") increases, the refrigerating-side subcooling switching solenoid valve 13 is closed to close each refrigerating room. By opening the side subcooling switching solenoid valve 12, the refrigerant from the refrigeration side condenser 2 is guided to the refrigeration side subcooling heat exchanger 11, and the cold heat previously stored in the refrigeration side heat storage tank 7 is taken out to show. Use for cooling the case. The refrigeration side solenoid valve 3 is opened / closed in accordance with a load state obtained based on an output result of a temperature controller (not shown) attached to a showcase or the like, and a refrigerant to be introduced into the refrigeration side evaporator 5. Control the liquid supply. On the other hand, regarding the operation of the refrigeration side refrigerant circuit shown from 21 to 35, the evaporation temperature of the refrigerant in the freezing side evaporator 25 is set lower than the evaporation temperature in the refrigeration side evaporator 5 of the refrigeration side refrigerant circuit. Since the other components are the same as those of the refrigeration side refrigerant circuit, description thereof will be omitted.

【0005】[0005]

【発明が解決しようとする課題】冷凍側冷媒回路、すな
わちその蒸発器における冷媒の蒸発温度が低い冷媒回路
は、一般に、蒸発温度の高い冷蔵側冷媒回路に比べて、
冷凍効率が低いとされている。そして、上記のように、
従来の複合型冷媒回路設備は、目標とされる蒸発温度に
よって冷蔵側冷媒回路と冷凍側冷媒回路とが別個独立に
分離して構成されている。そのため、冷媒回路間で冷凍
効率に差があり、設備全体としての総合的な冷凍効率が
よいものとはいえなかった。
The refrigeration side refrigerant circuit, that is, the refrigerant circuit in which the evaporation temperature of the refrigerant in the evaporator is low, is generally higher than that in the refrigeration side refrigerant circuit having a high evaporation temperature.
It is said that the refrigeration efficiency is low. And, as mentioned above,
In the conventional composite refrigerant circuit facility, a refrigeration side refrigerant circuit and a freezing side refrigerant circuit are separately and separately configured according to a target evaporation temperature. Therefore, there is a difference in refrigerating efficiency between the refrigerant circuits, and it cannot be said that the overall refrigerating efficiency of the entire equipment is good.

【0006】また、各冷媒回路における蓄熱用蒸発器と
過冷却用熱交換器との間の冷熱移動は蓄熱剤の自然対流
に委ねられているため、冷熱移動効率がよくなかった。
Further, since the cold heat transfer between the heat storage evaporator and the supercooling heat exchanger in each refrigerant circuit is entrusted to the natural convection of the heat storage agent, the cold heat transfer efficiency is not good.

【0007】さらに、蓄冷運転時において、被冷却環境
の冷却中に同時に余剰の冷熱が蓄冷されることがある
が、蓄熱用蒸発器の熱交換能力が大きすぎる場合には、
冷熱が必要以上に蓄冷されるので、被冷却環境に対する
冷却能力が激減する。これによって、ショーケースや冷
蔵庫に収納された例えば被冷却物の温度が上昇してしま
うことがあった。
Further, during cold storage operation, excess cold heat may be stored at the same time during cooling of the environment to be cooled, but when the heat exchange capacity of the heat storage evaporator is too large,
Since the cold heat is stored more than necessary, the cooling capacity for the environment to be cooled is drastically reduced. As a result, the temperature of, for example, the object to be cooled stored in the showcase or the refrigerator may rise.

【0008】また、過冷却用熱交換器の熱交換能力が膨
張弁の能力制御範囲を越えた場合には、気液混合の冷媒
がそのまま圧縮機の吸入側に戻されて機械的な悪影響を
引き起こすことがあり、設備の信頼性を損なわせるとい
う問題があった。
Further, when the heat exchange capacity of the supercooling heat exchanger exceeds the capacity control range of the expansion valve, the gas-liquid mixed refrigerant is directly returned to the suction side of the compressor, which causes a mechanical adverse effect. However, there is a problem in that the reliability of the equipment is impaired.

【0009】そして、蓄冷用熱交換器と過冷却用熱交換
器が別個独立に配備されているため、これらの熱交換器
にかかるイニシャルの製造コストが大きく、投資効果の
面からも改善の余地があった。
Since the heat exchanger for cold storage and the heat exchanger for supercooling are separately and independently provided, the initial manufacturing cost of these heat exchangers is large, and there is room for improvement in terms of investment effect. was there.

【0010】また、蒸発器における冷媒の蒸発温度が同
じであっても、被冷却環境の種類によって複数の系統の
冷媒回路が設けられている場合、それぞれの系統毎に被
冷却環境の負荷状態は一様でない場合が多く、各系統の
圧縮機毎の稼働率にばらつきがあり全ての圧縮機に係る
総合的な運転効率に改善の余地があった。
Further, even if the refrigerant has the same evaporation temperature in the evaporator, if a plurality of systems of refrigerant circuits are provided depending on the type of environment to be cooled, the load condition of the environment to be cooled is different for each system. In many cases, it was not uniform, and there was room for improvement in the overall operating efficiency of all compressors due to variations in the operating rate of each compressor in each system.

【0011】本発明は以上のような従来技術の問題点を
解決するためなされてものであり、冷凍効率の高い冷媒
回路の余剰の冷熱を冷凍効率の低い冷媒回路に移動させ
ることにより、設備全体としての総合的な冷凍効率を向
上し得る複合型冷媒回路設備を提供することを目的とす
るものである。
The present invention has been made in order to solve the problems of the prior art as described above, and by moving the surplus cold heat of the refrigerant circuit having high refrigeration efficiency to the refrigerant circuit having low refrigeration efficiency, the entire equipment is reduced. It is an object of the present invention to provide a composite refrigerant circuit facility capable of improving the overall refrigeration efficiency as described above.

【0012】また、複数の冷媒回路間での、余剰の冷熱
の冷熱移動効率の優れた複合型冷媒回路設備を提供する
ことを目的とするものである。
[0012] It is another object of the present invention to provide a composite refrigerant circuit facility which is excellent in cold heat transfer efficiency of surplus cold heat between a plurality of refrigerant circuits.

【0013】さらに、蓄冷運転時において被冷却環境の
冷却中に同時に余剰の冷熱を蓄冷する場合、蓄冷量の制
御を適切に行うことにより、ショーケースや冷蔵庫等に
対する冷却能力が減少して、これらに収納された被冷却
物の温度が上昇するのを防止できる複合型冷媒回路設備
を提供することを目的とするものである。
Further, in the case of storing excess cold heat at the same time during cooling of the environment to be cooled during the cold storage operation, the cooling capacity for the showcase, refrigerator, etc. is reduced by appropriately controlling the amount of cold storage. It is an object of the present invention to provide a composite refrigerant circuit facility capable of preventing the temperature of the object to be cooled stored in the container from rising.

【0014】また、気液混合の冷媒がそのまま圧縮機の
吸入側に戻されて機械的な悪影響を引き起こすといった
設備の信頼性を損なわせることのない複合型冷媒回路設
備を提供することを目的とするものである。
It is another object of the present invention to provide a composite refrigerant circuit equipment which does not impair the reliability of the equipment such that the gas-liquid mixed refrigerant is returned to the suction side of the compressor as it is to cause a mechanical adverse effect. To do.

【0015】そして、蓄冷用熱交換器や過冷却用熱交換
器にかかるイニシャルの製造コストを低減化することの
できる複合型冷媒回路設備を提供することを目的とする
ものである。
Another object of the present invention is to provide a composite refrigerant circuit facility capable of reducing the manufacturing cost of initials for the heat exchanger for cold storage and the heat exchanger for supercooling.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するた
め、本発明による複合型冷媒回路設備は、以下のような
技術手段を講じたものである。すなわち、請求項1の発
明による複合型冷媒回路設備は、第1の圧縮機、第1の
凝縮器、第1の絞り装置、及び第1の被冷却環境を冷却
する第1の蒸発器を順次環状に接続してなる第1の冷媒
回路と、第1の冷媒回路に第1の絞り装置及び第1の蒸
発器と並列に蓄熱用絞り装置及び蓄熱用熱交換器を順次
接続してなる蓄熱用冷媒回路と、蓄熱用熱交換器を介し
て第1の冷媒回路の最大冷凍能力と第1の被冷却環境の
所要の冷凍能力との差に対応した冷熱を蓄冷する蓄熱剤
を収容した蓄熱槽と、第2の圧縮機、第2の凝縮器、第
2の絞り装置、及び第1の被冷却環境よりも低温にされ
る第2の被冷却環境を冷却する第2の蒸発器を順次環状
に接続してなる第2の冷媒回路と、第2の冷媒回路の第
2の凝縮器と第2の蒸発器との間に接続され蓄熱槽の蓄
熱剤からの冷熱を第2の冷媒回路に供給する冷熱供給用
熱交換器を有する第1の冷熱供給回路とを具備してなる
ものである。
In order to achieve the above object, the composite refrigerant circuit equipment according to the present invention is provided with the following technical means. That is, in the composite refrigerant circuit facility according to the invention of claim 1, the first compressor, the first condenser, the first expansion device, and the first evaporator for cooling the first cooled environment are sequentially arranged. Heat storage in which a first refrigerant circuit connected in an annular shape and a first storage device and a first evaporator are connected in parallel to the first storage device in parallel with a heat storage expansion device and a heat storage heat exchanger Heat storage agent for accommodating cold heat corresponding to the difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat exchanger for heat storage and the heat exchanger for heat storage The tank, the second compressor, the second condenser, the second expansion device, and the second evaporator that cools the second cooled environment whose temperature is lower than that of the first cooled environment are sequentially provided. A second refrigerant circuit connected in an annular shape and a heat storage device connected between the second condenser and the second evaporator of the second refrigerant circuit. In which the made the cold heat from the heat storage agent and a first of the cold supply circuit having a second cold supply heat exchanger for supplying the refrigerant circuit.

【0017】請求項2の発明による複合型冷媒回路設備
は、第1の圧縮機、第1の凝縮器、第1の絞り装置、及
び第1の被冷却環境を冷却する第1の蒸発器を順次環状
に接続してなる第1の冷媒回路と、第1の冷媒回路に前
記第1の絞り装置及び第1の蒸発器と並列に蓄熱用絞り
装置及び蓄熱用熱交換器を順次接続してなる蓄熱用冷媒
回路と、蓄熱用熱交換器を介して第1の冷媒回路の最大
冷凍能力と第1の被冷却環境の所要の冷凍能力との差に
対応した冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、第
2の圧縮機、第2の凝縮器、第2の絞り装置、及び第1
の被冷却環境よりも低温にされる第2の被冷却環境を冷
却する第2の蒸発器を順次環状に接続してなる第2の冷
媒回路と、第2の冷媒回路の第2の凝縮器と第2の蒸発
器との間に接続され蓄熱槽の蓄熱剤からの冷熱を第2の
冷媒回路に供給する冷熱供給用熱交換器を有する第1の
冷熱供給回路と、第1の被冷却環境に与えられた冷凍能
力に対応する物理量を検出する第1の冷凍能力検出装置
と、第1の冷媒回路の最大冷凍能力と検出された物理量
に対応する冷凍能力との差に基づいて第1の冷媒回路か
ら蓄熱用熱交換器への冷媒の流通量を制御する第1の冷
媒流通量制御装置とを具備してなるものである。
According to another aspect of the present invention, there is provided a combined refrigerant circuit facility comprising a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled. A first refrigerant circuit which is sequentially connected in an annular shape, and a heat storage expansion device and a heat storage heat exchanger are sequentially connected to the first refrigerant circuit in parallel with the first expansion device and the first evaporator. And a heat storage agent that stores cold heat corresponding to the difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat storing heat exchanger. Heat storage tank, second compressor, second condenser, second expansion device, and first
Second refrigerant circuit in which a second evaporator for cooling the second cooled environment, which has a temperature lower than that of the second cooled environment, is sequentially connected in an annular shape, and a second condenser of the second refrigerant circuit And a second evaporator, and a first cold heat supply circuit having a heat exchanger for cold heat supply for supplying cold heat from the heat storage agent of the heat storage tank to the second refrigerant circuit; A first refrigerating capacity detection device that detects a physical quantity corresponding to the refrigerating capacity given to the environment, and a first refrigerating capacity based on a difference between the maximum refrigerating capacity of the first refrigerant circuit and the refrigerating capacity corresponding to the detected physical quantity. And a first refrigerant flow rate control device that controls the flow rate of the refrigerant from the refrigerant circuit to the heat storage heat exchanger.

【0018】請求項3の発明による複合型冷媒回路設備
は、第1の圧縮機、第1の凝縮器、第1の絞り装置、及
び第1の被冷却環境を冷却する第1の蒸発器を順次環状
に接続してなる第1の冷媒回路と、第1の冷媒回路に前
記第1の絞り装置及び第1の蒸発器と並列に蓄熱用絞り
装置及び蓄熱用熱交換器を順次接続してなる蓄熱用冷媒
回路と、蓄熱用熱交換器を介して第1の冷媒回路の最大
冷凍能力と第1の被冷却環境の所要の冷凍能力との差に
対応した冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、第
2の圧縮機、第2の凝縮器、第2の絞り装置、及び第1
の被冷却環境よりも低温にされる第2の被冷却環境を冷
却する第2の蒸発器を順次環状に接続してなる第2の冷
媒回路と、第2の冷媒回路の第2の凝縮器と第2の蒸発
器との間に接続され蓄熱槽の蓄熱剤からの冷熱を第2の
冷媒回路に供給する冷熱供給用熱交換器を有する第1の
冷熱供給回路と、第2の被冷却環境に与えられた冷凍能
力に対応する物理量を検出する第2の冷凍能力検出装置
と、第2の冷媒回路の最大冷凍能力と検出された物理量
に対応する冷凍能力との差に基づいて第2の冷媒回路か
ら冷熱供給用熱交換器への冷媒の流通量を制御する第2
の冷媒流通量制御装置とを具備してなるものである。
According to another aspect of the present invention, there is provided a combined refrigerant circuit facility including a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled. A first refrigerant circuit which is sequentially connected in an annular shape, and a heat storage expansion device and a heat storage heat exchanger are sequentially connected to the first refrigerant circuit in parallel with the first expansion device and the first evaporator. And a heat storage agent that stores cold heat corresponding to the difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat storing heat exchanger. Heat storage tank, second compressor, second condenser, second expansion device, and first
Second refrigerant circuit in which a second evaporator for cooling the second cooled environment, which has a temperature lower than that of the second cooled environment, is sequentially connected in an annular shape, and a second condenser of the second refrigerant circuit And a second evaporator, a first cold heat supply circuit having a cold heat supply heat exchanger for supplying cold heat from the heat storage agent of the heat storage tank to the second refrigerant circuit, and a second cooled target A second refrigerating capacity detecting device for detecting a physical quantity corresponding to the refrigerating capacity given to the environment, and a second refrigerating capacity based on a difference between the maximum refrigerating capacity of the second refrigerant circuit and the refrigerating capacity corresponding to the detected physical quantity. For controlling the flow rate of the refrigerant from the refrigerant circuit to the heat exchanger for supplying cold heat, the second
And a refrigerant flow rate control device.

【0019】請求項4の発明による複合型冷媒回路設備
は、第1の圧縮機、第1の凝縮器、第1の絞り装置、及
び第1の被冷却環境を冷却する第1の蒸発器を順次環状
に接続してなる第1の冷媒回路と、第1の冷媒回路に第
1の絞り装置及び第1の蒸発器と並列に蓄熱用絞り装置
及び蓄熱用熱交換器を順次接続してなる蓄熱用冷媒回路
と、蓄熱用熱交換器を介して第1の冷媒回路の最大冷凍
能力と第1の被冷却環境の所要の冷凍能力との差に対応
した冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、第2の
圧縮機、第2の凝縮器、第2の絞り装置、及び第1の被
冷却環境よりも低温にされる第2の被冷却環境を冷却す
る第2の蒸発器を順次環状に接続してなる第2の冷媒回
路と、第2の冷媒回路の第2の凝縮器と第2の蒸発器と
の間に接続され蓄熱槽の蓄熱剤からの冷熱を第2の冷媒
回路に供給する冷熱供給用熱交換器を有する第1の冷熱
供給回路と、蓄熱用熱交換器と蓄熱槽との間に介在して
設けられ蓄熱槽からの蓄熱剤を循環させて蓄熱用熱交換
器の冷媒からの冷媒を蓄熱剤に与える第1の蓄熱剤循環
装置と、冷熱供給用熱交換器と蓄熱槽との間に介在して
設けられ蓄熱槽からの蓄熱剤を循環させて冷熱供給用熱
交換器の冷媒に冷熱を与える第2の蓄熱剤循環装置とを
具備してなるものである。
According to another aspect of the present invention, there is provided a combined refrigerant circuit facility comprising a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first cooled environment. A first refrigerant circuit that is sequentially connected in an annular shape, and a first expansion device and a first evaporator that are connected in parallel to a heat storage expansion device and a heat storage heat exchanger in parallel to the first refrigerant circuit. A heat storage refrigerant circuit and a heat storage agent for storing cold heat corresponding to the difference between the maximum refrigeration capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat storage heat exchanger are stored. A heat storage tank, a second compressor, a second condenser, a second expansion device, and a second evaporator for cooling the second cooled environment whose temperature is lower than that of the first cooled environment. A second refrigerant circuit that is sequentially connected in an annular shape, and is connected between the second condenser and the second evaporator of the second refrigerant circuit A first cold heat supply circuit having a cold heat supply heat exchanger for supplying cold heat from the heat storage agent in the tank to the second refrigerant circuit, and heat storage provided between the heat storage heat exchanger and the heat storage tank. A first heat storage agent circulation device that circulates the heat storage agent from the tank to give the refrigerant from the refrigerant of the heat storage heat exchanger to the heat storage agent, and is provided between the cold heat supply heat exchanger and the heat storage tank And a second heat storage agent circulating device which circulates the heat storage agent from the heat storage tank to give cold heat to the refrigerant of the heat exchanger for supplying cold heat.

