WO2012064047A2 - Apparatus for manufacturing fine powder of high purity silicon - Google Patents

Apparatus for manufacturing fine powder of high purity silicon Download PDF

Info

Publication number
WO2012064047A2
WO2012064047A2 PCT/KR2011/008342 KR2011008342W WO2012064047A2 WO 2012064047 A2 WO2012064047 A2 WO 2012064047A2 KR 2011008342 W KR2011008342 W KR 2011008342W WO 2012064047 A2 WO2012064047 A2 WO 2012064047A2
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
zinc
gas
temperature
precipitate
Prior art date
Application number
PCT/KR2011/008342
Other languages
French (fr)
Korean (ko)
Other versions
WO2012064047A3 (en
Inventor
시마무네타카유키
카토켄지
사카타토요아키
Original Assignee
타운마이닝 컴퍼니., 리미티드
씨.에스.라보레토리 인 테크놀로지 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 타운마이닝 컴퍼니., 리미티드, 씨.에스.라보레토리 인 테크놀로지 리미티드 filed Critical 타운마이닝 컴퍼니., 리미티드
Priority to KR1020137012075A priority Critical patent/KR101525859B1/en
Publication of WO2012064047A2 publication Critical patent/WO2012064047A2/en
Publication of WO2012064047A3 publication Critical patent/WO2012064047A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/033Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by reduction of silicon halides or halosilanes with a metal or a metallic alloy as the only reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/50Inorganic acids
    • B01D2251/502Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/55Compounds of silicon, phosphorus, germanium or arsenic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling

Definitions

  • the present invention relates to an apparatus for producing high purity silicon fine powder. More specifically, silicon fine powder having high purity and fine crystals, which can be mainly used as a negative electrode material for a lithium ion battery, a raw material for high purity silicon nitride, a solar cell material, or other raw material for silicon compounds. It relates to a manufacturing apparatus that can provide.
  • High purity silicon is known to be used for electronic devices, such as single crystal silicon wafers, and ultra high purity products of about 11 nine. Also, depending on the type of impurity element, it is also used for solar cells, which are rapidly expanding in recent years. Need high degree of purity. Therefore, in connection with the production of silicon, studies have been conducted to grow the crystals of silicon to be produced so that impurities are not contained. In other words, as a typical silicon production process, a so-called Siemens method is known in which trichlorosilane is reduced to hydrogen and the resulting silicon is grown on the substrate for a predetermined time. However, this technique is a good way to obtain ultra-pure silicon, but because the energy consumption is very large and the production rate is slow, inevitably large equipment is required, and the manufacturing cost is very high.
  • Patent Document 1 and Patent Document 2 propose a method of obtaining silicon by blowing silicon tetrachloride into a liquid zinc surface.
  • This method is characterized in that the silicon can be produced at a relatively low temperature, but in reality, it is not easy to separate the solid phase silicon from the liquid layer zinc and the gaseous reaction product zinc chloride, and impurities of the liquid layer zincation are common in the silicon. It has a problem that the separation is very difficult.
  • Patent Document 4 proposes to use a release material for the wall in the semi-ungjok.
  • the batch process increases the chance of introducing impurities into the formed silicon, and the removal and separation of silicon tetrachloride, which is a reaction gas, is difficult. And all of these methods The focus is on growing the crystals of the resulting silicon to the maximum possible.
  • Patent Document 6 shows that the reaction between silicon tetrachloride gas and zinc gas is carried out under special conditions in an inert carrier gas atmosphere.
  • Patent Document 6 a silicon seed crystal plate is placed in a reaction chamber, or such a wall is made to grow needle-shaped silicon therein.
  • these also cannot escape from the batch process, and even if improved, it was very difficult to prevent the entry of impurities. All of these methods then focus on making the particles as large as possible to achieve high purity of silicon.
  • Patent Document 7 shows that silicon tetrachloride gas, which is a raw material, is formed in a cylindrical shape around a silicon tetrachloride gas nozzle by blowing a zinc tetrachloride gas from the nozzle in a lower zinc gas atmosphere.
  • the patent document defines the flow rate of gas substantially
  • the Example shows that manufacturing is carried out by controlling reaction by sending a lean gas.
  • the above patent documents show that relatively large equipment can be used to make large crystals, and that crystals can be grown without contacting the inner surface of the reaction column by growing crystals around the nozzle.
  • the present inventors have proceeded to examine the high temperature process by the turning melting method as a method of continuously producing silicon without producing silicon in the furnace wall of the reaction furnace.
  • Related contents were implemented in inventions, such as the following patent document 8, patent document 9, patent document 10, patent document 11, patent document 12, and the like. Accordingly, by the above inventions In addition, it is possible to continuously operate without being affected by the furnace wall of the reactor, which makes it possible to give the product silicon good performance.
  • this method also requires a high temperature of more than 120 CTC, typically around 1410 ° C, which is the melting point of silicon. It was.
  • the reaction device itself forms a cyclone, there is a problem in that it becomes large in size, and because the reaction temperature is very high, problems in durability of the material constituting the reaction furnace are likely to occur. There is a problem that it is difficult to secure device materials.
  • the present inventors performed the vapor phase reaction method similarly in Patent Document 13, but succeeded in extracting silicon as a single crystal fiber by specifying reaction conditions. In addition, while purifying the high purity of the silicon thus produced, it was extracted with a melt to further improve efficiency.
  • silicon crystals are obtained by separation of the reaction gas and silicon by a crystal growth unit, a cyclone, and the like, and, if necessary, through a fusion process.
  • the physical separation of gaseous and solid-phase silicon should result in at least some degree of crystal growth between them, and the resulting silicon will involve some growth of the particles, even without dissolution. There was a problem. However, since purity is a problem for solar cells, it was rather desirable that the particles be larger.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-060228
  • Patent Document 2 Japanese Patent Application Laid-Open No. 11-092130
  • Patent Document 3 Japanese Patent Publication 2003-095633
  • Patent Document 4 Japanese Patent Publication 2003-095632
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2004-196643
  • Patent Document 6 Japanese Unexamined Patent Publication 2003-095634
  • Patent Document 7 Japanese Patent Laid-Open No. 2003-095634
  • Patent Document 8 Japanese Patent Application Laid-Open No. 2004-210594
  • Patent Document 9 Japanese Patent Publication 2003-342016
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-010472
  • Patent Document 11 Japanese Unexamined Patent Publication No. 2004-035382
  • Patent Document 12 Japanese Patent Laid-Open No. 2004-099421
  • Patent Document 13 Japanese Patent Laid-Open No. 2006-290645
  • Patent Document 14 Japanese Patent Laid-Open No. 2006-298740
  • Patent Document 15 Japanese Patent Laid-Open No. 2008-81387
  • Patent Document 16 Japanese Patent Laid-Open 2008—115066
  • Patent Document 17 Japanese Patent Laid-Open No. 2008-115455
  • Patent Document 18 Japanese Patent Publication 2009—13042
  • Non-Patent Document 2 Annual Report, Nagoya Institute of Technology and Ceramics-based Engineering Research Center, vol7 17 (2007)
  • the present invention is to provide a high-purity silicon micropowder manufacturing apparatus capable of obtaining ultra-high-purity silicon having a fine particle shape and high efficiency and a large amount using minimal energy.
  • the present invention provides a device for supplying zinc gas by heating and evaporating metal zinc above the boiling point of zinc, (2) a device for supplying liquid silicon tetrachloride in the zinc gas, and (3) the zinc gas. And mixing and stirring the silicon tetrachloride to form a reaction gas containing silicon particles, and (4) growing the silicon particles produced by lowering the temperature of the reaction gas to 3oo ° C to 8 (xrc).
  • the apparatus for producing high purity silicon fine powder in the process of producing silicon by reducing silicon tetrachloride with zinc, it is possible to react at a very high concentration despite the disproportionation reaction, and the silicon nucleus is selectively produced. Under the conditions, silicon is produced, and as a result, a large amount of fine powder silicon is simultaneously produced, and the silicon of the fine powder can be efficiently obtained by partially precipitating the silicon together with the raw material zinc and the semi-aerated zinc.
  • the gas reaction as in the present invention, it is generally known that increasing the concentration of the source gas promotes nucleation of the reaction product, resulting in smaller crystal grains.
  • the method of supplying and reacting liquid silicon tetrachloride in the zinc gas utilized by the present inventors is the highest concentration as reaction performed under normal pressure, and is the most preferable form in order to obtain microcrystals. Accordingly, the present invention has been achieved for the purpose of obtaining fine grain crystals of high purity silicon with high efficiency and high yield while maintaining such conditions.
  • zinc gas can be obtained by boiling, evaporating and evaporating a liquid or solid zinc metal directly from the mechanism 1 for supplying zinc gas, thereby obtaining a zinc gas having a boiling temperature of almost zinc gas.
  • it can be heated to the required reaction temperature 1050 ° C to 1300 ° C.
  • argon gas can be additionally used, and thus slightly pressurized.
  • the amount of gas used or the degree of pressurization should be not so great, for example, if the pressure is up to lOOOOPa degree (pressure of lni, such as water). Suffice.
  • the amount of argon is preferably about 50 ml / (min) to 1000 ml / (min).
  • the apparatus for supplying the zinc gas includes a gasification unit for gasifying a high purity solid or liquid zinc quantitatively from the boiling point of zinc to 1300 ° C .; And an adjusting unit for heating the generated zinc gas and adjusting the temperature.
  • the zinc gas may be quantitatively supplied by adjusting the temperature.
  • silicon tetrachloride having a boiling point of about 56.4 ° C. can be supplied as a liquid in the mechanism 2 for supplying silicon tetrachloride.
  • the supply of silicon tetrachloride may be performed by dropping in the flow of zinc gas from the top using gravity, or spraying silicon tetrachloride in the flow of zinc gas.
  • the mechanism (2) for supplying liquid silicon tetrachloride into the zinc gas includes: a passage portion of zinc gas supplied and passed through the zinc gas supply mechanism; And a supply part for quantitatively spraying or dropping liquid silicon tetrachloride in the passage part.
  • the temperature of the passage portion of the zinc gas of the supply mechanism of silicon tetrachloride can be maintained at 1050 ° C to 1300 ° C.
  • the actual temperature of the associated portion may be slightly lower than the above range.
  • the temperature of the associating portion is less than 1050 ° C.
  • the silicon or silicon precursor produced by the reaction is easily precipitated, and the silicon or silicon precursor is precipitated at the associating portion of zinc and silicon tetrachloride, which may interfere with continuous operation.
  • the temperature of the associating part is preferably high, but at 1300 ° C or higher, problems due to the durability of quartz glass or silicon carbide sintered body, which are commonly used, or problems of excessive energy consumption are caused. Left.
  • zinc and silicon tetrachloride associate with gas-liquid or gas-gas, and at least partially react, and the gas containing partially produced silicon or silicon precursor produces a reaction gas having stirring means therein.
  • the agitation means used here are completely agitated with zinc and silicon tetrachloride and are sufficiently agitated.
  • Utensils may be used.
  • a randomly placed baffle plate or a pipe called a square mixer which divides the gas into half, breaks it longitudinally and half of it by shearing, and combines it in one cycle. It is possible to use a mechanism of stirring and mixing repeatedly. By these things, a perfect mix was obtained without pressure loss.
  • the mechanism for generating a reaction gas containing silicon particles by the mixed stirring reaction of the zinc gas and silicon tetrachloride is a cylindrical body maintained at a temperature of 1050 ° C to 1250 ° C., It may include elements that turbulent gas.
  • the gas turbulent element may consist of baffle plates placed at uneven intervals or may be square mixers.
  • the reaction gas containing the silicon precursor and silicon generated in this way flows in the mechanism 3, and reaction further advances.
  • This reaction material is sent to a mechanism (4) which grows silicon particles maintained at a temperature of 30 ° C. to 800 ° C. and at the same time precipitates together with a part of the gaseous component, and at least the reaction gas at least half of zinc gas and zinc chloride. A part and the silicon which generate
  • the produced precipitate is in a state containing very fine particles because it is co-precipitation with zinc chloride or zinc.
  • Sedimentation of silicon by the above-mentioned silver is performed in a very short time, and is maintained at about 0.5 seconds to about 2 seconds at a portion maintained at 300 ° C. to 800 ° C., and passes through a vertical tube maintained at the temperature. It can be almost completely precipitated silicon.
  • the silicon precipitated through this temperature portion volatilizes the evaporate maintained at 950 ° C. or higher, and reaches a holding tank, which is a mechanism (5) for obtaining solid silicon.
  • the volatiles such as zinc and zinc chloride are separated and removed to obtain high purity. Only silicon fine particles remain.
  • unreacted silicon tetrachloride such as zinc or zinc chloride, is discharged from the exhaust gas apparatus, so that the exhaust gas components are usually treated and recovered.
  • the mechanism 4 which grows the silicon particles and precipitates together with a part of the gas can be made as an inclined tube instead of the vertical type. If the slope is inclined at 30 ° to 90 ° with respect to the horizontal, and the silver content of the inclined portion is kept at 300 ° C to 800 ° C, preferably 500 ° C to 750 ° C, silicon, zinc chloride and zinc are integrally formed therein. At the same time it precipitates almost instantaneously, at the same time, the product slides down the inclined portion slowly, taking time to fall into the silicon holding tank, where the volatiles are volatilized to remain as pure silicon.
  • the inclination of the inclined portion is preferably about 30 ° to 90 ° with respect to the horizontal, and the holding time can be changed by the angle.
  • the inclination of the inclined tube is less than 30 ° , the fall of the product silicon is likely to be incomplete, and sometimes stays, which may cause closure.
  • the proximity time becomes shorter, and the holding time becomes shorter and unevenness tends to occur depending on the conditions. Therefore, it is necessary to determine the inclination angle according to the use and production capacity.
  • the apparatus for producing a precipitate at least partially by lowering the temperature of the reaction gas (300) to 300 ° C to 800 ° C is maintained at a temperature of 300 ° C to 800 ° C and 30 ° to 90 ° with respect to the horizontal It can be a tube inclined into.
  • the apparatus (4) generates a precipitate containing silicon in the spectral and inner wall portions, while maintaining the precipitate at the bottom of the product and the inner wall of the tubular body. It may be characterized in that it is heated to 950 ° C. or higher, and volatilized evaporates are sent to a mechanism for obtaining solid silicon.
  • the apparatus for warming the precipitate above 950 ° C. and volatizing the evaporate to obtain solid silicon comprises: an element receiving a gas comprising a precipitate containing silicon from the apparatus for lowering the temperature; Silicone holding containers; And an element for exhausting the exhaust gas.
