JP3026099B2 - Method and apparatus for producing amorphous spherical silica fine powder - Google Patents

Method and apparatus for producing amorphous spherical silica fine powder

Info

Publication number
JP3026099B2
JP3026099B2 JP02216685A JP21668590A JP3026099B2 JP 3026099 B2 JP3026099 B2 JP 3026099B2 JP 02216685 A JP02216685 A JP 02216685A JP 21668590 A JP21668590 A JP 21668590A JP 3026099 B2 JP3026099 B2 JP 3026099B2
Authority
JP
Japan
Prior art keywords
reaction tube
spherical silica
gas
amorphous spherical
silica fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02216685A
Other languages
Japanese (ja)
Other versions
JPH0497907A (en
Inventor
秀逸 松尾
洋二 永野
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP02216685A priority Critical patent/JP3026099B2/en
Publication of JPH0497907A publication Critical patent/JPH0497907A/en
Application granted granted Critical
Publication of JP3026099B2 publication Critical patent/JP3026099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機けい素化合物を原料としてCVD法(化
学的気相析出法)により非晶質球状シリカ微粉末を製造
する方法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method and an apparatus for producing amorphous spherical silica fine powder by a CVD method (chemical vapor deposition) using an organic silicon compound as a raw material. About.

〔従来の技術〕[Conventional technology]

非晶質球状シリカ微粉末は、合成樹脂等の高密度充填
材、合成石英ガラス用の原料等として用いられるもの
で、一般に、天然シリカ原料を酸水素炎中で溶融する火
炎溶融法、金属アルコキシドを加水分解するゾル−ゲル
法等の方法によって製造されている。
Amorphous spherical silica fine powder is used as a high-density filler such as a synthetic resin, a raw material for synthetic quartz glass, and the like. Generally, a flame melting method of melting a natural silica raw material in an oxyhydrogen flame, a metal alkoxide, It is manufactured by a method such as a sol-gel method for hydrolyzing

しかし、火炎溶融法では、溶融工程中に不純物が混入
し易く、又溶融球状化に必要なエネルギーコストが高
い。又、ゾル−ゲル法は、火炎溶融法に比べエネルギー
コストは低いが、殆んどの金属アルコキシドは非常に高
価であるため、全体的にコスト高となり、工業的に十分
なものではない。
However, in the flame melting method, impurities are easily mixed during the melting step, and the energy cost required for melt spheroidization is high. The sol-gel method has a lower energy cost than the flame melting method, but almost all metal alkoxides are very expensive, so that the overall cost is high and is not industrially sufficient.

従来、かかる問題を解決するため、有機けい素化合物
を原料としてCVD法により非晶質球状シリカ微粉末を製
造する方法が知られている。
Conventionally, in order to solve such a problem, there has been known a method for producing an amorphous spherical silica fine powder by a CVD method using an organic silicon compound as a raw material.

この製造方法は、縦型反応管内にその上部あるいは下
部から原料ガスをキャリヤーガスと共に導入し、原料ガ
スを加熱して気相反応させる、いわゆるCVD法(化学的
気相析出法)により非晶質球状シリカ微粒子を生成させ
るものである。
In this production method, a raw material gas is introduced into a vertical reaction tube from the upper or lower part together with a carrier gas, and the raw material gas is heated to cause a gas phase reaction, which is a so-called CVD (chemical vapor deposition) method. This is to produce spherical silica fine particles.

CVD法により非晶質球状シリカ微粉末を製造する方法
は、原料の精製が容易であり、得られる生成物が高純
度であること、生成する微粉末粒子の凝集が少なく粒
度分布が狭いこと、反応条件(温度、濃度)により粒
度分布を比較的容易に制御できること、反応系の雰囲
気制御が比較的容易であること等から注目されている。
The method of producing amorphous spherical silica fine powder by the CVD method is that the raw material is easy to purify, that the obtained product is of high purity, that the generated fine powder particles have less aggregation and that the particle size distribution is narrow, Attention has been paid to the fact that the particle size distribution can be relatively easily controlled by the reaction conditions (temperature and concentration), and the control of the atmosphere in the reaction system is relatively easy.