【0020】請求項5の発明による複合型冷媒回路設備
は、第1の圧縮機、第1の凝縮器、第1の絞り装置、及
び第1の被冷却環境を冷却する第1の蒸発器を順次環状
に接続してなる第1の冷媒回路と、第1の冷媒回路に第
1の絞り装置及び第1の蒸発器と並列に蓄熱用絞り装置
及び蓄熱用熱交換器を順次接続してなる蓄熱用冷媒回路
と、蓄熱用熱交換器を介して第1の冷媒回路の最大冷凍
能力と第1の被冷却環境の所要の冷凍能力との差に対応
した冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、第2の
圧縮機、第2の凝縮器、第2の絞り装置、及び第1の被
冷却環境よりも低温にされる第2の被冷却環境を冷却す
る第2の蒸発器を順次環状に接続してなる第2の冷媒回
路と、第2の冷媒回路の第2の凝縮器と第2の蒸発器と
の間に接続され蓄熱槽の蓄熱剤からの冷熱を第2の冷媒
回路に供給する冷熱供給用熱交換器を有する第1の冷熱
供給回路と、蓄熱用熱交換器と蓄熱槽との間に介在して
設けられ蓄熱槽からの蓄熱剤を循環させて蓄熱用熱交換
器の冷媒からの冷熱を蓄熱剤に与える第1の蓄熱剤循環
装置と、冷熱供給用熱交換器と蓄熱槽との間に介在して
設けられ蓄熱槽からの蓄熱剤を循環させて冷熱供給用熱
交換器の冷媒に冷熱を与える第2の蓄熱剤循環装置と、
第1の被冷却環境に与えられた冷凍能力に対応する物理
量を検出する第1の冷凍能力検出装置と、第1の冷媒回
路の最大冷凍能力と検出された物理量に対応する冷凍能
力との差に基づいて第1の蓄熱剤循環装置による蓄熱剤
の循環量を制御する第1の蓄熱剤循環量制御装置とを具
備してなるものである。
According to a fifth aspect of the present invention, there is provided a combined refrigerant circuit facility comprising a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled. A first refrigerant circuit that is sequentially connected in an annular shape, and a first expansion device and a first evaporator that are connected in parallel to a heat storage expansion device and a heat storage heat exchanger in parallel to the first refrigerant circuit. A heat storage refrigerant circuit and a heat storage agent for storing cold heat corresponding to the difference between the maximum refrigeration capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat storage heat exchanger are stored. A heat storage tank, a second compressor, a second condenser, a second expansion device, and a second evaporator for cooling the second cooled environment whose temperature is lower than that of the first cooled environment. A second refrigerant circuit that is sequentially connected in an annular shape, and is connected between the second condenser and the second evaporator of the second refrigerant circuit A first cold heat supply circuit having a cold heat supply heat exchanger for supplying cold heat from the heat storage agent in the tank to the second refrigerant circuit, and heat storage provided between the heat storage heat exchanger and the heat storage tank. A first heat storage agent circulating device that circulates the heat storage agent from the tank to give cold heat from the refrigerant of the heat storage heat exchanger to the heat storage agent, and is provided between the cold heat supply heat exchanger and the heat storage tank A second heat storage agent circulation device that circulates the heat storage agent from the stored heat storage tank to apply cold heat to the refrigerant of the cold heat supply heat exchanger;
Difference between the first refrigerating capacity detection device for detecting a physical quantity corresponding to the refrigerating capacity given to the first cooled environment and the maximum refrigerating capacity of the first refrigerant circuit and the refrigerating capacity corresponding to the detected physical quantity. And a first heat storage agent circulation amount control device for controlling the circulation amount of the heat storage agent by the first heat storage agent circulation device based on the above.

【0021】請求項6の発明による複合型冷媒回路設備
は、第1の圧縮機、第1の凝縮器、第1の絞り装置、及
び第1の被冷却環境を冷却する第1の蒸発器を順次環状
に接続してなる第1の冷媒回路と、第1の冷媒回路に前
記第1の絞り装置及び第1の蒸発器と並列に蓄熱用絞り
装置及び蓄熱用熱交換器を順次接続してなる蓄熱用冷媒
回路と、蓄熱用熱交換器を介して第1の冷媒回路の最大
冷凍能力と第1の被冷却環境の所要の冷凍能力との差に
対応した冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、第
2の圧縮機、第2の凝縮器、第2の絞り装置、及び第1
の被冷却環境よりも低温にされる第2の被冷却環境を冷
却する第2の蒸発器を順次環状に接続してなる第2の冷
媒回路と、第2の冷媒回路の第2の凝縮器と第2の蒸発
器との間に接続され蓄熱槽の蓄熱剤からの冷熱を第2の
冷媒回路に供給する冷熱供給用熱交換器を有する第1の
冷熱供給回路と、蓄熱用熱交換器と蓄熱槽との間に介在
して設けられ蓄熱槽からの蓄熱剤を循環させて蓄熱用熱
交換器の冷媒からの冷熱を蓄熱剤に与える第1の蓄熱剤
循環装置と、冷熱供給用熱交換器と蓄熱槽との間に介在
して設けられ蓄熱槽からの蓄熱剤を循環させて冷熱供給
用熱交換器の冷媒に冷熱を与える第2の蓄熱剤循環装置
と、第2の被冷却環境に与えられた冷凍能力に対応する
物理量を検出する第2の冷凍能力検出装置と、第2の冷
媒回路の最大冷凍能力と検出された物理量に対応する冷
凍能力との差に基づいて第2の蓄熱剤循環装置による蓄
熱剤の循環量を制御する第2の蓄熱剤循環量制御装置と
を具備してなるものである。
According to a sixth aspect of the present invention, there is provided a combined refrigerant circuit facility comprising a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled. A first refrigerant circuit which is sequentially connected in an annular shape, and a heat storage expansion device and a heat storage heat exchanger are sequentially connected to the first refrigerant circuit in parallel with the first expansion device and the first evaporator. And a heat storage agent that stores cold heat corresponding to the difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat storing heat exchanger. Heat storage tank, second compressor, second condenser, second expansion device, and first
Second refrigerant circuit in which a second evaporator for cooling the second cooled environment, which has a temperature lower than that of the second cooled environment, is sequentially connected in an annular shape, and a second condenser of the second refrigerant circuit And a second evaporator, a first cold heat supply circuit having a cold heat supply heat exchanger that supplies cold heat from the heat storage agent of the heat storage tank to the second refrigerant circuit, and a heat storage heat exchanger And a heat storage tank, the first heat storage agent circulating device for circulating the heat storage agent from the heat storage tank to circulate the cold heat from the refrigerant of the heat storage heat exchanger to the heat storage agent, and the heat for supplying cold heat A second heat storage agent circulating device provided between the exchanger and the heat storage tank to circulate the heat storage agent from the heat storage tank to apply cold heat to the refrigerant of the heat exchanger for supplying cold heat, and a second cooled object. A second refrigerating capacity detection device for detecting a physical quantity corresponding to the refrigerating capacity given to the environment, and maximum refrigeration of the second refrigerant circuit. And a second heat storage agent circulation amount control device for controlling the circulation amount of the heat storage agent by the second heat storage agent circulation device based on the difference between the force and the refrigerating capacity corresponding to the detected physical quantity. is there.

【0022】請求項7の発明による複合型冷媒回路設備
は、第1の圧縮機、第1の凝縮器、第1の絞り装置、及
び第1の被冷却環境を冷却する第1の蒸発器を順次環状
に接続してなる第1の冷媒回路と、第1の冷媒回路に第
1の絞り装置及び第1の蒸発器と並列に蓄熱用絞り装置
及び蓄熱用熱交換器を順次接続してなる蓄熱用冷媒回路
と、蓄熱用熱交換器を介して第1の冷媒回路の最大冷凍
能力と第1の被冷却環境の所要の冷凍能力との差に対応
した冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、第2の
圧縮機、第2の凝縮器、第2の絞り装置、及び第1の被
冷却環境よりも低温にされる第2の被冷却環境を冷却す
る第2の蒸発器を順次環状に接続してなる第2の冷媒回
路と、第2の冷媒回路の第2の凝縮器と第2の蒸発器と
の間に接続され蓄熱槽の蓄熱剤からの冷熱を第2の冷媒
回路に供給する冷熱供給用熱交換器を有する第1の冷熱
供給回路と、第1の冷媒回路の第1の凝縮器と第1の絞
り装置との間に直列に接続されるとともに流路開閉自在
の回路開閉装置を有してなり第1の凝縮器からの冷媒を
蓄熱用熱交換器に迂回させて蓄熱槽の蓄熱剤の冷熱を第
1の冷媒回路に供給する第2の冷熱供給回路と、蓄熱槽
の蓄熱剤の蓄熱量を検出する蓄熱量検出装置と、蓄熱剤
の検出された蓄熱量に基づいて回路開閉装置を開閉して
冷媒の流路を蓄熱用冷媒回路と第2の冷熱供給回路とに
切り換える冷媒流路制御装置とを具備してなるものであ
る。
According to a seventh aspect of the present invention, there is provided a combined refrigerant circuit facility including a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled. A first refrigerant circuit that is sequentially connected in an annular shape, and a first expansion device and a first evaporator that are connected in parallel to a heat storage expansion device and a heat storage heat exchanger in parallel to the first refrigerant circuit. A heat storage refrigerant circuit and a heat storage agent for storing cold heat corresponding to the difference between the maximum refrigeration capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat storage heat exchanger are stored. A heat storage tank, a second compressor, a second condenser, a second expansion device, and a second evaporator for cooling the second cooled environment whose temperature is lower than that of the first cooled environment. A second refrigerant circuit that is sequentially connected in an annular shape, and is connected between the second condenser and the second evaporator of the second refrigerant circuit A first cold heat supply circuit having a cold heat supply heat exchanger for supplying cold heat from the heat storage agent of the tank to the second refrigerant circuit; a first condenser and a first expansion device of the first refrigerant circuit; And a circuit opening / closing device that is connected in series between the first and second passages and has a flow path that can be opened and closed. The refrigerant from the first condenser is diverted to the heat storage heat exchanger to cool the heat storage agent in the heat storage tank. Second cold heat supply circuit for supplying to the refrigerant circuit, a heat storage amount detection device for detecting the heat storage amount of the heat storage agent in the heat storage tank, and a circuit opening / closing device for opening and closing the refrigerant based on the detected heat storage amount of the heat storage agent. And a refrigerant flow path control device for switching the flow path of (1) to the heat storage refrigerant circuit and the second cold heat supply circuit.

【0023】請求項8の発明による複合型冷媒回路設備
は、第1の圧縮機、第1の凝縮器、第1の絞り装置、及
び第1の被冷却環境を冷却する第1の蒸発器を順次環状
に接続してなる第1の冷媒回路と、第1の冷媒回路に第
1の絞り装置及び第1の蒸発器と並列に蓄熱用絞り装置
及び蓄熱用熱交換器を順次接続してなる蓄熱用冷媒回路
と、蓄熱用熱交換器を介して第1の冷媒回路の最大冷凍
能力と第1の被冷却環境の所要の冷凍能力との差に対応
した冷熱を蓄冷する蓄熱剤を収容した蓄熱槽と、第2の
圧縮機、第2の凝縮器、第2の絞り装置、及び第1の被
冷却環境よりも低温にされる第2の被冷却環境を冷却す
る第2の蒸発器を順次環状に接続してなる第2の冷媒回
路とを備えた複合型冷媒回路設備において、第2の凝縮
器を、蓄熱剤からの冷熱を第2の冷媒回路に供給可能に
蓄熱槽に設けたことを特徴とするものである。
According to the eighth aspect of the present invention, there is provided a combined refrigerant circuit facility including a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled. A first refrigerant circuit that is sequentially connected in an annular shape, and a first expansion device and a first evaporator that are connected in parallel to a heat storage expansion device and a heat storage heat exchanger in parallel to the first refrigerant circuit. A heat storage refrigerant circuit and a heat storage agent for storing cold heat corresponding to the difference between the maximum refrigeration capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment via the heat storage heat exchanger are stored. A heat storage tank, a second compressor, a second condenser, a second expansion device, and a second evaporator for cooling the second cooled environment whose temperature is lower than that of the first cooled environment. In a combined refrigerant circuit facility including a second refrigerant circuit that is sequentially connected in a ring shape, the second condenser is connected to the heat storage agent. It is characterized in that the cold provided to allow the heat storage tank fed to the second refrigerant circuit.

【0024】[0024]

【作用】この発明による複合型冷媒回路設備では、冷却
温度の異なる複数の被冷却環境をそれぞれ冷却する複数
の冷媒回路間で、冷凍効率の高い高冷却温度側である第
1の冷媒回路からの余剰の冷熱を、蓄熱用熱交換器を介
して蓄熱槽の蓄熱剤に蓄冷し、蓄熱槽を介して冷凍効率
の低い低冷却温度側である第2の冷媒回路へ移動させる
ことができる。その結果、設備全体として冷凍効率の向
上化を図ることができる。
In the composite type refrigerant circuit equipment according to the present invention, between the plurality of refrigerant circuits for respectively cooling the plurality of environments to be cooled having different cooling temperatures, the first refrigerant circuit on the high cooling temperature side having high refrigeration efficiency is provided. The surplus cold heat can be stored in the heat storage agent of the heat storage tank via the heat storage heat exchanger, and transferred to the second refrigerant circuit on the low cooling temperature side with low refrigeration efficiency via the heat storage tank. As a result, the refrigeration efficiency of the entire facility can be improved.

【0025】また、第1の冷媒回路からの余剰の冷熱
を、蓄熱槽を通じて第2の冷媒回路へ移動い得るのはも
とより、第1の冷媒回路の余剰の冷熱量(第1の圧縮機
の入口圧力や被冷却環境温度等の物理量に対応)に応じ
て、第1の冷媒回路から蓄熱用熱交換器への冷媒流通量
を制御することができる。それによって、余剰冷熱の蓄
冷量を制御することができる。
In addition to being able to move the surplus cold heat from the first refrigerant circuit to the second refrigerant circuit through the heat storage tank, the surplus cold heat amount of the first refrigerant circuit (of the first compressor The amount of refrigerant flowing from the first refrigerant circuit to the heat storage heat exchanger can be controlled in accordance with the physical quantity such as the inlet pressure or the environment temperature to be cooled. Thereby, the cold storage amount of the surplus cold heat can be controlled.

【0026】逆に、第2の冷媒回路で不足した冷凍能力
(第2の圧縮機の入口圧力や被冷却環境温度等の物理量
に対応)に応じて、第2の冷媒回路から蓄熱用熱交換器
への冷媒流通量を制御することができる。これによっ
て、蓄熱槽から受け取る冷熱量を制御することができ
る。
On the contrary, in accordance with the refrigerating capacity (corresponding to the physical quantity such as the inlet pressure of the second compressor and the environment temperature to be cooled) of the second refrigerant circuit, the heat exchange for heat storage from the second refrigerant circuit. The amount of refrigerant flowing into the container can be controlled. This makes it possible to control the amount of cold heat received from the heat storage tank.

【0027】また、第1の蓄熱剤循環装置と第2の蓄熱
剤循環装置により、蓄熱槽との間で冷熱の出し入れを行
う蓄熱用熱交換器及び冷熱供給用熱交換器のそれぞれに
向けて、蓄熱槽からの蓄熱剤を強制的に循環させること
ができる。従って、冷熱移動効率を向上させることがで
きる。
Further, by the first heat storage agent circulation device and the second heat storage agent circulation device, respectively toward the heat storage heat exchanger and the cold heat supply heat exchanger for transferring cold heat to and from the heat storage tank. The heat storage agent from the heat storage tank can be forcedly circulated. Therefore, the cold heat transfer efficiency can be improved.

