JP2008037735A - Apparatus for manufacturing silicon - Google Patents

Apparatus for manufacturing silicon Download PDF

Info

Publication number
JP2008037735A
JP2008037735A JP2006231250A JP2006231250A JP2008037735A JP 2008037735 A JP2008037735 A JP 2008037735A JP 2006231250 A JP2006231250 A JP 2006231250A JP 2006231250 A JP2006231250 A JP 2006231250A JP 2008037735 A JP2008037735 A JP 2008037735A
Authority
JP
Japan
Prior art keywords
silicon
zinc
reaction
gas
reaction tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006231250A
Other languages
Japanese (ja)
Inventor
Takayuki Shimamune
孝之 島宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KINOTECH CORP
Original Assignee
KINOTECH CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KINOTECH CORP filed Critical KINOTECH CORP
Priority to JP2006231250A priority Critical patent/JP2008037735A/en
Publication of JP2008037735A publication Critical patent/JP2008037735A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a high-purity silicon pure enough to be used in a solar battery, by the reduction of silicon tetrachloride by zinc gas. <P>SOLUTION: In the manufacturing method, the zinc gas or a zinc-containing gas essentially comprising zinc gas is constantly sent to a reactor to induce a zinc gas atmosphere therein, silicon tetrachloride in a liquid state is introduced to the reactor, a zinc reduction reaction is induced to produce a silicon, and only a reaction product gas is discharged from the reactor at the reactor terminal so that the produced silicon is locally accumulated inside the reactor. A part where the produced silicon is locally accumulated inside the reactor is a silicon melt-retaining tank which is kept at a temperature equal to or higher than the melting point of the silicon. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は主として太陽電池や電子部品に使用するシリコンを低消費エネルギーで得ることができる四塩化珪素を金属亜鉛により還元して、高純度シリコンを得るためのシリコンの製造装置に関する。  The present invention mainly relates to an apparatus for producing silicon for obtaining high-purity silicon by reducing silicon tetrachloride, which can obtain silicon used for solar cells and electronic components with low energy consumption, with metallic zinc.

現在一般的な高純度シリコンの製造は、シーメンス法と呼ばれる方法で、粗製シリコンを塩化水素で処理してトリクロロシラン、あるいはジクロロシランやモノクロロシランを製造し、これらシラン化合物を原料として、化学的気相成長法により製造されている。このシーメンス法によって、極めて高純度のシリコンを得ることができるが、中間物質である各シラン化合物を生成する過程で、シラン化合物より安定な四塩化珪素が副生物として生成することが避けられず、目的とするシラン類の歩留りが50%、あるいはそれ以下となってしまう。さらに、シリコン生成にかかる反応が極めて遅いばかりでなく、シリコンを生成する前に、シラン類がより安定な四塩化珪素に反応塔中で変化してしまうので、収率は決してよくない。このため、一定の製造能力を得るために大規模な設備が必要となるため、設備投資の負担が重く、加えて、製造に必要とされる電力消費量も、シリコン1kgあたり350kWhにもなるとされている。このような製法で製造された高純度シリコンは、付加価値が高い高集積化電子デバイス用として優れているが、今後、急速に市場が拡大するとされている太陽電池やIC−タグなどに用いるシリコン材料としては、高コストに過ぎ、過剰品質である。さらに、この製造方法で多量に発生する副生物である四塩化珪素の処理が問題となってきている。この四塩化珪素は、水で分解することにより良質の二酸化酸化珪素が得られることから、従来から、石英ガラス原料などに使用されてきた。しかし、シリコン生産の増加と共に、過剰な状態となってきている。  Currently, the production of high-purity silicon is a method called the Siemens method, in which crude silicon is treated with hydrogen chloride to produce trichlorosilane, dichlorosilane, or monochlorosilane, and these silane compounds are used as raw materials for chemical vaporization. Manufactured by phase growth method. By this Siemens method, extremely high purity silicon can be obtained, but in the process of producing each silane compound as an intermediate substance, it is inevitable that silicon tetrachloride, which is more stable than the silane compound, is produced as a by-product, The target yield of silanes is 50% or less. Furthermore, not only is the reaction for silicon production very slow, but the yield is never good because silanes are converted into more stable silicon tetrachloride in the reaction tower before silicon is produced. For this reason, a large-scale facility is required to obtain a certain production capacity, so the burden of capital investment is heavy. In addition, the power consumption required for the production is estimated to be 350 kWh per 1 kg of silicon. ing. High-purity silicon manufactured by such a manufacturing method is excellent for highly integrated electronic devices with high added value. However, silicon used for solar cells and IC-tags whose market is expected to expand rapidly in the future. The material is too expensive and is over quality. Furthermore, the treatment of silicon tetrachloride, which is a by-product generated in a large amount by this production method, has become a problem. This silicon tetrachloride has been conventionally used as a raw material for quartz glass and the like since it can be obtained by decomposing with water to obtain high-quality silicon dioxide oxide. However, with the increase in silicon production, it has become excessive.

これに代わるシリコンの製造方法として、古くから、四塩化珪素を原料とする方法が知られている。つまり、四塩化珪素を高温で金属亜鉛によって還元して、高純度シリコンを製造する方法である。1950年代に米国デュポン社が実用化したとされ、そこでは、950℃の温度で、四塩化珪素と亜鉛をガス相で反応させて、高純度シリコンを得たとされる。しかし、シーメンス法に匹敵する高純度を得ることは難しく、さらに、反応副生成物の塩化亜鉛とシリコンの分離、大量に生成する塩化亜鉛の処理に問題があったとされている。このため、この塩化亜鉛還元法は、上記のトリクロロシランを原料とするシーメンス法によるシリコン製造法が、技術的完成度をあげるにつれて、忘れ去られた存在となってしまっていた。  As an alternative method for producing silicon, a method using silicon tetrachloride as a raw material has been known for a long time. That is, this is a method for producing high-purity silicon by reducing silicon tetrachloride with zinc metal at a high temperature. In the 1950's, DuPont USA was put into practical use, where high-purity silicon was obtained by reacting silicon tetrachloride and zinc in the gas phase at a temperature of 950 ° C. However, it is difficult to obtain a high purity comparable to that of the Siemens method, and further, there are problems in the separation of the reaction by-product zinc chloride and silicon, and the treatment of zinc chloride produced in large quantities. For this reason, this zinc chloride reduction method has been forgotten as the silicon production method based on the Siemens method using trichlorosilane as a raw material has been improved.

一方、特許文献1および特許文献2には溶融亜鉛と四塩化珪素ガスを反応させることによって高純度シリコンを得る方法が示されている。この方法では、バッチ式で生成したシリコンを亜鉛及び塩化亜鉛と分離しなければならず、製造プロセスが煩雑になると共に、分離操作に伴う不純物の混入という問題を残していた。特許文献3および特許文献4では、ガス相での還元反応条件の見直が試みられていると共に、電気分解による反応副生物の塩化亜鉛の処理について言及されているものの、工業的に利用できる技術としての具体的技術内容に関する記述はほとんど無い。  On the other hand, Patent Document 1 and Patent Document 2 show a method for obtaining high-purity silicon by reacting molten zinc with silicon tetrachloride gas. In this method, silicon produced in a batch system must be separated from zinc and zinc chloride, and the manufacturing process becomes complicated and the problem of contamination of impurities accompanying the separation operation remains. Patent Document 3 and Patent Document 4 attempt to review the reduction reaction conditions in the gas phase and mention the treatment of reaction by-product zinc chloride by electrolysis, but can be used industrially. There is almost no description about the specific technical contents.