  • the mechanism (5) may be characterized in that the bottom of the silicone holding container is heated from the bottom with a heater maintained at a temperature of loocrc to iioo ° c.
  • the apparatus for manufacturing high purity silicon fine powder may further include an extraction element for extracting silicon generated in the silicon holding container even during reaction.
  • the element for discharging the exhaust gas can be connected to the processing mechanism of the exhaust gas.
  • the high-purity silicon fine powder production apparatus as well as for solar cells (solar cell), in particular, fine powder high-purity silicon as a lithium ion battery negative electrode or silicon nitride raw material, the moisture of the power required for the current silicon production
  • it is a manufacturing apparatus for manufacturing in the state of fine powder which has not been reported before, and it is a technology that will be an important means to solve the future energy problem, global warming problem by CO 2 .
  • it since it has the possibility of greatly improving the characteristics of the current lithium ion secondary battery, it is considered to be very widely used for manufacturing secondary battery raw materials for hybrid and electric vehicles which are expected to be greatly expanded in the future.
  • silicon tetrachloride which is part of zinc zinc, which is a reaction product, and zinc chloride which is a reaction product.
  • silicon tetrachloride which is part of zinc zinc, which is a reaction product
  • zinc chloride which is a reaction product.
  • FIG. 1 shows a conceptual diagram of a manufacturing apparatus of one embodiment of the invention.
  • 2 shows a conceptual diagram of a manufacturing apparatus of an embodiment of the present invention, in which a precipitate of silicon is used as an inclined tube.
  • FIG. 3 is a conceptual diagram illustrating a manufacturing apparatus of an embodiment of the present invention, in which an exhaust gas treatment unit is provided with a water circulation mechanism.
  • Fig. 4 shows a conceptual diagram of a manufacturing apparatus of one embodiment of the invention, in which a mechanism for continuously extracting silicon from a silicon holding container is provided.
  • Figure 1 is a case in which a device for growing the silicon particles generated by lowering the temperature of the reaction gas containing silicon to 300 ° C to 800 ° C and at the same time to precipitate with a part of the gas component is a vertical tube
  • Figure 2 is the precipitation It is the case that the mechanism to make is inclined tube.
  • 3 is a case where a cooling fan is provided for temperature control of the settling mechanism.
  • Figure 4 is to keep the precipitate warmed to 950 ° C or more to volatilize the evaporate, inclined to the bottom of the mechanism to obtain a solid silicon, and to process while moving the generated silicon to enable continuous operation.
  • zinc wire or molten zinc is supplied from the zinc supply part 1.
  • a zinc melting furnace can send a fixed amount of zinc to a pump or the like.
  • the method of supplying a zinc wire is particularly preferable for a compact apparatus due to its ease of handling and easy transfer of quantitatively. It is a way.
  • it can supply and supply atmospheric gas for pressurization and atmosphere adjustment as needed.
  • the zinc wire or zinc melt sent in this way is supplied from the zinc supply port (1), and Zinc vapor is generated by heating and evaporating with a zinc evaporator (2).
  • zinc is vaporized above the boiling point of zinc by a direct heater.
  • This zinc gas is heated to the required temperature in the gas heating section (3).
  • 1300 ° C is good at 105C C, in particular 1100 ° C to 1200 ° C is suitable.
  • the method of supply is not particularly specified, and it is preferable to supply a fixed amount by a tube pump or a diaphragm pump. In the case of a large amount, a pressure is applied to the silicon tetrachloride holding unit to flow through the flowmeter, and the flow rate is adjusted by a valve. In either case, silicon tetrachloride is supplied in this section in the liquid phase.
  • the supplied silicon tetrachloride immediately starts the reaction with zinc gas and starts the production of the silicon precursor and the silicon, and at the same time an element for turbulizing the gas therein in a mechanism (5) for producing the reaction gas containing silicon particles.
  • the reaction can be carried out simultaneously while the reaction is sufficiently stirred by (51), and the temperature can be lowered in the mechanism (6) that grows the silicon particles and simultaneously precipitates them with a part of the gas component, thereby producing the silicon and some unreacted zinc and Zinc chloride unites and precipitates, and it moves to the mechanism (7) which obtains solid silicon.
  • the temperature may be maintained by providing different angle elements (for example, FIGS. 3 and 300) such as not only heating the heater but also introducing external air.
  • silicone below ⁇ which is difficult to precipitate, especially submicron microparticles
  • the base is heated above the loocrc, and the wall is slightly lower than it, but kept above the boiling point of zinc, to volatilize and evaporate volatile zinc or zinc chloride, There is little and the production silicon can be kept in high purity.
  • the heating can always be carried out, if necessary, the temperature. It is also possible to keep it low and to heat the temperature above 1000 ° c intermittently.
  • the ambient temperature at that point is 1000 ° c or less is preferable.
  • the exhaust gas mechanism 8 is not specifically designated, it is maintained here above the boiling point of zinc so that precipitation may not occur in the middle of a gas pipe, and the exhaust gas processing part 9 after that can fully reduce temperature and precipitate it as a solid.
  • the exhaust gas processing part 9 after that can fully reduce temperature and precipitate it as a solid.
  • zinc chloride solution if there is unbanung silicon tetrachloride, it is precipitated with silicon oxide as 'SiCl 4 + 2H 2 0 ⁇ Si0 2 + 4HC1', and zinc chloride and zinc are dissolved in zinc chloride solution It can also be processed by successive extraction.
  • Fig. 2 the principle is the same as in Fig. 1, but in Fig. 1, the mechanism 6 which grows silicon particles and precipitates together with a part of the gaseous components is used as a vertical pipe, but instead it is an inclined pipe 61.
  • the temperature of the lower temperature is lengthened, the cornering and precipitation are performed more reliably, and the silicon particles grow appropriately to yield Can be made higher.
  • a certain amount of time is maintained at the intermediate temperature, at least a portion of the volatiles mainly containing zinc chloride can be removed while being precipitated therein.
  • FIG. 3 is a schematic view in the case where the treated water is passed through the exhaust gas treatment unit.
  • zinc chloride which is an exhaust gas component coming in from the top is Soluble in aqueous solution.
  • silicon tetrachloride reacts immediately with water to form hydrochloric acid and silicon oxide, and since the aqueous solution is acidic with the produced hydrochloric acid, zinc is also dissolved to form an aqueous zinc chloride solution. .
  • FIG. 4 is the same as FIG. 1 until the mechanism 6 that grows the silicon particles and precipitates with some of the gaseous components is the same as that of FIG. 1, but tilts the bottom of the mechanism 7 to obtain the solid silicon beneath it.
  • the volatiles are volatilized while being moved by the sediment falling from the apparatus of 6) and transferred to a lower vessel or a dissolving mechanism 400 in which only silicon is placed on the way, and continuously extracted or dissolved therefrom as a melt. It can also be extracted.
  • the apparatus of the Example is mostly made of quartz glass, of course, ceramic materials, such as silicon carbide, can also be used with the enlargement.
  • the zinc evaporation tank (gasification part) has a cylinder with a diameter of 150 ⁇ and a height of 35 ⁇ , and a cylinder on the opposite side of the cylinder and a zinc supply port attached to the cylinder at a 45 ° height direction with an inner diameter of 4 ⁇ at one end of the cylinder.
  • a quartz glass tube having a gas flow passage having an outer diameter of 30 mm and horizontally installed, and a glass tube having an outer diameter of 30 mm and a length of 600 tnm having a vertical pipe having an inner diameter of 10 mm at a portion of 50 mm on one side connected to the gas flow passage with a zinc gas are zinc gas.
  • a vertical pipe was erected at the other stage and installed as a silicon tetrachloride supply mechanism. Moreover, it was set as the mechanism which generate
  • a quartz glass vertical tube having an outer diameter of 35 mm and a height of 600 mm falling at right angles is formed and the lower side thereof has a diameter of 160 mm x height of 200 mu m.
  • the container (silicone holding container) was attached.
  • the cover part of the quartz glass container is provided with an inlet (element receiving gas) and an exhaust gas pipe from the vertical pipe (element for exhausting gas), and an exhaust gas pipe made of quartz glass having an outer diameter of 25 mm is mounted thereon.
  • Another stage was connected to a drum can made of stainless steel (SUS304).
  • the drum can was filled with argon gas and used for exhaust gas treatment. However, pressure was not applied and back pressure was not generated.
  • the zinc evaporation tank was placed in contact with the upper and lower sides of the glass cylinder to place a heating plate made of iron chromium wire heating elements.
  • the lower surface of the quartz glass container was also provided in such a manner that the heating surface was in close contact. Another part controlled the temperature by placing a heater to surround these cylinders.
  • the zinc to be fed was to continuously send a pure zinc (99.995 mass% zinc) wire having a diameter of 2 mm 3 at 10 m 3 / sec continuously.
  • Silicon tetrachloride was continuously supplied at 0.25 g / sec by a tube pump at the top.
  • the start of operation was to start supplying zinc first, and then to start supplying silicon tetrachloride after 30 seconds.
  • argon gas was supplied at a rate of 200 ml / min from the branch pipe of the zinc wire portion.
  • the silver content of each part was 1100 ° C of zinc evaporation tank, 1KXTC of zinc gas heating part, 120CTC of silicon tetrachloride supply device (zinc gas passing part), and the temperature of the reaction tube was 1100 ° C of the square mixer insert part, and the rest of the semi-finished pipe ( The latter half) was set at 1050 ° C.
  • the vertical tube was 700 ° C. to 750 ′ C
  • the silicone holding vessel was at the bottom 1050 ° C.
  • the side wall was 95 CTC.
  • the calculation was over 17% of zinc. After 20 minutes of continuous operation, 45.2 g of brown, fine powder silicon was obtained. Having a peak where the measured particle size distribution of the silicon bar, 5 ⁇ particle size ⁇ ⁇ and 15 ⁇ , average particle size was found that fine particles formed of silicon ⁇ ⁇ ⁇ below.
  • the yield of silicon was 91% relative to the theoretical value.
  • the presence of hydrochloric acid odor in the exhaust gas section left some of the uncoated spots under these conditions, partially escaped in the exhaust gas, and partially gathered in the pipe.
  • the silicon manufacturing apparatus shown in FIG. 2 was produced.
  • the zinc supply to the zinc tetrachloride supply part was the same as that of FIG. 1, and the semi-ungular pipe length was 600 mm, and the square mixer similar to Example 1 was built into the part.
  • positioned so that it might fall toward a quartz glass container with the inclination-angle at 45 degrees with respect to the horizontal was provided behind the half-pipe, and it connected to the quartz glass container. Since the cover part of the quartz glass container was set 600 mm lower with respect to the reaction gas generating mechanism part that is a horizontal part, the length of the inclined tube was 850 mm 3. Moreover, the outer diameter of the inclined tube was 35 mm, and the others were the same as in Example 1.
  • the material used was silicon carbide (SiC).
  • the temperature was 1200 ° C (evaporator outer part) of the zinc evaporation tank, and the zinc gas heating unit was also 1200 ° C.
  • the silicon tetrachloride supply mechanism was 1200 ° C.
  • the reaction gas generating mechanism 105 (C, and the inclined tube was 500 ° C.
  • the bottom plate part was 1050 ° C and the wall part was 950 ° C.
  • the zinc wire was supplied at 15 kV / sec in the same manner as in Example 1.
  • Silicon tetrachloride was 0.4 g / sec.
  • Zinc and silicon tetrachloride began at the same time.
  • the supply of zinc and silicon tetrachloride was continued for 30 minutes and stopped. After stopping supply of silicon tetrachloride and zinc, After the temperature was lowered.
  • 106 g of silicon was obtained from the quartz glass container. This was 89.2% of theory.
  • the amount of zinc supplied was about 9% excess with respect to silicon tetrachloride. Part of this difference was due to the occurrence of non-reflection, while on the other hand, the produced silicon was held on a part of the glass surface of the inclined portion.
  • the same apparatus as in Example 1 was prepared except that the square mixer was replaced with a baffle plate. That is, the zinc evaporation tank is of the same size, but the zinc supply part is provided with an inclined tube having a diameter of 20 mm and the outer diameter of the zinc supply part of the zinc attached to the tip is 15 mm, and the zinc liquid feeder with the liquid trap (12) Installed.
  • the zinc supply here is to be supplied by the overflow from the zinc feeder through the liquid trap, so that a portion of 2 mm diameter zinc wire as used in Example 1 is supplied at a rate of 20 mm / sec. did.
  • the semiungwan tube was placed as a turbulent element of gas so that a semicircular quartz glass plate was placed at random intervals and at random angles so as to reach the entire length of 1000 mV in the apparatus.
  • this apparatus mainly used quartz glass.
  • the temperature of the zinc evaporation tank was 1300 ° C. Although it turns into a zinc gas of a boiling temperature substantially here, it was set as this temperature in order to generate
  • the zinc gas heating unit was 1200 ° C., and made the same temperature as the silicon tetrachloride supply mechanism.
  • the temperature of the half-ung pipe containing the baffle plate was 1150 ° C.
  • the temperature of the vertical pipe portion is set at 600 ° C to 650 ° C., in order to maintain this temperature, an angle relief mechanism for receiving external air is installed in addition to the heater.
  • Further silicone holding part is silver is a base temperature at 1000 ° C, which was the wall temperature to 800 ° C.
  • a drum can made of SUS304 having a circulation mechanism of a zinc chloride aqueous solution from the outside at the bottom was used as the exhaust gas treatment / recovery mechanism.
  • An acid-resistant paint was applied to the inside of the drum can to improve corrosion resistance.
  • the exhaust gas accompanying silicon formation was led to the top of the drum tube in a quartz glass tube having an outer diameter of 30 mm.
  • the temperature was maintained at 1100 ° C. to prevent the formation of volatiles.
  • the zinc chloride aqueous solution supplied to a drum can was made to circulate with the 200 1 solution tank through a several capacitor
  • As a circulating zinc chloride aqueous solution 15% zinc chloride + 5% aqueous hydrochloric acid solution (mass%) was circulated.
  • the level of this circulating water was set to 50 mm at the bottom in the drum tube.
  • the following operation was performed about this apparatus. That is, as described above, the zinc wire was supplied at 20 mm / sec, and dropping of silicon tetrachloride was started 30 seconds after the introduction of zinc into the zinc evaporation tank was confirmed.
  • the supply amount of silicon tetrachloride was 0.5 g / sec. After 60 minutes of operation, 252 g of brown silicon fine powder was obtained. In addition, 16.77 degrees of supply zinc was excess in theory.
  • the zinc chloride aqueous solution in the exhaust gas treating drum partially contained precipitates of silicon oxide. Accordingly, it was found that unbanung silicon tetrachloride was produced to some extent even when excess zinc was added. In addition, since the precipitates of silicon oxide were large particles, they could be easily separated by a filter cloth of about 100 scale.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Silicon Compounds (AREA)

Abstract

The present invention relates to an apparatus for manufacturing a fine powder of high purity silicon, and the apparatus for manufacturing a fine powder of high purity silicon is characterized by comprising: (1) a device for supplying zinc gas by heating and evaporating metallic zinc above the boiling point of zinc; (2) a device for supplying liquid silicon tetrachloride from among the zinc gases;(3) a device for generating a reactive gas containing silicon particles by reaction through mix-stirring of the zinc gas and the liquid silicon tetrachloride; (4) a device for precipitating a portion of the gaseous component while simultaneously growing the generated silicon particles as the reactive gas temperature is lowered to between 300oC and 800oC; (5) a device for obtaining solid silicon by evaporation of water and heating to above 950 degrees while simultaneously maintaining precipitation; and (6) a device for exhaust gas for discharging off exhaust gas that includes un-reacted gases, etc. and includes evaporated water.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
고순도 실리콘 미세분말의 제조 장치  High Purity Silicon Fine Powder Manufacturing Equipment
[기술분야]  [Technical Field]
본 발명은 고순도 실리콘 미세분말의 제조 장치에 관한 것이다. 보다 상세하게는, 주로 리륨 이온 전지용의 음극 재료, 고순도 질화규소용의 원료, 태양전지 (solar cell)용 재료, 또는 그 밖의 실리콘 화합물용 원료로 사용될 수 있고, 높은 순도 및 미세한 결정을 갖는 실리콘 미세분말을 제공할 수 있는 제조 장치에 관한 것이다.  The present invention relates to an apparatus for producing high purity silicon fine powder. More specifically, silicon fine powder having high purity and fine crystals, which can be mainly used as a negative electrode material for a lithium ion battery, a raw material for high purity silicon nitride, a solar cell material, or other raw material for silicon compounds. It relates to a manufacturing apparatus that can provide.
【발명의 배경이 되는 기술】  [Technique to become background of invention]
고순도 실리콘은, 전자 디바이스용으로는 단결정 실리콘 웨이퍼 등 11 나인 (nine) 정도의 초고순도품이 알려져 있고, 또 최근 급속히 확대되고 있는 태양전지에의 용도로도 불순물 원소의 종류에 따르지만, 적어도 6나인 정도의 고순도가 필요하다. 그 때문에 실리콘의 제조와 관련하여, 생성하는 실리콘의 결정을 될 수 있는 한 성장시켜 불순물이 포함되지 않도록 하는 연구가 실시되고 있다. 즉 전형적인 실리콘의 제조 프로세스로서, 트리클로로실란을 수소로 환원하고, 생성하는 실리콘을 기재 위에서 일정 시간 동안 성장시키는 소위 지멘스법이 알려져 있다. 그러나 이러한 기술은 초고순도 실리콘을 얻기 위해서는 좋은 방법이지만, 소비 에너지가 매우 크고, 또한 생성 속도가 늦기 때문에 필연적으로 큰 설비가 필요하게 되고, 제조 비용이 매우 커진다.  High purity silicon is known to be used for electronic devices, such as single crystal silicon wafers, and ultra high purity products of about 11 nine. Also, depending on the type of impurity element, it is also used for solar cells, which are rapidly expanding in recent years. Need high degree of purity. Therefore, in connection with the production of silicon, studies have been conducted to grow the crystals of silicon to be produced so that impurities are not contained. In other words, as a typical silicon production process, a so-called Siemens method is known in which trichlorosilane is reduced to hydrogen and the resulting silicon is grown on the substrate for a predetermined time. However, this technique is a good way to obtain ultra-pure silicon, but because the energy consumption is very large and the production rate is slow, inevitably large equipment is required, and the manufacturing cost is very high.
한편, 사용되는 원료를 바꾸거나 제조 조건을 달리하는 다양한 실리콘 제조 방법이 제안되어 있다 (비특허문헌 1). 그러나, 이러한 종래의 방법들은, 원료가 특수하다든가, 원료인 실리콘 화합물이 불안정해서 폭발성을 갖는다는 등의 문제점이 있어, 광범위하게 실용화되고 있지는 못하다.  On the other hand, various silicone manufacturing methods which change the raw material used or differ from a manufacturing condition are proposed (nonpatent literature 1). However, these conventional methods have a problem that the raw material is special or that the raw silicon compound is unstable and explosive, and thus has not been widely used.
또한, 4 나인 정도의 고순도 실리콘을 원료로 해서 플라즈마 용해를 하는 야금법, 또는 전자 빔 용해를 함으로써 불순물을 휘산시켜 고순도화하는 방법이 알려져 있다. 그리고, 상기 방법으로 고순도화한 실리콘의 웅고 프로세스에서 일방향 웅고 기술을 더하고, 불순물만을 단부에 이동시켜 고순도 실리콘을 얻는 방법이 제안되어 있다. In addition, metallurgical methods for plasma melting using high purity silicon of about 4 atoms as a raw material, or methods for volatilizing impurities and purifying them by electron beam melting are known. And, high purity by the above method A method of obtaining high purity silicon by adding a one-way arching technique in the process of uneven silicon and moving only impurities to the ends has been proposed.
그러나, 이러한 방법들은 초고순도 샬리콘을 얻을 수는 있지만, 원료 실리콘이 고순도이며 고가인 점과, 적당한 실리콘원이 적다는 점 등에서 실용화의 확대가 용이하지 않음 문제점이 있다. 뿐만 아니라, 상기 실리콘은, 모두 블록 형으로, 치밀질한 고순도의 실리콘을 얻기 위해서 행하여지고 있으므로, 본원의 발명의 목적에는 일치하는 것이 아니었다. 최근에는, 주로 에너지 절약화의 관점에서 사염화규소를 아연으로 환원하는 방법이 많이 검토되고 있다. 즉, 이 사염화규소의 아연환원법에 의한 실리콘의 제조는 1950년경에 최초로 제안되어 그 후 많은 기술 제안이 이투어지고, 일부에서는 상품화되었다고 알려져 있다. 그러나 이러한 방법은 고온 프로세스이며 그 운전 조건의 유지가 곤란한 점, 또한 부가적으로 발생하는 염화아연의 처리가 곤란하다는 등의 문제점 있는 것으로 알려져 있다.  However, these methods can obtain ultra-high-purity chalcones, but there is a problem in that the practical use is not easily expanded in that the raw material silicon is high purity and expensive, and there are few suitable silicon sources. In addition, since the said silicon is all performed in order to obtain dense high-purity silicon in block form, it did not correspond to the objective of this invention. In recent years, the method of reducing silicon tetrachloride to zinc is mainly examined from the viewpoint of energy saving. That is, the production of silicon by the zinc reduction method of silicon tetrachloride was first proposed around 1950, and many technical proposals have been made since then, and some are known to be commercialized. However, it is known that such a method is a high temperature process and it is difficult to maintain its operating conditions, and it is difficult to further treat zinc chloride generated.
이에 따라, 여러 가지 연구가 이루어지고 있는데, 예를 들면 특허문헌 1 및 특허문헌 2 에서는 액상아연표면에 사염화규소를 불어 넣어서 실리콘을 얻는 방법이 제안되어 있다. 이러한 방법에서는 비교적 낮은 온도로 실리콘의 제조를 할 수 있다는 특징이 있지만, 현실적으로는 고체상인 실리콘과 액층 아연 및 기체상의 반웅 생성물인 염화아연의 분리가 용이하지 않으며, 액층 아연 증의 불순물이 실리콘 안에 흔입해버려 그 분리가 매우 곤란하다는 문제를 가지고 있다.  Accordingly, various studies have been made. For example, Patent Document 1 and Patent Document 2 propose a method of obtaining silicon by blowing silicon tetrachloride into a liquid zinc surface. This method is characterized in that the silicon can be produced at a relatively low temperature, but in reality, it is not easy to separate the solid phase silicon from the liquid layer zinc and the gaseous reaction product zinc chloride, and impurities of the liquid layer zincation are common in the silicon. It has a problem that the separation is very difficult.
또한, 사염화규소 가스를 아연 가스로 환원하고, 생성한 실리콘을 반웅로의 로벽에 생성시키는 방법과 관련하여 몇 가지가 제안되었다. 특허문헌 3 에서는 가스의 흔합비를 특별히 정해서 석출을 제어해 결정의 성장을 촉진하고 있다. 또한, 로벽으로의 실리콘의 석출과 추출을 용이하게 하는 방법으로서, 특허문헌 4 에서는 반웅조 내의 벽에 이형재를 사용하는 것을 제안하고 있다. 그러나 뱃치 프로세스가 되기 때문에 생성 실리콘 안으로 불순물의 흔입 기회가 많아지는 점, 반웅 가스인 사염화규소의 제거, 분리가 곤란한 문제를 가지고 있다. 그리고, 이러한 방법들은 모두 생성되는 실리콘의 결정을 될 수 있는 한 최대로 성장시키는 것에 주안점을 두고 있다. In addition, several proposals have been made with respect to a method of reducing silicon tetrachloride gas to zinc gas and producing silicon on the furnace wall of the reaction furnace. In patent document 3, the mixing ratio of gas is specifically determined, precipitation is controlled, and the growth of crystal | crystallization is promoted. In addition, as a method for facilitating the deposition and extraction of silicon to the furnace wall, Patent Document 4 proposes to use a release material for the wall in the semi-ungjok. However, there is a problem that the batch process increases the chance of introducing impurities into the formed silicon, and the removal and separation of silicon tetrachloride, which is a reaction gas, is difficult. And all of these methods The focus is on growing the crystals of the resulting silicon to the maximum possible.
또한, 생성 실리콘 결정을 보다 크게 성장시키기 위해 특허문헌 In addition, in order to grow the formed silicon crystal larger, the patent literature
5 에서는 사염화규소 가스와 아연 가스와의 반웅을 불활성 캐리어 가스 분위기에서 조건을 특별히 정해서 실시하는 것을 보여주고 있다. 또 특허문헌 6 에서는 반웅로 내에 실리콘 종결정판을 두고, 또는 그러한 벽을 만들고, 거기에 침 형상의 실리콘을 성장시키도록 하고 있다. 그러나 이러한 것들도 뱃치 프로세스로부터 빠져나갈 수 없고, 개량되어 있다고 해도 불순물의 흔입을 방지하는 것은 매우 곤란했다. 그러고, 이러한 방법들은 모두 실리콘의 고순도화의 달성을 위해서 입자를 가능한 크게 하는 것에 주안점을 두고 있다. 5 shows that the reaction between silicon tetrachloride gas and zinc gas is carried out under special conditions in an inert carrier gas atmosphere. In Patent Document 6, a silicon seed crystal plate is placed in a reaction chamber, or such a wall is made to grow needle-shaped silicon therein. However, these also cannot escape from the batch process, and even if improved, it was very difficult to prevent the entry of impurities. All of these methods then focus on making the particles as large as possible to achieve high purity of silicon.
특허문헌 7 에서는, 원료인 사염화규소 가스를 노즐로부터 하부에 있는 아연 가스 분위기 중에 뿜어 냄으로써 사염화규소 가스 노즐의 주변에 실리콘을 통 형상으로 형성하는 것을 보여주고 있다. 상기 특허 문헌에는 실질적으로는 가스의 유속을 규정하고 있지만, 실시예에서는 희박한 가스를 보냄으로써 반응을 제어하면서 제조하는 것이 나타나 있다 . 또한, 상기 특허 문헌에는 상대적으로 대형의 설비를 사용해 큰 결정을 만들 수 있다는 점과 노즐의 주변에 결정을 성장시킴으로써 생성 결정을 반응탑의 내면에 접촉하지 않고 성장시킬 수 있다는 점이 나타나 있다 . 이에 따라 상기 특허 문헌에서는 불순물이 들어가지 않는 고순도의 결정이 생성되는 것으로 나타나 있으나, 이러한 방법은 미세한 결정을 단시간에 다량 합성하는 것이 아닐 뿐만 아니라, 동일 아연환원법이라도 오히려 반대로 결정을 성장시켰다.  Patent Document 7 shows that silicon tetrachloride gas, which is a raw material, is formed in a cylindrical shape around a silicon tetrachloride gas nozzle by blowing a zinc tetrachloride gas from the nozzle in a lower zinc gas atmosphere. Although the patent document defines the flow rate of gas substantially, the Example shows that manufacturing is carried out by controlling reaction by sending a lean gas. In addition, the above patent documents show that relatively large equipment can be used to make large crystals, and that crystals can be grown without contacting the inner surface of the reaction column by growing crystals around the nozzle. Accordingly, although the above-mentioned patent document shows that high-purity crystals do not contain impurities, this method not only synthesizes a large amount of fine crystals in a short time, but also grows crystals on the contrary with the same zinc reduction method.
이전에 알려진 방법의 문제점에 대하여, 본 발명자들은 반웅로의 로벽에는 실리콘을 생성시키지 않고 연속적으로 실리콘을 생성시키는 방법으로서, 선회 용융법에 의한 고온 프로세스의 검토를 진행시켜 왔다. 관련 내용은 하기 특허문헌 8, 특허문헌 9, 특허문헌 10, 특허문헌 11, 특허문헌 12 등의 발명에서 실시하였다. 이에 따라, 상기 발명들에 의하여 반응로의 로벽의 영향을 받지 않고 게다가 연속 운전이 가능해져 제품 실리콘은 좋은 성능을 부여하는 것이 가능하게 되었다. Regarding the problem of the previously known method, the present inventors have proceeded to examine the high temperature process by the turning melting method as a method of continuously producing silicon without producing silicon in the furnace wall of the reaction furnace. Related contents were implemented in inventions, such as the following patent document 8, patent document 9, patent document 10, patent document 11, patent document 12, and the like. Accordingly, by the above inventions In addition, it is possible to continuously operate without being affected by the furnace wall of the reactor, which makes it possible to give the product silicon good performance.
그러나, 이러한 방법에 의해서도, 120CTC 이상, 통상적으로 실리콘의 융점인 1410°C 부근의 고온을 필요로 하기 때문에 생성 실리콘 중에는 계내에 존재하는 미량이 불순물이 흔입되기 쉽고, 6-나인 정도의 순도가 한계였다. However, this method also requires a high temperature of more than 120 CTC, typically around 1410 ° C, which is the melting point of silicon. It was.
또한, 반웅 장치 자체가 사이클론을 형성하기 때문에 대형화 되어 버리는 문제점이 있고, 반웅 온도가 매우 높기 때문에 반웅로를 구성하는 재료의 내구성에 문제가 발생하기 쉽고, 단시간에는 문제는 적지만 장기간에 걸쳐서의 안정된 장치 재료를 확보하기 어려운 문제점이 있다. 이러한 문제점들을 해결을 위해서 본 발명자들은, 특허문헌 13 에서 마찬가지로 기상반응법을 실시하나 반웅 조건을 특정함으로써 실리콘을 단결정 섬유로서 추출하는 것에 성공했다. 또한, 이에 따라 제조되는 실리콘의 고순도화를 도모하면서 그것을 융체로 추출하여 보다 효율화를 도모했다.  In addition, since the reaction device itself forms a cyclone, there is a problem in that it becomes large in size, and because the reaction temperature is very high, problems in durability of the material constituting the reaction furnace are likely to occur. There is a problem that it is difficult to secure device materials. In order to solve these problems, the present inventors performed the vapor phase reaction method similarly in Patent Document 13, but succeeded in extracting silicon as a single crystal fiber by specifying reaction conditions. In addition, while purifying the high purity of the silicon thus produced, it was extracted with a melt to further improve efficiency.
그러나, 이러한 섬유형 단결정을 형성하기 위해서는 높은 온도에서 고농도의 아연과 사염화규소를 반응시켜야 하몌 반웅장의 압력변화가 비교적 크기 때문에 실용화를 위해서는 조건의 제어가 엄격해지는 문제점이 발견되었다. 또한, 고온 반웅이기 때문에 때로는 불순물의 농도가 높아지기 쉽다는 문제점도 발견되었다. 그리고, 상기 방법은 모두 결정 성장을 우선하기 때문에 미세분말의 형성을 일으키지 않는 조건이며, 또 그것들로부터 실리콘의 미세분말을 추출할 수 없었다.  However, in order to form such fibrous single crystals, high concentrations of zinc and silicon tetrachloride must be reacted at a high temperature. However, since the pressure change of the semi-autumn is relatively large, it is found that the control of the conditions is strict for practical use. In addition, a problem has been found that sometimes the concentration of impurities tends to be high because of high temperature reaction. And all of the above methods are conditions that do not cause the formation of fine powder because crystal growth is given priority, and silicon fine powder could not be extracted from them.
또, 이렇게 하여 반웅장치 내에 실리콘 결정을 생성시킨 후에 융체화함으로써 연속 운전이 가능해졌지만, 한편 결정을 생성시키기 위해서는, 온도, 분위기 등의 조건이 엄격하고, 장치의 내구성에 문제가 생길 가능성이 있었다. 또한, 생성하는 결정에 편차가 발생하기 쉽고, 가스와의 분리 공정에서 때로는 성장이 불층분한 결정이 배기 가스에 흔입해버리는 일이 빈번히 발생하였다. 한편, 생성하는 결정을 거의 일정한 상태로 성장시키는 방법으로서는 특허문헌 6 에 나타난 바와 같이 내부에 종결정을 두는 것이 고려되지만, 연속 운전이 곤란해지는 동시에, 미세결정을 엊는다고 하는 본 목적에는 일치하지 않는다. In this way, the silicon crystals were generated in the reaction apparatus and then melted, thereby enabling continuous operation. On the other hand, in order to generate the crystals, conditions such as temperature and atmosphere were strict and the durability of the apparatus could be caused. In addition, deviations easily occur in the crystals to be produced, and in the separation process from the gas, crystals in which growth is sometimes unsatisfactory often occur in the exhaust gas. On the other hand, as a method of growing the crystal to be produced in a substantially constant state as shown in Patent Document 6 Although it is considered to have a seed crystal, this operation is difficult to coincide with this object of making a fine crystal at the same time.
한편, 본 발명자들은, 아연에 의한 사염화규소의 환원 반웅이 매우 빠르다는 것을 발견하고, 보다 소형의 장치를 사용하면서 제조능력을 대폭 확대하는 제조 조건과 장치에 관하여 검토를 하였다. 즉, 고농도의 가스상 아연 중에 액상의 사염화규소를 공급하여 매우 높게 희합하는 실리콘 제조 조건을 실현했다. (특허문헌 15, 특허문헌 16,특허문헌 17). 이러한 발명들에서, 반웅부는 소형이 되고, 반웅 생성물인 실리콘은 완전한 실리콘이 되기 전의 중간체에서, 실리콘 결정으로 변화하면서 성장하는 것을 발견했다 (비특허문헌 2).  On the other hand, the present inventors found that the reaction of reducing zinc tetrachloride by zinc was very fast, and examined the manufacturing conditions and apparatus for greatly expanding the production capacity while using a smaller apparatus. That is, liquid silicon tetrachloride was supplied in a high concentration of gaseous zinc to realize silicon production conditions that were very high. (Patent Document 15, Patent Document 16, Patent Document 17). In these inventions, it was found that the reaction zone became small, and the silicon, which was the reaction product, grew while changing into silicon crystals in the intermediate before becoming complete silicon (Non-Patent Document 2).
상기 프로세스들에서는, 결정 성장부, 사이클론 등에 의한 반웅 가스와 실리콘의 분리에 의해, 또한 필요에 따라서는 융체화 프로세스를 거쳐서 실리콘 결정을 얻는 것을 실시하고 있다. 이러한 프로세스 중에는, 기체상과 고체상 실리콘의 분리 프로세스를 물리적으로 실시한 결과, 이 사이에 적어도 어느 정도의 결정 성장을 촉진시켜야 하며, 그에 따라 생성하는 실리콘은 가령 용해하지 않아도 어느 정도의 입자의 성장을 수반한다는 문제점이 있었다. 다만, 태양전지용으로는 순도가 문제가 되므로 입자가 커지는 것은 오히려 바람직한 것이었다.  In the above processes, silicon crystals are obtained by separation of the reaction gas and silicon by a crystal growth unit, a cyclone, and the like, and, if necessary, through a fusion process. During this process, the physical separation of gaseous and solid-phase silicon should result in at least some degree of crystal growth between them, and the resulting silicon will involve some growth of the particles, even without dissolution. There was a problem. However, since purity is a problem for solar cells, it was rather desirable that the particles be larger.
유일하게 연속적으로 종결정 위에 실리콘을 생성하는 방법으로서 소위 유동층을 사용하는 방법이 있다 (비특허문헌 1). 그러나, 반웅 가스로서 염화아연이 계에 존재하는 경우, 반웅 가스의 분리 회수가 곤란하게 되어 유동층 그 자체의 형성이 곤란하다는 문제점이 있었다.  There exists a method of using a so-called fluidized bed as a method of generating silicon on a seed crystal only continuously (nonpatent literature 1). However, when zinc chloride is present in the system as the reaction gas, separation and recovery of the reaction gas becomes difficult, and thus there is a problem that formation of the fluidized bed itself is difficult.
또한, 상기 방법들은 모두 고순도 /초고순도의 실리콘을 얻는 것을 목적으로 한 것으로서, 고순도를 유지하면서도 미세한 결정을 얻는 방법에 대해서는 알려진 바 없다.  In addition, the above methods are all aimed at obtaining high purity / ultra high purity silicon, and there is no known method for obtaining fine crystals while maintaining high purity.
[특허문헌 1]일본특허공개 평 11-060228공보  [Patent Document 1] Japanese Patent Application Laid-Open No. 11-060228
[특허문헌 2] 일본특허공개 평 11-092130공보  [Patent Document 2] Japanese Patent Application Laid-Open No. 11-092130
[특허문헌 3] 일본특허공개 2003-095633공보  [Patent Document 3] Japanese Patent Publication 2003-095633
[특허문헌 4] 일본특허공개 2003-095632공보 [특허문헌 5] 일본특허공개 2004-196643 공보 [Patent Document 4] Japanese Patent Publication 2003-095632 [Patent Document 5] Japanese Patent Application Laid-Open No. 2004-196643
[특허문헌 6] 일본특허 공개 2003-095634 공보  [Patent Document 6] Japanese Unexamined Patent Publication 2003-095634
, [특허문헌 7] 일본특허공개 2003-095634 공보  [Patent Document 7] Japanese Patent Laid-Open No. 2003-095634
[특허문헌 8] 일본특허공개 2004-210594 공보  [Patent Document 8] Japanese Patent Application Laid-Open No. 2004-210594
[특허문헌 9] 일본특허공개 2003-342016 공보  [Patent Document 9] Japanese Patent Publication 2003-342016
[특허문헌 1이 일본특허공개 2004-010472 공보  [Patent Document 1] Japanese Patent Application Laid-Open No. 2004-010472
[특허문헌 11] 일본특허 공개 2004-035382 공보  [Patent Document 11] Japanese Unexamined Patent Publication No. 2004-035382
[특허문헌 12] 일본특허공개 2004-099421 공보  [Patent Document 12] Japanese Patent Laid-Open No. 2004-099421
[특허문헌 13] 일본특허공개 2006-290645 공보  [Patent Document 13] Japanese Patent Laid-Open No. 2006-290645
[특허문헌 14] 일본특허공개 2006-298740 공보  [Patent Document 14] Japanese Patent Laid-Open No. 2006-298740
[특허문헌 15] 일본특허공개 2008-81387 공보  [Patent Document 15] Japanese Patent Laid-Open No. 2008-81387
[특허문헌 16] 일본특허 공개 2008— 115066 공보  [Patent Document 16] Japanese Patent Laid-Open 2008—115066
[특허문헌 17] 일본특허공개 2008-115455 공보  [Patent Document 17] Japanese Patent Laid-Open No. 2008-115455
[특허문헌 18] 일본특허공개 2009— 13042 공보  [Patent Document 18] Japanese Patent Publication 2009—13042
[비특허문헌 1]실리콘 24( 1994) 배풍관 (培風館)  [Nonpatent Literature 1] Silicon 24 (1994)
[비특허문헌 2] 나고야 공업 대학 · 세라믹스 기반 공학연구센터 연보, vol7 17(2007)  [Non-Patent Document 2] Annual Report, Nagoya Institute of Technology and Ceramics-based Engineering Research Center, vol7 17 (2007)
【발명의 내용】  [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
본 발명은 초고순도를 지니면서 미세하고 입자 형상이 갖추어진 실리콘을 최소의 에너지를 사용하여 높은 효율 및 다량으로 얻을 수 있는 고순도 실리콘 미세분말의 제조 장치를 제공하기 위한 것 이다 .  The present invention is to provide a high-purity silicon micropowder manufacturing apparatus capable of obtaining ultra-high-purity silicon having a fine particle shape and high efficiency and a large amount using minimal energy.
【과제의 해결 수단】  [Measures of problem]
본 발명은, ( 1)금속아연을 아연의 비 점 이상으로 가열 증발하여 아연 가스를 공급하는 기구와, (2)상기 아연 가스 중에 액상의 사염화규소를 공급하는 기구와, (3)상기 아연 가스와 상기 사염화규소를 흔합 교반하고 반웅시켜 실리콘 입자를 포함하는 반웅 가스를 생성하는 기구와, (4)상기 반응 가스의 온도를 3oo°c 내지 8(xrc로 내려서 생성된 실리콘 입자를 성장시 킴과 동시에 가스 성분의 일부와 함께 침 전시키는 기구와 (5)상기 침전물을 유지하는 동시에, 상기 침전물을 950°C 이상으로 가온하고, 증발물을 휘산하여, 고체 실리콘을 얻는 기구와, (6)상기 증발물 및 미반웅 가스를 포함하는 배기 가스를 계외로 배출하는 배기 가스 기구를 포함하여 이루어지는 것을 특징으로 하는 고순도 실리콘 미세분말의 제조 장치를 제공한다. The present invention provides a device for supplying zinc gas by heating and evaporating metal zinc above the boiling point of zinc, (2) a device for supplying liquid silicon tetrachloride in the zinc gas, and (3) the zinc gas. And mixing and stirring the silicon tetrachloride to form a reaction gas containing silicon particles, and (4) growing the silicon particles produced by lowering the temperature of the reaction gas to 3oo ° C to 8 (xrc). And (5) mechanisms for precipitating together with some of the gas components At the same time maintaining the precipitate, the precipitate is heated to 950 ° C or more, volatilization of the evaporate to obtain a solid silicon, and (6) to discharge the exhaust gas containing the evaporate and non-aerated gas out of the system An apparatus for producing high purity silicon fine powder, comprising an exhaust gas mechanism.
상기 고순도 실리콘 미세분말의 제조 장치를 이용하면, 사염화규소를 아연에 의하여 환원하여 실리콘을 제조하는 과정에서, 불균화 반웅에도 불구하고 매우 고농도에서의 반웅을 가능하게 하고, 실리콘 핵이 선택적으로 생성하는 조건에서 실리콘을 생성하고, 결과적으로 미세분말 실리콘을 다량 생성 하는 동시에 상기 실리콘을 부분적으로 원료 아연 및 미반웅 아연과 함께 침전시킴으로서 미세분말의 실리콘을 효율적으로 얻을 수 있다.  By using the apparatus for producing high purity silicon fine powder, in the process of producing silicon by reducing silicon tetrachloride with zinc, it is possible to react at a very high concentration despite the disproportionation reaction, and the silicon nucleus is selectively produced. Under the conditions, silicon is produced, and as a result, a large amount of fine powder silicon is simultaneously produced, and the silicon of the fine powder can be efficiently obtained by partially precipitating the silicon together with the raw material zinc and the semi-aerated zinc.
본원 발명에서와 같은 기체반웅에서는 일반적으로, 원료 가스 농도를 크게 하면 반응 생성물의 핵생성이 촉진되어 생성하는 결정 입자가 작아지는 것으로 알려져 있다. 본 발명자들이 실용화한 아연 가스 중에 액상의 사염화규소를 공급해서 반웅시키는 방법은, 상압하에서 실시하는 반웅으로서는 가장 고농도이며, 미세결정을 얻기 위해서는 가장 바람직한 형태이다. 따라서, 이러한 조건을 유지하면서도, 고순도 실리콘의 미세한 입자결정을 고효율 및 고수율로 얻는 것을 목적으로 하여 본 발명에 이른 것이다.  In the gas reaction as in the present invention, it is generally known that increasing the concentration of the source gas promotes nucleation of the reaction product, resulting in smaller crystal grains. The method of supplying and reacting liquid silicon tetrachloride in the zinc gas utilized by the present inventors is the highest concentration as reaction performed under normal pressure, and is the most preferable form in order to obtain microcrystals. Accordingly, the present invention has been achieved for the purpose of obtaining fine grain crystals of high purity silicon with high efficiency and high yield while maintaining such conditions.
즉, 아연 가스는, 아연 가스를 공급하는 기구 (1)에서 직접 액상 또는 고체의 아연금속을 가열하고 비등 및 증발시킴으로써 거의 아연 가스만으로 이루어진 비등 온도의 아연 가스를 얻을 수 있다. 또한, 이것을 필요한 반웅 온도인 1050°C 내지 1300 °C로 가열할 수 있다. 이 때에 분위기 가스 (atmospheric gas)는 없어도 되지만, 계내의 가스의 흐름을 원활하게 하고 도중의 폐쇄를 방지하기 위하여, 아르곤 가스를 추가로 사용할 수 있고, 이에 따라 약간 가압할 수 있다. In other words, zinc gas can be obtained by boiling, evaporating and evaporating a liquid or solid zinc metal directly from the mechanism 1 for supplying zinc gas, thereby obtaining a zinc gas having a boiling temperature of almost zinc gas. In addition, it can be heated to the required reaction temperature 1050 ° C to 1300 ° C. At this time, there is no need for atmospheric gas, but in order to smooth the flow of the gas in the system and to prevent the closing in the middle, argon gas can be additionally used, and thus slightly pressurized.
다만, 사용되는 가스량 또는 가압의 정도는 그리 크지 않은 정도이면 되고, 예를 들어 압력은 최대 lOOOOPa 정도 (물기등 lni 정도의 압력)이면 충분하다. 반웅관 굵기가 25瞧 정도에서는 아르곤량으로서 50 ml/ (분) 내지 1000 ml/ (분)정도가 바람직하다. However, the amount of gas used or the degree of pressurization should be not so great, for example, if the pressure is up to lOOOOPa degree (pressure of lni, such as water). Suffice. In the case of a semi-ungular pipe thickness of about 25 kPa, the amount of argon is preferably about 50 ml / (min) to 1000 ml / (min).
상기 (1) 아연 가스를 공급하는 기구는, 고순도의 고체 또는 액상의 아연을 정량적으로 아연의 비점 내지 1300°C로 가스화하는 가스화부; 및 상기 생성한 아연 가스를 가열하고, 온도를 조정하는 조정부를 포함할 수 있으몌 상기 온도를 조정한 아연 가스를 정량적으로 공급하는 것을 특징으로 할 수 있다. The apparatus for supplying the zinc gas includes a gasification unit for gasifying a high purity solid or liquid zinc quantitatively from the boiling point of zinc to 1300 ° C .; And an adjusting unit for heating the generated zinc gas and adjusting the temperature. The zinc gas may be quantitatively supplied by adjusting the temperature.
한편, 상기 가열된 가열 아연 가스 중에는, 사염화규소를 공급하는 기구 (2)에서 비점이 약 56.4°C인 사염화규소가 액체인 채로 공급될 수 있다. 이러한 사염화규소의 공급은 중력을 이용하여 상부로부터 아연 가스의 흐름 중에 적하하거나, 아연 가스의 흐름 중에 사염화규소를 분무하는 방법 등으로 이루어질 수 있다. On the other hand, in the heated heated zinc gas, silicon tetrachloride having a boiling point of about 56.4 ° C. can be supplied as a liquid in the mechanism 2 for supplying silicon tetrachloride. The supply of silicon tetrachloride may be performed by dropping in the flow of zinc gas from the top using gravity, or spraying silicon tetrachloride in the flow of zinc gas.
상기 (2)아연 가스 중에 액상의 사염화규소를 공급하는 기구는, 상기 아연 가스 공급 기구에서 공급되어 통과하도록 한 아연 가스의 통과부; 및 상기 통과부 내에 액상의 사염화규소를 정량적으로 분무 또는 적하하는 공급부를 포함할 수 있다.  The mechanism (2) for supplying liquid silicon tetrachloride into the zinc gas includes: a passage portion of zinc gas supplied and passed through the zinc gas supply mechanism; And a supply part for quantitatively spraying or dropping liquid silicon tetrachloride in the passage part.
또한, 사염화규소와 아연 가스의 흐름과의 회합 부분의 은도는 In addition, the silver content of the association part of the silicon tetrachloride and the flow of zinc gas is
1050 r 내지 1300 °c인 것이 바람직하고, 보다 바람직하게는 iioo°c 내지 i2oor일 수 있다. 즉, 상기 사염화규소의 공급 기구의 아연 가스의 통과부의 온도가 1050°C 내지 1300°C로 유지될 수 있다. 다만, 상기 회합 부분의 실제 온도는 상기 범위보다 약간 낮을 수도 있다. It is preferably 1050 r to 1300 ° C, more preferably may be iioo ° c to i2oor. That is, the temperature of the passage portion of the zinc gas of the supply mechanism of silicon tetrachloride can be maintained at 1050 ° C to 1300 ° C. However, the actual temperature of the associated portion may be slightly lower than the above range.
상기 회합 부분의 온도가 1050°C 미만이면, 반웅에 의해 생성하는 실리콘, 또는 실리콘 전구체가 석출되기 쉬워지고, 실리콘 또는 실리콘 전구체가 아연과 사염화규소의 회합 부분에서 석출되어 버려 연속 운전에 지장을 초래할 가능성이 있다. 따라서, 회합 부분의 온도는 높은 것이 바람직하지만, 1300°C 이상에서는 통상 사용하는 반웅 장치 재질인 석영 유리나 탄화 규소 소결체의 내구성으로 문제가 생기는 점 또는 소비 에너지가 지나치게 커지는 점 등으로 인하여 실용상의 문제가 남겨진다. 상기 회합 부분에서는, 아연과 사염화규소가 기체-액체, 또는 기체- 기체로 회합하고, 적어도 부분적으로 반응하여, 일부 생성한 실리콘 또는 실리콘 전구체를 포함하는 가스는 내부에 교반 수단을 갖는 반웅 가스를 생성하는 기구 (3)에 유도되어서 반웅을 계속해 완결한다. 여기에 사용되는 교반 수단은, 아연과 사염화규소와의 회합을 완전히 하고, 충분히 교반되는 것은 물론이지만, 반응관 내에서의 압력손실을 최소한으로 억제하는 동시에 생성한 실리콘 고체에 의해 폐쇄하지 않은 것이면 어떤 기구라도 좋다. 예를 들어, 랜덤에 놓여진 방해판이나, 상품명 스퀘어 믹서로 불리는 파이프내를 흐르는.가스를 양분하여, 반은 종파적으로 꺽여지면서 흐르고 나머지의 반은 횡파로 홀러서 1 주기로 회합하고, 이러한 과정을 반복하여 교반 및 흔합하는 기구를 사용할 수 있다. 이러한 것들에 의해 압력손실이 없이 완전한 흔합을 얻을 수 있었다. When the temperature of the associating portion is less than 1050 ° C., the silicon or silicon precursor produced by the reaction is easily precipitated, and the silicon or silicon precursor is precipitated at the associating portion of zinc and silicon tetrachloride, which may interfere with continuous operation. There is a possibility. Therefore, the temperature of the associating part is preferably high, but at 1300 ° C or higher, problems due to the durability of quartz glass or silicon carbide sintered body, which are commonly used, or problems of excessive energy consumption are caused. Left. In the associating portion, zinc and silicon tetrachloride associate with gas-liquid or gas-gas, and at least partially react, and the gas containing partially produced silicon or silicon precursor produces a reaction gas having stirring means therein. It is guided by the mechanism (3) to perform, and the reaction continues to complete. The agitation means used here are completely agitated with zinc and silicon tetrachloride and are sufficiently agitated. Utensils may be used. For example, a randomly placed baffle plate or a pipe called a square mixer, which divides the gas into half, breaks it longitudinally and half of it by shearing, and combines it in one cycle. It is possible to use a mechanism of stirring and mixing repeatedly. By these things, a perfect mix was obtained without pressure loss.
즉, 상기 (3) 아연 가스와 사염화규소를 흔합 교반하여 반응시켜 실리콘 입자를 포함하는 반웅 가스를 생성하는 기구는, 1050 °C 내지 1250°C의 온도로 유지된 통형체이며, 이러한 통형체 내부에는 가스를 난류화하는 요소를 포함될 수 있다. That is, (3) the mechanism for generating a reaction gas containing silicon particles by the mixed stirring reaction of the zinc gas and silicon tetrachloride, is a cylindrical body maintained at a temperature of 1050 ° C to 1250 ° C., It may include elements that turbulent gas.
상기 가스를 난류화하는 요소는, 부등 간격으로 놓여진 방해판으로 이루어질 수도 있으며, 또는 스퀘어 믹서일 수도 있다.  The gas turbulent element may consist of baffle plates placed at uneven intervals or may be square mixers.
이렇게 하여 생성한 실리콘 전구체 및 실리콘을 포함하는 반응 가스는 기구 (3) 안을 흐르면서, 더욱 반웅이 진행된다. 이러한 반웅 물질은 온도를 30C C 내지 800°C로 유지된 실리콘 입자를 성장시킴과 동시에 가스 성분의 일부와 함께 침전시키는 기구 (4)로 보내어 지고, 반웅 가스인 미반웅 아연 가스와 염화아연의 적어도 일부와 생성한 실리콘이 일체가 되어 석출한다. 이에 따라 결정 성장 전의 매우 미세한 실리콘 입자가 염화아연이나 아연 가스와 함께 침전한다. The reaction gas containing the silicon precursor and silicon generated in this way flows in the mechanism 3, and reaction further advances. This reaction material is sent to a mechanism (4) which grows silicon particles maintained at a temperature of 30 ° C. to 800 ° C. and at the same time precipitates together with a part of the gaseous component, and at least the reaction gas at least half of zinc gas and zinc chloride. A part and the silicon which generate | occur | produce are united and precipitate. As a result, very fine silicon particles before crystal growth precipitate with zinc chloride or zinc gas.
상기 생성된 침전물은, 염화아연이나 아연과의 공침이 되기 때문에, 매우 미세한 입자를 포함한 상태이다. 상술한 은도에 의한 실리콘의 침전은 매우 단시간에 행하여져, 300°C 내지 800°C로 유지된 부분에서 0.5 초에서 2 초 정도 유지하면 되며, 상기 온도로 유지된 수직관을 통과하는 것만으로도 거의 완전히 실리콘을 침전시킬 수 있다. 이러한 온도부분을 통과하여 침전한 실리콘은 950°C 이상에서 유지된 증발물을 휘산하여, 고체 실리콘을 얻는 기구 (5)인 유지조에 이르고, 아연이나 염화아연과 같은 휘발물이 분리 제거되어서 고순도의 실리콘 미립자만이 잔류한다. 여기서 아연이나 염화아연과 같은 또는 미반응의 사염화규소는 배기 가스 기구에서 배출되어, 통상은 배기 가스 성분을 처리하고, 회수하도록 한다 . The produced precipitate is in a state containing very fine particles because it is co-precipitation with zinc chloride or zinc. Sedimentation of silicon by the above-mentioned silver is performed in a very short time, and is maintained at about 0.5 seconds to about 2 seconds at a portion maintained at 300 ° C. to 800 ° C., and passes through a vertical tube maintained at the temperature. It can be almost completely precipitated silicon. The silicon precipitated through this temperature portion volatilizes the evaporate maintained at 950 ° C. or higher, and reaches a holding tank, which is a mechanism (5) for obtaining solid silicon. The volatiles such as zinc and zinc chloride are separated and removed to obtain high purity. Only silicon fine particles remain. In this case, unreacted silicon tetrachloride, such as zinc or zinc chloride, is discharged from the exhaust gas apparatus, so that the exhaust gas components are usually treated and recovered.
또한 필요에 따라, 실리콘 입자를 성장시키는 동시에 가스의 일부와 함께 침전시키는 기구 (4)를 수직형이 아닌, 경사관으로 함으로써 보다 안정화를 도모할 수 있다. 수평에 대하여 30° 내지 90° 로 경사지게 하고, 경사 부분의 은도를 300°C 내지 800°C, 바람직하게는 500°C 내지 750°C로 유지해 두면, 그 부분에 실리콘과 염화아연 및 아연이 일체가 되어 거의 순간적으로 침전하는 동시에, 생성물은 천천히 시간을 들이면서, 경사 부분을 미끄러지듯 이동하여 실리콘 유지조에 낙하하고, 거기에서 휘발물을 휘산하여 순수한 실리콘으로서 유지되게 된다. 경사부의 기울기는 수평에 대하여 30° 내지 90° 정도가 양호하고, 각도에 의해 유지 시간을 바꿀 수 있다. If necessary, further stabilization can be achieved by making the mechanism 4 which grows the silicon particles and precipitates together with a part of the gas as an inclined tube instead of the vertical type. If the slope is inclined at 30 ° to 90 ° with respect to the horizontal, and the silver content of the inclined portion is kept at 300 ° C to 800 ° C, preferably 500 ° C to 750 ° C, silicon, zinc chloride and zinc are integrally formed therein. At the same time it precipitates almost instantaneously, at the same time, the product slides down the inclined portion slowly, taking time to fall into the silicon holding tank, where the volatiles are volatilized to remain as pure silicon. The inclination of the inclined portion is preferably about 30 ° to 90 ° with respect to the horizontal, and the holding time can be changed by the angle.
여기에서, 경사 관의 기울기가 30° 보다 작으면 생성 실리콘의 낙하가 불완전해지기 쉽고, 때로는 머물게 되어 폐쇄의 원인이 될 수 있다. 그러나 수직에 근접함에 따라 유지시간이 짧아지고, 조건에 따라서는 불균일이 생기기 쉬워지므로, 용도와 생산 용량에 따라, 경사 각도를 결정할 필요가 있다. Here, if the inclination of the inclined tube is less than 30 ° , the fall of the product silicon is likely to be incomplete, and sometimes stays, which may cause closure. However, the proximity time becomes shorter, and the holding time becomes shorter and unevenness tends to occur depending on the conditions. Therefore, it is necessary to determine the inclination angle according to the use and production capacity.
즉, 상기 (4) 반웅 가스의 온도를 300°C 내지 800 °C로 내려서 적어도 부분적으로 침전물을 생성하는 기구는, 300°C 내지 800 °C의 온도로 유지되고 수평에 대하여 30° 내지 90° 로 경사진 관일 수 있다. 상기 (4) 기구는, 실리콘을 포함하는 침전물을 상기 관중 및 내벽부에 생성시키는 동시에, 상기 생성물올, 상기 관체 내벽을 타고 하부에 있는, 상기 (5)상기 침전물을 유지하는 동시에, 상기 침전물을 950 °C 이상으로 가온하고, 증발물을 휘산하여, 고체 실리콘을 얻는 기구로 보내도록 한 것을 특징으로 할 수 있다. 상기 (5) 침전물을 950°C 이상으로 가온하고, 증발물을 휘산하여, 고체 실리콘을 얻는 기구는, 상기 온도를 내리는 기구로부터의 실리콘을 함유하는 침전물을 포함하는 가스를 받는 요소; 실리콘 유지 용기; 및 상기 배기 가스를 배출하는 요소를 포함할 수 있다. That is, the apparatus for producing a precipitate at least partially by lowering the temperature of the reaction gas (300) to 300 ° C to 800 ° C, is maintained at a temperature of 300 ° C to 800 ° C and 30 ° to 90 ° with respect to the horizontal It can be a tube inclined into. The apparatus (4) generates a precipitate containing silicon in the spectral and inner wall portions, while maintaining the precipitate at the bottom of the product and the inner wall of the tubular body. It may be characterized in that it is heated to 950 ° C. or higher, and volatilized evaporates are sent to a mechanism for obtaining solid silicon. (5) The apparatus for warming the precipitate above 950 ° C. and volatizing the evaporate to obtain solid silicon comprises: an element receiving a gas comprising a precipitate containing silicon from the apparatus for lowering the temperature; Silicone holding containers; And an element for exhausting the exhaust gas.
또한, 상기 (5) 기구는, 상기 실리콘 유지 용기의 밑부분에 loocrc 내지 iioo°c의 온도로 유지한 히터를 가지고 하부로부터 가온하도록 한 것을 특징으로 할 수 있다. In addition, the mechanism (5) may be characterized in that the bottom of the silicone holding container is heated from the bottom with a heater maintained at a temperature of loocrc to iioo ° c.
그리고, 상기 고순도 실리콘 미세분말의 제조 장치는, 상기 실리콘 유지 용기에 생성된 실리콘을 반웅 중에도 추출할 수 있도록 한 추출 요소를 더 포함할 수 있다.  The apparatus for manufacturing high purity silicon fine powder may further include an extraction element for extracting silicon generated in the silicon holding container even during reaction.
상기 배기 가스를 배출하는 요소는 배기 가스의 처리 기구에 접속할 수 있다.  The element for discharging the exhaust gas can be connected to the processing mechanism of the exhaust gas.
한편, 상기 고순도 실리콘 미세분말의 제조 장치는, 태양전지 (solar cell)용으로서는 물론이지만, 특히 리튬 이온 전지 음극용이나 질화규소 원료로서의 미세분말 고순도 실리콘을, 현재의 실리콘 제조에 필요로 하는 전력의 수분의 일로 또한 종래 보고된 적이 없는 미세분말의 상태로 제조하는 제조 장치이며, 앞으로의 에너지 문제, C02 에 의한 지구온난화 문제 등을 해소할 수 있는 중요한 수단이 될 기술이다. 특히 현행의 리튬 이온 이차전지의 특성을 대폭 향상시킬 수 있는 가능성을 가지고 있으므로 앞으로 크게 확대될 것으로 생각되는 하이브리드, 및 전기 자동차용 이차 전지 원료 제조용으로서 매우 광범위하게 사용될 것으로 생각한다. On the other hand, the high-purity silicon fine powder production apparatus, as well as for solar cells (solar cell), in particular, fine powder high-purity silicon as a lithium ion battery negative electrode or silicon nitride raw material, the moisture of the power required for the current silicon production In addition, it is a manufacturing apparatus for manufacturing in the state of fine powder which has not been reported before, and it is a technology that will be an important means to solve the future energy problem, global warming problem by CO 2 . In particular, since it has the possibility of greatly improving the characteristics of the current lithium ion secondary battery, it is considered to be very widely used for manufacturing secondary battery raw materials for hybrid and electric vehicles which are expected to be greatly expanded in the future.
【발명의 효과】  【Effects of the Invention】
본 발명에 따르면, 고온 및 고농도의 아연 가스 중에 사염화규소를 액상으로 공급해 고은상태로 층분히 교반하면서 반웅시킴으로써, 사염화규소로 실리콘을 생성시키고, 그것을 반웅 가스인 아연 및 반웅 생성물인 염화아연의 일부와 함께 30CTC 내지 800°C로 웅집시킴으로써 미세한 실리콘 입자를 안정적으로, 또한 고수율로 얻을 수 있다. 또한, 이렇게 하여 응집시킨 생성물은 유지조 내에서 아연의 비점 이상의 온도로 아연과 염화아연을 주로 하는 휘산물을 증발 분리함으로써, 미세한 입자의 고순도 실리콘을 고수율로 얻을 수 있다. According to the present invention, by supplying silicon tetrachloride in the liquid phase in a high temperature and high concentration of zinc gas and reacting with vigorous stirring in a high state of silver, silicon is produced by silicon tetrachloride, which is part of zinc zinc, which is a reaction product, and zinc chloride which is a reaction product. By coagulating together at 30 CTC to 800 ° C., fine silicon particles can be stably obtained with high yield. In addition, the agglomerated product at this temperature is maintained at a temperature above the boiling point of zinc in the holding tank. By evaporating the volatile products mainly comprising zinc and zinc chloride, fine particles of high purity silicon can be obtained in high yield.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 발명의 일 구현예의 제조 장치의 개념도를 나타낸 것이다. 도 2 은 발명의 일 구현예의 제조 장치의 개념도를 나타낸 것으로, 실리콘의 침전부를 경사관으로 한 것이다.  1 shows a conceptual diagram of a manufacturing apparatus of one embodiment of the invention. 2 shows a conceptual diagram of a manufacturing apparatus of an embodiment of the present invention, in which a precipitate of silicon is used as an inclined tube.
도 3 은 발명의 일 구현예의 제조 장치의 개념도를 나타낸 것으로, 배기 가스 처리부에 물의 순환 기구를 설치한 것이다.  3 is a conceptual diagram illustrating a manufacturing apparatus of an embodiment of the present invention, in which an exhaust gas treatment unit is provided with a water circulation mechanism.
도 4 은 발명의 일 구현예의 제조 장치의 개념도를 나타낸 것으로, 실리콘 유지 용기로부터 연속적으로 실리콘을 추출하는 기구를 설치한 것이다.  Fig. 4 shows a conceptual diagram of a manufacturing apparatus of one embodiment of the invention, in which a mechanism for continuously extracting silicon from a silicon holding container is provided.
【발명의 실시를 위한 구체적인 내용】  [Specific contents for implementation of the invention]