【0028】そして、第1の冷凍能力検出装置からの物
理量に対応した第1の冷媒回路における余剰の冷熱量に
応じて、第1の蓄熱剤循環量制御装置が第1の蓄熱剤循
環装置による蓄熱剤の循環量を制御する。そのため、第
1の冷媒回路からの余剰の冷熱の蓄熱量を制御すること
ができる。
The first heat storage agent circulation amount control device controls the first heat storage agent circulation device according to the surplus cold heat amount in the first refrigerant circuit corresponding to the physical quantity from the first refrigeration capacity detection device. Controls the circulation amount of the heat storage agent. Therefore, it is possible to control the heat storage amount of the surplus cold heat from the first refrigerant circuit.

【0029】逆に、第2の冷凍能力検出装置からの物理
量に対応した第2の冷媒回路における不足の冷凍能力に
応じて、第2の蓄熱剤循環量制御装置が第2の蓄熱剤循
環装置による蓄熱剤の循環量を制御する。これによっ
て、第2の冷媒回路において不足した冷凍能力の賄い量
を制御することができる。
On the contrary, in accordance with the insufficient refrigerating capacity in the second refrigerant circuit corresponding to the physical quantity from the second refrigerating capacity detecting device, the second heat storing agent circulating amount control device causes the second heat storing agent circulating device to operate. To control the circulation amount of the heat storage agent. This makes it possible to control the amount of supply of the refrigeration capacity that is insufficient in the second refrigerant circuit.

【0030】また、蓄熱剤の蓄熱量は蓄熱量検出装置に
より検出される。この検出された蓄熱量に応じて、冷媒
流路制御装置が冷媒流路を切り換えることにより、第1
の冷媒回路に接続された1台の蓄熱用熱交換器が蒸発器
又は凝縮器として使い分けられる。従って、熱交換器に
かかるイニシャルの製造コストを低減化することができ
る。
The heat storage amount of the heat storage agent is detected by the heat storage amount detecting device. According to the detected heat storage amount, the refrigerant flow path control device switches the refrigerant flow path to
One heat storage heat exchanger connected to the refrigerant circuit is used as an evaporator or a condenser. Therefore, the manufacturing cost of the initials for the heat exchanger can be reduced.

【0031】そして、第2の凝縮器が、蓄熱剤からの冷
熱を第2の冷媒回路に供給可能に蓄熱槽に設けられたの
で、第2の圧縮機からの高温の冷媒は第2の凝縮器にて
蓄熱槽からの蓄熱剤の冷熱によって直接的に凝縮され更
に過冷却される。これにより、蓄熱剤の冷熱を効率よく
利用することができる。加えて、熱交換器にかかるイニ
シャルの製造コストを低減化することができる。
Further, since the second condenser is provided in the heat storage tank so that the cold heat from the heat storage agent can be supplied to the second refrigerant circuit, the high temperature refrigerant from the second compressor is second condensed. It is directly condensed by the cold heat of the heat storage agent from the heat storage tank and further supercooled. Thereby, the cold heat of the heat storage agent can be efficiently used. In addition, the manufacturing cost of the initials for the heat exchanger can be reduced.

【0032】[0032]

【実施例】【Example】

実施例1.図1はこの発明の実施例1による複合型冷媒
回路設備を示す構成図であり、1〜6,8〜10,1
5,21〜26、及び31は前記した従来設備と同一の
ものである。また、37は水等の蓄熱剤を収容した蓄熱
槽、34aは蓄熱槽37内に配備された冷凍側冷媒回路
の冷凍側過冷却用熱交換器31を冷凍側凝縮器22と冷
凍側電磁弁23との間の冷媒管路26に直列に連通する
冷媒配管である。即ち、冷凍側冷却用熱交換器31と冷
媒配管34aとを備えてなる構成が第1の冷熱供給回路
の一例である。そして特に、この複合型冷媒回路設備で
は、冷蔵側冷媒回路の冷蔵側蓄熱用蒸発器8も、蓄熱剤
を介して前記冷凍側過冷却用熱交換器31に対し熱移動
可能に前記蓄熱槽37内に配備されている。
Example 1. 1 is a block diagram showing a composite type refrigerant circuit facility according to a first embodiment of the present invention.
5, 21 to 26, and 31 are the same as the above-mentioned conventional equipment. Further, 37 is a heat storage tank containing a heat storage agent such as water, 34a is a heat exchanger 31 for freezing side subcooling of a freezing side refrigerant circuit provided in the heat storage tank 37, and a freezing side condenser 22 and a freezing side solenoid valve. 23 is a refrigerant pipe that communicates in series with a refrigerant pipe line 26 between the refrigerant pipe 23 and the pipe 23. That is, the configuration including the freezing-side cooling heat exchanger 31 and the refrigerant pipe 34a is an example of the first cold heat supply circuit. In particular, in this composite refrigerant circuit facility, the refrigerating-side heat storage evaporator 8 of the refrigerating-side refrigerant circuit is also capable of transferring heat to the freezing-side subcooling heat exchanger 31 via the heat storage agent so that the heat storage tank 37 can be transferred. It is deployed inside.

【0033】次に、この実施例における複合型冷媒回路
設備の動作について、説明する。ここで、例えば冷蔵側
冷媒回路において、冷蔵側圧縮機1や冷蔵側凝縮器2
は、被冷却環境(ショーケース等)について予め設定さ
れている最大負荷(最大冷凍能力の一例)を賄えるよう
に設計されているため、ショーケース等に与えられる負
荷が減少すると、前記最大負荷とそのときショーケース
等に与えられた負荷との差として、余剰の冷凍能力を生
じる。この複合型冷媒回路設備によれば、この余剰の冷
凍能力に対応する量の冷媒液が、冷蔵側蓄熱用電磁弁
9、冷蔵側蓄熱用膨張弁10を通じて冷蔵側蓄熱用蒸発
器8に供給され、これによって前記余剰の冷凍能力が冷
熱として蓄熱槽37内の蓄熱剤に蓄冷される。一方、冷
凍側冷媒回路においては、冷凍側圧縮機21で圧縮され
た高温、高圧のガス冷媒は、冷凍側凝縮器22で液化さ
れた後、冷凍側過冷却用の冷媒配管34aを通じて蓄熱
槽37内の冷凍側過冷却用熱交換器31に供給され蓄熱
剤を介して冷却される。これによって、より低い温度に
冷却された冷媒が冷凍側電磁弁23等から冷凍側蒸発器
25に供給される。このように、余剰の冷凍能力とし
て、冷蔵側冷媒回路から蓄熱槽37の蓄熱剤に蓄えられ
た冷熱は、共用される蓄熱槽37の蓄熱剤を介して冷凍
側冷媒回路にて消費される。従って、冷蔵側蒸発器5で
の冷媒の蒸発温度が高い、すなわち運転効率の高い冷蔵
側冷媒回路で余剰になった冷熱が蓄冷される一方で、こ
の冷熱は冷凍側蒸発器25での冷媒の蒸発温度が低い、
すなわち運転効率の低い冷凍側冷媒回路で利用されるた
め、冷蔵側冷媒回路及び冷凍側冷媒回路を含めた設備全
体としての総合的な冷凍効率を、向上化させることがで
きる。また、1基の蓄熱槽ですむため、蓄熱槽にかかる
構成を簡素化できる。
Next, the operation of the composite type refrigerant circuit equipment in this embodiment will be described. Here, for example, in the refrigeration side refrigerant circuit, the refrigeration side compressor 1 and the refrigeration side condenser 2
Is designed to cover a preset maximum load (an example of maximum refrigerating capacity) for the environment to be cooled (showcase, etc.), so if the load given to the showcase, etc. decreases, At that time, a surplus refrigerating capacity is generated as a difference from the load applied to the showcase or the like. According to this combined refrigerant circuit facility, an amount of the refrigerant liquid corresponding to the surplus refrigerating capacity is supplied to the refrigeration side heat storage evaporator 8 through the refrigeration side heat storage electromagnetic valve 9 and the refrigeration side heat storage expansion valve 10. As a result, the excess freezing capacity is stored as cold heat in the heat storage agent in the heat storage tank 37. On the other hand, in the refrigeration side refrigerant circuit, the high-temperature, high-pressure gas refrigerant compressed by the refrigeration side compressor 21 is liquefied by the refrigeration side condenser 22, and then the heat storage tank 37 is passed through the refrigeration side supercooling refrigerant pipe 34a. It is supplied to the heat exchanger 31 for subcooling on the freezing side and is cooled via the heat storage agent. As a result, the refrigerant cooled to a lower temperature is supplied to the freezing side evaporator 25 from the freezing side electromagnetic valve 23 and the like. In this way, as the extra refrigeration capacity, the cold heat stored in the heat storage agent of the heat storage tank 37 from the refrigeration side refrigerant circuit is consumed in the freezing side refrigerant circuit via the shared heat storage agent of the heat storage tank 37. Therefore, while the evaporation temperature of the refrigerant in the refrigerating side evaporator 5 is high, that is, the surplus cold heat is stored in the refrigerating side refrigerant circuit having high operation efficiency, this cold heat is stored in the refrigerating side evaporator 25. Low evaporation temperature,
That is, since it is used in the refrigeration side refrigerant circuit having low operating efficiency, it is possible to improve the overall refrigeration efficiency of the entire facility including the refrigeration side refrigerant circuit and the refrigeration side refrigerant circuit. Further, since only one heat storage tank is required, the structure related to the heat storage tank can be simplified.

【0034】実施例2.図2はこの発明の実施例2によ
る複合型冷媒回路設備を示す構成図であって、その構成
は前記実施例1のものとほとんど同じであるが、次に示
す構成要素を備えた点で異なる。冷蔵側冷媒回路におい
て、42は冷蔵側圧縮機1の吸入側の冷媒配管に接続さ
れ冷媒ガスの吸い込み圧力を検出する圧力検出器(第1
の冷凍能力検出装置の一例)、43は圧力検出器42で
検出された圧力検出値を基に制御演算を行う制御装置、
44は冷媒配管15に設けられ制御装置43の演算結果
に基づいて冷蔵側蓄熱用蒸発器8に流入させる冷媒流量
を調整する流量調整弁(この流量調整弁44と前記制御
装置43を備えてなる構成が第1の冷媒流通量制御装置
の一例)である。また、冷凍側冷媒回路において、26
aは冷凍側凝縮器22からの冷媒を冷凍側過冷却用熱交
換器31を迂回して流通させるための冷媒配管、45は
冷凍側圧縮機21の吸入側の冷媒配管に接続され冷媒ガ
スの吸い込み圧力を検出する圧力検出器(第2の冷凍能
力検出装置の一例)、46は圧力検出器45で検出され
た圧力検出値を基に制御演算を行う制御装置、57は冷
媒配管26aに設けられ制御装置46の演算結果に基づ
いて冷凍側過冷却熱交換器31に流入させる冷媒流量を
調整する流量調整弁(この流量調整弁57、前記制御装
置46、及び冷媒配管26aを備えてなる構成が第2の
冷媒流通量制御装置の一例)である。
Example 2. FIG. 2 is a block diagram showing a composite refrigerant circuit facility according to a second embodiment of the present invention, the configuration of which is almost the same as that of the first embodiment, except that the following components are provided. . In the refrigeration side refrigerant circuit, 42 is a pressure detector (first pressure detecting device) connected to the suction side refrigerant pipe of the refrigeration side compressor 1 for detecting the suction pressure of the refrigerant gas.
Of the refrigerating capacity detection device), 43 is a control device that performs control calculation based on the pressure detection value detected by the pressure detector 42,
Reference numeral 44 denotes a flow rate adjusting valve provided in the refrigerant pipe 15 for adjusting the flow rate of the refrigerant flowing into the refrigerating side heat storage evaporator 8 based on the calculation result of the control apparatus 43 (comprising the flow rate adjusting valve 44 and the control apparatus 43. The configuration is an example of a first refrigerant flow rate control device). In the refrigeration side refrigerant circuit, 26
a is a refrigerant pipe for circulating the refrigerant from the refrigeration side condenser 22 to bypass the refrigeration side subcooling heat exchanger 31, and 45 is a refrigerant gas connected to the suction side refrigerant pipe of the refrigeration side compressor 21 A pressure detector for detecting suction pressure (an example of a second refrigerating capacity detection device), 46 is a control device for performing control calculation based on the pressure detection value detected by the pressure detector 45, and 57 is provided in the refrigerant pipe 26a. A flow rate adjusting valve (the flow rate adjusting valve 57, the control unit 46, and the refrigerant pipe 26a are included to adjust the flow rate of the refrigerant flowing into the freezing-side subcooling heat exchanger 31 based on the calculation result of the control unit 46. Is an example of a second refrigerant flow rate control device).

【0035】引き続き、実施例2による複合型冷媒回路
設備の動作について、説明する。尚、この複合型冷媒回
路設備における各冷媒回路の基本的な冷凍サイクル動作
は、実施例1の場合と同じである。ところで、被冷却環
境に対する負荷、即ち被冷却環境に与えられた冷凍能力
が変化すると、それに対応する物理量(圧縮機吸入側の
圧力、被冷却環境の温度等)も変化する。例えば、冷蔵
側冷媒回路での負荷が減少すると、余剰の冷凍能力が大
きくなる。そして、前記余剰の冷凍能力に対応して、冷
蔵側圧縮機1の吸入側の圧力が変化する。このときの圧
力は圧力検出器42により検出され圧力検出値として制
御装置43に出力される。そこで、制御装置43は前記
圧力検出値に基づいて流量調整弁44の開度を演算し流
量調整弁44に出力し、その開度を大きくする。これに
よって、この余剰の冷凍能力に相当する量の冷媒液が、
冷蔵側蓄熱用電磁弁9、冷蔵側蓄熱用膨張弁10を通じ
て冷蔵側蓄冷用熱交換器8に供給され、前記冷媒液の冷
熱が蓄熱槽37の蓄熱剤に蓄冷される。このように、余
剰能力が大きい場合には、流量調整弁44の開度を大き
くして、冷蔵側蓄冷用熱交換器8に流入する冷媒量を増
加させることにより、蓄冷能力が大きくされる。逆に、
例えば冷蔵側冷媒回路での負荷が増加して余剰の冷凍能
力が小さくなった場合、流量調整弁44の開度を小さく
して、冷蔵側蓄冷用熱交換器8に流入させる冷媒量を減
らすことにより、蓄冷能力を小さくすることができる。
このように、実施例2の複合型冷媒回路設備によれば、
余剰の冷凍能力に応じてその余剰の冷凍能力に相当する
量の冷熱を効率よく蓄冷することができる。従って、冷
蔵側蓄冷用蒸発器8において過剰に蓄冷されることがな
いので、ショーケース等におかれた冷蔵側蒸発器5に与
えられる冷凍能力の不足を引き起こすことがなく、ショ
ーケース等に収容された冷蔵食品等を、それにとって不
都合な温度に昇温させることもない。
Next, the operation of the composite refrigerant circuit equipment according to the second embodiment will be described. The basic refrigeration cycle operation of each refrigerant circuit in this composite refrigerant circuit facility is the same as that of the first embodiment. By the way, if the load on the environment to be cooled, that is, the refrigerating capacity applied to the environment to be cooled changes, the physical quantity (pressure on the suction side of the compressor, temperature of the environment to be cooled, etc.) corresponding thereto also changes. For example, when the load on the refrigeration side refrigerant circuit decreases, the surplus refrigerating capacity increases. Then, the pressure on the suction side of the refrigeration side compressor 1 changes in accordance with the surplus refrigerating capacity. The pressure at this time is detected by the pressure detector 42 and output to the control device 43 as a pressure detection value. Therefore, the control device 43 calculates the opening degree of the flow rate adjusting valve 44 based on the pressure detection value and outputs it to the flow rate adjusting valve 44 to increase the opening degree. As a result, an amount of refrigerant liquid equivalent to this surplus refrigerating capacity,
The cold heat of the refrigerant liquid is supplied to the heat exchanger 8 for cold storage on the cold storage side through the solenoid valve 9 for cold storage heat storage and the expansion valve 10 for cold storage heat storage, and the cold heat of the refrigerant liquid is stored in the heat storage agent of the heat storage tank 37. As described above, when the surplus capacity is large, the cold storage capacity is increased by increasing the opening degree of the flow rate adjusting valve 44 and increasing the amount of the refrigerant flowing into the refrigeration-side cold storage heat exchanger 8. vice versa,
For example, when the load on the refrigerating side refrigerant circuit increases and the surplus refrigerating capacity decreases, the opening degree of the flow rate adjusting valve 44 is reduced to reduce the amount of refrigerant flowing into the refrigerating side cold storage heat exchanger 8. As a result, the cold storage capacity can be reduced.
Thus, according to the composite refrigerant circuit facility of the second embodiment,
According to the surplus refrigerating capacity, it is possible to efficiently store the amount of cold heat corresponding to the surplus refrigerating capacity. Therefore, since the cold storage evaporator 8 does not excessively store the cold, the refrigeration capacity of the refrigeration evaporator 5 placed in the showcase or the like is not insufficient, and the cold storage evaporator 8 is stored in the showcase or the like. It does not raise the temperature of the refrigerated food or the like that has been stored to an inconvenient temperature.