特開平11−060228公報Japanese Patent Laid-Open No. 11-060228 特開平11−092130公報Japanese Patent Laid-Open No. 11-092130 特開2003−034519公報JP 2003-034519 A 特開2003−095633公報JP 2003-095633 A

本発明者らは特許文献5から特許文献10において、反応生成物であるシリコンの容易で効率的な取り出しを実現するとの観点から、四塩化珪素ガスの亜鉛ガスによる還元反応における好適な反応温度、反応塔内壁温度、原料モル比、キャリアガスを示し、併せて、高純度シリコンを液体状態で取り出すことのできる、生成物取り出し機構の導入を提案してきた。これらの発明と、溶融塩電解による副生成物の塩化亜鉛から亜鉛を分離し、これを再利用することによって、反応系を外気から遮断した閉鎖系とする道を拓き、効率的連続運転を可能とした。これらの発明に基ずく高純度シリコン製造システムの消費エネルギーは、シーメンス法による高純度シリコン製造に要するエネルギーの、約1/10から1/5に程度まで減らすことができている。この製造システムで得られるシリコンは、シーメンス法によって製造される超高純度シリコンと比較すると、その純度が若干劣りはするものの、太陽電池用としては十分である。  From the viewpoint of realizing easy and efficient removal of silicon as a reaction product in Patent Document 5 to Patent Document 10, the present inventors have preferred reaction temperature in a reduction reaction of silicon tetrachloride gas with zinc gas, The reaction tower inner wall temperature, raw material molar ratio, and carrier gas are shown, and it has been proposed to introduce a product take-out mechanism that can take out high-purity silicon in a liquid state. By separating zinc from by-product zinc chloride by molten salt electrolysis and reusing it, these inventions can be reused to open a closed system that shuts off the reaction system from outside air, enabling efficient continuous operation. It was. The energy consumption of the high purity silicon production system based on these inventions can be reduced from about 1/10 to 1/5 of the energy required for high purity silicon production by the Siemens method. Silicon obtained by this production system is sufficient for solar cells, although its purity is slightly inferior to that of ultra-high purity silicon produced by the Siemens method.

特開2003−342016公報JP 2003-342016 A 特開2004−010472公報JP 2004-010472 A 特開2004−035382公報JP 2004-035382 A 特開2004−099421公報JP 2004-099421 A 特開2004−210594公報Japanese Patent Laid-Open No. 2004-210594 特開2004−284935公報JP 2004-284935 A

このように従来技術によって、四塩化珪素の亜鉛ガスによる還元反応によって、太陽電池用として十分な純度を有する高純度シリコンを、連続運転によって得ることのできる装置を実現することができている。しかし、この還元反応は、四塩化珪素ガス1モルと亜鉛ガス2モルから、塩化亜鉛ガス2モルと固体のシリコン1モルを生成する反応であり、反応の前後で、反応に関わるガスは、1モル分減ってしまう。不活性ガス等をキャリアガスとして使い、少なくとも一方の原料ガスが希薄な状態で反応を生起させれば、体積変動は相対的に少なく、反応系の圧力変動は、無視することができる。しかし、シリコン生産効率を向上すべく、反応管へ原料ガスを十分に導入した場合は、還元反応に伴う圧力変動が、無視できなくなり、反応系を安定に保持することが難しくなる。本発明は、四塩化珪素の亜鉛還元による高純度シリコンの製造において、原料を十分に供給して、高いシリコンの製造効率を得ると共に、反応系の安定性を維持できる製造装置を提供することを目的としている。  Thus, according to the prior art, an apparatus capable of obtaining high-purity silicon having sufficient purity for solar cells by continuous operation by reduction reaction of silicon tetrachloride with zinc gas can be realized. However, this reduction reaction is a reaction that generates 2 mol of zinc chloride gas and 1 mol of solid silicon from 1 mol of silicon tetrachloride gas and 2 mol of zinc gas. Before and after the reaction, the gas involved in the reaction is 1 Decrease by mole. If an inert gas or the like is used as the carrier gas and the reaction is caused in a state where at least one of the source gases is dilute, the volume fluctuation is relatively small, and the pressure fluctuation in the reaction system can be ignored. However, when the raw material gas is sufficiently introduced into the reaction tube in order to improve the silicon production efficiency, the pressure fluctuation accompanying the reduction reaction cannot be ignored and it becomes difficult to keep the reaction system stable. The present invention provides a production apparatus capable of sufficiently supplying raw materials to obtain high silicon production efficiency and maintaining the stability of a reaction system in the production of high purity silicon by zinc reduction of silicon tetrachloride. It is aimed.

前記課題を解決するために、本発明は、亜鉛ガス、または亜鉛ガスを主体とする亜鉛混合ガスを定常的に送り込んで、亜鉛ガス雰囲気とした反応塔内に、四塩化珪素を液体状態で導入して、亜鉛還元反応を生起させ、この反応で生成されたシリコンを、反応塔終端部において、反応生成ガスのみを反応塔外部に排出し、前記生成シリコンを反応塔内に局所的に蓄積することを特徴としている。液体状の四塩化珪素の反応塔内への導入では、反応塔内に四塩化珪素導入管を設け、四塩化珪素を反応塔中に霧状に放出、または、液滴状に放出し反応塔内を落下させる。本発明にかかる反応塔は、亜鉛還元反応が生起する部分が、亜鉛混合ガスおよび反応生成ガスが横方向に流れる横型反応塔であって、亜鉛還元反応によって生成したシリコンを、反応生成ガスと共に輸送して、横型反応塔に接続された縦型分離塔に導き、この縦型分離塔内で、反応生成ガスと生成シリコンを分離することを特徴とする。あるいは本発明にかかる反応塔は、反応塔の亜鉛還元反応が生起する部分が、亜鉛混合ガスが旋回流となるように導入した縦型反応塔であって、この旋回流中に導入された液体状態四塩化珪素の亜鉛還元反応で生成したシリコンを、縦型反応塔に直結されたサイクロン型分離器によって、反応生成ガスと生成したシリコンを分離し、反応生成ガスを上方または下方に排出する。本発明の生成シリコンを反応塔内に局所的に蓄積する部分は、シリコン溶融保持槽であり、シリコンの溶融温度以上に保持されている。  In order to solve the above-described problems, the present invention introduces silicon tetrachloride in a liquid state into a reaction tower in which zinc gas or a zinc mixed gas mainly composed of zinc gas is constantly fed to form a zinc gas atmosphere. Then, a zinc reduction reaction is caused, and the silicon produced by this reaction is discharged at the terminal end of the reaction tower only the reaction product gas to the outside of the reaction tower, and the produced silicon is locally accumulated in the reaction tower. It is characterized by that. In the introduction of liquid silicon tetrachloride into the reaction tower, a silicon tetrachloride introduction pipe is provided in the reaction tower, and silicon tetrachloride is discharged into the reaction tower in the form of a mist or in the form of droplets. Drop inside. In the reaction tower according to the present invention, the portion where the zinc reduction reaction occurs is a horizontal reaction tower in which the zinc mixed gas and the reaction product gas flow in the lateral direction, and transports silicon produced by the zinc reduction reaction together with the reaction product gas. And it guide | induces to the vertical separation tower connected to the horizontal reaction tower, It is characterized by isolate | separating reaction product gas and production | generation silicon | silicone in this vertical separation tower. Alternatively, the reaction tower according to the present invention is a vertical reaction tower in which the zinc reduction gas in the reaction tower is introduced so that the zinc mixed gas becomes a swirl flow, and the liquid introduced into the swirl flow The silicon produced by the zinc reduction reaction of the state silicon tetrachloride is separated from the reaction product gas and the produced silicon by a cyclone separator directly connected to the vertical reaction tower, and the reaction product gas is discharged upward or downward. The part where the produced silicon of the present invention is locally accumulated in the reaction tower is a silicon melting holding tank, which is held at a temperature equal to or higher than the melting temperature of silicon.