CVD法による非晶質球状シリカ微粒子の気相析出は原
理的には簡単であるが、微粒子の生成過程は複雑であ
る。微粒子を生成させるためには、反応速度を非常に
速くさせ核生成を一度に多量に出現させること、生成
した微粒子の成長を抑制するために急冷する必要がある
こと等が必要である。
The vapor phase deposition of amorphous spherical silica fine particles by the CVD method is simple in principle, but the process of forming the fine particles is complicated. In order to generate fine particles, it is necessary to make the reaction rate extremely high so that a large amount of nuclei appear at once, and it is necessary to rapidly cool to suppress the growth of the generated fine particles.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上記従来の非晶質球状シリカ微粉末の
製造方法においては、反応管が縦型であるため、その上
部あるいは下部から導入される導入ガスと生成微粒子と
の混合現象が生じ、目的生成物に副生成物が混入して回
収され、好ましくない。
However, in the above-mentioned conventional method for producing an amorphous spherical silica fine powder, since the reaction tube is a vertical type, a mixing phenomenon of an introduced gas introduced from an upper portion or a lower portion thereof and generated fine particles occurs, and a desired product is produced. Is mixed with by-products and recovered, which is not preferable.

又、生成微粒子が反応管中でのガス流の乱れ等により
所要時間以上滞留することによって、一部の粒子の成長
が促進され、粒度にばらつきを生じる問題がある。
In addition, since the generated fine particles stay for a required time or more due to turbulence of the gas flow in the reaction tube or the like, there is a problem that the growth of some particles is promoted and the particle size varies.

そこで、本発明は、目的生成物を確実に分離・回収
し、かつその流度分布を狭いものとし得る非晶質球状シ
リカ微粉末の製造方法及びその装置の提供を目的とす
る。
Accordingly, an object of the present invention is to provide a method for producing an amorphous spherical silica fine powder capable of reliably separating and recovering a target product and having a narrow flow distribution, and an apparatus therefor.

〔課題を解決するための手段〕[Means for solving the problem]

前記課題を解決するため、第1の発明の非晶質球状シ
リカ微粉末の製造方法は、有機けい素化合物を原料とし
てCVD法により非晶質球状シリカ微粉末を製造するにあ
たり、横型反応管内にその一端部から原料ガスと純水と
をキャリヤーガスと共に水平に導入すると共に、これら
を横型反応管の外周部から加熱して反応させながら、反
応にともなって生成する非晶質球状シリカ微粒子を横型
反応管内の他端部に堆積させる一方、副生成物及び未反
応ガスを横型反応管の他端部からその下方に導いて分離
・回収する方法である。
In order to solve the above-mentioned problems, a method for producing an amorphous spherical silica fine powder according to the first invention includes the steps of: producing an amorphous spherical silica fine powder by a CVD method using an organic silicon compound as a raw material; The raw material gas and pure water are introduced horizontally from one end together with the carrier gas, and while these are heated and reacted from the outer periphery of the horizontal reaction tube, the amorphous spherical silica fine particles produced by the reaction are removed horizontally. In this method, by-products and unreacted gas are introduced from the other end of the horizontal reaction tube to the lower side while being deposited on the other end of the reaction tube, and separated and recovered.

又、第2の発明の非晶質球状シリカ微粉末の製造装置
は、有機けい素化合物を原料としてCVD法により非晶質
球状シリカ微粉末を製造する装置であって、外周加熱方
式の横型反応管の一端部に反応ガス及び純水をそれぞれ
キャリヤーガスと共に水平に導入する原料ガス導入ノズ
ル及び純水導入ノズルを設ける一方、横型反応管内の他
端部に非晶質球状シリカ微粒子を堆積させる微粒子捕集
容器を設け、かつ横型反応管の他端部に副生成物と未反
応ガスとを分離・回収する分離回収ユニットを下方に位
置させて連設して構成したものである。
Further, an apparatus for producing amorphous spherical silica fine powder according to the second invention is an apparatus for producing amorphous spherical silica fine powder by a CVD method using an organic silicon compound as a raw material. A source gas introduction nozzle and a pure water introduction nozzle for horizontally introducing a reaction gas and pure water together with a carrier gas at one end of the tube, and fine particles for depositing amorphous spherical silica fine particles at the other end of the horizontal reaction tube. A collection vessel is provided, and a separation and recovery unit for separating and recovering by-products and unreacted gas is provided at the other end of the horizontal reaction tube and connected continuously at a lower position.

〔作用〕[Action]

上記手段においては、原料ガス、純水より生じた水蒸
気及びキャリヤーガスの流れが水平な平行流れ(層流)
となり、原料ガスは水蒸気と反応し、生成した非晶質球
状シリカ微粒子はガス速度の低下が起きると共に、粒子
同士の衝突あるいは反応管内壁との衝突により微粒子捕
集容器上に堆積する。
In the above means, the flow of the raw material gas, the steam generated from the pure water and the flow of the carrier gas are horizontal parallel flows (laminar flows)
Then, the raw material gas reacts with the water vapor, and the generated amorphous spherical silica fine particles cause a reduction in the gas velocity, and are deposited on the fine particle collecting container by collision between the particles or collision with the inner wall of the reaction tube.