【0036】他方、冷凍側冷媒回路においても、前記冷
蔵側冷媒回路と同様に効率のよい制御を行うことができ
る。例えば、冷凍蔵側冷媒回路での負荷が増大して必要
とされる冷凍能力が大きくなった場合には、圧力検出器
45からの圧力検出値を基に制御装置46により演算・
出力された開度指令によって、流量調整弁57の開度が
小さくされ冷凍側過冷却用熱交換器31への冷媒の流通
量が大きくされる。これによって、蓄熱槽37の冷熱が
多量に冷凍側冷媒回路で利用される。逆に、負荷が減少
して必要とする冷凍能力が小さくなった場合には、流量
調整弁57の開度が大きくされて冷凍側過冷却熱交換器
31を迂回する冷媒量が大きくされる。このように、実
施例2の複合型冷媒回路設備によれば、冷凍側冷媒回路
で必要とされる冷凍能力に応じてこの必要な冷凍能力に
相当する量の冷熱を効率よく蓄熱剤から取り出すことが
できる。尚、この複合型冷媒回路設備においては、各冷
媒回路をそれぞれ単独に制御させるようにしてもよい
し、蓄熱槽37の蓄熱量によっては両冷媒回路の双方を
同時に制御させることも可能である。
On the other hand, also in the refrigeration side refrigerant circuit, it is possible to perform efficient control as in the refrigeration side refrigerant circuit. For example, when the load in the refrigerating-side refrigerant circuit increases and the required refrigerating capacity increases, the control device 46 calculates based on the pressure detection value from the pressure detector 45.
According to the output opening command, the opening of the flow rate adjusting valve 57 is reduced and the flow rate of the refrigerant to the freezing side subcooling heat exchanger 31 is increased. As a result, a large amount of cold heat of the heat storage tank 37 is used in the refrigeration side refrigerant circuit. On the contrary, when the load is reduced and the required refrigerating capacity is reduced, the opening degree of the flow rate adjusting valve 57 is increased and the refrigerant amount bypassing the refrigeration side subcooling heat exchanger 31 is increased. As described above, according to the composite refrigerant circuit facility of the second embodiment, according to the refrigerating capacity required in the refrigerating-side refrigerant circuit, the amount of cold heat corresponding to the necessary refrigerating capacity can be efficiently extracted from the heat storage agent. You can In this composite refrigerant circuit facility, each refrigerant circuit may be individually controlled, or both refrigerant circuits may be simultaneously controlled depending on the amount of heat stored in the heat storage tank 37.

【0037】実施例3.図3はこの発明の実施例3によ
る複合型冷媒回路設備を示す構成図であって、その構成
は前記実施例1,2のものとほとんど同じであるが、次
に示す構成要素を備えた点で異なる。冷蔵側冷媒回路に
おいて、8aは蓄熱槽37の外部に配備され冷蔵側冷媒
回路の余剰の冷熱を蓄冷するための冷蔵側蓄熱用蒸発
器、43aは圧力検出器42で検出された圧力検出値を
基に制御演算を行う制御装置、47は冷蔵側蓄熱用蒸発
器8aを経由するように環状に蓄熱槽37に接続された
水配管、48は水配管47に設けられ蓄熱槽37内の水
を冷蔵側蓄熱用蒸発器8aに循環させるポンプ(このポ
ンプ48と前記水配管47を備えてなる構成が第1の蓄
熱剤循環装置の一例)、49は制御装置43aの演算結
果を基にポンプ48の回転数を制御するためのインバー
タ(このインバータ49と制御装置43aを備えてなる
構成が第1の蓄熱剤循環量制御装置の一例)である。ま
た、冷凍側冷媒回路において、31aは蓄熱槽37の外
部に配備され冷熱を冷凍側冷媒回路に取り出すための冷
凍側過冷却用熱交換器、46bは圧力検出器45で検出
された圧力検出値を基に制御演算を行う制御装置、50
は冷凍側過冷却用熱交換器31aを経由するように環状
に蓄熱槽37に接続された水配管、51は水配管50に
設けられ蓄熱槽37内の水を冷凍側過冷却用熱交換器3
1aに循環させるポンプ(このポンプ51と前記水配管
50を備えてなる構成が第2の蓄熱剤循環装置の一
例)、52は制御装置46bの演算結果を基にポンプ5
1の回転数を制御するためのインバータ(このインバー
タ52と制御装置46bを備えてなる構成が第2の蓄熱
剤循環量制御装置の一例)である。尚、この複合型冷媒
回路設備における各冷媒回路の基本的な冷凍サイクルの
動作は、実施例1,2の場合と同じである。
Example 3. FIG. 3 is a block diagram showing a composite refrigerant circuit facility according to a third embodiment of the present invention, which has almost the same configuration as that of the first and second embodiments, but has the following components. Different. In the refrigerating-side refrigerant circuit, 8a is provided outside the heat storage tank 37 to cool the refrigerating-side refrigerant circuit to store excess cold heat, and 43a indicates a pressure detection value detected by the pressure detector 42. A control device for performing a control calculation based on the base, 47 is a water pipe annularly connected to the heat storage tank 37 so as to pass through the refrigeration side heat storage evaporator 8a, and 48 is a water pipe 47 provided in the water pipe 47 to store water in the heat storage tank 37. A pump that circulates in the refrigerating side heat storage evaporator 8a (an example of a first heat storage agent circulating device having the pump 48 and the water pipe 47), 49 is a pump 48 based on the calculation result of the control device 43a. Is an inverter for controlling the number of rotations of (1) (a configuration including the inverter 49 and the control device 43a is an example of a first heat storage agent circulation amount control device). Further, in the freezing side refrigerant circuit, 31a is a heat exchanger for freezing side subcooling that is provided outside the heat storage tank 37 to take out cold heat to the freezing side refrigerant circuit, and 46b is a pressure detection value detected by the pressure detector 45. A control device for performing control calculation based on
Is a water pipe annularly connected to the heat storage tank 37 via the freezing side supercooling heat exchanger 31a, and 51 is a water pipe 50 provided in the water pipe 50 to cool the water in the heat storage tank 37 into a freezing side supercooling heat exchanger. Three
1a is a pump (a configuration including the pump 51 and the water pipe 50 is an example of a second heat storage agent circulation device), and 52 is a pump 5 based on the calculation result of the control device 46b.
An inverter for controlling the number of revolutions of 1 (a configuration including the inverter 52 and the control device 46b is an example of a second heat storage agent circulation amount control device). The basic refrigeration cycle operation of each refrigerant circuit in this composite refrigerant circuit facility is the same as in the first and second embodiments.

【0038】次に、この実施例3による複合型冷媒回路
設備の動作について、説明する。先ず、冷蔵側冷媒回路
において、例えば負荷が減少して余剰の冷凍能力を生じ
ると、余剰の冷凍能力に相当する冷媒が、冷蔵側蓄熱用
電磁弁9、冷蔵側蓄熱用膨張弁10を通じて冷蔵側蓄熱
用蒸発器8aに供給される。この冷媒は、ポンプ48に
よって冷蔵側蓄熱用蒸発器8a内の水配管47を流通す
る水と熱交換されて、蓄熱槽37に蓄冷される。そし
て、余剰の冷凍能力に相当して変化する、冷蔵側圧縮機
1の吸入側の圧力は圧力検出器42により検出される。
そこで、余剰の冷凍能力が大きい場合、制御装置43a
は圧力検出値を基にポンプ48の回転数を増加させるよ
うにインバータ49を制御する。これによって、冷蔵側
蓄熱用蒸発器8aを流通する水量を増加させることによ
り、蓄冷能力が大きくされる。逆に、余剰の冷凍能力が
小さい場合には、ポンプ48の回転数を低下させて、冷
蔵側蓄熱用蒸発器8aを流通する水量を減らすことによ
り、蓄冷能力が小さくされる。このように、余剰の冷凍
能力に応じて、冷蔵側蓄熱用蒸発器8aへの水の循環量
を制御することにより、余剰の冷凍能力に相当する量の
冷熱を効率よく蓄冷することができる。即ち、実施例2
の場合と同様に、冷蔵側蓄熱用蒸発器8aにおいて過剰
に蓄冷されることがないので、ショーケース等におかれ
た冷蔵側蒸発器5に与えられる冷凍能力の不足をひきお
こすことがなく、ショーケース等に収容された冷蔵食品
等を不都合な温度に昇温させることもない。
Next, the operation of the composite refrigerant circuit equipment according to the third embodiment will be described. First, in the refrigerating-side refrigerant circuit, for example, when the load is reduced and surplus refrigerating capacity is generated, the refrigerant corresponding to the surplus refrigerating capacity passes through the refrigerating-side heat storage electromagnetic valve 9 and the refrigerating-side heat storage expansion valve 10 to the refrigerating side. It is supplied to the heat storage evaporator 8a. The refrigerant exchanges heat with the water flowing through the water pipe 47 in the refrigerating-side heat storage evaporator 8a by the pump 48, and is stored in the heat storage tank 37. Then, the pressure on the suction side of the refrigeration side compressor 1, which changes corresponding to the surplus refrigeration capacity, is detected by the pressure detector 42.
Therefore, when the surplus refrigerating capacity is large, the control device 43a
Controls the inverter 49 so as to increase the rotation speed of the pump 48 based on the detected pressure value. As a result, the cold storage capacity is increased by increasing the amount of water flowing through the refrigerating-side heat storage evaporator 8a. On the contrary, when the surplus refrigerating capacity is small, the rotation speed of the pump 48 is reduced to reduce the amount of water flowing through the refrigerating side heat storage evaporator 8a, thereby reducing the cold storage capacity. In this way, by controlling the circulation amount of water to the refrigeration side heat storage evaporator 8a according to the surplus refrigerating capacity, it is possible to efficiently store the amount of cold heat corresponding to the surplus refrigerating capacity. That is, Example 2
As in the case of the above, since the cold storage side heat storage evaporator 8a is not excessively stored, the shortage of the refrigerating capacity given to the refrigeration side evaporator 5 placed in a showcase or the like is not caused and the show There is no need to raise the refrigerated food or the like housed in the case or the like to an inconvenient temperature.

【0039】他方、冷凍側冷媒回路においては、例え
ば、冷凍蔵側冷媒回路での負荷が増大して必要とする冷
凍能力が大きくなった場合、圧力検出器45からの圧力
検出値による制御装置46bの演算結果に基づいて、ポ
ンプ51の回転数を増加させるようにインバータ52を
制御する。これによって、冷凍側蓄冷用熱交換器31a
を流通する水量を増加させることにより、冷凍側冷媒回
路への冷熱の取り出し量が大きくされる。逆に、必要と
する冷凍能力が小さくなった場合には、ポンプ51の回
転数を低下させて、冷凍側蓄冷用熱交換器31aを流通
する水量を減らすことにより、冷熱の取り出し量が小さ
くされる。このように、冷凍側冷媒回路で必要な冷凍能
力に応じて、冷凍側蓄熱用蒸発器31aへの水の循環量
を制御することにより、必要な冷凍能力に相当する量の
冷熱を水から効率よく取り出して冷凍側冷媒回路に与え
ることができる。尚、この複合型冷媒回路設備において
は、実施例2の場合と同様に、各冷媒回路をそれぞれ単
独に制御させるようにしてもよいし、蓄熱槽37の蓄熱
量によっては両冷媒回路の双方を同時に制御させること
も可能である。
On the other hand, in the refrigerating-side refrigerant circuit, for example, when the load in the refrigerating-side refrigerant circuit increases and the required refrigerating capacity increases, the control device 46b based on the pressure detection value from the pressure detector 45. The inverter 52 is controlled so as to increase the rotation speed of the pump 51 based on the calculation result of Thereby, the heat exchanger 31a for cold storage on the freezing side
By increasing the amount of water flowing through, the amount of cold heat taken out to the refrigeration side refrigerant circuit is increased. On the contrary, when the required refrigerating capacity becomes small, the rotation speed of the pump 51 is reduced to reduce the amount of water flowing through the refrigerating-side cold storage heat exchanger 31a, thereby reducing the amount of cold heat taken out. It In this way, by controlling the circulation amount of water to the freezing-side heat storage evaporator 31a according to the refrigerating capacity required in the refrigerating-side refrigerant circuit, the amount of cold heat equivalent to the required refrigerating capacity is efficiently transferred from the water. It can be taken out well and given to the refrigeration side refrigerant circuit. In this composite type refrigerant circuit facility, as in the case of the second embodiment, each refrigerant circuit may be individually controlled, or both refrigerant circuits may be controlled depending on the amount of heat stored in the heat storage tank 37. It is also possible to control them at the same time.

【0040】実施例4.図4はこの発明の実施例4によ
る複合型冷媒回路設備における冷蔵側冷媒回路の要部を
示す構成図である。尚、図において、この複合型冷媒回
路設備では、複数の系統の冷蔵側冷媒回路をそなえてお
り、これらの冷蔵側冷媒回路の基本的な冷凍サイクル回
路や冷凍側冷媒回路については図示していないが、これ
らは例えば実施例3のものとほとんど同じである。この
実施例4による複合型冷媒回路設備では、それぞれ複数
の系統の冷蔵側蓄熱用蒸発器8a、冷蔵側過冷却用熱交
換器11aが蓄熱槽37外に配備されている。そして、
各冷蔵側蓄熱用蒸発器8aは冷媒配管15を介して各系
統の冷蔵側冷媒回路の冷媒配管6(図3参照)にそれぞ
れ並列に接続されている。また、各冷蔵側過冷却用熱交
換器11aも冷媒配管14を介して各系統の冷媒配管6
(図9参照;この場合、必要となる冷蔵側過冷却切換電
磁弁12,13も不図示)にそれぞれ直列に接続されて
いる。また、各冷蔵側蓄熱用蒸発器8a及び各冷蔵側過
冷却用熱交換器11aと蓄熱槽37とは水配管47aを
介してそれぞれ並列に循環状で接続されている。尚、1
2aは各冷蔵側過冷却用熱交換器11aへの冷媒供給を
断続制御するための冷蔵側過冷却切換電磁弁である。
Example 4. Fourth Embodiment FIG. 4 is a configuration diagram showing a main part of a refrigeration side refrigerant circuit in a composite refrigerant circuit facility according to a fourth embodiment of the present invention. In the figure, this composite refrigerant circuit facility has a plurality of refrigeration side refrigerant circuits, and the basic refrigeration cycle circuit and freezing side refrigerant circuit of these refrigeration side refrigerant circuits are not shown. However, these are almost the same as those of the third embodiment, for example. In the complex refrigerant circuit facility according to the fourth embodiment, a plurality of refrigerating-side heat storage evaporators 8 a and a refrigerating-side supercooling heat exchanger 11 a are provided outside the heat storage tank 37. And
Each refrigerating-side heat storage evaporator 8a is connected in parallel via a refrigerant pipe 15 to the refrigerant pipe 6 (see FIG. 3) of the refrigerating-side refrigerant circuit of each system. In addition, each refrigeration-side supercooling heat exchanger 11 a also includes the refrigerant pipes 6 of each system via the refrigerant pipes 14.
(Refer to FIG. 9; in this case, the required refrigeration side subcooling switching solenoid valves 12 and 13 are also not shown). Further, each refrigerating-side heat storage evaporator 8a, each refrigerating-side supercooling heat exchanger 11a, and the heat storage tank 37 are connected in parallel via a water pipe 47a in a circulating manner. 1
Reference numeral 2a is a refrigeration side subcooling switching solenoid valve for intermittently controlling the supply of the refrigerant to each refrigeration side subcooling heat exchanger 11a.