本発明にかかる高純度シリコン製造装置において、四塩化珪素は液体状態で、亜鉛ガスが充満した反応塔内に導入される。本発明にかかる反応塔内温度は、1000℃以上に保たれているため、反応塔内に導入された四塩化珪素は、急激に気化しようとするが、四塩化珪素の亜鉛還元反応の速度は極めて速いので、気化して爆発的に膨張する前に、亜鉛ガスによって還元され、シリコンと塩化亜鉛に変化する。液体状の四塩化珪素の体積は、高温ガスに比較して極めて小さく、本発明にかかる還元反応過程においては、固体のシリコン1モルと液体の四塩化珪素の体積を無視することができ、実質的に、亜鉛ガス2モルが、塩化亜鉛ガス2モルに変化する反応と考えて差し支えない。従って、本発明の高純度シリコン製造装置を持ってすれば、反応塔内に原料を大量に投入したとしても、反応の前後で大きな体積変動が発生することがなく、反応塔内での圧力変動が抑圧された安定した反応を実現することができる。さらに、液状の四塩化珪素から直接生成するシリコンは、微結晶が連結した繊維状の形状となりやすく、このため、粉末状のシリコンが形成する事が多い、従来技術に較べ、反応ガスと精製シリコンの分離が、容易にできるようになる効果もある。  In the high purity silicon production apparatus according to the present invention, silicon tetrachloride is introduced in a liquid state into a reaction tower filled with zinc gas. Since the temperature in the reaction tower according to the present invention is maintained at 1000 ° C. or higher, silicon tetrachloride introduced into the reaction tower tends to vaporize rapidly, but the rate of the zinc reduction reaction of silicon tetrachloride is Because it is extremely fast, it is reduced by zinc gas before being vaporized and expanded explosively, changing to silicon and zinc chloride. The volume of liquid silicon tetrachloride is extremely small compared to high-temperature gas, and in the reduction reaction process according to the present invention, the volume of 1 mol of solid silicon and the volume of liquid silicon tetrachloride can be ignored. In particular, it may be considered that 2 moles of zinc gas is changed to 2 moles of zinc chloride gas. Therefore, if the high-purity silicon production apparatus of the present invention is provided, even if a large amount of raw material is charged into the reaction tower, a large volume fluctuation does not occur before and after the reaction, and the pressure fluctuation in the reaction tower does not occur. It is possible to realize a stable reaction with suppressed. In addition, silicon produced directly from liquid silicon tetrachloride tends to be in the form of a fiber with microcrystals connected, and as a result, powdered silicon is often formed. Compared with the prior art, reactive gas and purified silicon are formed. There is also an effect that can be easily separated.

本発明の実施形態を図面により説明する。図1は、横型反応塔と縦型分離塔を組み合わせた高純度シリコン製造装置の実施形態の模式図である。  An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of an embodiment of a high-purity silicon production apparatus in which a horizontal reaction column and a vertical separation column are combined.

図1の高純度シリコン製造装置において、亜鉛融解部1で融解された金属亜鉛は、亜鉛の沸点以上の温度に保持された亜鉛蒸発部2に送られて、ここで瞬時に気化し亜鉛ガスとなる。ここで、亜鉛の融解と亜鉛ガス化部を分離しているのは、高温蒸気状態での流量制御よりも、高温液体の流量制御の方が、はるかに容易だからである。この構成によって、亜鉛ガスの反応塔へ導入量を厳密に制御することができる。生成した亜鉛ガスは、亜鉛ガス加熱部3で、1050℃から1300℃の所定温度に加熱調整され、亜鉛供給ノズル4から、横型反応塔5内に吹き込まれる。このとき、ガスの流れを制御する目的で、亜鉛ガスに加えて、キャリアガスとして少量のアルゴンなどの不活性ガスを加えてもよい。ただ、多量のシリコンを相対的に小型な装置で効率よく製造するためには、キャリアガスを導入せず、十分な量の亜鉛ガスを供給することが望ましい。このとき、亜鉛ガスは、反応塔内をほぼ均一に流れる層流となるように供給してもよいし、旋回流となるように供給してもよい。亜鉛ガスの圧力を、ほぼ大気圧、または大気圧よりわずかに高い圧力とし、反応ガス出口や処理部分での、ガス温度降下や液化に伴う体積変化がもたらす圧力低下によって生じた圧力差を利用して、ガスの流れを生成することができる。  In the high-purity silicon production apparatus of FIG. 1, the metallic zinc melted in the zinc melting section 1 is sent to the zinc evaporation section 2 maintained at a temperature equal to or higher than the boiling point of zinc, where it is instantly vaporized and dissolved in the zinc gas. Become. Here, the melting of zinc and the zinc gasification part are separated because the flow rate control of the high temperature liquid is much easier than the flow rate control in the high temperature steam state. With this configuration, the amount of zinc gas introduced into the reaction tower can be strictly controlled. The generated zinc gas is heated and adjusted to a predetermined temperature of 1050 ° C. to 1300 ° C. in the zinc gas heating unit 3 and blown into the horizontal reaction tower 5 from the zinc supply nozzle 4. At this time, in order to control the gas flow, a small amount of an inert gas such as argon may be added as a carrier gas in addition to the zinc gas. However, in order to efficiently produce a large amount of silicon with a relatively small apparatus, it is desirable to supply a sufficient amount of zinc gas without introducing a carrier gas. At this time, the zinc gas may be supplied so as to be a laminar flow that flows almost uniformly in the reaction tower, or may be supplied so as to be a swirl flow. The pressure of the zinc gas is set to approximately atmospheric pressure or slightly higher than atmospheric pressure, and the pressure difference generated by the pressure drop caused by the gas temperature drop or volume change due to liquefaction at the reaction gas outlet or processing part is used. Thus, a gas flow can be generated.