본 발명을 도면에 의거해 보다 구체적으로 설명한다. 즉 도 1 은 실리콘을 포함하는 반웅 가스의 온도를 300 °C 내지 800 °C로 내려서 생성한 실리콘 입자를 성장시키는 동시에 가스 성분의 일부와 함께 침전하는 기구가 수직관인 경우이며 , 도 2은 상기 침전하는 기구를 경사진 관체로 한 경우이다. 또한, 도 3 은 상기 침전하는 기구의 온도제어를 위해서 냉각 팬을 가진 경우이다. 또한, 배기 가스 처리 기구의 모식도의 아이디어를 나타냈다. 도 4 는 침전물을 유지해 950 °C 이상으로 가온하여 증발물을 휘산하여, 고체 실리콘을 얻는 기구의 밑부분에 경사를 주고, 생성한 실리콘을 이동시키면서 처리하도록 하여 연속 운전을 가능하게 한 것이다. 도 1 에 있어서 아연공급부 (1)로부터 아연 와이어 또는 융체 아연을 공급한다. 여기서는 아연을 정량 공급할 수 있으면 아연 용융조로에서 정량의 아연을 펌프 등으로 보내도록 하면 되고, 아연 와이어를 공급하는 방식은 취급이 용이한 점 및 정량 이송이 용이한 점으로 인하여 특히 소형의 장치에 바람직한 방법이다. 또 여기에서의 이송에 맞춰서 가압과 필요에 따라 분위기 조정을 위해서 분위기 가스를 맞춰서 공급할 수 있다. 이렇게 하여 보내져 온 아연 와이어 또는 아연 융체는 아연공급구 (1)에서 공급하고, 아연 가스를 공급하는 기구의 아연증발조 (2)로 가열 및 증발시켜 아연증기를 발생시킨다. 여기서는 직접 히터에 의해 아연의 비점 이상에서 아연을 증기로 한다. 이에 따라, 약간의 아르곤 가스를 포함하지만 실질적으로는 아연 가스만의 분위기가 된다. 이러한 아연 가스를 가스가열부 (3)에서 소요 온도까지 가열한다. 통상은 105C C에서 1300°C가 양호하고, 특히 1100°C 내지 1200°C가 적당하다. 이렇게 하여 가열되어 제어된 사염화규소를 공급하는 기구 (4)로 보내진다. 사염화규소의 비점은 약 57.6 °C가 되므로, '통상의 평형 상태에서는 기체가 되지만, 여기서는 사염화규소 공급구 (41)에서 적하하도록 하여 액상으로 공급한다. 물론 액체 방울로서 그대로 공급 할 수도 있지만 분무, 흑은 샤워형으로 하여 공급할 수도 있다. 공급의 방법은 특별히 지정되지 않고 튜브 펌프나 다이어프램 펌프에 의해 정량 공급하는 것이 바람직하고, 다량일 경우는 사염화규소 유지부에 압력을 가해 유량계를 통해서 흐르게 하고, 밸브에 의해 유량을 조정한다. 어느 경우에나 이 부분에서 액상인 상태로 사염화규소를 공급한다. The present invention will be described in more detail with reference to the drawings. That is, Figure 1 is a case in which a device for growing the silicon particles generated by lowering the temperature of the reaction gas containing silicon to 300 ° C to 800 ° C and at the same time to precipitate with a part of the gas component is a vertical tube, Figure 2 is the precipitation It is the case that the mechanism to make is inclined tube. 3 is a case where a cooling fan is provided for temperature control of the settling mechanism. Moreover, the idea of the schematic diagram of the waste gas processing mechanism was shown. Figure 4 is to keep the precipitate warmed to 950 ° C or more to volatilize the evaporate, inclined to the bottom of the mechanism to obtain a solid silicon, and to process while moving the generated silicon to enable continuous operation. 1, zinc wire or molten zinc is supplied from the zinc supply part 1. As shown in FIG. In this case, if a fixed amount of zinc can be supplied, a zinc melting furnace can send a fixed amount of zinc to a pump or the like. The method of supplying a zinc wire is particularly preferable for a compact apparatus due to its ease of handling and easy transfer of quantitatively. It is a way. In addition, according to the conveyance here, it can supply and supply atmospheric gas for pressurization and atmosphere adjustment as needed. The zinc wire or zinc melt sent in this way is supplied from the zinc supply port (1), and Zinc vapor is generated by heating and evaporating with a zinc evaporator (2). Here, zinc is vaporized above the boiling point of zinc by a direct heater. This results in an atmosphere containing only some argon gas but substantially only zinc gas. This zinc gas is heated to the required temperature in the gas heating section (3). Usually 1300 ° C is good at 105C C, in particular 1100 ° C to 1200 ° C is suitable. It is sent to the mechanism 4 which supplies the silicon tetrachloride heated and controlled in this way. Since the boiling point of silicon tetrachloride is about 57.6 ° C, 'normal equilibrium in the gas, but, in this case so as to dropping from silicon tetrachloride supply port 41 is supplied in a liquid state. Of course, it can be supplied as a liquid drop as it is, but spray or black can also be supplied as a shower type. The method of supply is not particularly specified, and it is preferable to supply a fixed amount by a tube pump or a diaphragm pump. In the case of a large amount, a pressure is applied to the silicon tetrachloride holding unit to flow through the flowmeter, and the flow rate is adjusted by a valve. In either case, silicon tetrachloride is supplied in this section in the liquid phase.
상기 공급된 사염화규소는 바로 아연 가스와 반웅을 시작하고, 실리콘 전구체 및 실리콘의 생성을 시작하는 동시에, 실리콘 입자를 포함하는 반웅 가스를 생성하는 기구 (5)에서 그 안에 있는 가스를 난류화하는 요소 (51)에 의해 충분히 교반되면서 반웅을 계속하는 동시에 이동하고, 실리콘 입자를 성장시키는 동시에 가스 성분의 일부와 함께 침전하는 기구 (6)에서 온도를 내릴 수 있어 생성 실리콘과 일부 미반웅 아연 및 생성한 염화아연이 일체가 되어 침전하고, 고체 실리콘을 얻는 기구 (7)로 이동한다. 또한 상기 침전하는 기구 (6)의 온도 유지에는, 히터 가열뿐만 아니라, 외부공기의 도입 등 넁각하는 넁각 요소 (예를 들면 도 3, 300)를 설치함으로써 온도를 유지하는 경우가 있다.  The supplied silicon tetrachloride immediately starts the reaction with zinc gas and starts the production of the silicon precursor and the silicon, and at the same time an element for turbulizing the gas therein in a mechanism (5) for producing the reaction gas containing silicon particles. The reaction can be carried out simultaneously while the reaction is sufficiently stirred by (51), and the temperature can be lowered in the mechanism (6) that grows the silicon particles and simultaneously precipitates them with a part of the gas component, thereby producing the silicon and some unreacted zinc and Zinc chloride unites and precipitates, and it moves to the mechanism (7) which obtains solid silicon. In addition, in maintaining the temperature of the precipitation mechanism 6, the temperature may be maintained by providing different angle elements (for example, FIGS. 3 and 300) such as not only heating the heater but also introducing external air.
이로 인해, 통상의 사이클론 방식에서는 침전이 곤란한 ΙΟμηι 이하, 특히 서브마이크론의 미립자까지의 실리콘이, 고체 실리콘을 얻는 기구 (7)에 침전한다. 여기서는, 밑면을 loocrc 이상으로 가열하고 있고, 벽부는 그것보다 약간 낮으나 아연의 비점보다 높게 유지함으로써, 휘발물인 아연이나 염화아연을 휘산 증발시키고, 실리콘의 입자 성장은 거의 없고, 생성 실리콘을 고순도로 유지할 수 있다. 또한, 상기 가열은 항상 실시할 수 있지만, 필요에 따라는 온도를. 낮게 유지해 두고, 간헐적으로 온도를 상기 1000 °c 이상으로 가열하는 것도 가능하다. 또한 이 기구의 밑면 이외의 온도를 1000 °c 이상으로 하면, 일부의 미세 입자의 실리콘이 염화아연 등의 증발과 함께 배기 가스 기구 (8)로부터 빠져나가 버리므로, 그 점에서 주위온도는 1000 °c 이하가 바람직하다. For this reason, in the conventional cyclone system, the silicon | silicone below ΙΟμηι which is difficult to precipitate, especially submicron microparticles | fine-particles, precipitates in the mechanism 7 which obtains solid silicon. Here, the base is heated above the loocrc, and the wall is slightly lower than it, but kept above the boiling point of zinc, to volatilize and evaporate volatile zinc or zinc chloride, There is little and the production silicon can be kept in high purity. In addition, the heating can always be carried out, if necessary, the temperature. It is also possible to keep it low and to heat the temperature above 1000 ° c intermittently. Also, if the temperature of the outside bottom of the apparatus by at least 1000 ° c, for some fine particles of silicone makes it a throw escape from the exhaust mechanism 8 along with evaporation, such as zinc chloride, the ambient temperature at that point is 1000 ° c or less is preferable.
배기 가스 기구 (8)은 특별히 지정되지는 않지만, 여기서는 가스관 내의 도중에 침전이 일어나지 않도록 아연의 비점보다 높게 유지하고, 그 후의 배기 가스 처리부 (9)는 온도를 충분히 내려서 고체로 석출시킬 수 있다. 또는, 염화아연 수용액과 접촉시켜 미반웅 사염화규소가 있는 경우는 그것을 'SiCl4 + 2H20^ Si02 + 4HC1'로서 산화규소로 침전시키고, 또 염화아연과 아연은 염화아연 수용액에 용해하여 외부로 연속적 추출하여 처리할 수도 있다. Although the exhaust gas mechanism 8 is not specifically designated, it is maintained here above the boiling point of zinc so that precipitation may not occur in the middle of a gas pipe, and the exhaust gas processing part 9 after that can fully reduce temperature and precipitate it as a solid. Alternatively, in the case of contact with zinc chloride solution, if there is unbanung silicon tetrachloride, it is precipitated with silicon oxide as 'SiCl 4 + 2H 2 0 ^ Si0 2 + 4HC1', and zinc chloride and zinc are dissolved in zinc chloride solution It can also be processed by successive extraction.
도 2 에서는 도 1 과 원칙적으로 같으나, 도 1 에서는 실리콘 입자를 성장시키는 동시에 가스 성분의 일부와 함께 침전하는 기구 (6)를 수직관으로 하고 있지만 그 대신에 경사관 (61)으로 한 것이며, 여기서는 실리콘과 염화아연 및 /또는 아연으로 이루어지는 침전물을 확실하게 경사부에 석출하기 위해, 낮은 온도의 기간을 길게 하고, 넁각 및 침전을 보다 확실하게 실시하는 동시에, 실리콘 입자가 적정하게 성장하도록 하여, 수율을 보다 높일 수 있다. 또한, 상기 중간적인 온도에서 어느 정도의 시간이 유지됨 로써 여기에서 침전하면서 동시에 염화아연을 주로 하는 휘산물의 적어도 그 일부를 제거할 수 있으므로, 증발물을 휘산하여 고체 실리콘을 얻는 기구 (7)에서의 아연 및 염화아연의 휘산이 적고, 거기에 수반되는 실리콘 미립자의 배기 가스부로의 빠짐이 보다 한층 적어져 효율의 향상에 유효하다. 또한, 당연하지만, 보다 미세 입자의 실리콘이 확실하게 얻어지게 된다.  In Fig. 2, the principle is the same as in Fig. 1, but in Fig. 1, the mechanism 6 which grows silicon particles and precipitates together with a part of the gaseous components is used as a vertical pipe, but instead it is an inclined pipe 61. In order to reliably deposit a precipitate composed of silicon, zinc chloride and / or zinc, the temperature of the lower temperature is lengthened, the cornering and precipitation are performed more reliably, and the silicon particles grow appropriately to yield Can be made higher. In addition, since a certain amount of time is maintained at the intermediate temperature, at least a portion of the volatiles mainly containing zinc chloride can be removed while being precipitated therein. There is little volatilization of zinc and zinc chloride, and the fall of the silicon microparticles | fine-particles accompanying it to the exhaust gas part is further reduced, and it is effective for the improvement of efficiency. In addition, of course, the silicon of finer particles is surely obtained.
도 3 은 배기 가스 처리부에 처리수를 통과시키도록 한 경우의 모식도다. 즉 배기 가스 처리부의 밑부분에 염화아연 수용액을 순환시킴으로써, 상부로부터 들어오는 배기 가스 성분인 염화아연은 이 수용액에 용해한다. 그리고, 미반웅의 아연 및 사염화규소가 있는 경우, 사염화규소는 물과 즉석에서 반웅해서 염산과 산화규소가 되고, 또한 생성한 염산에 의해 이 수용액이 산이 되기 때문에 아연도 용해하여 염화아연 수용액이 된다. 또한, 이 순환하는 물을 약간의 염산을 첨가해 두면, 미반응 사염화규소가 없어도 아연을 완전히 용해할 수 있어 배기 가스를 모두 염화아연 용액으로 할 수 있다. 이것을 정제하여 염화아연을 얻을 수도 있고, 이대로 격막법 전해조에 보내, 아연을 금속아연으로서 회수할 수도 있다. 3 is a schematic view in the case where the treated water is passed through the exhaust gas treatment unit. In other words, by circulating the zinc chloride aqueous solution to the bottom of the exhaust gas treatment unit, zinc chloride which is an exhaust gas component coming in from the top is Soluble in aqueous solution. In the case of Mibanung's zinc and silicon tetrachloride, silicon tetrachloride reacts immediately with water to form hydrochloric acid and silicon oxide, and since the aqueous solution is acidic with the produced hydrochloric acid, zinc is also dissolved to form an aqueous zinc chloride solution. . In addition, if a little hydrochloric acid is added to this circulating water, zinc can be completely dissolved without unreacted silicon tetrachloride, and all the exhaust gas can be made into a zinc chloride solution. This may be purified to obtain zinc chloride, or may be sent to a diaphragm electrolytic cell as it is to recover zinc as metal zinc.
도 4 는, 실리콘 입자를 성장시키는 동시에 가스 성분의 일부와 함께 침전하는 기구 (6)까지는 도 1 과 동일하나, 그 아래로 있는 고체 실리콘을 얻는 기구 (7)의 밑부분을 경사지게 하고, 상기 (6)의 기구에서 떨어지는 침전물에 의해 밀려 이동하면서 휘발물을 휘산시켜 실리콘만을 도중에 설치한 한층 하부에 있는 용기, 또는 용해 기구 (400)에 이행시키고, 거기에서 연속적으로 추출하거나 또는 혹은 용해하여 융체로서 추출할 수도 있다.  FIG. 4 is the same as FIG. 1 until the mechanism 6 that grows the silicon particles and precipitates with some of the gaseous components is the same as that of FIG. 1, but tilts the bottom of the mechanism 7 to obtain the solid silicon beneath it. The volatiles are volatilized while being moved by the sediment falling from the apparatus of 6) and transferred to a lower vessel or a dissolving mechanism 400 in which only silicon is placed on the way, and continuously extracted or dissolved therefrom as a melt. It can also be extracted.
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.  The invention is explained in more detail in the following examples. However, the following examples are only for exemplifying the present invention, and the contents of the present invention are not limited to the following examples.
또한 실시예의 장치는 대부분이 석영 유리로 작성되어 있지만, 대형화에 따라 탄화규소 등의 세라믹스 재료를 사용할 수도 있음은 물론이다.  In addition, although the apparatus of the Example is mostly made of quartz glass, of course, ceramic materials, such as silicon carbide, can also be used with the enlargement.
[실시 예 1] Example 1
도 1 에 나타낸 장치를 시험 제작했다. 즉 아연증발조 (가스화부)는 직경 150誦, 높이 35腿 로 상하를 막은 원통형의 한쪽 단에 내경 4瞧 로 원통에 대하여 높이 방향 45° 의 방향에 부착된 아연공급구와 그 원통의 반대측에 원통과 수평으로 설치한 외경 30mm 의 가스 유로를 갖는 석영유리관으로 하고, 가스 유로와 플랜지 접속한 편측 50mm의 부분에 내경 10麵 의 수직관을 갖는 외경 30麵, 길이 600tnm 의 석영유리관을 아연 가스 가열용 (조정부)으로 하예 그 다른 단에 수직관을 세워서 사염화규소 공급 기구로서 설치했다. 또한, 수평 방향으로 외경 30mm, 길이 1000瞧 의 석영 유리제의 반웅관을 설치해 반웅 가스를 생성하는 기구로 했다. 이 반웅관 안에는 탄화 규소제의 길이 125隱, 직경 23誦 의 스퀘어 믹서 4 대를, 사염화규소 공급 기구측에 넣었다. 또한, 이 석영유리제의 반웅관의 사염화규소 공급 기구의 반대측에는, 직각으로 낙하하는 외경 35mm, 높이 600mm 의 석영유리제의 수직관을 개재하여 그 하측에는 외경 160mm x 높이 200讓 로 동일하게 석영 유리제의 용기 (실리콘 유지 용기)을 달았다. 이 -석영유리 용기의 덮개 부분에는 상기 수직관으로부터의 투입구 (가스를 받는 요소)와 배기 가스관을 설치구 (배기 가스를 배출하는 요소)을 설치하고ᅳ 그것에 외경 25mm 의 석영유리제의 배기 가스관을 장착해 다른 단을 스테인리스스틸제 (SUS304)의 드럼 캔에 접속했다. 이 드럼 캔 안에는 아르곤 가스를 채우고 배기 가스 처리용으로 했다. 단 압력은 걸리지 않도록 하고, 배압이 생기지 않도록 했다. The apparatus shown in FIG. 1 was test-made. In other words, the zinc evaporation tank (gasification part) has a cylinder with a diameter of 150 腿 and a height of 35 腿, and a cylinder on the opposite side of the cylinder and a zinc supply port attached to the cylinder at a 45 ° height direction with an inner diameter of 4 瞧 at one end of the cylinder. A quartz glass tube having a gas flow passage having an outer diameter of 30 mm and horizontally installed, and a glass tube having an outer diameter of 30 mm and a length of 600 tnm having a vertical pipe having an inner diameter of 10 mm at a portion of 50 mm on one side connected to the gas flow passage with a zinc gas are zinc gas. As a heating (adjustment section), a vertical pipe was erected at the other stage and installed as a silicon tetrachloride supply mechanism. Moreover, it was set as the mechanism which generate | occur | produces the reaction gas by installing the semi-conducting tube of quartz glass of outer diameter 30mm and length 1000mm in a horizontal direction. In this semi-ungung tube, four square mixers of 125 길이 in length and 23 직경 in diameter were placed on the silicon tetrachloride supply mechanism side. On the opposite side of the quartz tetrafluoride feed mechanism of the semi-ungung tube made of quartz glass, a quartz glass vertical tube having an outer diameter of 35 mm and a height of 600 mm falling at right angles is formed and the lower side thereof has a diameter of 160 mm x height of 200 mu m. The container (silicone holding container) was attached. -The cover part of the quartz glass container is provided with an inlet (element receiving gas) and an exhaust gas pipe from the vertical pipe (element for exhausting gas), and an exhaust gas pipe made of quartz glass having an outer diameter of 25 mm is mounted thereon. Another stage was connected to a drum can made of stainless steel (SUS304). The drum can was filled with argon gas and used for exhaust gas treatment. However, pressure was not applied and back pressure was not generated.
아연증발조는 유리 원통의 상하로 밀착하여 철크롬선 발열체로 이루어진 발열판을 두었다. 또 석영유리 용기의 하면도 마찬가지로 발열면이 밀착되게 설치했다. 또 다른 부분은 이 원통들을 둘러싸도록 히터를 두도록 하여 온도를 제어했다.  The zinc evaporation tank was placed in contact with the upper and lower sides of the glass cylinder to place a heating plate made of iron chromium wire heating elements. In addition, the lower surface of the quartz glass container was also provided in such a manner that the heating surface was in close contact. Another part controlled the temperature by placing a heater to surround these cylinders.
공급하는 아연은 직경 2醒 의 순수한 아연 (아연분 99.995 질량 %) 와이어를 10画 /초로 연속적으로 보내도록 했다. 또 사염화규소는 상부에서 튜브 펌프에 의해 0.25g/초로 연속적으로 공급했다. 또 운전 개시는 아연을 먼저 공급하기 시작하고, 그 30 초 후에 사염화규소의 공급을 시작하도록 하였다. 또한 아연 와이어 부분의 지관으로부터 아르곤 가스를 200ml/분의 속도로 공급했다.  The zinc to be fed was to continuously send a pure zinc (99.995 mass% zinc) wire having a diameter of 2 mm 3 at 10 m 3 / sec continuously. Silicon tetrachloride was continuously supplied at 0.25 g / sec by a tube pump at the top. In addition, the start of operation was to start supplying zinc first, and then to start supplying silicon tetrachloride after 30 seconds. Further, argon gas was supplied at a rate of 200 ml / min from the branch pipe of the zinc wire portion.
각 부의 은도는 아연증발조 1100°C, 아연 가스 가열부 1KXTC, 사염화규소 공급 기구 (아연 가스 통과부) 120CTC로 하였고, 반응관의 온도는 스퀘어 믹서 삽입부를 1100°C, 반웅관의 나머지 부분 (후반)을 1050°C로 했다. 수직관은 700°C 내지 750'C, 실리콘 유지 용기는 밑부분이 1050 °C, 측벽부가 95CTC였다. 사염화규소 공급 중에 있어서는 계산상, 아연이 17% 정도 과잉이었다. 20 분간의 연속 운전을 실시한 바 갈색이고 미세분말인 실리콘이 45.2g 얻어졌다. 이 실리콘의 입도 분포를 계측한 바, 입도 5μηι과 15μπι 인 곳에 피크를 가지며, 평균 입도 ΙΟμηι 이하의 실리콘 미립자로 이루어지는 것을 알았다. The silver content of each part was 1100 ° C of zinc evaporation tank, 1KXTC of zinc gas heating part, 120CTC of silicon tetrachloride supply device (zinc gas passing part), and the temperature of the reaction tube was 1100 ° C of the square mixer insert part, and the rest of the semi-finished pipe ( The latter half) was set at 1050 ° C. The vertical tube was 700 ° C. to 750 C, the silicone holding vessel was at the bottom 1050 ° C. and the side wall was 95 CTC. In the supply of silicon tetrachloride, the calculation was over 17% of zinc. After 20 minutes of continuous operation, 45.2 g of brown, fine powder silicon was obtained. Having a peak where the measured particle size distribution of the silicon bar, 5μ particle size η ι and 15μπι, average particle size was found that fine particles formed of silicon ΙΟμ η ι below.
또 실리콘의 수율은 이론값에 대하여 91%이었다. 배기 가스 부분에서 염산냄새가 있었던 것에서 이러한 조건이라도 약간의 미반웅 부분이 남는 동시에, 부분적으로는 배기 가스중에 빠져나간 것, 또 파이프 내에 일부 모여 있는 것이 보여졌다.  The yield of silicon was 91% relative to the theoretical value. The presence of hydrochloric acid odor in the exhaust gas section left some of the uncoated spots under these conditions, partially escaped in the exhaust gas, and partially gathered in the pipe.
[실시 예 2] Example 2
도 2 메 나타낸 실리콘 제조 장치를 제작했다. 아연 공급에서 아연사염화규소 공급부까지는 도 1 과 동일하게 하고, 반웅관의 길이를 600mm 로 하여 그 부분에는 실시예 1 과 같은 스퀘어 믹서를 내장했다. 반웅관의 뒤에 경사 각도를 수평에 대하여 45° 로 하여 석영유리제 용기를 향해 떨어지도록 배치된 경사관을 설치하고, 석영유리제 용기에 접속했다. 석영유리제 용기의 덮개 부분은 수평부분인 반응 가스 생성 기구 부분에 대하여 600mm 낮게 설치했으므로 , 경사관의 길이는 850腿 이 되었다. 또한 경사관의 외경은 35mm 이며, 그 외는 실시예 1 과 같았다. 또 재질은 탄화 규소 (SiC)을 사용했다. The silicon manufacturing apparatus shown in FIG. 2 was produced. The zinc supply to the zinc tetrachloride supply part was the same as that of FIG. 1, and the semi-ungular pipe length was 600 mm, and the square mixer similar to Example 1 was built into the part. The inclined tube which was arrange | positioned so that it might fall toward a quartz glass container with the inclination-angle at 45 degrees with respect to the horizontal was provided behind the half-pipe, and it connected to the quartz glass container. Since the cover part of the quartz glass container was set 600 mm lower with respect to the reaction gas generating mechanism part that is a horizontal part, the length of the inclined tube was 850 mm 3. Moreover, the outer diameter of the inclined tube was 35 mm, and the others were the same as in Example 1. In addition, the material used was silicon carbide (SiC).
온도는 아연증발조 1200°C (단 증발조 외측부)이며, 아연 가스 가열부도 1200°C로 했다. 또한 사염화규소 공급 기구 1200°C로 하고, 반웅 가스 생성 기구 105( C, 또한 경사관은 500°C (반웅 후기에는 열이동에 의해 최고 65CTC 정도가 되어 안정되었다.) 또 석영 유리 용기는 실시예 1과 동일하게 밑판부 1050 °C, 벽부 950°C로 했다. The temperature was 1200 ° C (evaporator outer part) of the zinc evaporation tank, and the zinc gas heating unit was also 1200 ° C. In addition, the silicon tetrachloride supply mechanism was 1200 ° C., the reaction gas generating mechanism 105 (C, and the inclined tube was 500 ° C. In the same manner as in 1, the bottom plate part was 1050 ° C and the wall part was 950 ° C.
아연의 공급을 실시예 1 과 같이 아연 와이어를 15醒 /초로 공급했다. 또 사염화규소는 0.4g/초였다. 아연공급과 사염화규소 공급은 동시에 시작했다. 아연과 사염화규소의 공급을 30 분간 계속하고 정지했다. 사염화규소와 아연의 공급을 정지하고 나서 30분간 그대로의 온도로 유지한 후에 온도를 내렸다. 이에 따라 실리콘은 석영유리 용기로부터 106g 얻어졌다. 이것은 이론치에 대하여 89.2%였다. 또한 여기서는 아연공급량이 사염화규소에 대하여 약 9% 과잉이었다. 이 차액분의 일부는 미반웅이 생기는 것에 따르지만, 한편 경사부의 유리 표면의 일부에 생성 실리콘이 유지되고 있었다. The zinc wire was supplied at 15 kV / sec in the same manner as in Example 1. Silicon tetrachloride was 0.4 g / sec. Zinc and silicon tetrachloride began at the same time. The supply of zinc and silicon tetrachloride was continued for 30 minutes and stopped. After stopping supply of silicon tetrachloride and zinc, After the temperature was lowered. As a result, 106 g of silicon was obtained from the quartz glass container. This was 89.2% of theory. In addition, the amount of zinc supplied was about 9% excess with respect to silicon tetrachloride. Part of this difference was due to the occurrence of non-reflection, while on the other hand, the produced silicon was held on a part of the glass surface of the inclined portion.
[실시예 3] Example 3
아연 증발조와 아연 공급 설비 및 반웅탑의 가스의 난류화 요소로서, 스퀘어 믹서를 방해판으로 바꾼 것을 제외하고, 실시예 1 과 동일한 장치를 준비했다. 즉 아연 증발조는 같은 크기이지만, 아연공급 부분을 외경 20mm 의 경사관을 설치하고 그 선단에 트랩을 부착한 아연의 아연 공급부의 외경을 15隱 로 하고, 액 트랩이 부착된 아연액 공급기 (12)을 설치했다. 여기에서의 아연 공급은 액 트랩을 통해서 아연공급기로부터의 오버플로에 의해 아연이 공급되도록 되고 있어, 그 부분에는 실시예 1 에 사용했던 것과 같은 직경 2醒의 아연 와이어를 20mm/초의 속도로 공급하도록 했다.  As a turbulence element of the zinc evaporation tank, the zinc supply equipment, and the gas of the reaction tower, the same apparatus as in Example 1 was prepared except that the square mixer was replaced with a baffle plate. That is, the zinc evaporation tank is of the same size, but the zinc supply part is provided with an inclined tube having a diameter of 20 mm and the outer diameter of the zinc supply part of the zinc attached to the tip is 15 mm, and the zinc liquid feeder with the liquid trap (12) Installed. The zinc supply here is to be supplied by the overflow from the zinc feeder through the liquid trap, so that a portion of 2 mm diameter zinc wire as used in Example 1 is supplied at a rate of 20 mm / sec. did.
상기와 같이 반웅관은 가스의 난류화 요소로서 반원형상의 석영 유리판을 랜덤한 간격 및 랜덤한 각도로 둔 방해판을 기구 내의 길이 1000瞧 전체에 이르도록 넣었다. 또한 이 장치는 석영 유리를 주체로 했다. 운전 조건으로서 아연 증발조의 온도를 1300 °C로 했다. 여기서는 실질적으로는 비등 온도의 아연 가스가 되지만, 충분한 양의 아연 가스를 발생시키기 위해서 또 순간적으로 아연 가스로 하기 위해서 이 온도로 했다. 또 아연 가스 가열부는 1200°C로 하고, 사염화규소 공급 기구 온도와 동일하게 했다. 방해판이 들어간 반웅관의 온도는 1150°C로 했다. 한편 수직관부의 온도는 600°C 내지 650°C로 하고, 이 온도를 유지하기 위해 히터의 이외에 외부공기를 받아 들이는 넁각 기구를 설치했다. 또 실리콘 유지부 은도는 밑판 온도를 1000°C로 하고, 벽부 온도를 800°C로 하였다. 또한, 배기 가스 처리 /회수 기구로서 밑부분에 외부로부터의 염화아연 수용액의 순환 기구를 갖는 SUS304 제의 드럼 캔을 사용했다. 이 드럼 캔의 내측에는 내산성의 도료를 도포해서 내식성을 향상시키도록 했다. 또한, 실리콘 생성에 수반하는 배기 가스는 외경 30mm 의 석영 유리관에서 상기 드럼 관의 정상부로 유도하도록 했다. 또한 이 배기 가스용의 석영 유리관에 직접 히터를 감음으로써 1100 °C로 유지하고, 휘발물의 생성이 일어나지 않도록 했다. 또 드럼 캔에 공급하는 염화아연 수용액은 수넁 콘덴서를 개재해 200 1 의 용액 탱크와 접속, 마그넷 펌프에 의해 순환하도록 했다. 또 순환 염화아연 수용액로서는 15% 염화아연 + 5% 염산수용액 (질량 %)을 순환했다. 한편 이 순환수의 수위는 드럼관 내에서는 밑부분 50mm까지로 했다. As described above, the semiungwan tube was placed as a turbulent element of gas so that a semicircular quartz glass plate was placed at random intervals and at random angles so as to reach the entire length of 1000 mV in the apparatus. In addition, this apparatus mainly used quartz glass. As an operation condition, the temperature of the zinc evaporation tank was 1300 ° C. Although it turns into a zinc gas of a boiling temperature substantially here, it was set as this temperature in order to generate | occur | produce a sufficient amount of zinc gas and to make it zinc gas instantaneously. In addition, the zinc gas heating unit was 1200 ° C., and made the same temperature as the silicon tetrachloride supply mechanism. The temperature of the half-ung pipe containing the baffle plate was 1150 ° C. On the other hand, the temperature of the vertical pipe portion is set at 600 ° C to 650 ° C., in order to maintain this temperature, an angle relief mechanism for receiving external air is installed in addition to the heater. Further silicone holding part is silver is a base temperature at 1000 ° C, which was the wall temperature to 800 ° C. In addition, a drum can made of SUS304 having a circulation mechanism of a zinc chloride aqueous solution from the outside at the bottom was used as the exhaust gas treatment / recovery mechanism. An acid-resistant paint was applied to the inside of the drum can to improve corrosion resistance. In addition, the exhaust gas accompanying silicon formation was led to the top of the drum tube in a quartz glass tube having an outer diameter of 30 mm. Furthermore, by winding the heater directly on the quartz glass tube for exhaust gas, the temperature was maintained at 1100 ° C. to prevent the formation of volatiles. Moreover, the zinc chloride aqueous solution supplied to a drum can was made to circulate with the 200 1 solution tank through a several capacitor | condenser, and circulated by the magnet pump. As a circulating zinc chloride aqueous solution, 15% zinc chloride + 5% aqueous hydrochloric acid solution (mass%) was circulated. On the other hand, the level of this circulating water was set to 50 mm at the bottom in the drum tube.
이 장치에 대해서, 이하의 운전을 실시했다. 즉, 상기와 같이 아연 와이어를 20mm/초로 공급하고, 아연 증발조로의 아연의 투입이 확인되고 나서 30 초후부터 사염화규소의 적하를 시작했다. 사염화규소의 공급량은 0.5g/초이었다. 60 분간의 운전에 의해, 252g 의 갈색의 실리콘 미세분말을 얻을 수 있었다. 또한, 공급 아연은 이론치로서 16.77。가 과잉이었다. 또한, 배기 가스 처리 드럼중의 염화아연 수용액에는, 부분적으로 산화규소의 침전물을 포함하고 있었다. 이에 따라 아연을 과잉으로 첨가해도 미반웅 사염화규소가 어느 정도 나온다는 것을 알았다. 또한 산화규소의 침전물은 입자가크므로 lOOym 정도의 눈금의 여과포로 용이하게 분리할 수 있었다.  The following operation was performed about this apparatus. That is, as described above, the zinc wire was supplied at 20 mm / sec, and dropping of silicon tetrachloride was started 30 seconds after the introduction of zinc into the zinc evaporation tank was confirmed. The supply amount of silicon tetrachloride was 0.5 g / sec. After 60 minutes of operation, 252 g of brown silicon fine powder was obtained. In addition, 16.77 degrees of supply zinc was excess in theory. In addition, the zinc chloride aqueous solution in the exhaust gas treating drum partially contained precipitates of silicon oxide. Accordingly, it was found that unbanung silicon tetrachloride was produced to some extent even when excess zinc was added. In addition, since the precipitates of silicon oxide were large particles, they could be easily separated by a filter cloth of about 100 scale.
[실시예 4] Example 4
실시예 2 의 장치의 실리콘 유지 용기의 밑부분 도면 4 에 보여지는 바와 같이 각도 20도로 가스를 받는 요소 부분을 최상부로 하여 경사지도록 하고, 그 밑부분 이외에 직경 60mm 의 석영 유리제의 파이프를 장착했다. 경사부의 길이는 이 파이프의 길이는 600mm 이며 최상부의 은도를 1000°C, 최하부의 은도를 2(XTC가 되도록 온도 구배를 만들었다. 또한, 최하부에는 아르곤 가스를 채운 석영 유리제의 용기를 장착했다. 이 용기는 상부에 덮개를 가지며 상부로부터 이곳으로 떨어진 실리콘을 연속적으로 추출할 수 있도록 했다. 실시예 2 과 같은 조건으로 실리콘 제조 시험을 실시한 바, 개시 15분 정도에서 약간의 실리콘이라고 생각되는 갈색의 분무입자와 함께 침전물이 떨어지기 시작했다. 온도가 200°C이므로 위에서 이것들을 꺼낼 수 있었다. Bottom of the silicone holding container of the apparatus of Example 2 As shown in Fig. 4, the element part receiving gas at an angle of 20 degrees was inclined to the top, and a pipe of 60 mm diameter quartz glass was mounted in addition to the bottom. The length of the inclined section is 600 mm long, and the temperature gradient is made so that the uppermost silver is 1000 ° C and the lowest silver is 2 (XTC. The lower part is also equipped with a quartz glass container filled with argon gas. The vessel had a lid at the top to allow continuous extraction of the silicon from the top .. A brown spray, thought to be a little silicone at about 15 minutes of start-up, after a silicone manufacturing test under the same conditions as in Example 2. With particles Sediment began to fall. The temperature was 200 ° C, so these could be taken out from above.
【부호의 설명】 [Explanation of code]
I 아연 공급구  I Zinc Inlet
II 아르곤 가스 도입구  II argon gas inlet
12 아연액 공급기  12 Zinc Liquid Feeder
2 아연 증발조  2 zinc evaporator
3 가스 가열부  3 gas heating unit
4 사염화규소를 공급하는 기구  4 A mechanism for supplying silicon tetrachloride
41 사염화규소 공급구  41 Silicon tetrachloride supply port
42 아연 가스의 통과부  42 Passage of zinc gas
5 실리콘을 포함하는 반웅 가스를 생성 하는 기구  5 Apparatus for generating reaction gas containing silicon
51 가스를 난류화하는 요소 (스퀘어 믹서 )  51 Gas Turbulence (Square Mixer)
52 가스를 난류화하는 요소 (방해판)  52 Urea Turbulent Gas Disturbance
6 실리콘 입자를 성장시 키는 동시에 가스 성분의 일부와 함께 침 전하는 기구 (수직관) ·  6 A mechanism for growing silicon particles and at the same time settling them together with some of the gaseous components (vertical tubes)
61 실리콘 입자를 성장시 키는 동시에 가스 성분의 일부와 함께 침 전하는 기구 (경사관)  61 Devices for growing silicon particles and at the same time settling them together with some of the gaseous components (tilts)
7 고체 실리콘을 얻는 기구  7 Apparatus for obtaining solid silicon
8 배기 가스 기구  8 exhaust gas appliance
9 배기 가스 처 리부  9 Exhaust Gas Treatment
91 배기구  91 air exhaust
100 펌프  100 pump
200 염화아연액 탱크  200 Zinc Chloride Tank
300 넁각 요소  300 angle elements
400 실리콘 추출 기구  400 silicone extraction apparatus