【0041】次に、この実施例4による複合型冷媒回路
設備の動作について、説明する。例えばある系統の冷蔵
側冷媒回路において負荷が減少したとき、余剰の冷凍能
力に相当する冷媒液が、その系統の冷蔵側蓄熱用電磁弁
9、冷蔵側蓄熱用膨張弁10を通じて冷蔵側蓄熱用蒸発
器8aに供給される。この冷媒はポンプ48によって各
冷蔵側蓄熱用熱交換器8a内の水配管47aを流通する
水と熱交換され、これによって冷媒の冷熱が蓄熱槽37
に蓄冷される。逆に、例えばある系統の負荷が増大して
冷凍能力が不足した場合には、その系統の冷蔵側過冷却
切換電磁弁12aを作動させることにより、高温、高圧
の冷媒は、冷凍側過冷却用の冷媒配管14を通じて冷蔵
側過冷却用熱交換器11aに供給される。そして、この
冷媒は、ポンプ48の駆動により各系統の冷蔵側過冷却
用熱交換器11a及び冷蔵側蓄熱用蒸発器8a内の水配
管47aを流通する水と熱交換されて冷却される。これ
によって、水に蓄えられている冷熱が冷蔵側過冷却用熱
交換器11aを通して取り出される。この場合、冷凍能
力が余剰となった系統や冷凍能力が不足する系統が混在
したとしても、それぞれの系統の冷蔵側冷媒回路におけ
る冷凍能力の過不足は、各系統の冷蔵側過冷却用熱交換
器11a及び冷蔵側蓄熱用蒸発器8aに共通の水配管4
7aを流通する水を介して冷熱をやりとりすることによ
り、平準化される。即ち、各系統毎の圧縮機の稼働率の
ばらつきも平準化される。従って、複数の系統の冷蔵側
冷媒回路に対して冷蔵を行う複合型冷媒回路設備全体と
して、冷凍効率の向上化を図ることができる。尚、この
実施例4では、複数系統の冷蔵側冷媒回路が配備された
例を示したが、複数系統の冷凍側冷媒回路が配備された
ものにも適用できるのは言うまでもない。更に、複数系
統の冷蔵側冷媒回路及び複数系統の冷凍側回路が配備さ
れたものにも適用でき、この場合、蓄熱槽37に接続さ
れる水配管を冷蔵側(水配管47aに相当)と冷凍側と
で共通化することによって、設備全体の効率化が図れ
る。
Next, the operation of the composite refrigerant circuit equipment according to the fourth embodiment will be described. For example, when the load decreases in the refrigeration side refrigerant circuit of a certain system, the refrigerant liquid corresponding to the excess refrigerating capacity passes through the refrigeration side heat storage electromagnetic valve 9 and the refrigeration side heat storage expansion valve 10 of the system and evaporates for the refrigeration side heat storage. Is supplied to the container 8a. This refrigerant is heat-exchanged with the water flowing through the water pipe 47a in each heat exchanger 8a for heat storage on the refrigeration side by the pump 48, whereby the cold heat of the refrigerant is stored in the heat storage tank 37.
Is stored in cold. On the contrary, for example, when the load of a certain system increases and the refrigerating capacity becomes insufficient, the refrigeration-side supercooling switching solenoid valve 12a of the system is operated so that the high-temperature and high-pressure refrigerant is used for the refrigeration-side supercooling. It is supplied to the refrigeration-side supercooling heat exchanger 11a through the refrigerant pipe 14. Then, this refrigerant is cooled by exchanging heat with water flowing through the water pipe 47a in the refrigeration side subcooling heat exchanger 11a and the refrigeration side heat storage evaporator 8a of the respective systems by driving the pump 48. As a result, the cold heat stored in the water is taken out through the refrigeration-side supercooling heat exchanger 11a. In this case, even if there are systems with excess refrigeration capacity and systems with insufficient refrigeration capacity, the excess or deficiency of the refrigeration capacity in the refrigeration side refrigerant circuit of each system is due to the heat exchange for refrigeration side subcooling of each system. Water pipe 4 common to the cooler 11a and the refrigerating side heat storage evaporator 8a
Leveling is achieved by exchanging cold heat through water flowing through 7a. That is, the variation in the operating rate of the compressor for each system is also leveled. Therefore, it is possible to improve the refrigeration efficiency of the entire combined-type refrigerant circuit facility for refrigerating the refrigeration side refrigerant circuits of a plurality of systems. In addition, in the fourth embodiment, an example in which a plurality of refrigeration side refrigerant circuits are provided is shown, but it goes without saying that the invention can also be applied to a case where a plurality of systems refrigeration side refrigerant circuits are provided. Further, the invention can be applied to a system in which a plurality of refrigerating side refrigerant circuits and a plurality of refrigerating side circuits are provided. In this case, the water pipe connected to the heat storage tank 37 is connected to the refrigerating side (corresponding to the water pipe 47a) and the freezing side. By sharing with the other side, the efficiency of the entire equipment can be improved.

【0042】実施例5.図5はこの発明の実施例5によ
る複合型冷媒回路設備における冷蔵側冷媒回路を示す構
成図である。尚、これまで述べた各実施例の構成要素と
共通の構成要素には、同一の符号を付しその説明を割愛
する。図において、8bは冷蔵側冷媒回路における余剰
の冷熱を蓄熱槽37に蓄冷するための冷蔵側蓄熱用蒸発
器である。特に、この冷蔵側蓄熱用蒸発器8bには、冷
蔵側冷媒回路の冷媒配管6にそれぞれ並列に接続された
複数(ここでは、3列)の冷媒配管15の一部が内蔵さ
れ、この内蔵された冷媒配管15の近接位置に熱交換可
能に配設された水配管47bが蓄熱槽37に循環状に接
続されている。また、43bは圧力検出器42で検出さ
れた圧力検出値を基に制御演算を行い各冷媒配管15に
設けられた冷蔵側蓄熱用電磁弁9をそれぞれ開閉制御す
るための制御装置である。
Example 5. 5 is a configuration diagram showing a refrigeration side refrigerant circuit in a composite type refrigerant circuit facility according to Embodiment 5 of the present invention. The same components as those of the embodiments described above are designated by the same reference numerals and the description thereof will be omitted. In the figure, 8b is a refrigeration side heat storage evaporator for storing excess cold heat in the refrigeration side refrigerant circuit in the heat storage tank 37. In particular, this refrigerating-side heat storage evaporator 8b contains a part of a plurality (here, three rows) of refrigerant pipes 15 connected in parallel to the refrigerant pipes 6 of the refrigerating-side refrigerant circuit. Further, a water pipe 47b which is arranged in the vicinity of the refrigerant pipe 15 so as to be capable of heat exchange is connected to the heat storage tank 37 in a circulating manner. Further, 43b is a control device for performing opening and closing control of the refrigeration side heat storage electromagnetic valves 9 provided in each refrigerant pipe 15 by performing a control calculation based on the pressure detection value detected by the pressure detector 42.

【0043】次に、この実施例5による複合型冷媒回路
設備の動作について、説明する。例えば冷蔵側冷媒回路
において負荷が減少したとき、余剰の冷凍能力に相当す
る冷媒液が、各冷蔵側蓄熱用電磁弁9、各冷蔵側蓄熱用
膨張弁10を通じて冷蔵側蓄熱用蒸発器8bに供給され
る。この冷媒はポンプ48によって冷蔵側蓄熱用蒸発器
8b内の水配管47bを流通する水と熱交換され、これ
によって冷媒の冷熱が蓄熱槽37に蓄冷される。このと
き、余剰の冷凍能力に相当して変化する、冷蔵側圧縮機
1の吸入側の圧力は圧力検出器42により検出される。
そこで、余剰の冷凍能力が大きい場合には、制御装置4
3bは圧力検出値を基に、開放すべき冷蔵側蓄熱用電磁
弁9の数を増加させるように、各冷蔵側蓄熱用電磁弁9
に開閉信号を出力する。これによって、冷蔵側蓄熱用蒸
発器8bを流通する冷媒の総量を増加させることによ
り、蓄冷能力が大きくされる。逆に、余剰の冷凍能力が
小さい場合には、開放すべき冷蔵側蓄熱用電磁弁9の数
を減少させて、冷蔵側蓄熱用蒸発器8bを流通する冷媒
の総量を減らすことにより、蓄冷能力が小さくされる。
このように、余剰の冷凍能力に応じて、冷蔵側蓄熱用蒸
発器8bへの冷媒の流通量を制御することにより、余剰
の冷凍能力に相当する量の冷熱を冷媒から受け取ること
ができる。しかも、冷媒からの冷熱は、ポンプ48の駆
動によって水配管47bを流通する水により効率よく蓄
熱槽37に蓄冷される。これによって、ショーケース等
に収容された冷蔵食品等に悪影響を及ぼすことがなく、
これらの冷蔵食品等に対する温度維持精度の向上化が図
れるのは、前記した実施例3による場合と同様である。
尚、この実施例5では、冷蔵側冷媒回路からの余剰の冷
熱を蓄冷する例を示したが、無論、冷凍側冷媒回路にお
いて蓄熱槽37の冷熱を取り出す場合の構成にも適用で
きる。
Next, the operation of the composite refrigerant circuit equipment according to the fifth embodiment will be described. For example, when the load decreases in the refrigeration side refrigerant circuit, the refrigerant liquid corresponding to the surplus refrigerating capacity is supplied to the refrigeration side heat storage evaporator 8b through the respective refrigeration side heat storage electromagnetic valves 9 and the respective refrigeration side heat storage expansion valves 10. To be done. This refrigerant is heat-exchanged with water flowing through the water pipe 47b in the refrigerating side heat storage evaporator 8b by the pump 48, whereby cold heat of the refrigerant is stored in the heat storage tank 37. At this time, the pressure on the suction side of the refrigeration side compressor 1, which changes corresponding to the surplus refrigeration capacity, is detected by the pressure detector 42.
Therefore, when the surplus refrigerating capacity is large, the control device 4
Reference numeral 3b denotes each of the refrigeration side heat storage solenoid valves 9 so as to increase the number of refrigeration side heat storage solenoid valves 9 to be opened based on the pressure detection value.
The open / close signal is output to. As a result, the cool storage capacity is increased by increasing the total amount of the refrigerant flowing through the refrigerating-side heat storage evaporator 8b. On the contrary, when the surplus refrigerating capacity is small, the number of the refrigerating-side heat storage electromagnetic valves 9 to be opened is reduced to reduce the total amount of the refrigerant flowing through the refrigerating-side heat storage evaporator 8b, thereby reducing the cold storage capacity. Is reduced.
In this way, by controlling the flow rate of the refrigerant to the refrigeration side heat storage evaporator 8b according to the surplus refrigerating capacity, it is possible to receive the amount of cold heat from the refrigerant corresponding to the surplus refrigerating capacity. Moreover, the cold heat from the refrigerant is efficiently stored in the heat storage tank 37 by the water flowing through the water pipe 47b when the pump 48 is driven. This will not adversely affect refrigerated foods stored in showcases, etc.
It is the same as in the case of the above-described Embodiment 3 that the accuracy of maintaining the temperature of these refrigerated foods can be improved.
In the fifth embodiment, an example of storing the excess cold heat from the refrigeration side refrigerant circuit is shown, but it goes without saying that the present invention can also be applied to a configuration for taking out the cold heat from the heat storage tank 37 in the freezing side refrigerant circuit.

【0044】実施例6.図6はこの発明の実施例6によ
る複合型冷媒回路設備における冷蔵側冷媒回路を示す構
成図である。尚、これまで述べた各実施例の構成要素と
共通の構成要素には、同一の符号を付しその説明を省略
する。図において、8cは冷蔵側冷媒回路における余剰
の冷熱を蓄熱槽37に蓄冷したり蓄熱槽37の冷熱を冷
蔵側冷媒回路に供給するための冷蔵側切換式熱交換器で
ある。この冷蔵側切換式熱交換器8cには、冷蔵側冷媒
回路の冷媒配管6に並列に接続された冷蔵側蓄熱用の冷
媒配管15の一部が内蔵されている。特に、この冷媒配
管15の冷蔵側蓄熱用膨張弁10と冷蔵側切換式熱交換
器8c入側の間の配管と、冷蔵側切換式熱交換器8c出
側の配管とに、冷蔵側過冷却用の冷媒配管14がそれぞ
れ分岐して接続されている。また、12bは前記冷媒配
管15内の冷媒の流通を断続させる冷蔵側切換電磁弁で
あり、12,13は冷蔵側過冷却切換電磁弁である。
Example 6. 6 is a configuration diagram showing a refrigeration side refrigerant circuit in a composite type refrigerant circuit facility according to Embodiment 6 of the present invention. The same components as those of the embodiments described above are designated by the same reference numerals, and the description thereof will be omitted. In the figure, 8c is a refrigerating-side switching heat exchanger for storing excess cold heat in the refrigerating-side refrigerant circuit in the heat storage tank 37 or supplying cold heat from the heat-reserving tank 37 to the refrigerating-side refrigerant circuit. The refrigerating-side switching heat exchanger 8c contains a part of the refrigerating-side heat storage refrigerant pipe 15 connected in parallel with the refrigerant pipe 6 of the refrigerating-side refrigerant circuit. In particular, refrigerating-side supercooling is performed on the pipe between the refrigerating-side heat storage expansion valve 10 of the refrigerant pipe 15 and the refrigerating-side switching heat exchanger 8c inlet side, and on the refrigerating-side switching heat exchanger 8c outlet side. Refrigerant pipes 14 are branched and connected. Further, reference numeral 12b is a refrigeration side switching solenoid valve for connecting and disconnecting the circulation of the refrigerant in the refrigerant pipe 15, and reference numerals 12 and 13 are refrigeration side supercooling switching solenoid valves.

【0045】次に、この実施例6による複合型冷媒回路
設備の動作について、説明する。先ず、冷蔵側冷媒回路
においては、各冷蔵側過冷却切換電磁弁12及び冷蔵側
切換電磁弁12b(それぞれ回路開閉装置の一例)が閉
止され冷蔵側過冷却切換電磁弁13(回路開閉装置の一
例)が開放された状態で、冷凍サイクルの運転が開始さ
れると、冷蔵側蒸発器5によりショーケース等の冷却が
行われる。そして、負荷が減少して余剰の冷凍能力が生
じると、図示せぬ制御装置(冷媒流路制御装置の一例)
によって冷蔵側切換電磁弁12bが開放される。これに
よって、冷蔵側凝縮器2からの冷媒が冷蔵側蓄熱用の冷
媒配管15に導かれ冷蔵側蓄熱用電磁弁9及び冷蔵側蓄
熱用膨張弁10を通して冷蔵側切換式熱交換器8cに流
入し水配管47をを流通する水と熱交換されることによ
り、余剰の冷熱が蓄熱槽37に蓄冷される。即ち、この
場合、冷蔵側切換式熱交換器8cは、冷蔵側蓄熱用蒸発
器として機能する。
Next, the operation of the composite refrigerant circuit equipment according to the sixth embodiment will be described. First, in the refrigeration side refrigerant circuit, the refrigeration side subcooling switching solenoid valves 12 and the refrigeration side switching solenoid valves 12b (each an example of a circuit opening / closing device) are closed, and the refrigeration side subcooling switching electromagnetic valve 13 (an example of a circuit opening / closing device). When the operation of the refrigerating cycle is started in the state where) is opened, the refrigerating side evaporator 5 cools the showcase and the like. Then, when the load is reduced and surplus refrigeration capacity is generated, a control device (not shown) (an example of a refrigerant flow path control device) is shown.
Thus, the refrigerating side switching solenoid valve 12b is opened. As a result, the refrigerant from the refrigeration side condenser 2 is guided to the refrigeration side heat storage refrigerant pipe 15 and flows into the refrigeration side heat exchanger 8c through the refrigeration side heat storage solenoid valve 9 and the refrigeration side heat storage expansion valve 10. Excessive cold heat is stored in the heat storage tank 37 by exchanging heat with the water flowing through the water pipe 47. That is, in this case, the refrigerating-side switching heat exchanger 8c functions as a refrigerating-side heat storage evaporator.