四塩化珪素保持部6内に保持された四塩化珪素は、送液ポンプ7で、液状のまま四塩化珪素供給ノズル8へ向かって圧送され、横型反応塔5内に霧状に噴霧、または滴下される。横型塔内温度は、1000℃以上に保たれているため、反応塔内に導入された四塩化珪素は、急激に気化しようとするが、四塩化珪素液滴の表面ではSiCl+2Zn→Si+2ZnClという四塩化珪素の亜鉛還元反応がおこる。この反応の速度は極めて速いので、気化して爆発的に膨張する前に、亜鉛ガスによって還元され、微細なシリコン結晶固体と塩化亜鉛に変化する。このとき、亜鉛ガスが四塩化珪素供給ノズル周辺に十分に供給されなければ、急激に気化膨張する四塩化珪素によって、反応管内の圧力が不安定になってしまうことが懸念される。しかし、十分な流速を持つ亜鉛ガスの層流あるいは旋回流を、横型反応管内に生成し、十分な亜鉛ガス雰囲気を保持することで、還元反応が速やかに進行し、四塩化珪素が気化膨張する前に反応が終了するので、大きな圧力変動が発生せず、安定した反応を実現することができる。また、反応雰囲気温度は亜鉛ガス雰囲気に左右され極めて高いものの、四塩化珪素表面で起こる反応の実温度はそれより若干低いため、生成シリコン中に残留する亜鉛をはじめとする混入可能な不純物の濃度を、極めて低く保持することができる。The silicon tetrachloride held in the silicon tetrachloride holding unit 6 is sent in a liquid state toward the silicon tetrachloride supply nozzle 8 by the liquid feed pump 7 and sprayed or dripped in the horizontal reaction tower 5 in the form of a mist. Is done. Since the temperature in the horizontal tower is maintained at 1000 ° C. or higher, silicon tetrachloride introduced into the reaction tower tends to vaporize rapidly, but SiCl 4 + 2Zn → Si + 2ZnCl 2 on the surface of the silicon tetrachloride droplet. The zinc reduction reaction of silicon tetrachloride occurs. Since the rate of this reaction is extremely high, it is reduced by zinc gas before being vaporized and explosively expanded, and converted into a fine silicon crystal solid and zinc chloride. At this time, if the zinc gas is not sufficiently supplied around the silicon tetrachloride supply nozzle, there is a concern that the pressure in the reaction tube may become unstable due to silicon tetrachloride that rapidly vaporizes and expands. However, a laminar flow or swirling flow of zinc gas with a sufficient flow rate is generated in the horizontal reaction tube, and by maintaining a sufficient zinc gas atmosphere, the reduction reaction proceeds rapidly and silicon tetrachloride vaporizes and expands. Since the reaction is completed before, a large pressure fluctuation does not occur, and a stable reaction can be realized. In addition, although the reaction atmosphere temperature is extremely high depending on the zinc gas atmosphere, the actual temperature of the reaction that occurs on the surface of silicon tetrachloride is slightly lower than that, so the concentration of impurities that can be mixed in, including zinc remaining in the generated silicon Can be kept very low.

このとき、横型反応塔の石英ガラス内表面を1050℃から1300℃に保持しておけば、反応塔内面に、層流中または旋回流中で生成した繊維状、または微粒子状のシリコンシリコンが付着することがなくなるので、横型反応塔部に生成したシリコンが残留することなく、未反応の亜鉛ガス並びに反応生成ガスの塩化亜鉛ガスと共に、縦型分離塔9へと輸送される。  At this time, if the inner surface of the quartz glass of the horizontal reaction tower is kept at 1050 ° C. to 1300 ° C., fibrous or particulate silicon silicon generated in laminar flow or swirling flow adheres to the inner surface of the reaction tower. Therefore, silicon produced in the horizontal reaction tower is not left and is transported to the vertical separation tower 9 together with unreacted zinc gas and zinc chloride gas as the reaction product gas.

図1に示す高純度シリコン製造装置の縦型分離塔9は、サイクロン型分離塔となっており、生成シリコンを含む反応ガスが、旋回流となるように縦型分離塔内に導入されている。これによって固体シリコンは、反応ガスと分離され、縦型分離塔下部に集積される。一方、亜鉛を含む反応ガスは、下方で反転し旋回上昇流となって、縦型分離部上方の分離ガス出口10から分離塔外へと排出される。このとき、サイクロン分離器内でのガス速度は1から5m/secが望ましいが、これより速くして、分離効率をさらに高めることもできる。。この縦型分離塔の材質は内壁が石英ガラス製であり、安定な還元反応を生起させるには、温度は910から1200℃が望ましく、特に、950から1100℃が好適である。  The vertical separation column 9 of the high-purity silicon production apparatus shown in FIG. 1 is a cyclone type separation column, and a reaction gas containing generated silicon is introduced into the vertical separation column so as to form a swirling flow. . As a result, the solid silicon is separated from the reaction gas and accumulated in the lower part of the vertical separation tower. On the other hand, the reaction gas containing zinc reverses downward to form a swirling upward flow, and is discharged out of the separation tower from the separation gas outlet 10 above the vertical separation unit. At this time, the gas velocity in the cyclone separator is desirably 1 to 5 m / sec. However, it is possible to further increase the separation efficiency by increasing the gas velocity. . The vertical separation column is made of quartz glass, and the temperature is preferably 910 to 1200 ° C., and particularly preferably 950 to 1100 ° C. in order to cause a stable reduction reaction.

分離ガス出口10から排出される、亜鉛ガスと塩化亜鉛ガスの混合ガスは、分離ガス処理装置11に送られ処理される。この処理装置で、亜鉛と塩化亜鉛の無害化と回収を行ってもよいが、これを、塩化亜鉛の溶融塩電解装置とするのが好適である。まず、分離ガス出口10から電解槽の間で、ガス温度を下げながら、亜鉛と塩化亜鉛の混合ガスを、直接、電解槽に送って電解槽内で液化することで、比重の違いを利用して亜鉛と塩化亜鉛に分離する。続いて、塩化亜鉛を、溶融塩電解によって亜鉛と塩素に分離する。これによって得られた亜鉛融体を、亜鉛融解部1に戻すことで、亜鉛の再利用が可能となる。一方、塩素は四塩化珪素製造のための原料として使うことも可能である。  The mixed gas of zinc gas and zinc chloride gas discharged from the separation gas outlet 10 is sent to the separation gas processing device 11 and processed. Although this treatment apparatus may be used to detoxify and recover zinc and zinc chloride, it is preferable to use a zinc chloride molten salt electrolysis apparatus. First, while reducing the gas temperature between the separation gas outlet 10 and the electrolytic cell, the mixed gas of zinc and zinc chloride is directly sent to the electrolytic cell and liquefied in the electrolytic cell, thereby utilizing the difference in specific gravity. Separating into zinc and zinc chloride. Subsequently, the zinc chloride is separated into zinc and chlorine by molten salt electrolysis. By returning the zinc melt obtained in this manner to the zinc melting portion 1, zinc can be reused. On the other hand, chlorine can be used as a raw material for producing silicon tetrachloride.

分離され下部のシリコン融解保持槽12に集められたシリコンは、溶解されて外部に取り出される。図1に示すように、シリコン融解保持槽12が、底部が貫通した仕切13が中央にある二槽構造となっていれば、外気の反応塔内への侵入を防ぎながら、生成した融体シリコン14を、外部に取り出すことができるので、本発明にかかる高純度シリコン製造装置は、連続運転が可能である。もちろん、底部に溶解・保持の機構を設けずに、下部に蓄積した微粒子状、針状、繊維状のシリコンを、一旦運転を停止して取り出す装置であっても、本発明の特徴である安定した還元反応の実現という特徴を失うことはない。縦型分離塔下部のシリコンを融体化する場合の保持槽の材質は、シリコンの融点以上の1414℃以上で使用できる材料であれば、何を使用してもかまわない。しかし、生成したシリコンへの保持槽壁面材料からの汚染を避けるには、シリコン自身を誘導加熱により加熱融解させながら、保持槽壁面は冷却して、固体シリコンで壁面被う方法が有効である。これによって、実質的に溶融シリコンは保持槽壁面に接触しないので、高純度を保持できる。このとき、保持槽材質は熱伝導が良好であり安定であるタンタルなどの金属、あるいは安定化ジルコニアやムライト等の安定なセラミックスが好適である。  The separated silicon collected in the lower silicon melting and holding tank 12 is melted and taken out to the outside. As shown in FIG. 1, if the silicon melting and holding tank 12 has a two-tank structure with a partition 13 having a bottom penetrating in the center, the molten silicon produced is prevented while preventing the outside air from entering the reaction tower. Since 14 can be taken out to the outside, the high-purity silicon production apparatus according to the present invention can be continuously operated. Of course, even if it is a device that once removes the particulate, acicular, and fibrous silicon accumulated in the lower part without providing a dissolution / holding mechanism at the bottom, it is a stable feature that is a feature of the present invention. The characteristics of realizing the reduced reaction are not lost. The material of the holding tank in the case of fusing silicon at the lower part of the vertical separation tower may be any material as long as it can be used at 1414 ° C. or higher, which is higher than the melting point of silicon. However, in order to avoid contamination of the generated silicon from the holding tank wall surface material, it is effective to cool the holding tank wall surface and cover the wall with solid silicon while heating and melting silicon itself by induction heating. Thereby, since the molten silicon does not substantially contact the holding tank wall surface, high purity can be maintained. At this time, the material of the holding tank is preferably a metal such as tantalum having good heat conduction and stability, or a stable ceramic such as stabilized zirconia or mullite.

本発明の液状の四塩化珪素から直接生成するシリコンは繊維状となる場合が多く、その繊維、あるいは微粒はほとんどが単結晶の集合からなるために、シリコン生成そのものが精錬プロセスとなっていて、高純度のシリコンが得られ易い。さらに、反応装置内での融解加熱により、沸点の低い亜鉛や塩化亜鉛がより完全に除去され、従来技術に増して高純度のシリコンが得られる。もちろん、融体シリコンの保持槽にアルゴンのような不活性ガスを通し、融体中に残留する可能性のある亜鉛や塩化亜鉛の除去をより完全に行うことも可能である。  Silicon produced directly from the liquid silicon tetrachloride of the present invention is often in the form of fibers, and since the fibers or fine particles are mostly composed of a collection of single crystals, the silicon production itself is a refining process, High purity silicon is easy to obtain. Further, the melting and heating in the reactor removes zinc and zinc chloride having a low boiling point more completely, and high-purity silicon can be obtained as compared with the prior art. Of course, an inert gas such as argon can be passed through the molten silicon holding tank to remove zinc or zinc chloride that may remain in the melt more completely.

図2は、縦反応塔15を用いた本発明にかかるシリコン製造装置の模式図である。上部は還元反応を生起させる反応部16、下部は生成した固体シリコンと反応ガスを分離する分離部17である。図1と同様に、亜鉛融解部1で融解された金属亜鉛は、亜鉛の沸点以上の温度に保持された亜鉛ガス化部2に送られて、ここで瞬時に気化し亜鉛ガスとなる。生成した亜鉛ガスは、亜鉛ガス加熱部3で、1050℃から1300℃の所定温度に加熱調整され、亜鉛供給ノズル4から、縦反応塔15内に吹き込まれる。このとき、亜鉛ガスは、反応塔の円周方向に沿って吹き込まれ、サイクロン分離に必要な旋回流を形成する。  FIG. 2 is a schematic view of a silicon production apparatus according to the present invention using the vertical reaction column 15. The upper part is a reaction part 16 for causing a reduction reaction, and the lower part is a separation part 17 for separating the generated solid silicon and the reaction gas. As in FIG. 1, the metallic zinc melted in the zinc melting part 1 is sent to the zinc gasification part 2 maintained at a temperature equal to or higher than the boiling point of zinc, where it is instantly vaporized and becomes zinc gas. The generated zinc gas is heated and adjusted to a predetermined temperature of 1050 ° C. to 1300 ° C. by the zinc gas heating unit 3 and blown into the vertical reaction tower 15 from the zinc supply nozzle 4. At this time, the zinc gas is blown along the circumferential direction of the reaction tower to form a swirling flow necessary for cyclone separation.

四塩化珪素保持部6内に保持された四塩化珪素は、送液ポンプ7で、液状のまま四塩化珪素供給ノズル8へ向かって圧送され、縦反応塔15に霧状に上部から噴霧または滴下される。縦型塔内温度は、1000℃以上に保たれているため、反応塔内に導入された四塩化珪素は、急激に気化しようとするが、四塩化珪素の亜鉛還元反応の速度は極めて速いので、気化して爆発的に膨張する前に、十分な流速を持つ旋回流となった亜鉛ガスによって還元され、安定にシリコンと塩化亜鉛に変化する。このとき、横型反応塔の石英ガラス内表面を1050℃から1300℃に保持しておけば、反応塔内面に、旋回流中で生成した繊維状、または微粒子状のシリコンが付着することはなく、分離部下部のシリコン融解保持槽12に蓄積される。一方、亜鉛を含む反応ガスは、下方で反転し旋回上昇流となって、縦型分離部上方の分離ガス出口10から分離塔外へと排出される。シリコン融解保持槽に蓄積されたシリコンは、融体として、外部に取り出される。  The silicon tetrachloride held in the silicon tetrachloride holding unit 6 is pumped toward the silicon tetrachloride supply nozzle 8 in a liquid state by the liquid feed pump 7 and sprayed or dripped from the top into the vertical reaction column 15 in the form of a mist. Is done. Since the temperature in the vertical column is maintained at 1000 ° C. or more, silicon tetrachloride introduced into the reaction column tends to vaporize rapidly, but the rate of zinc reduction reaction of silicon tetrachloride is extremely fast. Before being vaporized and explosively expanded, it is reduced by the zinc gas that has become a swirling flow having a sufficient flow rate, and is stably transformed into silicon and zinc chloride. At this time, if the inner surface of the quartz glass of the horizontal reaction tower is maintained at 1050 ° C. to 1300 ° C., fibrous or fine particle silicon generated in the swirling flow will not adhere to the inner surface of the reaction tower, It accumulates in the silicon melting and holding tank 12 at the lower part of the separation part. On the other hand, the reaction gas containing zinc reverses downward to form a swirling upward flow, and is discharged out of the separation tower from the separation gas outlet 10 above the vertical separation unit. The silicon accumulated in the silicon melting and holding tank is taken out as a melt.