一方、反応に伴って生成する副生成物は、未反応ガス
と共に分離回収ユニットに送られ、未反応ガスと分離さ
れて回収される。
On the other hand, by-products generated during the reaction are sent to the separation and recovery unit together with the unreacted gas, and separated and recovered from the unreacted gas.

有機けい素化合物としては、常温で固体又は液体で、
加熱により気化し得るもの、例えばテトラクロロシラン
(SiCl4)、ヘキサメチルシクロトリシラザン(Si(C
H32NH)、テトラエトキシシラン(Si(OC2H5)、
テトラメトキシシラン(Si(OCH3)等が用いられ
る。
As an organic silicon compound, solid or liquid at normal temperature,
What can be vaporized by heating, for example, tetrachlorosilane (SiCl 4 ), hexamethylcyclotrisilazane (Si (C
H 3 ) 2 NH), tetraethoxysilane (Si (OC 2 H 5 ) 4 ),
Tetramethoxysilane (Si (OCH 3 ) 4 ) or the like is used.

キャリヤーガスとしては、窒素ガス、アルゴンガス、
ヘリウムガス等の不活性ガスが用いられる。
As carrier gas, nitrogen gas, argon gas,
An inert gas such as helium gas is used.

反応温度は、一般に800〜1200℃で、好ましくは1000
〜1100℃である。
The reaction temperature is generally 800-1200 ° C., preferably 1000
~ 1100 ° C.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明に係る非晶質球状シリカ微粉末の製造
装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of an apparatus for producing amorphous spherical silica fine powder according to the present invention.

図中1は石英ガラス又はアルミナからなる円筒状の横
型反応管で、中間部付近の外周にその中の均熱部を900
〜1200℃の温度で加熱する外部加熱炉2を備えている。
横型反応管1の一端部(図においては右端部)には、蒸
発器(図示せず)で気化された原料ガス及び純水製造装
置(図示せず)で製造された純水をそれぞれキャリヤー
ガスと共に水平に導入する原料ガス導入ノズル3及び純
水導入ノズル4が設けられている一方、横型反応管1内
の外部加熱炉2によって加熱されない他端部(図におい
ては左端部)には、非晶質球状シリカ微粒子を堆積させ
る微粒子捕集容器5が収容されている。両ノズル3,4及
び微粒子捕集容器5は、いずれも横型反応管1と同様に
石英ガラス等からなり、両ノズル3,4の先端は、それら
の中間部の内径より少なくとも1/3以下の内径であり、
又は微粒子捕集容器5は、横型反応管1の内径より小さ
な半筒状のもので、外周面が横型反応管1の内周面と接
触するように設けられている。
In the figure, reference numeral 1 denotes a cylindrical horizontal reaction tube made of quartz glass or alumina.
An external heating furnace 2 for heating at a temperature of ~ 1200 ° C is provided.
A raw material gas vaporized by an evaporator (not shown) and pure water produced by a pure water production device (not shown) are respectively supplied to a carrier gas at one end (right end in the figure) of the horizontal reaction tube 1. The raw material gas introduction nozzle 3 and the pure water introduction nozzle 4 which are introduced horizontally are provided, while the other end (the left end in the figure) which is not heated by the external heating furnace 2 in the horizontal reaction tube 1 has a non- A fine particle collection container 5 for depositing crystalline spherical silica fine particles is accommodated therein. Both the nozzles 3 and 4 and the particle collecting container 5 are made of quartz glass or the like, like the horizontal reaction tube 1. The tips of the nozzles 3 and 4 are at least 1/3 or less of the inner diameter of the middle part thereof. Inside diameter,
Alternatively, the fine particle collection container 5 is a half-cylindrical shape smaller than the inner diameter of the horizontal reaction tube 1, and is provided so that the outer peripheral surface is in contact with the inner peripheral surface of the horizontal reaction tube 1.