【0046】逆に、負荷が増加して冷蔵側冷媒回路本来
の最大冷凍能力を超えると、各冷蔵側過冷却切換電磁弁
12が開放され、冷蔵側過冷却切換電磁弁13及び冷蔵
側切換電磁弁12bが閉止される。これによって、冷蔵
側凝縮器2からの冷媒は、冷媒配管14を通して冷蔵側
切換式熱交換器8cに流入し水配管47を流通する水と
熱交換されることにより、蓄熱槽37の冷熱を受けて冷
却された後、冷蔵側蒸発器5に導かれる。即ち、この場
合、冷蔵側切換式熱交換器8cは、冷蔵側過冷却用熱交
換器として機能する。このとき、冷蔵側膨張弁4による
冷凍能力制御可能範囲と、冷蔵側蒸発器5における熱交
換能力と、負荷量との相対関係によっては、冷媒が冷蔵
側蒸発器5において完全に蒸発しないまま液状で冷蔵側
圧縮機1に吸入されるといった不都合な状態に陥る場合
がある。このような状態の場合、圧力検出器42からの
圧力検出値を基に、制御装置43aがこの状態を演算・
検知し、この検知結果に応じてインバータ49及びポン
プ48を制御して冷蔵側切換式熱交換器8cへの水循環
量を制御する。これによって、冷媒に対する冷蔵側切換
式熱交換器8cでの過冷却能力が調整される。その結
果、冷媒が液状のままで冷蔵側圧縮機1に吸入されると
いった不都合を回避することができる。前記したよう
に、この実施例に係る複合型冷媒回路設備によれば、負
荷量に応じて冷蔵側切換式熱交換器8cの機能が、蓄熱
用蒸発器の機能と過冷却用熱交換器の機能とに切り換え
られるので、ひとつの冷蔵側切換式熱交換器8cを蓄熱
用蒸発器及び過冷却用熱交換器として共用することがで
きる。従って、熱交換器に係るイニシャルの製造コスト
を低減化することができる。また、過冷却時には運転状
態を検知しながらそのときの運転状態に応じて過冷却量
が制御されるので、冷媒が液状のままで冷蔵側圧縮機1
に戻るのを防止でき、当該実施例装置の信頼性が向上す
る。尚、この実施例6でも冷蔵側冷媒回路に関する例を
示したが、このような構成は当然ながら冷凍側冷媒回路
にも適用できる。
On the contrary, when the load increases and exceeds the original maximum refrigerating capacity of the refrigeration side refrigerant circuit, each refrigeration side subcooling switching solenoid valve 12 is opened, and the refrigeration side subcooling switching solenoid valve 13 and the refrigeration side switching solenoid are opened. The valve 12b is closed. As a result, the refrigerant from the refrigeration side condenser 2 receives the cold heat of the heat storage tank 37 by flowing into the refrigeration side switching heat exchanger 8c through the refrigerant pipe 14 and exchanging heat with the water flowing through the water pipe 47. After being cooled by cooling, it is guided to the refrigerating side evaporator 5. That is, in this case, the refrigerating-side switching heat exchanger 8c functions as a refrigerating-side supercooling heat exchanger. At this time, depending on the relative relationship between the refrigeration capacity controllable range by the refrigeration side expansion valve 4, the heat exchange capacity in the refrigeration side evaporator 5, and the load amount, the refrigerant is in a liquid state without being completely evaporated in the refrigeration side evaporator 5. Therefore, there is a case in which it is sucked into the refrigeration side compressor 1 into an inconvenient state. In such a state, the control device 43a calculates this state based on the pressure detection value from the pressure detector 42.
It detects and controls the inverter 49 and the pump 48 according to this detection result, and controls the water circulation amount to the refrigerating-side switching type heat exchanger 8c. As a result, the subcooling capacity of the refrigeration-side switching heat exchanger 8c for the refrigerant is adjusted. As a result, it is possible to avoid the disadvantage that the refrigerant is sucked into the refrigeration side compressor 1 in a liquid state. As described above, according to the composite refrigerant circuit facility according to this embodiment, the functions of the refrigerating-side switching heat exchanger 8c are the same as those of the heat storage evaporator and the supercooling heat exchanger depending on the load amount. Since it is switched to the function, one refrigerating-side switching heat exchanger 8c can be shared as a heat storage evaporator and a supercooling heat exchanger. Therefore, the manufacturing cost of the initials related to the heat exchanger can be reduced. Further, since the amount of supercooling is controlled according to the operating state at that time while detecting the operating state during supercooling, the refrigeration side compressor 1 remains in the liquid state of the refrigerant.
Can be prevented, and the reliability of the apparatus of this embodiment is improved. In addition, although the example of the refrigeration side refrigerant circuit has been shown in the sixth embodiment, such a configuration can be applied to the freezing side refrigerant circuit.

【0047】実施例7.図7はこの発明の実施例7によ
る複合型冷媒回路設備における冷蔵側冷媒回路を示す構
成図である。尚、これまで述べた各実施例の構成要素と
共通の構成要素には、同一の符号を付しその説明を省略
する。図において、53は蓄熱槽37に配設され蓄熱槽
37内の水の温度を検出する温度検出器(蓄熱量検出装
置の一例)、54は温度検出器53からの検出信号に基
づいて各冷蔵側過冷却切換電磁弁12、冷蔵側過冷却切
換電磁弁13、及び冷蔵側切換電磁弁12bを開閉制御
する制御装置(冷媒流路制御装置の一例)である。
Example 7. FIG. 7 is a configuration diagram showing a refrigerating-side refrigerant circuit in a composite refrigerant circuit facility according to Embodiment 7 of the present invention. The same components as those of the embodiments described above are designated by the same reference numerals, and the description thereof will be omitted. In the figure, 53 is a temperature detector (an example of a heat storage amount detecting device) that is arranged in the heat storage tank 37 to detect the temperature of the water in the heat storage tank 37, and 54 is each refrigerating unit based on a detection signal from the temperature detector 53. It is a control device (an example of a refrigerant flow path control device) that controls opening / closing of the side supercooling switching solenoid valve 12, the refrigeration side supercooling switching solenoid valve 13, and the refrigeration side switching solenoid valve 12b.

【0048】次に、この実施例による複合型冷媒回路設
備の動作について、説明する。蓄熱槽37内の水の容量
は一定であるので、蓄熱槽37内の水の温度から容易に
蓄熱槽37の蓄冷量を求めることができる。しかしなが
ら、特に、蓄熱槽37における蓄冷量が過少の場合、例
えば冷蔵側冷媒回路で冷凍能力が必要になった場合、こ
のとき必要な冷媒の過冷却を十分に行うことができな
い。そこで、例えば蓄熱槽37における最低蓄冷量を予
め定めておき、蓄熱槽37内の蓄冷量が前記最低蓄冷量
に相当する蓄冷量を下回り且つ冷蔵側冷媒回路の冷凍能
力に余裕があったとき、制御装置54が各冷蔵側過冷却
切換電磁弁12を閉止するとともに、冷蔵側過冷却切換
電磁弁13及び冷蔵側切換電磁弁12bを開放するよう
になっている。これによって、冷蔵側切換式熱交換器8
cが蓄熱用蒸発器として働き、冷蔵側冷媒回路での余剰
の冷熱を水配管47及びポンプ48を介して蓄熱槽37
に蓄冷する。
Next, the operation of the composite refrigerant circuit equipment according to this embodiment will be described. Since the volume of water in the heat storage tank 37 is constant, the amount of cold storage in the heat storage tank 37 can be easily obtained from the temperature of the water in the heat storage tank 37. However, particularly when the amount of cold storage in the heat storage tank 37 is too small, for example, when the refrigerating side refrigerant circuit requires refrigerating capacity, the necessary supercooling of the refrigerant cannot be sufficiently performed at this time. Therefore, for example, when the minimum amount of cold storage in the heat storage tank 37 is set in advance and the amount of cold storage in the heat storage tank 37 is below the amount of cold storage equivalent to the minimum amount of cold storage and there is a margin in the refrigerating capacity of the refrigeration side refrigerant circuit, The control device 54 closes each refrigeration side subcooling switching solenoid valve 12 and opens the refrigeration side subcooling switching solenoid valve 13 and the refrigeration side switching solenoid valve 12b. As a result, the refrigeration side switching heat exchanger 8
c functions as a heat storage evaporator, and the excess cold heat in the refrigeration side refrigerant circuit is stored in the heat storage tank 37 via the water pipe 47 and the pump 48.
Store cold in.

【0049】一方、蓄熱槽37内の蓄冷量が前記最低蓄
冷量に相当する蓄冷量以上になると、制御装置54は各
冷蔵側過冷却切換電磁弁12を開放するとともに、冷蔵
側過冷却切換電磁弁13及び冷蔵側切換電磁弁12bを
閉止する。これによって、冷蔵側切換式熱交換器8cは
冷熱を取り出すための過冷却用の熱交換器として働き、
蓄熱槽37の冷熱を、水配管47及びポンプ48を介し
て冷媒配管14の冷媒に与える。このように冷却された
冷媒は冷蔵側電磁弁3、冷蔵側膨張弁4、冷蔵側蒸発器
5に順次供給され、これによって冷蔵側冷媒回路で必要
とされる冷凍能力を補充する。このように、この実施例
に係る複合型冷媒回路設備によれば、蓄熱槽37の蓄冷
量に応じて、冷蔵側切換式熱交換器8cの機能が蓄熱用
蒸発器の機能と過冷却用熱交換器の機能とに切り換えら
れるので、ひとつの冷蔵側切換式熱交換器8cを蓄熱用
蒸発器又は過冷却用熱交換器として切換可能に共用する
ことができる。従って、熱交換器に係るイニシャルの製
造コストを低減化することができる。
On the other hand, when the amount of cold storage in the heat storage tank 37 becomes equal to or more than the amount of cold storage corresponding to the minimum amount of cold storage, the control device 54 opens each refrigerating-side supercooling switching solenoid valve 12 and at the same time, the refrigerating-side supercooling switching solenoid. The valve 13 and the refrigerating side switching solenoid valve 12b are closed. As a result, the refrigerating-side switching heat exchanger 8c functions as a supercooling heat exchanger for taking out cold heat,
The cold heat of the heat storage tank 37 is applied to the refrigerant in the refrigerant pipe 14 via the water pipe 47 and the pump 48. The refrigerant thus cooled is sequentially supplied to the refrigeration side solenoid valve 3, the refrigeration side expansion valve 4, and the refrigeration side evaporator 5, thereby supplementing the refrigerating capacity required in the refrigeration side refrigerant circuit. Thus, according to the composite refrigerant circuit facility according to this embodiment, the functions of the refrigerating-side switching heat exchanger 8c are the functions of the heat storage evaporator and the supercooling heat depending on the amount of cold storage in the heat storage tank 37. Since it is switched to the function of the exchanger, one refrigerating-side switching heat exchanger 8c can be commonly used as a heat storage evaporator or a supercooling heat exchanger in a switchable manner. Therefore, the manufacturing cost of the initials related to the heat exchanger can be reduced.

【0050】実施例8.図8はこの発明の実施例8によ
る複合型冷媒回路設備を示す構成図である。尚、図にお
いてこれまで述べた各実施例の構成要素と共通の構成要
素には、同一の符号を付しその説明を省略する。この実
施例による複合型冷媒回路設備は、図1に示した実施例
1による複合型冷媒回路設備と基本的構成をほぼ同様と
し、構成上の相違点は、冷凍側凝縮器の機能も併有する
冷凍側過冷却用熱交換器31aが前記冷凍側過冷却用熱
交換器31(図1参照)に替えて蓄熱槽37内に配備さ
れたことと、これに伴って冷凍側凝縮器22(図1参
照)を省略した構成が採られたことである。
Example 8. 8 is a block diagram showing a composite refrigerant circuit facility according to Embodiment 8 of the present invention. In the drawing, the same components as those of the respective embodiments described so far are designated by the same reference numerals, and the description thereof will be omitted. The composite refrigerant circuit equipment according to this embodiment has substantially the same basic configuration as the composite refrigerant circuit equipment according to the embodiment 1 shown in FIG. 1, and the difference in the configuration also has the function of the refrigeration side condenser. The heat exchanger 31a for subcooling on the freezing side is placed in the heat storage tank 37 in place of the heat exchanger 31 for subcooling on the freezing side (see FIG. 1), and along with this, the condenser 22 for the freezing side (see FIG. 1) is omitted.

【0051】この実施例に係る複合型冷媒回路設備によ
る基本的動作は実施例1のものとほぼ同様である。従っ
て、冷蔵側冷媒回路から蓄熱槽37に蓄えられた冷熱
は、冷凍側冷媒回路にて消費される。既に述べたよう
に、冷熱は、冷蔵側蒸発器5における冷媒の蒸発温度の
高いすなわち冷凍効率の高い冷蔵側冷媒回路から蓄冷さ
れ、冷凍側蒸発器25における冷媒の蒸発温度の低いす
なわち冷凍効率の低い冷凍側冷媒回路で利用される。こ
の場合、冷凍側過冷却用熱交換器31aにおいて、特に
冷凍側圧縮機21からの高温の冷媒は蓄熱槽37内の水
と直接的に熱交換されて凝縮され更に過冷却されるの
で、蓄熱槽37の冷熱を効率よく利用することができ
る。加えて、冷凍側過冷却用熱交換器31aは冷凍側凝
縮器と冷凍側過冷却用熱交換器を兼用しているので、熱
交換器にかかるイニシャルの製造コストを低減化するこ
とができる。
The basic operation of the composite refrigerant circuit equipment according to this embodiment is almost the same as that of the first embodiment. Therefore, the cold heat stored in the heat storage tank 37 from the refrigeration side refrigerant circuit is consumed in the freezing side refrigerant circuit. As already described, the cold heat is stored in the refrigeration side refrigerant circuit having a high refrigerant evaporation temperature in the refrigeration side evaporator 5, that is, a high refrigeration efficiency, and has a low refrigerant evaporation temperature in the refrigeration side evaporator 25, that is, a refrigeration efficiency. Used in low refrigeration side refrigerant circuits. In this case, in the heat exchanger 31a for subcooling on the freezing side, in particular, the high temperature refrigerant from the compressor 21 on the freezing side is directly heat-exchanged with the water in the heat storage tank 37 to be condensed and further supercooled, so that the heat storage The cold heat of the tank 37 can be efficiently used. In addition, since the freezing-side supercooling heat exchanger 31a serves as both the freezing-side condenser and the freezing-side supercooling heat exchanger, it is possible to reduce the initial manufacturing cost of the heat exchanger.

【0052】[0052]

【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に記載されるような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0053】冷却温度の異なる複数の被冷却環境をそれ
ぞれ冷却する複数の冷媒回路間で、冷凍効率の高い高冷
却温度側(第1の)の冷媒回路からの余剰の冷熱を、蓄
熱槽の蓄熱剤を介して冷凍効率の低い低冷却温度側(第
2の)の冷媒回路へ移動させるようにしたので、設備全
体として総合的な冷凍効率の向上化を図ることができ
る。
Excessive cold heat from the high-cooling temperature side (first) refrigerant circuit having high refrigeration efficiency between the plurality of refrigerant circuits respectively cooling the plurality of cooled environments having different cooling temperatures is stored in the heat storage tank. Since the refrigerant circuit is moved to the low cooling temperature side (second) refrigerant circuit with low refrigeration efficiency via the agent, it is possible to improve the overall refrigeration efficiency of the entire equipment.

【0054】更に、高冷却温度側(第1の)の冷媒回路
の余剰の冷熱量((第1の)圧縮機の入口圧力や被冷却
環境温度等の物理量に対応)に応じて、蓄熱用熱交換器
への第1の冷媒回路からの冷媒流通量を制御するように
したので、余剰冷熱の蓄熱量を制御することができる。
従って、例えば蓄冷用熱交換器において過剰に蓄冷され
ることがないので、第1の被冷却環境におかれた冷蔵側
蒸発器に与えられる冷凍能力の不足をひきおこすことが
なく、第1の被冷却環境をそれにとって不都合な温度に
昇温させることもない。
Further, depending on the surplus cold heat quantity of the refrigerant circuit on the high cooling temperature side (first) (corresponding to the physical quantity such as the inlet pressure of the (first) compressor or the environment temperature to be cooled), the heat storage Since the amount of refrigerant flowing from the first refrigerant circuit to the heat exchanger is controlled, the amount of accumulated cold heat can be controlled.
Therefore, for example, the heat is not excessively stored in the heat exchanger for cold storage, so that the refrigerating capacity provided to the refrigerating side evaporator placed in the first environment to be cooled does not become insufficient, and the first heat is not stored. It does not raise the temperature of the cooling environment to a temperature that is inconvenient for it.

【0055】逆に、低冷却温度側(第2の)の冷媒回路
の不足した冷凍能力((第2の)圧縮機の入口圧力や被
冷却環境温度等の物理量に対応)に応じて、第2の冷媒
回路から蓄熱用熱交換器への冷媒流通量を制御するよう
にしたので、蓄熱槽から受け取る冷熱量を制御すること
ができる。
On the contrary, in accordance with the insufficient refrigerating capacity of the refrigerant circuit on the low cooling temperature side (second) (corresponding to the physical quantity such as the inlet pressure of the (second) compressor or the environment temperature to be cooled), Since the amount of refrigerant flowing from the second refrigerant circuit to the heat storage heat exchanger is controlled, the amount of cold heat received from the heat storage tank can be controlled.

【0056】更に、蓄熱剤に対し冷熱の出し入れを行う
蓄熱用熱交換器及び冷熱供給用熱交換器のそれぞれに向
けて、蓄熱槽からの蓄熱剤を強制的に循環させるように
したので、冷熱移動効率の向上化を図ることができる。
Further, since the heat storage agent from the heat storage tank is forcedly circulated toward each of the heat storage heat exchanger and the cold heat supply heat exchanger for sending and receiving cold heat to and from the heat storage agent, It is possible to improve the movement efficiency.

【0057】そして、第1の冷媒回路における余剰の冷
熱量に応じて、蓄熱槽から蓄熱用熱交換器への蓄熱剤の
循環量を制御するようにしたので、この余剰の冷熱の蓄
熱量を制御することができる。
Since the circulation amount of the heat storage agent from the heat storage tank to the heat storage heat exchanger is controlled in accordance with the surplus cold heat amount in the first refrigerant circuit, the surplus cold heat storage amount is controlled. Can be controlled.