これら本発明にかかる構成を持ってすれば、安定且つ効率的に、連続的なシリコンの生成を行うことができるようになる。これらの装置を使用して、以下の実施例に示すシリコンの生成を試みた。  With these configurations according to the present invention, it is possible to generate silicon continuously and stably. Using these devices, the silicon production shown in the following examples was attempted.

図3に示す装置を使用してシリコンの製造を試みた。横型反応塔5は入り口部で直径80mm、サイクロン型の縦型分離塔9との接続部の直径20mmであり、その長さは800mmである。縦型分離塔9は、最大径が120mmで高さが600mmである。これに、毎時1kgの割合で溶融亜鉛を亜鉛溶解部から亜鉛蒸発部に流し込んで蒸発させ、亜鉛加熱部で温度を1250℃に調整して、1100℃に設定された反応塔に吹き込んだ。亜鉛のガス化部分は石英ガラスで作られていることが望ましく、これにより純亜鉛のガスが生成できる。四塩化珪素保持槽は0℃に保持し、接液面がフッ素樹脂製のダイアフラム型定量ポンプで、毎時1.2kgの速度で、供給ノズルへ圧送した。生成したシリコンは、横型反応塔中を、縦型分離塔に向けて移動していく過程で、ガス中で微結晶の凝集、結晶成長し、比較的大きな粒子や繊維状の形状となる。これは、シリコンと反応ガスの分離にとって都合がよい。  An attempt was made to produce silicon using the apparatus shown in FIG. The horizontal reaction column 5 has a diameter of 80 mm at the entrance, a diameter of 20 mm at the connection with the cyclone vertical separation column 9, and its length is 800 mm. The vertical separation tower 9 has a maximum diameter of 120 mm and a height of 600 mm. The molten zinc was poured into the zinc evaporating part from the zinc dissolving part at a rate of 1 kg per hour to evaporate, and the temperature was adjusted to 1250 ° C. in the zinc heating part, and blown into the reaction tower set at 1100 ° C. The gasification part of zinc is preferably made of quartz glass, so that pure zinc gas can be generated. The silicon tetrachloride holding tank was kept at 0 ° C., and the liquid contact surface was pumped to the supply nozzle at a rate of 1.2 kg per hour with a diaphragm type metering pump made of fluororesin. The generated silicon moves in the horizontal reaction tower toward the vertical separation tower, and agglomerates and grows crystallites in the gas to form relatively large particles and fibers. This is advantageous for the separation of silicon and reactive gases.

縦型分離塔内部では、シリコン以外は全てガス相となるように、縦型分離塔内温度は1000℃に設定した。シリコン保持槽部分は、1500℃に保持して、分離蓄積したシリコンを融体化する。この実施例では、サイクロン型のシリコンと反応ガスの分離機構を採用した。しかし、横型反応塔から縦型分離塔にへとガスが流れ込む部分に邪魔板を設けて、これにガス流を衝突させ、固体であるシリコンを分離して下方に落とすことで、分離するという構成も可能である。また、この邪魔板をシリコンの融点以上に加熱し、衝突したシリコンを連続的に融体化することもできる。  Inside the vertical separation tower, the temperature inside the vertical separation tower was set to 1000 ° C. so that everything except silicon was in a gas phase. The silicon holding tank portion is held at 1500 ° C. to melt the separated and accumulated silicon. In this embodiment, a cyclone type silicon and reaction gas separation mechanism is employed. However, a configuration is provided in which a baffle plate is provided at a portion where gas flows from the horizontal reaction column to the vertical separation column, the gas flow collides with this, and the solid silicon is separated and dropped downward. Is also possible. It is also possible to heat the baffle plate above the melting point of silicon and continuously melt the colliding silicon.

排ガスは、空気の流入を防ぐようにアルゴンパージをしたステンレス製のドラム缶に接続し、冷却して液ないし固体として集める。これにより、亜鉛と塩化亜鉛からなる排ガスが液化し、ついで固化することで体積減少がおき、それによってガス供給側とに圧力差が生じ、これが系内のガス流の駆動力に寄与する。  The exhaust gas is connected to a stainless steel drum that has been purged with argon to prevent the inflow of air, cooled, and collected as a liquid or solid. As a result, the exhaust gas composed of zinc and zinc chloride is liquefied and then solidified, resulting in a volume reduction, thereby creating a pressure difference with the gas supply side, which contributes to the driving force of the gas flow in the system.

本装置を実際に稼動させてみたところ、収率90%以上で6ナインのシリコンを、融体で得ることができた。また、横型反応塔の温度を1050℃程度まで低下させると、横型反応塔内で生成するシリコンの結晶が大きくなるせいか、わずかではあるが生成シリコンの純度の向上が得られた。  When this apparatus was actually operated, 6-nine silicon was obtained as a melt with a yield of 90% or more. Further, when the temperature of the horizontal reaction tower was lowered to about 1050 ° C., the silicon crystal produced in the horizontal reaction tower was increased, but the purity of the produced silicon was slightly improved.

本発明にかかる図4に示すシリコン製造装置を使用して、シリコンの製造を試みた。この装置は、縦型反応塔15の還元反応部16とサイクロン型分離部17が一体化した構成であり、石英ガラスで作製されている。全高さが900mmで、原料ガスが導入される反応部分の高さは300mmである。また反応部分は直径が60mmである。反応部分の温度は1200℃とし、上方の設定温度を1050℃としてシリコンの製造を試みた。なお亜鉛、四塩化珪素の投入量は、ともに実施例1の50%である。この装置のシリコン収率は95から96%で、6ナイン以上の純度を有するシリコンが得られた。また、図5に示すような、四塩化珪素を、亜鉛の旋回流に合わせて、円周方向に向かって吹き込むようにした装置でも、シリコンの製造を試みたところ、ほぼ同じ結果を得ている。An attempt was made to manufacture silicon using the silicon manufacturing apparatus shown in FIG. 4 according to the present invention. This apparatus has a configuration in which the reduction reaction section 16 and the cyclone separation section 17 of the vertical reaction tower 15 are integrated, and is made of quartz glass. The total height is 900 mm, and the height of the reaction part into which the raw material gas is introduced is 300 mm. The reaction part has a diameter of 60 mm. The temperature of the reaction part was set to 1200 ° C., and the upper set temperature was set to 1050 ° C. to try to manufacture silicon. The amounts of zinc and silicon tetrachloride are both 50% of Example 1. The silicon yield of this apparatus was 95 to 96%, and silicon having a purity of 6 or more was obtained. In addition, even in an apparatus in which silicon tetrachloride is blown in the circumferential direction in accordance with the swirling flow of zinc as shown in FIG. .