又、横型反応管1の他端部の下方には、副生成物と未
反応ガスとを分離・回収する分離回収ユニット6が配設
されており、この分離回収ユニットは、横型反応管1の
他端とこれと同径の導管7を介して連通されている。分
離回収ユニット6及び導管7は、横型反応管1と同様に
石英ガラス等からなり、分離回収ユニット6は、横型反
応管1の径より少なくとも2倍、好ましくは3倍以上の
径の円筒状の上部と、これに連らなる漏斗状の下部とか
ら構成されている。そして、分離回収ユニット6の上部
内には、導管7が下端部を突出した構造で接続されてい
る一方、分離回収ユニット6の上部には、未反応ガスを
回収するガス回収パイプ8が設けられ、又、分離回収ユ
ニット6の下部には、副生成物を回収するコック9等が
設けられている。
Further, below the other end of the horizontal reaction tube 1, a separation and recovery unit 6 for separating and recovering by-products and unreacted gas is provided. The other end is communicated through a conduit 7 having the same diameter as the other end. The separation / recovery unit 6 and the conduit 7 are made of quartz glass or the like as in the case of the horizontal reaction tube 1, and the separation / recovery unit 6 has a cylindrical shape having a diameter of at least twice, preferably three times or more the diameter of the horizontal reaction tube 1. It is composed of an upper part and a funnel-shaped lower part connected to the upper part. In the upper part of the separation and recovery unit 6, a conduit 7 is connected with a structure projecting from the lower end, while a gas recovery pipe 8 for recovering unreacted gas is provided in the upper part of the separation and recovery unit 6. Further, a cock 9 for collecting by-products and the like are provided below the separation and collection unit 6.

上記構成の製造装置においては、蒸発器でガス化され
た原料ガスがキャリヤーガスと共に原料ガス導入ノズル
3から横型反応管1内に水平に導入される一方、純水製
造装置で製造された純水がキャリヤーガスと共に純水導
入ノズル4から横型反応管1内に水平に導入され水蒸気
となり、原料ガスと共に平行流れとなって横型反応管1
内を流れ、外部加熱炉2による加熱により、原料ガスは
水蒸気と反応し、生成した非晶質球状シリカ微粉末粒子
は、ガス速度の低下と共に、粒子同士の衝撃あるいは反
応管内壁との衝突により微粒子捕集容器5上に堆積す
る。
In the manufacturing apparatus having the above configuration, the raw material gas gasified by the evaporator is horizontally introduced into the horizontal reaction tube 1 from the raw material gas introducing nozzle 3 together with the carrier gas, while the pure water produced by the pure water manufacturing apparatus is produced. Is horizontally introduced into the horizontal reaction tube 1 from the pure water introduction nozzle 4 together with the carrier gas to become steam, and flows in parallel with the raw material gas to form a parallel flow.
The raw material gas reacts with water vapor by heating by the external heating furnace 2, and the generated amorphous spherical silica fine powder particles decrease in gas velocity, and due to impact between the particles or collision with the inner wall of the reaction tube. The particles are deposited on the particle collection container 5.

一方、反応に伴って生成する副生成物は、未反応ガス
と共に横型反応管1の他端部から導管7を経て分離回収
ユニット6に至り、未反応ガスと分離されてその下部に
堆積され、コック9の開放により回収され、未反応ガス
はガス回収パイプ8から回収される。
On the other hand, by-products generated during the reaction reach the separation / recovery unit 6 via the conduit 7 from the other end of the horizontal reaction tube 1 together with the unreacted gas, are separated from the unreacted gas, and are deposited thereunder. The unreacted gas is recovered by opening the cock 9 and the unreacted gas is recovered from the gas recovery pipe 8.

ここで、内径50mm、長さ1000mmの石英ガラス製横型反
応管1を外周加熱式の電気炉2により800℃に加熱し、
それぞれテトラクロロシラン約2g/分、純水約1g/分を、
キャリヤーガスとして窒素ガス約2/分と共にそれぞ
れの導入ノズル3,4より横型反応管1内に水平に導入し
たところ、横型反応管1内では直ちに非晶質球状シリカ
微粒子が生成し、生成した微粒子は微粒子捕集容器5上
に堆積した。
Here, a horizontal reaction tube 1 made of quartz glass having an inner diameter of 50 mm and a length of 1000 mm is heated to 800 ° C. by an electric furnace 2 of an outer periphery heating type.
About 2 g / min of tetrachlorosilane and about 1 g / min of pure water,
When the carrier gas was introduced horizontally into the horizontal reaction tube 1 from each of the introduction nozzles 3 and 4 together with nitrogen gas at about 2 / min, amorphous spherical silica fine particles were immediately generated in the horizontal reaction tube 1 and the generated fine particles were formed. Was deposited on the fine particle collection container 5.