【0058】逆に、第2の冷媒回路において不足する冷
凍能力に応じて、蓄熱槽から冷熱供給用熱交換器への蓄
熱剤の循環量を制御するようにしたので、この不足した
冷凍能力の賄い量を制御することができる。
On the contrary, since the circulation amount of the heat storage agent from the heat storage tank to the heat exchanger for supplying cold heat is controlled in accordance with the refrigerating capacity lacking in the second refrigerant circuit, the lacking refrigerating capacity of this lacking refrigerating capacity is controlled. You can control how much you cover.

【0059】また、第1の冷媒回路に接続された1台の
蓄熱用熱交換器を、蓄熱剤の蓄熱量に応じて、蓄熱用の
蒸発器又は過冷却用の熱交換器として合理的に使い分け
るようにしたので、熱交換器にかかるイニシャルの製造
コストを低減化することができる。
Further, one heat storage heat exchanger connected to the first refrigerant circuit is reasonably used as a heat storage evaporator or a supercooling heat exchanger depending on the amount of heat stored by the heat storage agent. Since they are used properly, the manufacturing cost of the initials for the heat exchanger can be reduced.

【0060】そして、第2の冷媒回路の第2の凝縮器の
冷媒と蓄熱槽の蓄熱剤とを熱交換させるようにしたの
で、蓄熱槽に蓄冷された冷熱を効率よく利用することが
できる。加えて、第2の凝縮器が、本来の凝縮器及び過
冷却用の熱交換器として兼用されるので、熱交換器にか
かるイニシャルの製造コストを低減化することができ
る。
Since the refrigerant in the second condenser of the second refrigerant circuit and the heat storage agent in the heat storage tank are exchanged with each other, the cold heat stored in the heat storage tank can be efficiently used. In addition, since the second condenser also serves as the original condenser and the heat exchanger for supercooling, the manufacturing cost of the initials for the heat exchanger can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による複合型冷媒回路設備
を示す構成図である。
FIG. 1 is a configuration diagram showing a composite refrigerant circuit facility according to a first embodiment of the present invention.

【図2】この発明の実施例2による複合型冷媒回路設備
を示す構成図である。
FIG. 2 is a configuration diagram showing a composite refrigerant circuit facility according to a second embodiment of the present invention.

【図3】この発明の実施例3による複合型冷媒回路設備
を示す構成図である。
FIG. 3 is a configuration diagram showing a composite refrigerant circuit facility according to a third embodiment of the present invention.

【図4】この発明の実施例4による複合型冷媒回路設備
における冷蔵側冷媒回路の要部を示す構成図である。
FIG. 4 is a configuration diagram showing a main part of a refrigeration side refrigerant circuit in a composite refrigerant circuit facility according to Embodiment 4 of the present invention.

【図5】この発明の実施例5による複合型冷媒回路設備
における冷蔵側冷媒回路を示す構成図である。
FIG. 5 is a configuration diagram showing a refrigerating-side refrigerant circuit in a composite refrigerant circuit facility according to Embodiment 5 of the present invention.

【図6】この発明の実施例6による複合型冷媒回路設備
における冷蔵側冷媒回路を示す構成図である。
FIG. 6 is a configuration diagram showing a refrigerating-side refrigerant circuit in a composite refrigerant circuit facility according to Embodiment 6 of the present invention.

【図7】この発明の実施例7による複合型冷媒回路設備
における冷蔵側冷媒回路を示す構成図である。
FIG. 7 is a configuration diagram showing a refrigeration side refrigerant circuit in a composite type refrigerant circuit facility according to Embodiment 7 of the present invention.

【図8】この発明の実施例8による複合型冷媒回路設備
を示す構成図である。
FIG. 8 is a configuration diagram showing a composite refrigerant circuit facility according to an eighth embodiment of the present invention.

【図9】従来の複合型冷媒回路設備を示す構成図であ
る。
FIG. 9 is a configuration diagram showing a conventional composite refrigerant circuit facility.

【符号の説明】[Explanation of symbols]

1 冷蔵側圧縮機 2 冷蔵側凝縮器 3 冷蔵側電磁弁 4 冷蔵側膨張弁 5 冷蔵側蒸発器 6 冷媒配管 8 冷蔵側蓄熱用蒸発器 8a 冷蔵側蓄熱用蒸発器 8b 冷蔵側蓄熱用蒸発器 8c 冷蔵側切換式熱交換器 9 冷蔵側蓄熱用電磁弁 10 冷蔵側蓄熱用膨張弁 12 冷蔵側過冷却切換電磁弁 12b 冷蔵側切換電磁弁 13 冷蔵側過冷却切換電磁弁 14 冷媒配管 15 冷媒配管 21 冷凍側圧縮機 22 冷凍側凝縮器 23 冷凍側電磁弁 24 冷凍側膨張弁 25 冷凍側蒸発器 26 冷媒配管 26a 冷媒配管 31 冷凍側過冷却用熱交換器 31a 冷凍側過冷却用熱交換器 34a 冷媒配管 37 蓄熱槽 42 圧力検出器 43 制御装置 43a 制御装置 43b 制御装置 44 流量調整弁 45 圧力検出器 46 制御装置 46b 制御装置 47 水配管 47b 水配管 48 ポンプ 49 インバータ 50 水配管 51 ポンプ 52 インバータ 53 温度検出器 54 制御装置 57 流量調整弁 1 Refrigerator side compressor 2 Refrigerator side condenser 3 Refrigerator side solenoid valve 4 Refrigerator side expansion valve 5 Refrigerator side evaporator 6 Refrigerant piping 8 Refrigerator side heat storage evaporator 8a Refrigerator side heat storage evaporator 8b Refrigerator side heat storage evaporator 8c Refrigerator-side switching heat exchanger 9 Refrigerator-side heat storage solenoid valve 10 Refrigerator-side heat storage expansion valve 12 Refrigerator-side supercooling selector solenoid valve 12b Refrigerator-side selector solenoid valve 13 Refrigerator-side supercooler selector solenoid valve 14 Refrigerant pipe 15 Refrigerant pipe 21 Freezing side compressor 22 Freezing side condenser 23 Freezing side solenoid valve 24 Freezing side expansion valve 25 Freezing side evaporator 26 Refrigerant piping 26a Refrigerant piping 31 Freezing side supercooling heat exchanger 31a Freezing side supercooling heat exchanger 34a Refrigerant Piping 37 Heat storage tank 42 Pressure detector 43 Control device 43a Control device 43b Control device 44 Flow rate adjusting valve 45 Pressure detector 46 Control device 46b Control device 47 Water pipe 47b Pipe 48 the pump 49 inverter 50 water pipe 51 the pump 52 inverter 53 temperature detector 54 controller 57 flow control valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池内 正毅 和歌山市手平6丁目5番66号 三菱電機株 式会社和歌山製作所内 (72)発明者 根来 耕一 和歌山市手平6丁目5番66号 三菱電機株 式会社和歌山製作所内 (72)発明者 大畑 晃一 大阪市北区堂島二丁目2番2号 三菱電機 株式会社関西支社内 (72)発明者 中野 忠明 大阪市北区堂島二丁目2番2号 三菱電機 株式会社関西支社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masatake Ikeuchi 6-5-6 Tehira, Wakayama City Wakayama Works, Mitsubishi Electric Corporation (72) Inventor Koichi Negoro 6-566 Tehira, Wakayama Mitsubishi (72) Inventor, Koichi Ohata, 2-2, Dojima, Kita-ku, Osaka City, Mitsubishi Electric Corporation (72) Inventor, Tadaaki Nakano 2--2, Dojima, Kita-ku, Osaka Mitsubishi Electric Corporation Kansai branch office