本発明は、今後長期にわたって急激に市場が拡大していくと期待されるシリコン太陽電池の製造に必須な、シリコン原料を製造する装置に関するものであり、従来技術に比較して、画期的な省エネルギー性と生産性の向上をもたらす技術である。本発明にかかるシリコン製造装置で製造されたシリコンは、シリコン太陽電池用の単結晶基板、多結晶基板の原料としてはもとより、ICタグなどの比較的純度の低い基板の使用が可能な電子デバイス用としても、大いに利用されるものと期待される。このように、本発明の技術は、高純度シリコン製造産業に広く活用され、その発展に大きく貢献するともの期待できる。  The present invention relates to an apparatus for producing silicon raw material, which is indispensable for the production of silicon solar cells that are expected to expand rapidly over the long term in the future. This technology brings energy savings and productivity improvements. Silicon manufactured by the silicon manufacturing apparatus according to the present invention is used not only as a raw material for a silicon solar cell single crystal substrate and a polycrystalline substrate, but also for an electronic device capable of using a relatively low purity substrate such as an IC tag. However, it is expected to be used greatly. As described above, the technique of the present invention is widely used in the high-purity silicon manufacturing industry and can be expected to greatly contribute to its development.

本発明にかかる横型反応塔と縦型分離塔を組み合わせたシリコンの製造装置の模式図である。It is a schematic diagram of the manufacturing apparatus of the silicon | silicone which combined the horizontal reaction tower and vertical separation tower concerning this invention. 本発明にかかる縦型反応塔を用いたシリコン製造装置の模式図である。It is a schematic diagram of the silicon manufacturing apparatus using the vertical reaction tower concerning the present invention. 本発明にかかる横型反応塔と縦型分雕塔を組み合わせたシリコンの製造装置の模式図である。It is a schematic diagram of the manufacturing apparatus of the silicon | silicone which combined the horizontal reaction tower and vertical separation tower concerning this invention. 本発明にかかる縦型反応塔を用いたシリコン製造装置の模式図である。It is a schematic diagram of the silicon manufacturing apparatus using the vertical reaction tower concerning the present invention. 本発明にかかる縦型反応塔を用いたシリコン製造装置の模式図である。It is a schematic diagram of the silicon manufacturing apparatus using the vertical reaction tower concerning the present invention.

符号の説明Explanation of symbols

1. 亜鉛融解部
2. 亜鉛蒸発部
3. 亜鉛ガス加熱部
4. 亜鉛供給ノズル
5. 横型反応塔
6. 四塩化珪素保持部
7. 送液ポンプ
8. 四塩化珪素供給ノズル
9. 縦型分離塔
10. 分離ガス出口
11. 分離ガス処理装置
12. シリコン融解保持槽
13. 底部が貫通した仕切
14. 融体シリコン
15 縦型反応塔
16. 反応部
17. 分離部
1. 1. Zinc melting part 2. Zinc evaporation part 3. Zinc gas heating unit 4. Zinc supply nozzle 5. Horizontal reaction tower 6. Silicon tetrachloride holding part 7. Liquid feed pump 8. Silicon tetrachloride supply nozzle Vertical separation tower 10. Separation gas outlet 11. Separation gas processing device 12. Silicon melting holding tank 13. Partition with bottom penetrated 14. Molten silicon 15 Vertical reactor 16. Reaction section 17. Separation part

Claims (10)

亜鉛ガス、または亜鉛ガスを主体とする亜鉛混合ガスを定常的に送り込んで、亜鉛ガス雰囲気とした反応塔内に、四塩化珪素を液体状態で導入して、亜鉛還元反応を生起させ、この反応で生成されたシリコンを、反応塔終端部において、反応生成ガスのみを反応塔外部に排出し、前記生成シリコンを反応塔内に局所的に蓄積することを特徴とする高純度シリコン製造装置。Zinc gas or a zinc mixed gas mainly composed of zinc gas is steadily sent, and silicon tetrachloride is introduced in a liquid state into a reaction tower having a zinc gas atmosphere to cause a zinc reduction reaction. The high-purity silicon production apparatus is characterized in that the silicon produced in (1) is discharged at the terminal end of the reaction tower only from the reaction product gas to the outside of the reaction tower, and the produced silicon is accumulated locally in the reaction tower. 請求項1記載の反応塔内に四塩化珪素導入管を設け、四塩化珪素を反応塔中に霧状に放出することを特徴とする請求項1の高純度シリコン製造装置。2. The high purity silicon production apparatus according to claim 1, wherein a silicon tetrachloride introduction pipe is provided in the reaction tower according to claim 1 and silicon tetrachloride is discharged into the reaction tower in a mist form. 請求項1記載の反応塔内に四塩化珪素導入管を設け、先端から液体状の四塩化珪素を、液滴状に放出し、前記反応塔内を落下させることを特徴とする請求項1の高純度シリコン製造装置。2. The silicon tetrachloride introduction pipe is provided in the reaction tower according to claim 1, and liquid silicon tetrachloride is discharged from the tip in the form of droplets and dropped in the reaction tower. High purity silicon production equipment. 請求項1記載の反応塔の亜鉛還元反応が生起する部分が、亜鉛混合ガスおよび反応生成ガスが横方向に流れる横型反応塔であって、亜鉛還元反応によって生成したシリコンを、反応生成ガスと共に輸送し、前記横型反応塔に接続された縦型分離塔に導き、この縦型分離塔内で、反応生成ガスと生成シリコンを分離することを特徴とする請求項1から請求項3記載の高純度シリコン製造装置。The portion of the reaction tower in which the zinc reduction reaction occurs is a horizontal reaction tower in which a zinc mixed gas and a reaction product gas flow in a lateral direction, and transports silicon produced by the zinc reduction reaction together with the reaction product gas. 4. The high purity according to claim 1, wherein the product is led to a vertical separation column connected to the horizontal reaction column, and the reaction product gas and the generated silicon are separated in the vertical separation column. Silicon manufacturing equipment. 請求項4記載の縦型分離塔が、サイクロン型分離器であって、これによって生成したシリコンと反応生成ガスを分離して、反応生成ガスを上方または下方に排出し、生成したシリコンを下方に蓄積することを特徴とする請求項4の高純度シリコン製造装置。The vertical separation tower according to claim 4, which is a cyclone separator, separates generated silicon and reaction product gas, discharges reaction product gas upward or downward, and generates generated silicon downward. The high-purity silicon manufacturing apparatus according to claim 4, wherein the high-purity silicon manufacturing apparatus stores the high-purity silicon. 請求項1記載の反応塔の亜鉛還元反応が生起する部分が、亜鉛混合ガスが旋回流となるように導入した縦型反応塔であって、この旋回流中に液体状態導入された四塩化珪素の亜鉛還元反応で生成したシリコンを、前記縦型反応塔に直結されたサイクロン型分離器によって、反応生成ガスと生成したシリコンを分離し、反応生成ガスを上方または下方に排出することを特徴とする請求項1から請求項3の高純度シリコン製造装置。The part where the zinc reduction reaction occurs in the reaction tower according to claim 1 is a vertical reaction tower in which the zinc mixed gas is introduced into a swirling flow, and silicon tetrachloride introduced into the swirling flow in a liquid state The silicon produced by the zinc reduction reaction is separated from the reaction product gas and the produced silicon by a cyclone separator directly connected to the vertical reaction tower, and the reaction product gas is discharged upward or downward. The high-purity silicon manufacturing apparatus according to any one of claims 1 to 3. 請求項1記載生成シリコンを反応塔内に局所的に蓄積する部分が、シリコン溶融保持槽であり、シリコンの溶融温度以上に保持されていること特徴とする請求項1から請求項6の高純度シリコン製造装置。The high purity according to any one of claims 1 to 6, wherein a portion for locally accumulating the produced silicon in the reaction tower is a silicon melting and holding tank and is held at a temperature equal to or higher than a melting temperature of silicon. Silicon manufacturing equipment. 請求項7記載のシリコン溶融保持槽の壁面部がシリコン溶融温度より低く、それ以外の領域がシリコンの溶融温度以上に保持されていることを特徴とする請求項7記載の高純度シリコン製造装置。8. The high-purity silicon production apparatus according to claim 7, wherein the wall surface portion of the silicon melt holding tank according to claim 7 is lower than the silicon melting temperature, and the other region is held at a temperature equal to or higher than the silicon melting temperature. 請求項1記載の亜鉛混合ガスの温度がが1000℃から1350℃であることを特徴とする請請求項1から請求項8の高純度シリコン製造装置。9. The high purity silicon production apparatus according to claim 1, wherein the temperature of the zinc mixed gas according to claim 1 is 1000 ° C. to 1350 ° C. 請求項1記載の亜鉛混合ガスが亜鉛ガスと塩化亜鉛ガスとの混合ガスであることを特徴とする請求項1から請求項8の高純度シリコン製造装置。9. The high purity silicon production apparatus according to claim 1, wherein the zinc mixed gas according to claim 1 is a mixed gas of zinc gas and zinc chloride gas.
JP2006231250A 2006-08-02 2006-08-02 Apparatus for manufacturing silicon Pending JP2008037735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006231250A JP2008037735A (en) 2006-08-02 2006-08-02 Apparatus for manufacturing silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006231250A JP2008037735A (en) 2006-08-02 2006-08-02 Apparatus for manufacturing silicon