Claims

【특허 청구범위】 【청구항 1】 [Patent Claims] [Claim 1]
( 1)금속아연을 아연의 비 점 이상으로 가열 증발하여 아연 가스를 공급하는 기구와, (2)상기 아연 가스 중에 액상의 사염화규소를 공급하는 기구와, (3)상기 아연 가스와 상기 사염화규소를 흔합 교반하고 반웅시켜 실리콘 입자를 포함하는 반웅 가스를 생성하는 기구와, (4)상기 반웅 가스의 온도를 300°C 내지 800°C로 내려서 생성된 실리콘 입자를 성장시킴과 동시에 가스 성분의 일부와 함께 침 전시 키는 기구와 (5)상기 침 전물을 유지 하는 동시에, 상기 침 전물을 950°C 이상으로 가은하고, 증발물을 휘산하여, 고체 실리콘을 얻는 기구와, (6)상기 증발물 및 미 반웅 가스를 포함하는 배기 가스를 계외로 배출하는 배기 가스 기구를 포함하여 이루어지는 것을 특징으로 하는 고순도 실리콘 口ᅵ세분말의 제조 장치 . (1) a mechanism for supplying zinc gas by heating and evaporating metal zinc above the boiling point of zinc; (2) a mechanism for supplying liquid silicon tetrachloride into the zinc gas; (3) the zinc gas and silicon tetrachloride. A mixture of agitating and reacting to generate a reaction gas containing silicon particles; and (4) lowering the temperature of the reaction gas to 300 ° C. to 800 ° C. to grow the generated silicon particles and at least a portion of the gas component. And (5) the apparatus for maintaining the precipitate and at the same time maintaining the precipitate, while at least 950 ° C, and depositing the precipitate to volatilize the evaporate to obtain solid silicon; and (6) the evaporate. And an exhaust gas mechanism for discharging the exhaust gas containing the reaction gas to the outside of the system.
[청구항 2】 [Claim 2]
제 1 항에 있어서,  The method of claim 1,
상기 ( 1) 아연 가스를 공급하는 기구가 ,  The mechanism (1) for supplying zinc gas,
고순도의 고체 또는 액상의 아연을 정량적으로 아연의 비 점 내지 High purity solid or liquid zinc is quantitatively determined from the boiling point of zinc
1300 °C로 가스화하는 가스화부 ; 및 A gasification unit gasifying at 1300 ° C .; And
상기 생성한 아연 가스를 가열하고, 온도를 조정하는 조정부를 포함하고 ,  An adjusting unit for heating the generated zinc gas and adjusting a temperature;
상기 온도를 조정한 아연 가스를 정량적으로 공급하도록 하는 것을 특징으로 하는 고순도 실리콘 미세분말의 제조 장치 .  Apparatus for producing a high-purity silicon fine powder, characterized in that for quantitatively supplying the zinc gas adjusted the temperature.
【청구항 3】 [Claim 3]
제 1 항에 있어서,  The method of claim 1,
상기 (2) 아연 가스 중에 액상의 사염화규소를 공급하는 기구가, 상기 아연 가스 공급 기구에서 공급되 어 통과하도록 한 아연 가스의 통과부 ; 및 상기 통과부 내에 액상의 사염화규소를 정량적으로 분무 또는 적하하는 공급부를 포함하는 고순도 실리콘 미세분말의 제조 장치. (2) a passage for passing zinc gas, wherein the mechanism for supplying liquid silicon tetrachloride into the zinc gas is supplied from the zinc gas supply mechanism and passed therethrough; And Apparatus for producing a high-purity silicon micropowder comprising a supply unit for quantitatively spraying or dropping liquid silicon tetrachloride in the passage.
【청구항 4】 [Claim 4]
제 3항에 있어서,  The method of claim 3,
상기 사염화규소의 공급 기구의 아연 가스의 통과부의 온도가 105CTC 내지 130CTC로 유지되는 고순도 실리콘 미세분말의 제조 장치.  An apparatus for producing high-purity silicon fine powder, wherein the temperature of the passage portion of the zinc gas in the supply mechanism of silicon tetrachloride is maintained at 105 CTC to 130 CTC.
【청구항 5] [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 (3) 아연 가스와 사염화규소를 흔합 교반하여 반웅시켜 실리콘 입자를 포함하는 반웅 가스를 생성하는 기구가, 1050°C 내지 1250 °C의 온도로 유지된 통형체이며, 상기 통형체 내부에 가스를 난류화하는 요소를 포함하는 고순도 실리콘의 제조 장치 . (3) The mechanism for producing a reaction gas containing silicon particles by mixing and stirring the zinc gas and silicon tetrachloride is a cylindrical body maintained at a temperature of 1050 ° C to 1250 ° C, the gas inside the cylindrical body Apparatus for producing high purity silicon comprising an element that turbulences.
【청구항 6] [Claim 6]
제 5항에 있어서,  The method of claim 5,
상기 가스를 난류화하는 요소가, 부등 간격으로 놓여진 방해판으로 이루어지는 고순도 실리콘 미세분말의 제조 장치.  An apparatus for producing high purity silicon fine powder, wherein the element for turbulent gas is made of a baffle plate placed at uneven intervals.
【청구항 7】 . 【Claim 7】.
제 5항에 있어서,  The method of claim 5,
상기 가스를 난류화하는 요소가, 스퀘어 믹서인 고순도 실리콘 미세분말의 제조 장치.  A device for producing high-purity silicon fine powder, wherein the element for turbulent gas is a square mixer.
【청구항 8】 [Claim 8]
제 1항에 있어서, 상기 (4) 반웅 가스의 온도를 300°C 내지 80CTC로 내려서 적 어도 부분적으로 침 전물을 생성하는 기구가 , 300°C 내지 800°C의 온도로 유지 된 수직관인 고순도 실리콘 미세분말의 제조 장치 . The method of claim 1, (4) The apparatus for producing high-purity silicon fine powder, wherein the apparatus for producing a precipitate at least partially by lowering the temperature of the reaction gas to 300 ° C. to 80 CTC is maintained at a temperature of 300 ° C. to 800 ° C.
【청구항 9】 [Claim 9]
제 1 항에 있어서,  The method of claim 1,
상기 (4) 반웅 가스의 온도를 300°C 내지 800°C로 내려서 적 어도 부분적으로 침 전물을 생성하는 기구가 , (4) the apparatus for producing a precipitate at least partially by lowering the temperature of the reaction gas to 300 ° C to 800 ° C,
300 °C 내지 800°C의 온도로 유지 되고, 수평 에 대하여 30° 내지 90° 로 경사진 관이고, It is maintained at a temperature of 300 ° C to 800 ° C, the tube inclined at 30 ° to 90 ° with respect to the horizontal,
실리콘을 포함하는 침 전물을 상기 관중 및 내벽부에 생성시 키는 동시에,  While generating a precipitate containing silicon in the crowd and the inner wall,
상기 생성물을, 상기 관체 내벽을 타고 하부에 있는, 상기 (5)상기 침 전물을 유지 하는 동시에, 상기 침 전물을 950°C 이상으로 가온하고, 증발물을 휘산하여 , 고체 실리콘을 얻는 기구로 보내도록 한 것을 특징으로 하는 고순도 실리콘 미세분말의 제조 장치 . (5) while maintaining the sediment at the lower portion of the inner wall of the tube, the sediment is warmed above 950 ° C, the evaporate is volatilized and sent to a device for obtaining solid silicon. Apparatus for producing high-purity silicon fine powder, characterized in that.
【청구항 10] [Claim 10]
제 1 항에 있어서,  The method of claim 1,
(5)상기 침 전물을 유지 하는 동시에, 상기 침 전물을 950°C 이상으로 가온하고, 증발물을 휘산하여, 고체 실리콘을 얻는 기구가, (5) A mechanism for maintaining the precipitate and at the same time warming the precipitate to 950 ° C. or higher, volatilizing the evaporate to obtain solid silicon,
상기 온도를 내리는 기구로부터의 실리 콘을 함유하는 침 전물을 포함하는 가스를 받는 요소 ;  An element receiving a gas comprising a precipitate containing silicon from the device for lowering the temperature;
실리콘 유지 용기 ; 및  Silicone holding container; And
상기 배기 가스를 배출하는 요소를 포함하는 고순도 실리콘 미세분말의 제조 장치 .  Apparatus for producing high purity silicon fine powder comprising the element for discharging the exhaust gas.
【청구항 11】 [Claim 11]
제 10 항에 있어서 (5)상기 침 전물을 유지하는 동시에, 상기 침 전물을 950°C 이상으로 가온하고 , 증발물을 휘산하여, 고체 실리콘을 얻는 기구가, The method of claim 10 (5) A mechanism for maintaining the precipitate and at the same time warming the precipitate to 950 ° C. or higher, volatilizing the evaporate to obtain solid silicon,
상기 실리콘 유지 용기의 밑부분에 loocrc 내지 nocrc의 온도로 유지 한 히 터를 가지고 하부로부터 가온하도록 한 것을 특징으로 하는 고순도 실리콘 미세분말의 제조 장치 .  Apparatus for producing a high-purity silicon fine powder, characterized in that the bottom of the silicon holding container is heated from the bottom with a heater maintained at a temperature of loocrc to nocrc.
【청구항 12] [Claim 12]
제 10 항 또는 제 11 항에 있어서 ,  The method according to claim 10 or 11,
(5)상기 침 전물을 유지하는 동시에, 상기 침전물을 95CTC 이상으로 가온하고, 증발물을 휘산하여, 고체 실리콘을 얻는 기구가,  (5) A mechanism for maintaining the precipitate and heating the precipitate to 95 CTC or more, volatilizing the evaporate to obtain solid silicon,
실리콘 유지 용기에 생성된 실리콘을 반웅 중에도 추출할 수 있도록 한 추출 요소를 더 포함하는 고순도 실리콘 미세분말의 제조 장치 .  An apparatus for producing high-purity silicon fine powder, further comprising an extraction element for extracting the silicon produced in the silicon holding container even during reaction.
【청구항 13] [Claim 13]
제 10 항에 있어서,  The method of claim 10,
상기 배기 가스를 배출하는 요소가, 배기  The element for discharging the exhaust gas, exhaust
접속하고 있는 고순도 실리콘 미세분말의 제조 장치 . High purity silicon fine powder manufacturing apparatus connected.
PCT/KR2011/008342 2010-11-11 2011-11-11 Apparatus for manufacturing fine powder of high purity silicon WO2012064047A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137012075A KR101525859B1 (en) 2010-11-11 2011-11-11 Apparatus for manufacturing fine powder of high purity silicon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-265715 2010-11-11
JP2010265715A JP5574295B2 (en) 2010-11-11 2010-11-11 High purity silicon fine powder production equipment

Publications (2)

Publication Number Publication Date
WO2012064047A2 true WO2012064047A2 (en) 2012-05-18
WO2012064047A3 WO2012064047A3 (en) 2012-07-19

Family

ID=46051382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008342 WO2012064047A2 (en) 2010-11-11 2011-11-11 Apparatus for manufacturing fine powder of high purity silicon

Country Status (3)

Country Link
JP (1) JP5574295B2 (en)
KR (1) KR101525859B1 (en)
WO (1) WO2012064047A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230955A1 (en) * 2019-05-15 2020-11-19 (주)다인스 Method for preparing wet nanopowder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7088774B2 (en) * 2018-07-31 2022-06-21 株式会社トクヤマ Silicon fine particle manufacturing equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018370A (en) * 2002-06-19 2004-01-22 Yutaka Kamaike Apparatus and method of manufacturing silicon
JP2004284935A (en) * 2003-03-19 2004-10-14 Takayuki Shimamune Apparatus and method for manufacturing silicon
JP2007077007A (en) * 2005-08-19 2007-03-29 Sumitomo Chemical Co Ltd Process for production of silicon
JP2007284259A (en) * 2006-04-12 2007-11-01 Shin Etsu Chem Co Ltd Method and apparatus for producing silicon
JP2008037735A (en) * 2006-08-02 2008-02-21 Kinotech Corp Apparatus for manufacturing silicon

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210594A (en) * 2002-12-27 2004-07-29 Takayuki Shimamune Method of manufacturing high purity silicon
JP4428484B2 (en) * 2007-07-03 2010-03-10 有限会社シーエス技術研究所 High purity silicon production equipment
JP4392675B1 (en) * 2008-07-25 2010-01-06 有限会社シーエス技術研究所 High purity silicon production equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018370A (en) * 2002-06-19 2004-01-22 Yutaka Kamaike Apparatus and method of manufacturing silicon
JP2004284935A (en) * 2003-03-19 2004-10-14 Takayuki Shimamune Apparatus and method for manufacturing silicon
JP2007077007A (en) * 2005-08-19 2007-03-29 Sumitomo Chemical Co Ltd Process for production of silicon
JP2007284259A (en) * 2006-04-12 2007-11-01 Shin Etsu Chem Co Ltd Method and apparatus for producing silicon
JP2008037735A (en) * 2006-08-02 2008-02-21 Kinotech Corp Apparatus for manufacturing silicon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230955A1 (en) * 2019-05-15 2020-11-19 (주)다인스 Method for preparing wet nanopowder

Also Published As

Publication number Publication date
KR101525859B1 (en) 2015-06-03
WO2012064047A3 (en) 2012-07-19
JP2012101997A (en) 2012-05-31
KR20130097219A (en) 2013-09-02
JP5574295B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
US20090202415A1 (en) Process for producing high-purity silicon and apparatus
JP4567430B2 (en) Dust-free and pore-free high-purity polycrystalline silicon granules and their production and use
US7943109B2 (en) Process for the production of Si by reduction of SiCl4 with liquid Zn
JP4038110B2 (en) Method for producing silicon
WO2010029894A1 (en) High-purity crystalline silicon, high-purity silicon tetrachloride, and processes for producing same
JPH1111925A (en) Production of polycrystalline silicon and zinc oxide
KR101525860B1 (en) Apparatus for manufacturing fine powder of high purity silicon
JP4428484B2 (en) High purity silicon production equipment
JP4392675B1 (en) High purity silicon production equipment
WO2012064047A2 (en) Apparatus for manufacturing fine powder of high purity silicon
US4597948A (en) Apparatus for obtaining silicon from fluosilicic acid
TWI429792B (en) Method and apparatus for producing solid product
JP2008037735A (en) Apparatus for manufacturing silicon
US4781565A (en) Apparatus for obtaining silicon from fluosilicic acid
JP2004035382A (en) Method of manufacturing polycrystalline silicon
TWI482736B (en) Manufacture of high purity silicon micropowder
JP4392671B2 (en) Silicon production equipment
JP2011121800A (en) Cleaning method of reaction furnace for polycrystalline silicon manufacture
JP2004010472A (en) Method for producing silicon
JPH02279513A (en) Production of high-purity polycrystal silicon
JP2008081387A (en) Manufacturing method of high purity silicon
TWI471267B (en) Manufacture of high purity silicon fine particles
JP5586005B2 (en) Method for producing silicon
WO2011071030A1 (en) Method for producing polycrystalline silicon, and reactor for producing polycrystalline silicon
WO2011007655A1 (en) Apparatus and method for condensing and liquefying zinc chloride

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839679

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase in:

Ref document number: 20137012075

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839679

Country of ref document: EP

Kind code of ref document: A2