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、及び第1の被冷却環境を冷却する第1の蒸発器
を順次環状に接続してなる第1の冷媒回路と、前記第1
の冷媒回路に前記第1の絞り装置及び第1の蒸発器と並
列に蓄熱用絞り装置及び蓄熱用熱交換器を順次接続して
なる蓄熱用冷媒回路と、前記蓄熱用熱交換器を介して前
記第1の冷媒回路の最大冷凍能力と前記第1の被冷却環
境の所要の冷凍能力との差に対応した冷熱を蓄冷する蓄
熱剤を収容した蓄熱槽と、第2の圧縮機、第2の凝縮
器、第2の絞り装置、及び前記第1の被冷却環境よりも
低温にされる第2の被冷却環境を冷却する第2の蒸発器
を順次環状に接続してなる第2の冷媒回路と、前記第2
の冷媒回路の第2の凝縮器と第2の蒸発器との間に接続
され前記蓄熱槽の蓄熱剤からの冷熱を前記第2の冷媒回
路に供給する冷熱供給用熱交換器を有する第1の冷熱供
給回路とを具備してなる複合型冷媒回路設備。
1. A first refrigerant in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first cooled environment are sequentially connected in an annular shape. A circuit and the first
Through a heat storage refrigerant circuit in which a heat storage expansion device and a heat storage heat exchanger are sequentially connected to the refrigerant circuit in parallel with the first expansion device and the first evaporator, and the heat storage heat exchanger. A heat storage tank containing a heat storage agent for storing cold heat corresponding to a difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment; a second compressor; Second refrigerant formed by sequentially connecting the condenser, the second expansion device, and the second evaporator that cools the second cooled environment whose temperature is lower than that of the first cooled environment, in order. Circuit and the second
A heat exchanger for supplying cold heat, which is connected between the second condenser and the second evaporator of the refrigerant circuit and supplies the cold heat from the heat storage agent of the heat storage tank to the second refrigerant circuit. Combined type refrigerant circuit equipment comprising the cold heat supply circuit of.
【請求項2】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、及び第1の被冷却環境を冷却する第1の蒸発器
を順次環状に接続してなる第1の冷媒回路と、前記第1
の冷媒回路に前記第1の絞り装置及び第1の蒸発器と並
列に蓄熱用絞り装置及び蓄熱用熱交換器を順次接続して
なる蓄熱用冷媒回路と、前記蓄熱用熱交換器を介して前
記第1の冷媒回路の最大冷凍能力と前記第1の被冷却環
境の所要の冷凍能力との差に対応した冷熱を蓄冷する蓄
熱剤を収容した蓄熱槽と、第2の圧縮機、第2の凝縮
器、第2の絞り装置、及び前記第1の被冷却環境よりも
低温にされる第2の被冷却環境を冷却する第2の蒸発器
を順次環状に接続してなる第2の冷媒回路と、前記第2
の冷媒回路の第2の凝縮器と第2の蒸発器との間に接続
され前記蓄熱槽の蓄熱剤からの冷熱を前記第2の冷媒回
路に供給する冷熱供給用熱交換器を有する第1の冷熱供
給回路と、前記第1の被冷却環境に与えられた冷凍能力
に対応する物理量を検出する第1の冷凍能力検出装置
と、前記第1の冷媒回路の最大冷凍能力と前記検出され
た物理量に対応する冷凍能力との差に基づいて前記第1
の冷媒回路から前記蓄熱用熱交換器への冷媒の流通量を
制御する第1の冷媒流通量制御装置とを具備してなる複
合型冷媒回路設備。
2. A first refrigerant in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled are sequentially connected in an annular shape. A circuit and the first
Through a heat storage refrigerant circuit in which a heat storage expansion device and a heat storage heat exchanger are sequentially connected to the refrigerant circuit in parallel with the first expansion device and the first evaporator, and the heat storage heat exchanger. A heat storage tank containing a heat storage agent for storing cold heat corresponding to a difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment; a second compressor; Second refrigerant formed by sequentially connecting the condenser, the second expansion device, and the second evaporator that cools the second cooled environment whose temperature is lower than that of the first cooled environment, in order. Circuit and the second
A heat exchanger for supplying cold heat, which is connected between the second condenser and the second evaporator of the refrigerant circuit and supplies the cold heat from the heat storage agent of the heat storage tank to the second refrigerant circuit. A cooling power supply circuit, a first refrigerating capacity detecting device for detecting a physical quantity corresponding to the refrigerating capacity given to the first cooled environment, a maximum refrigerating capacity of the first refrigerant circuit and the detected Based on the difference from the refrigerating capacity corresponding to the physical quantity, the first
And a first refrigerant flow rate control device for controlling the flow rate of the refrigerant from the refrigerant circuit to the heat storage heat exchanger.
【請求項3】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、及び第1の被冷却環境を冷却する第1の蒸発器
を順次環状に接続してなる第1の冷媒回路と、前記第1
の冷媒回路に前記第1の絞り装置及び第1の蒸発器と並
列に蓄熱用絞り装置及び蓄熱用熱交換器を順次接続して
なる蓄熱用冷媒回路と、前記蓄熱用熱交換器を介して前
記第1の冷媒回路の最大冷凍能力と前記第1の被冷却環
境の所要の冷凍能力との差に対応した冷熱を蓄冷する蓄
熱剤を収容した蓄熱槽と、第2の圧縮機、第2の凝縮
器、第2の絞り装置、及び前記第1の被冷却環境よりも
低温にされる第2の被冷却環境を冷却する第2の蒸発器
を順次環状に接続してなる第2の冷媒回路と、前記第2
の冷媒回路の第2の凝縮器と第2の蒸発器との間に接続
され前記蓄熱槽の蓄熱剤からの冷熱を前記第2の冷媒回
路に供給する冷熱供給用熱交換器を有する第1の冷熱供
給回路と、前記第2の被冷却環境に与えられた冷凍能力
に対応する物理量を検出する第2の冷凍能力検出装置
と、前記第2の冷媒回路の最大冷凍能力と前記検出され
た物理量に対応する冷凍能力との差に基づいて前記第2
の冷媒回路から前記冷熱供給用熱交換器への冷媒の流通
量を制御する第2の冷媒流通量制御装置とを具備してな
る複合型冷媒回路設備。
3. A first refrigerant in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first cooled environment are sequentially connected in an annular shape. A circuit and the first
Through a heat storage refrigerant circuit in which a heat storage expansion device and a heat storage heat exchanger are sequentially connected to the refrigerant circuit in parallel with the first expansion device and the first evaporator, and the heat storage heat exchanger. A heat storage tank containing a heat storage agent for storing cold heat corresponding to a difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment; a second compressor; Second refrigerant formed by sequentially connecting the condenser, the second expansion device, and the second evaporator that cools the second cooled environment whose temperature is lower than that of the first cooled environment, in order. Circuit and the second
A heat exchanger for supplying cold heat, which is connected between the second condenser and the second evaporator of the refrigerant circuit and supplies the cold heat from the heat storage agent of the heat storage tank to the second refrigerant circuit. Cooling power supply circuit, a second refrigerating capacity detecting device for detecting a physical quantity corresponding to the refrigerating capacity given to the second cooled environment, the maximum refrigerating capacity of the second refrigerant circuit and the detected Based on the difference from the refrigerating capacity corresponding to the physical quantity, the second
And a second refrigerant flow rate control device for controlling the flow rate of the refrigerant from the refrigerant circuit to the heat exchanger for supplying cold heat.
【請求項4】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、及び第1の被冷却環境を冷却する第1の蒸発器
を順次環状に接続してなる第1の冷媒回路と、前記第1
の冷媒回路に前記第1の絞り装置及び第1の蒸発器と並
列に蓄熱用絞り装置及び蓄熱用熱交換器を順次接続して
なる蓄熱用冷媒回路と、前記蓄熱用熱交換器を介して前
記第1の冷媒回路の最大冷凍能力と前記第1の被冷却環
境の所要の冷凍能力との差に対応した冷熱を蓄冷する蓄
熱剤を収容した蓄熱槽と、第2の圧縮機、第2の凝縮
器、第2の絞り装置、及び前記第1の被冷却環境よりも
低温にされる第2の被冷却環境を冷却する第2の蒸発器
を順次環状に接続してなる第2の冷媒回路と、前記第2
の冷媒回路の第2の凝縮器と第2の蒸発器との間に接続
され前記蓄熱槽の蓄熱剤からの冷熱を前記第2の冷媒回
路に供給する冷熱供給用熱交換器を有する第1の冷熱供
給回路と、前記蓄熱用熱交換器と前記蓄熱槽との間に介
在して設けられ前記蓄熱槽からの蓄熱剤を循環させて前
記蓄熱用熱交換器の冷媒からの冷媒を前記蓄熱剤に与え
る第1の蓄熱剤循環装置と、前記冷熱供給用熱交換器と
前記蓄熱槽との間に介在して設けられ前記蓄熱槽からの
蓄熱剤を循環させて前記冷熱供給用熱交換器の冷媒に冷
熱を与える第2の蓄熱剤循環装置とを具備してなる複合
型冷媒回路設備。
4. A first refrigerant in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first cooled environment are sequentially connected in an annular shape. A circuit and the first
Through a heat storage refrigerant circuit in which a heat storage expansion device and a heat storage heat exchanger are sequentially connected to the refrigerant circuit in parallel with the first expansion device and the first evaporator, and the heat storage heat exchanger. A heat storage tank containing a heat storage agent for storing cold heat corresponding to a difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment; a second compressor; Second refrigerant formed by sequentially connecting the condenser, the second expansion device, and the second evaporator that cools the second cooled environment whose temperature is lower than that of the first cooled environment, in order. Circuit and the second
A heat exchanger for supplying cold heat, which is connected between the second condenser and the second evaporator of the refrigerant circuit and supplies the cold heat from the heat storage agent of the heat storage tank to the second refrigerant circuit. Of the cold heat supply circuit, the heat storage heat exchanger and the heat storage tank are provided between the heat storage tank to circulate the heat storage agent from the heat storage heat exchanger to circulate the refrigerant from the refrigerant of the heat storage heat exchanger. The first heat storage agent circulating device for giving heat to the agent, the heat exchanger for cold heat supply and the heat storage tank provided between the heat storage tank to circulate the heat storage agent from the heat storage tank to circulate the heat storage agent for cold heat supply. And a second heat storage agent circulating device for giving cold heat to the refrigerant of 1.
【請求項5】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、及び第1の被冷却環境を冷却する第1の蒸発器
を順次環状に接続してなる第1の冷媒回路と、前記第1
の冷媒回路に前記第1の絞り装置及び第1の蒸発器と並
列に蓄熱用絞り装置及び蓄熱用熱交換器を順次接続して
なる蓄熱用冷媒回路と、前記蓄熱用熱交換器を介して前
記第1の冷媒回路の最大冷凍能力と前記第1の被冷却環
境の所要の冷凍能力との差に対応した冷熱を蓄冷する蓄
熱剤を収容した蓄熱槽と、第2の圧縮機、第2の凝縮
器、第2の絞り装置、及び前記第1の被冷却環境よりも
低温にされる第2の被冷却環境を冷却する第2の蒸発器
を順次環状に接続してなる第2の冷媒回路と、前記第2
の冷媒回路の第2の凝縮器と第2の蒸発器との間に接続
され前記蓄熱槽の蓄熱剤からの冷熱を前記第2の冷媒回
路に供給する冷熱供給用熱交換器を有する第1の冷熱供
給回路と、前記蓄熱用熱交換器と前記蓄熱槽との間に介
在して設けられ前記蓄熱槽からの蓄熱剤を循環させて前
記蓄熱用熱交換器の冷媒からの冷熱を前記蓄熱剤に与え
る第1の蓄熱剤循環装置と、前記冷熱供給用熱交換器と
前記蓄熱槽との間に介在して設けられ前記蓄熱槽からの
蓄熱剤を循環させて前記冷熱供給用熱交換器の冷媒に冷
熱を与える第2の蓄熱剤循環装置と、前記第1の被冷却
環境に与えられた冷凍能力に対応する物理量を検出する
第1の冷凍能力検出装置と、前記第1の冷媒回路の最大
冷凍能力と前記検出された物理量に対応する冷凍能力と
の差に基づいて前記第1の蓄熱剤循環装置による蓄熱剤
の循環量を制御する第1の蓄熱剤循環量制御装置とを具
備してなる複合型冷媒回路設備。
5. A first refrigerant in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first cooled environment are sequentially connected in an annular shape. A circuit and the first
Through a heat storage refrigerant circuit in which a heat storage expansion device and a heat storage heat exchanger are sequentially connected to the refrigerant circuit in parallel with the first expansion device and the first evaporator, and the heat storage heat exchanger. A heat storage tank containing a heat storage agent for storing cold heat corresponding to a difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment; a second compressor; Second refrigerant formed by sequentially connecting the condenser, the second expansion device, and the second evaporator that cools the second cooled environment whose temperature is lower than that of the first cooled environment, in order. Circuit and the second
A heat exchanger for supplying cold heat, which is connected between the second condenser and the second evaporator of the refrigerant circuit and supplies the cold heat from the heat storage agent of the heat storage tank to the second refrigerant circuit. Of the cold heat supply circuit, the heat storage heat exchanger and the heat storage tank are provided between the heat storage tank to circulate the heat storage agent from the heat storage tank to cool the heat from the refrigerant of the heat storage heat exchanger. The first heat storage agent circulating device for giving heat to the agent, the heat exchanger for cold heat supply and the heat storage tank provided between the heat storage tank to circulate the heat storage agent from the heat storage tank to circulate the heat storage agent for cold heat supply. Second heat storage agent circulating device for giving cold heat to the refrigerant, a first refrigerating capacity detecting device for detecting a physical quantity corresponding to the refrigerating capacity given to the first cooled environment, and the first refrigerant circuit Based on the difference between the maximum refrigerating capacity of and the refrigerating capacity corresponding to the detected physical quantity. First heat storage agent circulation device first heat storage agent circulation quantity control device and the composite refrigerant circuit equipment consisting comprises a for controlling the circulation rate of the heat storage agent according to.
【請求項6】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、及び第1の被冷却環境を冷却する第1の蒸発器
を順次環状に接続してなる第1の冷媒回路と、前記第1
の冷媒回路に前記第1の絞り装置及び第1の蒸発器と並
列に蓄熱用絞り装置及び蓄熱用熱交換器を順次接続して
なる蓄熱用冷媒回路と、前記蓄熱用熱交換器を介して前
記第1の冷媒回路の最大冷凍能力と前記第1の被冷却環
境の所要の冷凍能力との差に対応した冷熱を蓄冷する蓄
熱剤を収容した蓄熱槽と、第2の圧縮機、第2の凝縮
器、第2の絞り装置、及び前記第1の被冷却環境よりも
低温にされる第2の被冷却環境を冷却する第2の蒸発器
を順次環状に接続してなる第2の冷媒回路と、前記第2
の冷媒回路の第2の凝縮器と第2の蒸発器との間に接続
され前記蓄熱槽の蓄熱剤からの冷熱を前記第2の冷媒回
路に供給する冷熱供給用熱交換器を有する第1の冷熱供
給回路と、前記蓄熱用熱交換器と前記蓄熱槽との間に介
在して設けられ前記蓄熱槽からの蓄熱剤を循環させて前
記蓄熱用熱交換器の冷媒からの冷熱を前記蓄熱剤に与え
る第1の蓄熱剤循環装置と、前記冷熱供給用熱交換器と
前記蓄熱槽との間に介在して設けられ前記蓄熱槽からの
蓄熱剤を循環させて前記冷熱供給用熱交換器の冷媒に冷
熱を与える第2の蓄熱剤循環装置と、前記第2の被冷却
環境に与えられた冷凍能力に対応する物理量を検出する
第2の冷凍能力検出装置と、前記第2の冷媒回路の最大
冷凍能力と前記検出された物理量に対応する冷凍能力と
の差に基づいて前記第2の蓄熱剤循環装置による蓄熱剤
の循環量を制御する第2の蓄熱剤循環量制御装置とを具
備してなる複合型冷媒回路設備。
6. A first refrigerant formed by sequentially connecting a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first environment to be cooled in an annular shape. A circuit and the first
Through a heat storage refrigerant circuit in which a heat storage expansion device and a heat storage heat exchanger are sequentially connected to the refrigerant circuit in parallel with the first expansion device and the first evaporator, and the heat storage heat exchanger. A heat storage tank containing a heat storage agent for storing cold heat corresponding to a difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment; a second compressor; Second refrigerant formed by sequentially connecting the condenser, the second expansion device, and the second evaporator that cools the second cooled environment whose temperature is lower than that of the first cooled environment, in order. Circuit and the second
A heat exchanger for supplying cold heat, which is connected between the second condenser and the second evaporator of the refrigerant circuit and supplies the cold heat from the heat storage agent of the heat storage tank to the second refrigerant circuit. Of the cold heat supply circuit, the heat storage heat exchanger and the heat storage tank are provided between the heat storage tank to circulate the heat storage agent from the heat storage tank to cool the heat from the refrigerant of the heat storage heat exchanger. The first heat storage agent circulating device for giving heat to the agent, the heat exchanger for cold heat supply and the heat storage tank provided between the heat storage tank to circulate the heat storage agent from the heat storage tank to circulate the heat storage agent for cold heat supply. Second heat storage agent circulating device for applying cold heat to the refrigerant, a second refrigerating capacity detecting device for detecting a physical quantity corresponding to the refrigerating capacity given to the second cooled environment, and the second refrigerant circuit Based on the difference between the maximum refrigerating capacity of and the refrigerating capacity corresponding to the detected physical quantity. The second heat storage agent circulation quantity control device and comprising comprises a composite refrigerant circuit equipment for controlling the circulation rate of the heat storage agent according to the second heat storage agent circulation system.
【請求項7】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、及び第1の被冷却環境を冷却する第1の蒸発器
を順次環状に接続してなる第1の冷媒回路と、前記第1
の冷媒回路に前記第1の絞り装置及び第1の蒸発器と並
列に蓄熱用絞り装置及び蓄熱用熱交換器を順次接続して
なる蓄熱用冷媒回路と、前記蓄熱用熱交換器を介して前
記第1の冷媒回路の最大冷凍能力と前記第1の被冷却環
境の所要の冷凍能力との差に対応した冷熱を蓄冷する蓄
熱剤を収容した蓄熱槽と、第2の圧縮機、第2の凝縮
器、第2の絞り装置、及び前記第1の被冷却環境よりも
低温にされる第2の被冷却環境を冷却する第2の蒸発器
を順次環状に接続してなる第2の冷媒回路と、前記第2
の冷媒回路の第2の凝縮器と第2の蒸発器との間に接続
され前記蓄熱槽の蓄熱剤からの冷熱を前記第2の冷媒回
路に供給する冷熱供給用熱交換器を有する第1の冷熱供
給回路と、前記第1の冷媒回路の第1の凝縮器と第1の
絞り装置との間に直列に接続されるとともに流路開閉自
在の回路開閉装置を有してなり前記第1の凝縮器からの
冷媒を前記蓄熱用熱交換器に迂回させて前記蓄熱槽の蓄
熱剤の冷熱を前記第1の冷媒回路に供給する第2の冷熱
供給回路と、前記蓄熱槽の蓄熱剤の蓄熱量を検出する蓄
熱量検出装置と、前記蓄熱剤の検出された蓄熱量に基づ
いて前記回路開閉装置を開閉して冷媒の流路を前記蓄熱
用冷媒回路と前記第2の冷熱供給回路とに切り換える冷
媒流路制御装置とを具備してなる複合型冷媒回路設備。
7. A first refrigerant formed by sequentially connecting a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first cooled environment in an annular shape. A circuit and the first
Through a heat storage refrigerant circuit in which a heat storage expansion device and a heat storage heat exchanger are sequentially connected to the refrigerant circuit in parallel with the first expansion device and the first evaporator, and the heat storage heat exchanger. A heat storage tank containing a heat storage agent for storing cold heat corresponding to a difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment; a second compressor; Second refrigerant formed by sequentially connecting the condenser, the second expansion device, and the second evaporator that cools the second cooled environment whose temperature is lower than that of the first cooled environment, in order. Circuit and the second
A heat exchanger for supplying cold heat, which is connected between the second condenser and the second evaporator of the refrigerant circuit and supplies the cold heat from the heat storage agent of the heat storage tank to the second refrigerant circuit. The cold heat supply circuit, the first condenser of the first refrigerant circuit, and the first expansion device, and a circuit opening / closing device for opening / closing the flow path, which is connected in series. A second cold heat supply circuit that supplies the cold heat of the heat storage agent in the heat storage tank to the first refrigerant circuit by diverting the refrigerant from the condenser of the heat storage heat exchanger to the heat storage agent in the heat storage tank; A heat storage amount detection device that detects a heat storage amount, and a circuit flow path is formed by opening and closing the circuit opening / closing device based on the detected heat storage amount of the heat storage agent to form the heat storage refrigerant circuit and the second cold heat supply circuit. Combined type refrigerant circuit equipment comprising a refrigerant flow control device for switching to.
【請求項8】 第1の圧縮機、第1の凝縮器、第1の絞
り装置、及び第1の被冷却環境を冷却する第1の蒸発器
を順次環状に接続してなる第1の冷媒回路と、前記第1
の冷媒回路に前記第1の絞り装置及び第1の蒸発器と並
列に蓄熱用絞り装置及び蓄熱用熱交換器を順次接続して
なる蓄熱用冷媒回路と、前記蓄熱用熱交換器を介して前
記第1の冷媒回路の最大冷凍能力と前記第1の被冷却環
境の所要の冷凍能力との差に対応した冷熱を蓄冷する蓄
熱剤を収容した蓄熱槽と、第2の圧縮機、第2の凝縮
器、第2の絞り装置、及び前記第1の被冷却環境よりも
低温にされる第2の被冷却環境を冷却する第2の蒸発器
を順次環状に接続してなる第2の冷媒回路とを備えた複
合型冷媒回路設備において、前記第2の凝縮器を、前記
蓄熱剤からの冷熱を前記第2の冷媒回路に供給可能に前
記蓄熱槽に設けたことを特徴とする複合型冷媒回路設
備。
8. A first refrigerant in which a first compressor, a first condenser, a first expansion device, and a first evaporator for cooling a first cooled environment are sequentially connected in an annular shape. A circuit and the first
Through a heat storage refrigerant circuit in which a heat storage expansion device and a heat storage heat exchanger are sequentially connected to the refrigerant circuit in parallel with the first expansion device and the first evaporator, and the heat storage heat exchanger. A heat storage tank containing a heat storage agent for storing cold heat corresponding to a difference between the maximum refrigerating capacity of the first refrigerant circuit and the required refrigerating capacity of the first cooled environment; a second compressor; Second refrigerant formed by sequentially connecting the condenser, the second expansion device, and the second evaporator that cools the second cooled environment whose temperature is lower than that of the first cooled environment, in order. In a composite refrigerant circuit facility including a circuit, the second condenser is provided in the heat storage tank so that cold heat from the heat storage agent can be supplied to the second refrigerant circuit. Refrigerant circuit equipment.
JP5026732A 1993-02-16 1993-02-16 Complex refrigerant circuit equipment Expired - Lifetime JP3046169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5026732A JP3046169B2 (en) 1993-02-16 1993-02-16 Complex refrigerant circuit equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5026732A JP3046169B2 (en) 1993-02-16 1993-02-16 Complex refrigerant circuit equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11830999A Division JP3453324B2 (en) 1999-04-26 1999-04-26 Complex refrigerant circuit equipment

Publications (2)

Publication Number Publication Date
JPH06241591A true JPH06241591A (en) 1994-08-30
JP3046169B2 JP3046169B2 (en) 2000-05-29

Family

ID=12201487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5026732A Expired - Lifetime JP3046169B2 (en) 1993-02-16 1993-02-16 Complex refrigerant circuit equipment

Country Status (1)

Country Link
JP (1) JP3046169B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303440A (en) * 2001-03-30 2002-10-18 Sanyo Electric Co Ltd Ice storage system
JP2016125730A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Heat storage type air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303440A (en) * 2001-03-30 2002-10-18 Sanyo Electric Co Ltd Ice storage system
JP2016125730A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Heat storage type air conditioner

Also Published As

Publication number Publication date
JP3046169B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
US5388420A (en) Heat storage type air conditioner, and defrosting method
EP1059494B1 (en) Refrigerating device
KR920000452B1 (en) Refrigerating cycle utilizing cold accumulation material
US9513036B2 (en) Air-conditioning apparatus
EP1059493B1 (en) Refrigerating plant
AU4798899A (en) Refrigeration system
JPWO2003062718A1 (en) Refrigeration equipment
AU745198B2 (en) Two-refrigerant refrigerating device
CN107367125B (en) Refrigerator and refrigerator control method
JP2009079863A (en) Refrigeration device
US20090288445A1 (en) Modular household refrigeration system and method
JP3731174B2 (en) Refrigeration cycle
JPH11201569A (en) Refrigerating machine
JP2001108345A (en) Two stage compression freezer/refrigerator
JP3499171B2 (en) Thermal storage cooling system
JPH06241591A (en) Composite refrigerant circuit facility
JP4120081B2 (en) Refrigeration equipment
JP3453324B2 (en) Complex refrigerant circuit equipment
GB2541607A (en) Refrigeration cycle device
JP2000240980A (en) Refrigerator/air conditioner
JP2000337716A (en) Multiple refrigerant circuit facility combined
JPH10311614A (en) Heat storage type cooling device
JP3858918B2 (en) Refrigeration equipment
JPH09280668A (en) Composite refrigerant circuit equipment
JPH07160937A (en) Automatic vending machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080317

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100317

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100317

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110317

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110317

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20130317

EXPY Cancellation because of completion of term