Publications (1)

Publication Number Publication Date
JP2008037735A true JP2008037735A (en) 2008-02-21

Family

ID=39173179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006231250A Pending JP2008037735A (en) 2006-08-02 2006-08-02 Apparatus for manufacturing silicon

Country Status (1)

Country Link
JP (1) JP2008037735A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110474A1 (en) * 2008-03-04 2009-09-11 住友化学株式会社 Process for producing silicon and apparatus for producing silicon
US7964172B2 (en) 2009-10-13 2011-06-21 Alexander Mukasyan Method of manufacturing high-surface-area silicon
WO2012064047A2 (en) * 2010-11-11 2012-05-18 타운마이닝 컴퍼니., 리미티드 Apparatus for manufacturing fine powder of high purity silicon
WO2012064046A2 (en) * 2010-11-11 2012-05-18 타운마이닝 컴퍼니., 리미티드 Apparatus for manufacturing fine powder of high purity silicon.
CN102557036A (en) * 2010-12-10 2012-07-11 上海太阳能工程技术研究中心有限公司 Device for preparing high-purity polycrystalline silicon by zinc reduction method
CN106458607A (en) * 2014-05-13 2017-02-22 株式会社Lg化学 Device for manufacturing polysilicon using horizontal reactor and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188368A (en) * 1978-03-29 1980-02-12 Nasa Method of producing silicon
JPH1192130A (en) * 1997-09-11 1999-04-06 Sumitomo Sitix Amagasaki:Kk Production of high purity silicon
JP2007112691A (en) * 2005-10-21 2007-05-10 Yutaka Kamaike Apparatus and method for producing silicon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188368A (en) * 1978-03-29 1980-02-12 Nasa Method of producing silicon
JPH1192130A (en) * 1997-09-11 1999-04-06 Sumitomo Sitix Amagasaki:Kk Production of high purity silicon
JP2007112691A (en) * 2005-10-21 2007-05-10 Yutaka Kamaike Apparatus and method for producing silicon

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110474A1 (en) * 2008-03-04 2009-09-11 住友化学株式会社 Process for producing silicon and apparatus for producing silicon
US7964172B2 (en) 2009-10-13 2011-06-21 Alexander Mukasyan Method of manufacturing high-surface-area silicon
WO2012064047A2 (en) * 2010-11-11 2012-05-18 타운마이닝 컴퍼니., 리미티드 Apparatus for manufacturing fine powder of high purity silicon
WO2012064046A2 (en) * 2010-11-11 2012-05-18 타운마이닝 컴퍼니., 리미티드 Apparatus for manufacturing fine powder of high purity silicon.
WO2012064047A3 (en) * 2010-11-11 2012-07-19 타운마이닝 컴퍼니., 리미티드 Apparatus for manufacturing fine powder of high purity silicon
WO2012064046A3 (en) * 2010-11-11 2012-07-19 타운마이닝 컴퍼니., 리미티드 Apparatus for manufacturing fine powder of high purity silicon.
CN102557036A (en) * 2010-12-10 2012-07-11 上海太阳能工程技术研究中心有限公司 Device for preparing high-purity polycrystalline silicon by zinc reduction method
CN106458607A (en) * 2014-05-13 2017-02-22 株式会社Lg化学 Device for manufacturing polysilicon using horizontal reactor and method for manufacturing same
US10196273B2 (en) 2014-05-13 2019-02-05 Lg Chem, Ltd. Device for manufacturing polysilicon using horizontal reactor and method for manufacturing same

Similar Documents

Publication Publication Date Title
EP1866248B1 (en) Process for the production of si by reduction of sicl4 with liquid zn
JP4038110B2 (en) Method for producing silicon
JP2008037735A (en) Apparatus for manufacturing silicon
KR20140015255A (en) Fluorspar/iodide process for silicon purification
JPH1111925A (en) Production of polycrystalline silicon and zinc oxide
JP4713941B2 (en) Method for producing silicon
JP4428484B2 (en) High purity silicon production equipment
WO2007119605A1 (en) Method and apparatus for producing silicon
JP4392675B1 (en) High purity silicon production equipment
KR101525860B1 (en) Apparatus for manufacturing fine powder of high purity silicon
WO2008034578A1 (en) Process for the production of germanium-bearing silicon alloys
JP4392670B2 (en) Manufacturing method of high purity silicon
JP2007126342A (en) Method of manufacturing silicon
JP4392671B2 (en) Silicon production equipment
JP2007217262A (en) Apparatus for manufacturing silicon
JP5574295B2 (en) High purity silicon fine powder production equipment
JP2004010472A (en) Method for producing silicon
JP5586005B2 (en) Method for producing silicon
CN101547859A (en) Process for the production of si by reduction of sihc13 with liquid zn
JP2003002627A (en) Method for manufacturing silicon
KR101952731B1 (en) Apparatus and method for producing polycrystalline silicon using horizontal reactor
JP2010076951A (en) Method for producing silicon
JP2009208994A (en) Silicon manufacturing method and silicon manufacturing apparatus
WO2008034577A1 (en) Process for the production of si by reduction of sihc13 with liquid zn
CN101146743A (en) Process for the production of si by reduction of siclj with liquid zn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090728

RD03 Notification of appointment of power of attorney

Effective date: 20090728

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091222

A977 Report on retrieval

Effective date: 20110610

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120523

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20121120

Free format text: JAPANESE INTERMEDIATE CODE: A02