反応1時間後の全生成微粉末に対する捕集、回収効率
は70〜80%で、残りは、横型反応管1内に残留あるいは
分離回路ユニット6へ飛散された。
One hour after the reaction, the collection and collection efficiency for all the generated fine powder was 70 to 80%, and the remainder remained in the horizontal reaction tube 1 or was scattered to the separation circuit unit 6.

微粒子捕集器5による生成微粉末には、不純物、副生
成物等は全く混入してなく、供給原料に対する回収微粉
末のけい素収率は50〜60%であった。又、走査形電子顕
微鏡による微粒子の形状の観察、マイクロトラックによ
る粒度分布の測定の結果、85%以上の粒子が真球状で、
粒度分布が狭く、かつ平均粒径が0.1〜1.0μm程度の球
状粒子であった。
No impurities, by-products, etc. were mixed in the fine powder produced by the fine particle collector 5 at all, and the silicon yield of the recovered fine powder with respect to the feed was 50 to 60%. Also, as a result of observing the shape of the fine particles with a scanning electron microscope and measuring the particle size distribution with a microtrack, more than 85% of the particles were truly spherical,
The spherical particles had a narrow particle size distribution and an average particle size of about 0.1 to 1.0 μm.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、原料ガス、純水より生
じた水蒸気及びキャリヤーガスの流れが水平な平行流れ
となるので、従来のように反応管中における生成微粒子
の滞留時間が不規則になることがなく、生成微粒子の粒
度分布を狭くすることができる。
As described above, according to the present invention, the flow of the raw material gas, the steam generated from pure water and the flow of the carrier gas become horizontal parallel flows, so that the residence time of the generated fine particles in the reaction tube is irregular as in the related art. And the particle size distribution of the produced fine particles can be narrowed.

又、原料ガスは水蒸気と反応し、生成した非晶質球状
シリカ微粒子はガス速度の低下が起こると共に、粒子同
士の衝突あるいは反応管内壁との衝突により微粒子捕集
容器上に堆積する一方、反応に伴って生成する副生成物
は、未反応ガスと共に、分離回収ユニットに送られ、未
反応ガスと分離されて回収されるので、従来に比し、目
的生成物を確実に分離・回収することができる。
In addition, the raw material gas reacts with water vapor, and the generated amorphous spherical silica fine particles decrease in gas velocity, and are deposited on the fine particle collection container by collision of the particles or collision with the inner wall of the reaction tube, while the reaction proceeds. The by-products generated along with the unreacted gas are sent to the separation / recovery unit and separated and recovered from the unreacted gas, so the target product can be more reliably separated and recovered than before. Can be.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る非晶質球状シリカ微粉末の製造装
置の一実施例を示す概略構成図である。 1……横型反応管、2……外部加熱炉 3……原料ガス導入ノズル、4……純水導入ノズル 5……微粒子捕集容器 6……分離回収ユニット、7……導管 8……ガス回収パイプ、9……コック
FIG. 1 is a schematic configuration diagram showing one embodiment of an apparatus for producing fine amorphous spherical silica powder according to the present invention. DESCRIPTION OF SYMBOLS 1 ... Horizontal reaction tube 2 ... External heating furnace 3 ... Material gas introduction nozzle 4 ... Pure water introduction nozzle 5 ... Fine particle collection container 6 ... Separation and recovery unit 7 ... Conduit 8 ... Gas Collection pipe, 9 ... cock

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01B 33/12 - 33/193 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) C01B 33/12-33/193

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機けい素化合物を原料としてCVD法によ
り非晶質球状シリカ微粉末を製造するにあたり、横型反
応管内にその一端部から原料ガスと純水とをキャリヤー
ガスと共に水平に導入すると共に、これらを横型反応管
の外周部から加熱して反応させながら、反応にともなっ
て生成する非晶質球状シリカ微粒子を横型反応管内の他
端部に堆積させる一方、副生成物及び未反応ガスを横型
反応管の他端部からその下方に導いて分離・回収するこ
とを特徴とする非晶質球状シリカ微粉末の製造方法。
In producing an amorphous spherical silica fine powder by a CVD method using an organic silicon compound as a raw material, a raw material gas and pure water are horizontally introduced together with a carrier gas from one end thereof into a horizontal reaction tube. While heating and reacting these from the outer peripheral portion of the horizontal reaction tube, while depositing amorphous spherical silica fine particles generated by the reaction at the other end in the horizontal reaction tube, by-products and unreacted gas are removed. A method for producing an amorphous spherical silica fine powder, wherein the fine powder is guided from the other end of a horizontal reaction tube to a lower portion thereof for separation and recovery.
【請求項2】有機けい素化合物を原料としてCVD法によ
り非晶質球状シリカ微粉末を製造する装置であって、外
周加熱方式の横型反応管の一端部に反応ガス及び純水を
それぞれキャリヤーガスと共に導入する原料ガス導入ノ
ズル及び純水導入ノズルを設ける一方、横型反応管内の
他端部に非晶質球状シリカ微粒子を堆積させる微粒子捕
集容器を設け、かつ横型反応管の他端部に副生成物と未
反応ガスとを分離・回収する分離回収ユニットを下方に
位置させて連設して構成したことを特徴とする非晶質球
状シリカ微粉末の製造装置。
2. An apparatus for producing amorphous spherical silica fine powder by a CVD method using an organosilicon compound as a raw material, wherein a reaction gas and pure water are respectively supplied to one end of a horizontal reaction tube of an outer peripheral heating system by a carrier gas. A raw material gas introduction nozzle and a pure water introduction nozzle are also provided, and a fine particle collection container for depositing amorphous spherical silica fine particles is provided at the other end of the horizontal reaction tube, and a sub-particle collection container is provided at the other end of the horizontal reaction tube. An apparatus for producing fine amorphous spherical silica powder, characterized in that a separation and recovery unit for separating and recovering a product and an unreacted gas is located below and connected continuously.
JP02216685A 1990-08-17 1990-08-17 Method and apparatus for producing amorphous spherical silica fine powder Expired - Fee Related JP3026099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02216685A JP3026099B2 (en) 1990-08-17 1990-08-17 Method and apparatus for producing amorphous spherical silica fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02216685A JP3026099B2 (en) 1990-08-17 1990-08-17 Method and apparatus for producing amorphous spherical silica fine powder

Publications (2)

Publication Number Publication Date
JPH0497907A JPH0497907A (en) 1992-03-30
JP3026099B2 true JP3026099B2 (en) 2000-03-27

Family

ID=16692322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02216685A Expired - Fee Related JP3026099B2 (en) 1990-08-17 1990-08-17 Method and apparatus for producing amorphous spherical silica fine powder

Country Status (1)

Country Link
JP (1) JP3026099B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0677326A4 (en) * 1992-12-28 1996-08-28 Kao Corp Method of manufacturing fine ceramic particles and apparatus therefor.
JP4542209B2 (en) * 1998-12-16 2010-09-08 日揮株式会社 Method for producing polycrystalline silicon and method for producing high-purity silica

Also Published As

Publication number Publication date
JPH0497907A (en) 1992-03-30

Similar Documents

Publication Publication Date Title
US3012862A (en) Silicon production
US6861144B2 (en) Polycrystalline silicon and process and apparatus for producing the same
US4084024A (en) Process for the production of silicon of high purity
US5077028A (en) Manufacturing high purity/low chlorine content silicon by feeding chlorosilane into a fluidized bed of silicon particles
US4668493A (en) Process for making silicon
US5021221A (en) Apparatus for producing high purity silicon from flames of sodium and silicon tetrachloride
JPH0755814B2 (en) Continuous silicon refining method
JPH0264006A (en) Production of solar silicon
JPH0692712A (en) Particulate oxide ceramic powder
JP3026099B2 (en) Method and apparatus for producing amorphous spherical silica fine powder
US20040091630A1 (en) Deposition of a solid by thermal decomposition of a gaseous substance in a cup reactor
JP2008037735A (en) Apparatus for manufacturing silicon
JP2003054933A (en) Reaction apparatus for producing silicon
CA1198581A (en) Method and apparatus for producing high purity silicon from flames of sodium and silicon tetrachloride
JP4639004B2 (en) Silicon manufacturing apparatus and manufacturing method
JP2010095433A (en) Method of manufacturing silicon
US5618960A (en) Fine particle silicon containing surface-bound halogen, a process for its production and its use
JPH06127923A (en) Fluidized bed reactor for producing polycrystalline silicon
JP2003002626A (en) Reaction apparatus for producing silicon
JP4099322B2 (en) Method for producing silicon
US10683209B2 (en) Ultra-high temperature precipitation process for manufacturing polysilicon
JPS6119573B2 (en)
EP0045600B1 (en) Improved method for producing semiconductor grade silicon
JPS62292607A (en) Method and apparatus for producing fine powder by cvd
JPS5825045B2 (en) Method for producing SiC ultrafine particles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees