WO2007119605A1 - Method and apparatus for producing silicon - Google Patents

Method and apparatus for producing silicon Download PDF

Info

Publication number
WO2007119605A1
WO2007119605A1 PCT/JP2007/057044 JP2007057044W WO2007119605A1 WO 2007119605 A1 WO2007119605 A1 WO 2007119605A1 JP 2007057044 W JP2007057044 W JP 2007057044W WO 2007119605 A1 WO2007119605 A1 WO 2007119605A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
metal
particles
chlorine compound
reaction
Prior art date
Application number
PCT/JP2007/057044
Other languages
French (fr)
Japanese (ja)
Inventor
Susumu Sakaguchi
Original Assignee
Shin-Etsu Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Chemical Co., Ltd. filed Critical Shin-Etsu Chemical Co., Ltd.
Publication of WO2007119605A1 publication Critical patent/WO2007119605A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/033Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by reduction of silicon halides or halosilanes with a metal or a metallic alloy as the only reducing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method and a manufacturing apparatus for manufacturing silicon, and more particularly to a method and a manufacturing apparatus for manufacturing silicon by reducing a chlorine compound of silicon with a metal.
  • high-purity silicon single crystals for semiconductors are mainly produced from high-purity silicon polycrystals produced by the thermal decomposition method of trichlorosilane by the CZ method or FZ method.
  • Trichlorosilane is produced through at least three steps: (1) production of metallurgical metal silicon from silica (2) production of metallurgical metal silicon, and production of trichlorosilane (3) distillation purification of trichlorosilane.
  • this high-purity silicon polycrystal is too expensive to be used for a solar cell, for example, a zinc reduction method of tetrasalt silicate silicon (for example, JP-A-11-92130). And the like. Refining method of metal silicon for metallurgy, hydrogen reduction method of trichlorosilane at high temperature (see Japanese Patent Laid-Open No. 2004-2138), etc. At present, sufficient results have not been obtained in terms of the quality and price of silicon polycrystals.
  • the present invention has been made in view of such problems, and an object thereof is to provide a method and an apparatus for producing a low-cost silicon polycrystal for a solar cell.
  • the present invention has been made in order to solve the above problems, and is a method for producing silicon by reducing a chlorine compound of silicon.
  • a method for producing silicon characterized in that silicon is produced by contacting particles with gaseous chlorine compound of silicon and reducing the chlorine compound of silicon.
  • the metal liquid particles are floated when the metal liquid particles are brought into contact with and reacted with gaseous silicon chlorine compounds.
  • the main component of the chlorine compound of silicon is silicon tetrachloride.
  • the silicon tetrachloride is produced by allowing carbon and chlorine to act on silica stone.
  • the value of the free energy of formation per one atom of chlorine in the metal chloride as the liquid particle in the metal as the liquid particle is chlorine in the chlorine compound of silicon. It is preferable to use a metal that is lower than the value of free energy of formation per atom and that has a lower melting point than that of silicon.
  • the metal used as the liquid particles is either aluminum or zinc.
  • the metal to be liquid particles for reducing the chlorine compound of silicon is either aluminum or zinc, the reduction reaction proceeds and it is inexpensive at once.
  • a particle diameter of the liquid metal particles is 20 to 200 zm.
  • the temperature at which the metal liquid particles are brought into contact with and reacted with gaseous silicon chlorine compound is 800 ° C. or higher.
  • the pressure when the metal liquid particles are brought into contact with and reacted with gaseous silicon chlorine compound can be 1 atm or more.
  • the supply of the liquid metal particles and the supply of the chlorine compound of the silicon are intermittently performed to contact and react the liquid metal particles and the silicon chloride compound. Can be performed intermittently.
  • the metal in the silicon production method of the present invention, can be converted into liquid particles by melting metal solid particles into metal liquid particles.
  • metal is made into liquid particles by melting the metal solid particles into metal liquid particles, silicon can be produced even using separately produced metal solid particles. It can be performed.
  • the metal is in the form of liquid particles.
  • metal particles created by directing the central axis of a columnar metal vertically, heating and melting the lower end portion of the linear or columnar metal to flow down as a liquid metal, and spraying a fluid on the flowing liquid metal It is preferable to carry out by making liquid.
  • the central axis of the linear or columnar metal is oriented in the vertical direction, and the lower end portion of the linear or columnar metal is heated and melted to flow as a liquid metal.
  • the metal can be made into particles without bringing the metal melt into contact with the storage container by spraying a fluid onto the flowing liquid metal to form metal particles. For this reason, it is possible to reduce the contamination of silicon that is generated with less contamination of the metal from the container.
  • the linear or columnar metal is melted by high frequency induction heating.
  • the linear or columnar metal is heated and melted while rotating the linear or columnar metal around its central axis.
  • the fluid to be sprayed is hydrogen, helium, argon or a mixture thereof.
  • the fluid to be sprayed is any force of hydrogen, helium, argon, or a mixture thereof, particles can be formed without reacting with the liquid metal.
  • the fluid to be sprayed may contain the silicon chloride compound.
  • the fluid to be sprayed contains a chlorine compound of silicon
  • a liquid metal is formed into particles, and at the same time, a reduction reaction between the metal liquid particles and the chlorine compound of silicon.
  • the response can be advanced and it is efficient.
  • the present invention is an apparatus for producing silicon, comprising at least a reaction vessel for reacting metal particles and gaseous silicon chlorine compound, means for heating the reaction vessel, and the reaction vessel Means for supplying the metal particles therein, means for supplying the chlorine compound of the silicon into the reaction vessel, means for discharging the fluid in the reaction vessel, and for collecting the produced silicon And a container for manufacturing silicon.
  • a silicon production apparatus comprising: a means for supplying the chlorine compound of the silicon into the reaction container; a means for discharging the fluid in the reaction container; and a container for collecting the produced silicon.
  • a silicon manufacturing apparatus capable of manufacturing silicon at a lower cost can be provided.
  • the silicon production apparatus of the present invention includes means for suspending particles in the reaction in the reaction vessel.
  • the reaction can proceed with extremely high efficiency, and the particle size of the metal particles can be distributed without being constant. It can be set as the silicon
  • the floating means has a funnel shape in which the horizontal cross-sectional area expands from the bottom to the top, and the chlorinated compound of silicon is It is preferable that the particles in the reaction space are suspended by supplying from the lower part of the suspension means.
  • the floating means has a funnel shape in which the horizontal cross-sectional area expands from the bottom to the top, and reacts by supplying a chlorine compound of silicon from the bottom of the floating means.
  • a silicon manufacturing apparatus having a flow velocity distribution in the floating means can be obtained.
  • the particles can be suspended in a spatial position having an appropriate gas flow velocity.
  • the silicon production apparatus can more appropriately suppress the progress of the reduction reaction.
  • the expansion ratio of the horizontal cross-sectional area of the floating means is set so as to correspond to the particle size distribution of the metal particles. Is preferred.
  • the enlargement ratio of the horizontal sectional area of the floating means is set so as to correspond to the particle size distribution of the metal particles, the particle density in the reaction space of the floating means is equalized. Therefore, it can be set as the manufacturing apparatus which a reduction reaction advances more efficiently. As a result, even if the metal particles have a particle size distribution, it can be more appropriately controlled to float at a corresponding spatial position with an appropriate flow velocity, and the unevenness of the reduction reaction can be suppressed more appropriately. It can be set as the silicon manufacturing apparatus which can do.
  • the floating means has a structure in which a part of particles overflows.
  • the floating means has a structure in which a part of particles in the reaction space overflows, it is possible to prevent silicon generated by the reduction reaction from continuing to stay in the reaction space. As a result, reaction efficiency can be improved.
  • At least the material of the reaction vessel is quartz.
  • the material of the reaction vessel is quartz, contamination of the reaction vessel material force to the generated silicon can be minimized.
  • At least the inner wall of the reaction vessel is made of quartz or silicon.
  • the means for supplying the silicon chlorine compound includes means for heating the reaction container with the silicon chlorine compound supplied to the reaction container in the reaction container. It is preferable that the heating is performed in advance.
  • the means for supplying the silicon chlorine compound is supplied to the reaction vessel. If the chlorine compound of silicon is heated in advance by a means for heating the reaction vessel, the reaction can proceed efficiently.
  • the means for controlling the amount of the metal particles to be supplied the means for controlling the supply amount of the chlorine compound of the silicon, and the reaction in the reaction vessel It is preferable to provide means for controlling the temperature of the space, means for controlling the pressure in the reaction vessel, a deviation force, and one or more means.
  • the means for controlling the amount of metal particles to be supplied the means for controlling the supply amount of the chlorinated silicon compound, the means for controlling the temperature of the reaction space in the reaction vessel, Any device that controls the pressure in the reaction vessel, any silicon manufacturing device equipped with one or more means can control the reaction more stably and efficiently. .
  • the silicon production apparatus of the present invention preferably includes a means for collecting by-products in the reaction.
  • the silicon production apparatus provided with a means for collecting the by-product in the reaction is preferable in terms of the environment, and the by-product in the reaction can be reused. May be able to produce silicon.
  • the silicon production apparatus of the present invention preferably includes at least one of means for collecting unreacted silicon chlorinated compounds and means for circulating use.
  • the silicon production apparatus includes at least one of means for collecting unreacted silicon chlorine compounds and means for circulating use, unreacted silicon chlorine compounds are recycled. It can be used and silicon can be manufactured at a lower cost.
  • the container for collecting the generated silicon includes a means for heating the silicon collected in the container.
  • the container for collecting the generated silicon is provided with a means for heating the silicon, the reaction can be completed more reliably by heating the generated silicon, and the by-product can be obtained. And the condensation of unreacted silicon chlorine compounds [0067]
  • the means for heating the silicon collected in the container melts and collects the collected silicon from one direction. Is preferred.
  • the means for heating the silicon collected in the container is an apparatus for producing silicon that melts the collected silicon and solidifies it in one direction, the granular silicon is transformed into silicon. Can be ingot-shaped. In addition, the purity of silicon can be improved.
  • the container for collecting the generated silicon is provided with means for supplying a chlorine compound of silicon.
  • the container for collecting the produced silicon is provided with means for supplying the chlorine compound of silicon, the reaction can be completed more reliably.
  • the present invention also provides a method for producing silicon, characterized in that silicon is produced by reacting metal liquid particles with a silicon chloride compound using the above-described silicon production apparatus.
  • the supply of the metal particles and the supply of the chlorine compound of the silicon to the reaction vessel are intermittently performed, and the liquid particles of the metal and the chlorine compound of the silicon are supplied. It is preferable to perform this reaction intermittently.
  • the supply of metal particles and the supply of silicon chlorine compound to the reaction vessel are intermittently performed, and the metal liquid particles and silicon chlorine compound are supplied. If this reaction is performed intermittently, it is possible to prevent silicon produced by the reduction reaction from remaining in the reaction space. As a result, reaction efficiency can be improved.
  • gaseous silicon chlorine compound and the liquid particles of the metal are contacted and reacted in a countercurrent manner.
  • the particles in the reaction are in a suspended state.
  • a silicon material used as a raw material for a solar cell or the like can be manufactured at a lower cost than conventional methods.
  • FIG. 1 is a schematic cross-sectional view showing an example of a silicon production apparatus of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another example of the silicon production apparatus of the present invention.
  • FIG. 3 is a schematic sectional view showing still another example of the silicon manufacturing apparatus of the present invention.
  • FIG. 4 is a schematic sectional view showing still another example of the silicon production apparatus of the present invention.
  • the present inventors have developed the above-described zinc reduction method of silicon tetrachloride and the aluminum reduction method of silicon tetrachloride, which has not been industrially studied at all, to produce a high-purity reducing metal.
  • the present invention has been completed by considering that the reaction rate can be greatly increased by increasing the surface area of contact with tetrasilicate silicon in the form of particles and making them liquid.
  • the present invention at least metal is made into liquid particles, brought into contact with gaseous silicon chlorine compound, and silicon is generated by reducing the silicon chlorine compound.
  • the present invention relates to a silicon manufacturing method and a manufacturing apparatus capable of manufacturing silicon by such a method.
  • the chlorinated silicon compounds When metal and gaseous silicon chlorinated compounds come into contact and react, the chlorinated silicon compounds are reduced to produce metallic chlorinated compounds and silicon. At this time, if the metal is liquid, a reaction with a high reaction rate can be performed efficiently. Furthermore, if the metal is a liquid particle, the surface area of the metal can be increased, and the reaction can proceed more efficiently.
  • the silicon chlorine compound reacted with the metal liquid particles is reduced to silicon.
  • the metal chlorine compound as a by-product is removed as a gas.
  • the metal particles and the chlorine compound of silicon in a countercurrent state.
  • the reduction reaction is performed while the particles settle in the gaseous chlorine compound of the gas flowing upward in the reaction space. It is preferable that the process proceeds.
  • the reaction can be completed within a relatively short reaction space in the vertical direction, so that the volume of the apparatus can be made smaller and economically configured.
  • the conventional pyrolysis method of trichlorosilane which is the central manufacturing method of silicon polycrystals for semiconductors, that is, the production of metal silicon for metallurgy from quartzite, for metallurgy.
  • Production of chlorinated silicon compounds (mainly trichlorosilane) from metallic silicon. Distillation purification of trichlorosilane.
  • thermal decomposition including partial hydrogen reduction
  • Silicon tetrachloride a by-product of the pyrolysis method of chlorosilane, can be effectively used (2), or silicon polychloride produced directly from silica can be used to reduce the number of processes, thereby reducing silicon polycrystals at a lower cost. Can be manufactured.
  • the silicon production apparatus is roughly divided into a metal particle supply means 3 and a silicon chlorine compound that is reduced by liquid metal particles.
  • Reaction region 1 that produces The reaction region 1 mainly includes a reaction vessel 12, a floating means 13 disposed in the reaction vessel 12, a heating means 14 for heating and holding the reaction vessel 12 at a predetermined temperature, and silicon in the reaction vessel 12.
  • Means for supplying chlorine compounds 15 and gaseous reaction in reaction vessel 12 Means for discharging gases such as by-products and unreacted silicon chlorine compounds (mainly silicon tetrachloride) 17 and means for collecting by-products 20, an unreacted material collecting means 21, and a silicon container 10.
  • the reaction vessel 12 is connected to the metal particle supplying means 3 at the upper end.
  • the metal particle supply means 3 is preferably a metal liquid particle supply means capable of controlling the particle size while preventing the metal from being contaminated as much as possible. It is preferable to use the high frequency induction heating configured as described above.
  • Non-driving means a container 33 that contains the entire linear or columnar metal, a high-frequency induction heating coil 35 that heats and melts the lower part of the linear or columnar metal, and a high-frequency induction heating coil 35 that is linearly or
  • the nozzle 38 and force are configured.
  • a tilt mechanism 40 is preferably provided as means for adjusting the deviation of the central axis from the rotational axis.
  • a melting zone 34 is formed below the linear or columnar metal at a predetermined distance from the high frequency induction heating coil 35.
  • the outer diameter of the linear or columnar metal 31 gradually decreases from the end toward the lower end over a predetermined length from the end, for example, as shown in the longitudinal section in the figure.
  • the melting zone 34 is present.
  • the metal surface layer heated by high-frequency induction heating melts and flows downward, and falls freely from the bottom end.
  • This flow rate (volume flow rate or weight flow rate) is determined by the shape of the melting zone 34, the high frequency induction heating power, the descending speed of the linear or columnar metal 31, etc. Adjusted to quantitative.
  • An example of the cross-sectional shape of the melting zone 34 is shown in the figure, What is necessary is just to set an optimal shape by the characteristic and melting amount of a metal material.
  • shielding material 36 is not necessarily provided when contamination from the coil material is not particularly problematic.
  • the liquid metal particles are supplied into the reaction vessel 12 from the top and the chlorine compound of silicon is supplied from the bottom, and the inside of the reaction vessel 12 is appropriately heated by the heating means 14. If the temperature is reached, a reaction in which the chlorine compound of silicon is reduced by the metal proceeds, and the generated silicon is accommodated in the silicon container 10.
  • reaction vessel 12 For the structure and configuration of the reaction vessel 12, conventional techniques relating to a moving bed powder reactor can be referred to.
  • the heating device 14 can be appropriately selected as a medium power of a normal heating device such as high-frequency heating, lamp heating, resistance heating or the like.
  • the floating means 13 is appropriately arranged in the reaction vessel 12 by a holding means 23 such as a spoke-like holding means that disturbs the motion state of gas and particles as much as possible.
  • the floating means 13 preferably has a funnel shape whose horizontal cross-sectional area expands from the bottom to the top. With such a shape, particles can be suspended in an appropriate state by supplying a chlorine compound of silicon from the lower part of the suspension means.
  • the linear velocity of the reaction gas supplied from the lower part of the floating means 13 becomes slower near the upper part, which is faster near the lower part of the floating means 13. Therefore, particles with a large particle size float near the lower part of the floating means 13, and float at a higher part as the particle size decreases. Therefore, even if the metal particles have a particle size distribution, the reaction can proceed efficiently with all particles.
  • the expansion ratio of the cross-sectional area in the horizontal direction of the floating means at this time is appropriately set according to the particle size distribution of the particles, more preferably the radius (z) of the floating means with respect to the height direction (z) ( R) If the rate of change (dR / dz) is set in a fixed correspondence to the rate of change (dw / dr) of the cumulative weight distribution rate (w) of the metal particles to the particle size (r), Even if the particles have a particle size distribution, the volume density of the particles in the reaction space can be equalized.
  • the floating means 13 may be provided with a structure in which a part of the floating particles is appropriately overflowed.
  • a part of the floating particles is appropriately overflowed.
  • an overflow hole is appropriately provided in the conical portion of the funnel-shaped floating means 13, or a gap is formed between the inner wall of the reaction vessel 12 and the floating means 13.
  • a part of the particles fall into the reaction container 12 from the overflow holes and the gaps and are stored in the silicon container 10, so that silicon can be continuously manufactured.
  • Power S can be.
  • the above-described method of intermittently performing the reduction reaction may be used in combination. That is, the supply of silicon from the chlorine compound supply means 15 and the supply of metal particles from the supply means 3 to the reaction vessel are intermittently performed.
  • the reaction vessel 12 and the floating means 13 can be selected from ordinary materials.
  • quartz more preferably synthetic quartz having a high purity, is used to minimize contamination of silicon. It is desirable that at least the inner walls of the reaction vessel 12 and the floating means 13 are designed to be quartz or high-purity silicon. In this case, transparent quartz is preferable from the viewpoint of heating efficiency.
  • the chlorine compound of silicon is supplied into the reaction vessel 12 at a temperature that is significantly lower than the temperature in the reaction space, temperature distribution may occur in the reaction space, and the progress of the reduction reaction is uneven. Since there is a possibility of connection, the chlorine compound of silicon is preferably preheated.
  • the means 15 for supplying the silicon chlorinated compound may have a supply pipe having a spiral structure in the reaction vessel. If it is a means for supplying silicon chlorine compound having such a supply pipe, the silicon chlorine compound supplied to the reaction vessel is preheated by means 14 for heating the reaction vessel. be able to. In this way, it is possible to more efficiently preheat the silicon chlorine compound supplied to the floating means.
  • the silicon production apparatus of the present invention preferably includes means 20 for collecting by-products in the reaction. In this way, by-products in the reaction (aluminum salt Etc.) can be collected effectively.
  • a heating device 18 is disposed outside the silicon receiver in order to prevent unreacted silicon chlorine compounds and by-product metal chlorides from condensing inside the silicon receiver.
  • the temperature in the silicon container 10 is heated to a temperature equal to or higher than the melting point of silicon by the heating device 18, the collected silicon is melted in the silicon container 10. If the molten silicon is gradually solidified in one direction from the bottom to the top, impurities that have a segregation coefficient of less than 1 in the cooling process are concentrated upward due to the segregation phenomenon. The purity of the silicon portion is improved accordingly.
  • the silicon container 10 may be provided with means 16 for supplying a chlorine compound of silicon.
  • the silicon collected in the silicon container 10 according to the present invention may leave unreacted force metal that has almost completed the reaction. Therefore, the reaction can be completed more reliably by supplying the silicon chlorine compound to the silicon container 10 and heating the generated silicon.
  • the silicon container 10 may be provided with a fluid outlet.
  • means for controlling the entire apparatus can be appropriately added to the silicon manufacturing apparatus of FIG. That is, means for controlling the particle size and amount of the liquid metal particles to be supplied, means for controlling the supply amount of the chlorine compound of silicon, means for controlling the temperature of the reaction space in the reaction vessel, pressure in the reaction vessel It is a means to control.
  • means for controlling the particle size and amount of the liquid metal particles supplied include, for example, the power of the high-frequency induction heating coil 35, the descending speed of the linear or columnar metal 31, and the gas discharged from the nozzle 38.
  • the flow rate or pressure may be controlled. Chlorination of silicon
  • the valve 19 can control the supply amount of the compound.
  • the power supplied to the heating means 14 is controlled.
  • the pressure in the reaction vessel can be controlled by a known technique using the pressure gauge 22 or the like.
  • FIG. 5 shows the means for supplying metal particles.
  • the metal particles 51 are supplied from the hopper 52 through, for example, the valve 54 and the supply pipe 53, and at the upper part of the reaction vessel 65, the metal particles 51 are supplied from the metal particle supply port to the reaction space 66 at a predetermined supply rate (volume supply amount or weight supply per time Amount).
  • the particles in the hopper 52 are preheated to a temperature as high as possible within a range in which metal particles are not bonded to each other by appropriately providing heating means.
  • FIG. 2 illustrates the external heating device 50, a heating means may be provided inside the hopper. The metal particles are kept at a high temperature by the second heating means 57 even when passing through the supply pipe 53.
  • the portion 6 in the figure is a region where metal particles react with a chlorine compound of silicon.
  • the reaction vessel 65 is heated by an external heating means 68 so that the reaction space 66 is maintained at a predetermined reaction temperature. While falling inside the reaction vessel 65, the metal particles are heated and heated by the heating means 68 and melted into liquid particles.
  • the chlorine compound of silicon is supplied in gaseous form from the silicon compound supply means 69 at the lower end of the reaction vessel 65 at a predetermined weight supply rate (weight supply amount per hour), and flows upward in the reaction vessel 65. While passing, it contacts the falling metal particles in countercurrent and reacts with the metal, which leads to the reduction of silicon to chlorinated compounds.
  • By-products such as aluminum chloride (mainly aluminum chloride) generated during the reaction with unreacted silicon chlorine compounds are discharged from the outlet 70 at the top of the reaction vessel.
  • the discharged gaseous mixture of silicon chloride and aluminum salt is passed through a collection vessel (not shown) to condense and remove the aluminum chloride, and the silicon chlorine compound can be recycled to the reaction vessel again.
  • it may be condensed in a second collection container and recovered in liquid form.
  • the falling speed of the particles in the reaction space is mainly determined by the diameter of the particles, the temperature, pressure and density of the gas, the viscosity of the gas determined by them, the linear velocity of the upward flow of the gas, etc.
  • the particle size of the metal particles used is Therefore, all particles do not fall at a uniform speed, so the residence time of particles in the reaction space depends on the particle size. Time is shortened. Therefore, when using a cylindrical reactor with a uniform diameter as shown in Fig. 2, the particle size distribution of metal particles, gas density and viscosity under operating conditions, linear velocity in the reaction vessel, etc.
  • the inner diameter and height of the reaction vessel should be optimally designed so that the metal particles with the largest diameter can sufficiently react within the range where generated silicon is not discharged from the discharge port 70 at the top of the reaction vessel. .
  • the reaction vessel is divided as shown in Fig. 2 (two divisions are illustrated in Fig. 2), and a classifier 74 is placed between each reaction vessel. Install and classify into fine and coarse particles. Fine particles are taken out from the fine particle outlet 72 and collected in a fine particle collector (not shown). The coarse particles are supplied to the second reaction vessel 85 through the valve 75 and the coarse particle supply pipe 73, for example, and further reacted with the silicon chlorine compound. Similarly to the first reaction vessel, silicon chlorine compound is supplied in gaseous form from the silicon chlorine compound supply means 89 to the second reaction vessel, and the reaction space 86 is brought to a predetermined temperature by the external heating means 88. Adjusted to control.
  • the diameter and height of the second reaction vessel are set by the same procedure as that for the first reaction vessel as long as coarse particles are not discharged from the gas outlet 80.
  • the coarse silicon particles 95 after the reaction are accommodated in a collection container 94.
  • a cyclone type classifier is illustrated as a classifier, but other classifiers may be used.
  • the diameter of the second reaction vessel 85 is made smaller than that of the first reaction vessel 65 for the purpose of increasing the linear velocity of the chlorine compound of silicon in order to reduce the sedimentation rate of the coarse particles.
  • the silicon manufacturing method of the present invention that is, a method of manufacturing silicon by reducing a chlorine compound of silicon
  • a silicon production method is characterized in that silicon is produced by forming metal by making the metal liquid particles, bringing the metal liquid particles into contact with gaseous silicon chlorine compound, and reducing the silicon chlorine compound. can do.
  • An example is shown below.
  • powders not limited to metals, have a particle size distribution. In this way, if the particle size is not constant and distributed, the progress of the reduction reaction varies depending on the liquid particles of each metal. , Some can leave the reaction incomplete. In other words, the high-concentration metal remains in the generated silicon, and the quality deteriorates.
  • the reaction tower may be divided into a plurality of stages as shown in FIG.
  • the chlorine compound of silicon used in the present invention can be mainly tetrasalt-silicon.
  • the silicon chlorine compound used in the present invention is synthesized by directly synthesizing a silicon chlorine compound from silica using, for example, a method in which silica and carbon are reacted in one step with silica and purified by a method such as distillation. Can be used.
  • the main component of the silicon chlorinated compound obtained by this method is tetrasaltary silicon.
  • the silicon production method that produces silicon by reducing the chlorine compound of silicon produced in one step from quartzite with metal is more effective than the conventional method for producing silicon by pyrolysis of trichlorosilane. It can be set as the manufacturing method of silicon with few.
  • tetrasalt silicon silicon produced as a by-product when producing silicon for semiconductor from trichlorosilane can also be utilized.
  • the metal used in the present invention has a value of free energy of formation per chlorine atom lower than the value of free free energy of formation of chlorine compound of silicon and its melting point is higher than that of silicon.
  • Low metals can be used.
  • the metal has a low solubility in silicon and can easily separate a generated metal salt from silicon. Such metals can be easily removed even if they remain in silicon.
  • the metal be commercially available at a relatively low cost. Examples of such a metal include aluminum and zinc.
  • Aluminum is also useful in that a material with a purity of 99.99% or more can be obtained as a columnar billet at a relatively low cost.
  • the particle size of the liquid metal particles is set to 20 to 200 ⁇ m. It is preferable to control so that it becomes. If the particle size of the metal liquid particles is smaller than 20 zm, the particle size of the silicon particles produced after the reduction reaction becomes too small. If the particle size of the generated silicon particles is too small, special handling is required, and the surface area is increased, so that impurities and the like are easily adsorbed and the quality is likely to deteriorate.
  • the particle size of the metal liquid particles is larger than 200 ⁇ m, it takes longer for the entire metal particle to finish reacting with the chlorine compound of silicon, or it is excessive to float the particle. Therefore, it is not always suitable for the reaction to proceed properly.
  • the temperature of the reaction space should be at least 100 ° C higher than the melting point by using the heating means 14. Since the metal is supplied to the reaction space in the form of liquid particles, the reaction is relatively fast. Proceeds quickly. Metal particles are converted to silicon by reaction. In order to speed up this conversion and reduce the metal for reduction remaining in the silicon or the impurity component in the metal, it is better to set the reaction space temperature to 800 ° C or higher. However, since the boiling point of the liquid is 998 ° C under the pressure of 1 atm, it is necessary to set the temperature lower than the boiling point in the pressure value of the reaction space as the reaction temperature. Silicon produced by the reaction between gaseous zinc and silicon chlorinated compounds is extremely fine, so it is not always desirable to take into account subsequent handling, etc.
  • the pressure of the gas phase during the reduction reaction should be adjusted and controlled to atmospheric pressure, preferably 1 atmospheric pressure, but is not necessarily limited thereto. It may be set to a pressure higher than 1 atm, for example 1 to 10 atm. As a result, the reaction can be carried out in a smaller reaction space, so that the productivity of the apparatus can be increased.
  • the following method can be employed as a method for forming metal into particles. That is, as shown in FIG. 1, the central axis of the linear or columnar metal is oriented vertically, and the lower end portion of the linear or columnar metal is heated and melted by the high frequency induction heating coil 35 to flow down as a liquid metal. In this method, a fluid is sprayed from the nozzle 38 onto the flowing liquid metal to form liquid metal particles.
  • a container for holding a molten metal since a container for holding a molten metal is not used, liquid metal particles can be formed in a non-contact manner. Since powerful contamination can be prevented, contamination of the silicon produced can be reduced.
  • the metal is melted by high-frequency heating as described above.
  • high-frequency heating the surface layer of the metal can be effectively heated and melted, the control of the molten state can be carried out efficiently, and since it is non-contact, there is little contamination.
  • the fluid sprayed from the nozzle 38 toward the liquid metal stream 37 that flows down is a gas, preferably hydrogen, helium, argon, or a mixed gas thereof. These gases are also harmless to the quality of the silicon produced.
  • the fluid to be sprayed may be gaseous silicon chlorine compound (mainly tetrasalt-silicon). If the fluid to be sprayed is a chlorine compound of silicon, it can be expected to accelerate the reaction.
  • gaseous silicon chlorine compound mainly tetrasalt-silicon
  • the method of converting the metal into liquid particles may be other methods. That is, a method may be used in which a metal is made into particles by a known technique in advance, supplied from a powder supply means such as a hopper into the silicon manufacturing apparatus, melted, and reacted as liquid metal particles.
  • the present invention if silicon is produced by reacting liquid metal particles with a chlorine compound of silicon using any one of the above-described silicon production apparatuses, the number of steps can be increased as compared with the conventional silicon production method. Silicon can be manufactured at a lower cost.
  • the supply of the metal liquid particles and the supply of the silicon chloro compound to the reaction vessel may be intermittently performed, and the reaction of the metal liquid particles and the silicon chlorine compound may be performed intermittently.
  • the silicon manufacturing apparatus of the present invention may be configured as follows.
  • FIG. 1 Metal particles such as high-purity aluminum prepared in advance are stored in a hopper 111 filled with an inert gas such as argon gas.
  • a cylindrical reaction tube 112 installed vertically is heated by an external heating device 113 so that the internal temperature becomes a predetermined reaction temperature.
  • Distilled and purified silicon tetrachloride is preheated to a predetermined temperature and supplied from the gas supply port 114.
  • Metal particles are dropped from the hopper 111 to the upper part of the reaction tube 112 through, for example, the valve 118 and the supply tube 115.
  • the generated silicon is accommodated in a receiver 116 connected to the lower end of the reaction tube 112.
  • the receiver 116 is heated so that unreacted tetrasalt silicon and by-product salt aluminium do not condense. Unreacted silicon tetrachloride and by-product aluminum chloride are discharged from a gas discharge port 117 provided at the upper end of the reaction tube 112 and collected by a capacitor (not shown).
  • FIG. 1 Still another example of the apparatus of the present invention is schematically shown in FIG.
  • the metal particle production part 7 of the apparatus is a holding / driving means 121 for holding and driving a raw metal such as aluminum, an outer container 122 for holding the metal in a holding state, a high-frequency heating coil part 123, and a spraying nozzle part 124. Composed.
  • a linear or columnar metal 125 is prepared as a reducing metal, threaded on the outer periphery of the upper end thereof, and provided with a female thread portion, etc., and screwed into a heat insulating holder 126 made of ceramic, for example, through this holder. It is coupled to a drive shaft 127 that can rotate up and down freely.
  • the mantle container 122 is, for example, a stainless steel cylinder and can be provided with a water-cooled mantle.
  • a flange is provided on the outer periphery of the upper end, and it is coupled to the rotary vertical mechanism in an airtight manner.
  • the high-frequency heating coil part 123 is placed at the lower end of the outer container, and the spray nodule part 124 is placed therebelow. It adjusts so that it may correspond to the rotation center of a metal or columnar metal, and it couples in an airtight manner. It is preferable that the spray nozzle 128 appropriately set the included angle between the jet fluid and the rotation axis of the linear or columnar metal.
  • the lower end of the spray nozzle portion 124 is coupled to a cylindrical portion 129 made of, for example, stainless steel, and further coupled to a metal particle container 130 made of, for example, quartz having an inverted conical shape.
  • the lower end of the metal particle container 130 is connected to a metal particle supply pipe 1 32 made of, for example, quartz via a metal particle supply valve 131.
  • a metal particle heating device 133 is provided outside the metal particle supply pipe 132 to heat the temperature inside the metal particle supply pipe 132 to a predetermined temperature.
  • An atomizing gas discharge pipe 143 is provided at the upper part of 129.
  • the reaction unit 8 can be installed, for example, in a transparent quartz reaction vessel 134 with a funnel-shaped floating tower 135 made of, for example, transparent quartz so that the central axis thereof coincides with the central axis of the reaction vessel.
  • the conical dimensions (height and inner diameter of each part) of the floating tower 135 can be set as follows.
  • the supply amount of silicon tetrachloride per hour is, for example, 1.5 to 5 times the theoretical reaction equivalent to the supply amount of metal particles to the reaction vessel per hour, and the particles produced in the metal particle production part are Using the particle size distribution assumed to be spherical and the estimated values of the density and viscosity of tetrasalt-silicon at the reaction temperature (eg 1000 ° C) and reaction pressure (eg 1 atm), Calculate the flow velocity floating in the upward flow of salt and silicon, and set the particle floating density (the ratio of particles in the unit volume of the fluid in the reaction space) to a predetermined ratio or less.
  • the lower end of the floating tower 135 is connected to, for example, a quartz tetrasilicate silicon gas heating riser pipe 136 made of quartz.
  • a reaction vessel heating device 137 is installed outside the reaction vessel 134 to heat the inside of the floating tower to a predetermined temperature.
  • the product collection section 9 is connected.
  • the collection unit 9 includes a collection unit container 138, a receiver 139, and a collection unit container heating device 140.
  • the collector container 138 and the receiver 139 are heated by a heating device so that metal chlorides and unreacted silicon tetrachloride as by-products do not condense.
  • Silicon tetrachloride is preheated from an evaporator (not shown) through a preheater, and then introduced into the upper portion of the receiver by adjusting the pressure from the silicon tetrachloride supply pipe 141.
  • Unreacted tetrasilicon-silicon and salt-aluminum are discharged from the reaction gas outlet 142 provided in the upper joint, and after condensation and removal of metal chloride by-produced by a capacitor not shown, tetrachloride is further added. It is preferable to liquefy and recover unreacted silicon tetrachloride with a silicon capacitor.
  • the metal is melted down at a predetermined rate, and an inert gas such as high-purity hydrogen, helium, argon, or a mixture thereof is used as the atomizing gas. And used to granulate the metal.
  • the granulated metal particles are stored in a quartz metal particle container 130 and supplied to the upper portion of the floating tower 135 in the reaction container 134 through a valve 131 at a predetermined rate.
  • Silicon was manufactured using the apparatus schematically shown in FIG. Spherical particles having a particle size of 20 ⁇ m and a particle size of 60 ⁇ m having an purity of about 99.995% purity prepared in advance were stored in a hopper 111 filled with argon gas.
  • Distilled and purified silicon tetrachloride was preheated to about 400 ° C. and supplied from the gas supply port 114 at a rate of about 560 g / hr.
  • the sample was dropped from the hopper 111 through the metal particle supply pipe 115 heated to about 400 ° C. onto the upper part of the reaction pipe 112 at a rate of about 60 g / hr.
  • the generated silicon was accommodated in a receiver 116 connected to the lower end of the reaction tube 112.
  • the receiver 116 was kept at about 700 ° C. so that unreacted silicon tetrachloride and by-product aluminum chloride did not condense. Unreacted silicon tetrachloride and by-product aluminum chloride were discharged from a gas discharge port 117 provided at the upper end of the reaction tube 112 and collected by a capacitor (not shown).
  • the product in the receiver 116 was treated with hydrochloric acid to obtain silicon. As a result of the reaction for about 2 hours, about 85 g of silicon was obtained.
  • Example 1 Except for the spherical aluminum particles used in Example 1, the particle size of 60 ⁇ m, the force of 85 ⁇ m, the supply rate of silicon tetrachloride was about 6.4 kg / hr, and the supply rate of aluminum was about 670 g / hr. Reaction was performed under the same conditions as in Example 1 to obtain about 900 g of silicon.
  • Fig. 4 shows how the tetrasaltum silicon is returned with granular aluminum using the apparatus schematically shown. I did the original.
  • the mantle container 122 was a stainless steel cylindrical shape having an inner diameter of about 160 mm and a height of about 500 mm, and was equipped with a water-cooled mantle. After setting the aluminum billet 125 so that the runout due to rotation is within lmm, the coil portion 123 for high-frequency heating is placed at the lower end of the outer casing, and the nozzle portion 124 for spraying is placed below it. It was adjusted to match the center of rotation and assembled in an airtight manner. The spray nozzle 128 was set so that the included angle between the ejected fluid and the rotation axis of the aluminum billet was about 45 °.
  • the cylindrical portion 129 was made of stainless steel having an inner diameter of about 400 mm and a height of about 600 mm, and an inverted conical quartz metal particle container 130 having a height of about 460 mm was coupled thereto.
  • the lower end of the metal particle container 130 is connected through a metal particle supply valve 131 to a stone particle supply pipe 132 made of stone and having an inner diameter of about 20 mm and a height of about 1000 mm.
  • a metal particle heating device 133 is provided outside the metal particle supply pipe 132, and the temperature inside the metal particle supply pipe 132 is heated to about 600 ° C.
  • a transparent quartz funnel-shaped floating tower 135 was installed in a transparent quartz reaction vessel 134 having an inner diameter of about 300 mm and a height of about 1200 mm so that the central axis thereof coincided with the central axis of the reaction vessel.
  • the inner diameter of the upper end of the floating tower 135 was about 200 mm, the inner diameter of the lower part was about 15 mm, and the height was about 800 mm.
  • the amount of silicon tetrachloride supplied per hour is 1.6 times the theoretical reaction equivalent of the amount of metal particles supplied to the reaction vessel per hour, and the particles produced in the metal particle production part are spherical.
  • the estimated particle size distribution and estimated values of silicon tetrachloride density and viscosity at a reaction temperature of 1000 ° C and a pressure of 1 atm particles float in the upward flow of silicon tetrachloride under the reaction conditions.
  • the buoyant density of particles (the proportion of particles in the unit volume of fluid in the reaction space) was set to 30% or less.
  • Silicon tetrachloride gas heating riser 136 is made of quartz with an inner diameter of about 15 mm and a height of about 600 mm.
  • the inside of the floating tower was heated to about 1000 ° C by the reaction vessel heating device 137.
  • the collector container 138 and the receiver 139 were kept warm at about 700 ° C.
  • Tetrahydrous silicon is preheated from an evaporator (not shown) through a preheater to about 500 ° C and then adjusted to about 1 atm from the silicon tetrachloride supply port 141 at a rate of about 1.6 KgZhr. Introduced at the top.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and has substantially the same configuration as the technical idea described in the claims of the present invention, and the one that exhibits the same function and effect is a good one. However, it is included in the technical scope of the present invention.

Abstract

Disclosed is a method for producing silicon by reducing a chloride of silicon, which is characterized in that at least a metal is formed into liquid particles and the metal liquid particles are brought into contact with a gaseous chloride of silicon, thereby producing silicon through reduction of the chloride of silicon. Also disclosed is an apparatus for producing silicon, which is characterized by comprising at least a reaction chamber for reacting metal particles and a gaseous chloride of silicon, a means for heating the reaction chamber, a means for supplying the metal particles into the reaction chamber, a means for supplying the chloride of silicon into the reaction chamber, a means for discharging a fluid from the reaction chamber, and a container for collecting the produced silicon. Consequently, a low-cost silicon polycrystal for solar cells can be produced by such a method and apparatus.

Description

明 細 書  Specification
シリコンの製造方法及び製造装置  Silicon manufacturing method and manufacturing apparatus
技術分野  Technical field
[0001] 本発明はシリコンを製造する方法及び製造装置に関し、さらに詳しくは、シリコンの 塩素化合物を金属で還元してシリコンを製造する方法及び製造装置に関する。  The present invention relates to a method and a manufacturing apparatus for manufacturing silicon, and more particularly to a method and a manufacturing apparatus for manufacturing silicon by reducing a chlorine compound of silicon with a metal.
背景技術 Background art
[0002] 近年、クリーンエネルギー源として太陽電池が急速に普及しつつある。  [0002] In recent years, solar cells are rapidly spreading as clean energy sources.
開発当初の太陽電池には光電変換効率の向上による高性能化が要求されたが、 近年その普及が進むとともに、低価格化が求められるようになつてきた。  Solar cells at the beginning of development were required to have higher performance by improving photoelectric conversion efficiency, but in recent years, as their use has increased, lower prices have been demanded.
[0003] 電力用太陽電池セルの材料にはシリコンの他に、種々の化合物半導体などが用い られる力 変換効率、安定性、安全性、資源の存在量などの観点からシリコンが最も 多く用いられている。従来、太陽電池セルの素材であるシリコンの原料としては、電子 デバイス用シリコン単結晶の除外品や単結晶シリコンの残材などの低価格のものが 主として用いられてきた。しかし、太陽電池の巿場の伸長とともにセルの素材であるシ リコン原料の供給不足が現実となり、その解決が緊急の課題となっている。  [0003] Various compound semiconductors are used in addition to silicon as a material for power solar cells. Silicon is most often used from the viewpoints of power conversion efficiency, stability, safety, and abundance of resources. Yes. Conventionally, as raw materials for silicon, which is a material for solar cells, low-priced materials such as silicon single crystal exclusion products for electronic devices and single crystal silicon residual materials have been mainly used. However, along with the growth of solar cell factories, the shortage of supply of silicon raw material, which is the material of cells, has become a reality, and the solution is an urgent issue.
[0004] 現在半導体用高純度シリコン単結晶は主にトリクロロシランの熱分解法によって製 造される高純度シリコン多結晶から CZ法あるいは FZ法によって生産されている。  [0004] Currently, high-purity silicon single crystals for semiconductors are mainly produced from high-purity silicon polycrystals produced by the thermal decomposition method of trichlorosilane by the CZ method or FZ method.
[0005] トリクロロシランは(1)珪石からの冶金用金属シリコンの製造(2)冶金用金属シリコン 力、らのトリクロロシランの製造(3)トリクロロシランの蒸留精製の少なくとも三つの工程 を経て製造される。  [0005] Trichlorosilane is produced through at least three steps: (1) production of metallurgical metal silicon from silica (2) production of metallurgical metal silicon, and production of trichlorosilane (3) distillation purification of trichlorosilane. The
[0006] 現在主流のトリクロロシランの熱分解法では多量の四塩化珪素を副生するため、得 られるシリコン多結晶は高価になる。  [0006] Currently, the mainstream thermal decomposition of trichlorosilane produces a large amount of silicon tetrachloride as a by-product, so that the resulting silicon polycrystal is expensive.
[0007] したがって、この高純度シリコン多結晶は太陽電池用に使用するには高価に過ぎる ため、この課題を解決するため、例えば四塩ィ匕珪素の亜鉛還元法 (例えば特開平 11 — 92130号公報参照)、冶金用金属シリコンの精製法、高温度でのトリクロロシランの 水素還元法(特開 2004— 2138号公報参照)等の試みがなされてきた力 得られる シリコン多結晶の品質、あるいは価格の点で必ずしも十分な成果が得られていない のが現状である。 [0007] Therefore, since this high-purity silicon polycrystal is too expensive to be used for a solar cell, for example, a zinc reduction method of tetrasalt silicate silicon (for example, JP-A-11-92130). And the like. Refining method of metal silicon for metallurgy, hydrogen reduction method of trichlorosilane at high temperature (see Japanese Patent Laid-Open No. 2004-2138), etc. At present, sufficient results have not been obtained in terms of the quality and price of silicon polycrystals.
発明の開示 Disclosure of the invention
[0008] 本発明はこのような問題点に鑑みてなされたもので、低コストの太陽電池用シリコン 多結晶を製造する方法及びその装置を提供することを目的とする。  The present invention has been made in view of such problems, and an object thereof is to provide a method and an apparatus for producing a low-cost silicon polycrystal for a solar cell.
[0009] 本発明は、上記課題を解決するためになされたもので、シリコンの塩素化合物を還 元することによってシリコンを製造する方法であって、少なくとも、金属を液状粒子とし 、該金属の液状粒子を気体状のシリコンの塩素化合物と接触させ、該シリコンの塩素 化合物を還元することによってシリコンを生成することを特徴とするシリコンの製造方 法を提供する。  [0009] The present invention has been made in order to solve the above problems, and is a method for producing silicon by reducing a chlorine compound of silicon. There is provided a method for producing silicon, characterized in that silicon is produced by contacting particles with gaseous chlorine compound of silicon and reducing the chlorine compound of silicon.
[0010] このように、気体状のシリコンの塩素化合物を金属の液状粒子と接触させて還元し てシリコンを製造すれば、極めて高効率で還元が行なわれ、あるいはまた現在のトリ クロロシランの熱分解法で副生する四塩ィ匕珪素をも原料として利用することができる ので、シリコン多結晶の製造コストを大幅に低減することができる。  [0010] In this way, if silicon is produced by bringing gaseous silicon chlorine compounds into contact with metal liquid particles to produce silicon, reduction can be performed with extremely high efficiency, or the present thermal decomposition of trichlorosilane. Since tetrasaltum silicon produced as a by-product in the process can be used as a raw material, the production cost of silicon polycrystal can be greatly reduced.
[0011] この場合、前記金属の液状粒子を気体状のシリコンの塩素化合物と接触、反応さ せる際に、前記気体状のシリコン塩素化合物と前記金属の液状粒子を向流状で接 触させることが好ましい。  [0011] In this case, when the metal liquid particles are brought into contact with and reacted with the gaseous silicon chlorine compound, the gaseous silicon chlorine compound and the metal liquid particles are brought into contact in a countercurrent manner. Is preferred.
[0012] このように気体のシリコン塩素化合物と金属の液状粒子を向流状で接触させれば、 両者が接触しつつシリコンの塩素化合物の金属による還元反応が進行するので、反 応空間あたりの反応効率を高めることができるので、装置の小型化による製造コスト 低減を図ることができる。  [0012] If the gaseous silicon chlorine compound and the metal liquid particles are brought into contact with each other in this manner, the reduction reaction by the metal of the silicon chlorine compound proceeds while the two are in contact with each other. Since the reaction efficiency can be increased, the manufacturing cost can be reduced by downsizing the apparatus.
[0013] また、本発明のシリコンの製造方法では、前記金属の液状粒子を気体状のシリコン の塩素化合物と接触、反応させる際に、前記金属の液状粒子を浮遊状態にすること が好ましい。  [0013] In the silicon production method of the present invention, it is preferable that the metal liquid particles are floated when the metal liquid particles are brought into contact with and reacted with gaseous silicon chlorine compounds.
[0014] このように、金属の液状粒子を気体状のシリコンの塩素化合物と接触、反応させる 際に、金属の液状粒子を浮遊状態になるようにすれば、シリコンの塩素化合物の金 属による還元反応は浮遊状態で進行するので、きわめて高効率に反応を進行させる ことができるとともに、金属の液状粒子の粒径が一定せずに分布を有することによる 還元反応の進行の不均等を抑制することができる。 [0014] As described above, when the metal liquid particles are brought into a floating state when contacting and reacting the liquid metal particles with gaseous silicon chlorine compound, the metal reduction of the silicon chlorine compound is performed. Since the reaction proceeds in a floating state, the reaction proceeds very efficiently. In addition, it is possible to suppress unevenness in the progress of the reduction reaction due to the distribution of the metal liquid particles having a nonuniform particle size.
[0015] また、本発明のシリコンの製造方法では、前記シリコンの塩素化合物の主成分を四 塩化珪素とすることが好ましレ、。  [0015] In the method for producing silicon of the present invention, it is preferable that the main component of the chlorine compound of silicon is silicon tetrachloride.
[0016] このように、還元されるシリコンの塩素化合物の主成分を四塩ィヒ珪素とすれば、前 述のようにトリクロロシランの熱分解法における副生物を利用することができるので、 シリコン多結晶の製造コストを低減することができる。 [0016] In this way, if the main component of the chlorine compound of the silicon to be reduced is tetrachlorosilane, by-products in the thermal decomposition method of trichlorosilane can be used as described above. Polycrystalline production costs can be reduced.
[0017] また、本発明のシリコンの製造方法では、前記四塩化珪素を、珪石に炭素と塩素を 作用させて製造することが好ましい。  [0017] In the silicon production method of the present invention, it is preferable that the silicon tetrachloride is produced by allowing carbon and chlorine to act on silica stone.
[0018] このように、還元される四塩ィ匕珪素を、珪石に炭素と塩素を反応させて一段階で製 造すれば、シリコン多結晶の製造までの工程数がトリクロロシランを用いる現在の方 法に比べて少なくなるので、より低レ、コストでシリコンを製造することができる。  [0018] In this way, if tetrasaltous silicon to be reduced is produced in one step by reacting carbon and chlorine with silica stone, the number of steps until the production of silicon polycrystals is the current one using trichlorosilane. Since it is less than the method, silicon can be manufactured at lower cost and cost.
[0019] また、本発明のシリコンの製造方法では、前記液状粒子とする金属を、該液状粒子 とする金属の塩化物における塩素一原子当たりの生成自由エネルギーの値力 シリ コンの塩素化合物における塩素一原子当たりの生成自由エネルギーの値より低く、 かつ前記液状粒子とする金属の融点がシリコンの融点より低い金属とすることが好ま しい。  [0019] Further, in the method for producing silicon of the present invention, the value of the free energy of formation per one atom of chlorine in the metal chloride as the liquid particle in the metal as the liquid particle is chlorine in the chlorine compound of silicon. It is preferable to use a metal that is lower than the value of free energy of formation per atom and that has a lower melting point than that of silicon.
[0020] このように、シリコンの塩素化合物を還元するために液状粒子とする金属を、該液 状粒子とする金属の塩化物における塩素一原子当たりの生成自由エネルギーの値 力 シリコンの塩素化合物における塩素一原子当たりの生成自由エネルギーの値よ り低ぐかつ前記液状粒子とする金属の融点がシリコンの融点より低い金属とすれば 、還元反応が進行しやすレ、。  [0020] In this way, the value of the free energy of formation per atom of chlorine in the metal chloride used as the liquid particle for reducing the metal chlorine compound to reduce the silicon chlorine compound. If the metal freezing energy is lower than the value of free energy of formation per chlorine atom and the melting point of the metal used as the liquid particles is lower than the melting point of silicon, the reduction reaction easily proceeds.
[0021] また、本発明のシリコンの製造方法では、前記液状粒子とする金属を、アルミニウム または亜 のいずれかとすることが好ましい。  [0021] In the method for producing silicon of the present invention, it is preferable that the metal used as the liquid particles is either aluminum or zinc.
[0022] このように、シリコンの塩素化合物を還元するために液状粒子とする金属を、アルミ ニゥムまたは亜鉛のいずれかとすれば、還元反応が進行しやすぐまた安価である。  [0022] As described above, if the metal to be liquid particles for reducing the chlorine compound of silicon is either aluminum or zinc, the reduction reaction proceeds and it is inexpensive at once.
[0023] また、本発明のシリコンの製造方法では、前記金属の液状粒子の粒径を 20〜200 z mとすることが好ましい。 [0024] このように、金属の液状粒子の粒径を 20〜200 μ mとすれば、還元反応が短時間 で完結し、十分に高い反応率が得られるため、シリコン中に残留する金属をより少な くすることができるほか、生成するシリコンが微細に過ぎるための取扱い上の難点を 緩禾口すること力 Sできる。 [0023] Further, in the method for producing silicon of the present invention, it is preferable that a particle diameter of the liquid metal particles is 20 to 200 zm. [0024] Thus, when the particle size of the metal liquid particles is 20 to 200 μm, the reduction reaction is completed in a short time and a sufficiently high reaction rate is obtained. In addition to being able to reduce the amount, it is possible to loosen the handling difficulties because the silicon produced is too fine.
[0025] また、本発明のシリコンの製造方法では、前記金属の液状粒子を気体状のシリコン の塩素化合物と接触、反応させる際の温度を 800°C以上とすることが好ましい。  In the silicon production method of the present invention, it is preferable that the temperature at which the metal liquid particles are brought into contact with and reacted with gaseous silicon chlorine compound is 800 ° C. or higher.
[0026] このように、金属の液状粒子を気体状のシリコンの塩素化合物と接触、反応させる 際の温度を 800°C以上とすれば、還元反応が短時間で完結し、十分大きな反応率 が得られるため、シリコン中に残留する金属をより少なくすることができる。 [0026] As described above, when the temperature at which the metal liquid particles are brought into contact with and reacted with gaseous silicon chlorine compound is 800 ° C or higher, the reduction reaction is completed in a short time, and a sufficiently high reaction rate is obtained. As a result, the amount of metal remaining in silicon can be reduced.
[0027] また、本発明のシリコンの製造方法では、前記金属の液状粒子を気体状のシリコン の塩素化合物と接触、反応させる際の圧力を 1気圧以上とすることができる。 [0027] Further, in the silicon production method of the present invention, the pressure when the metal liquid particles are brought into contact with and reacted with gaseous silicon chlorine compound can be 1 atm or more.
[0028] このように、金属の液状粒子を気体状のシリコンの塩素化合物と接触、反応させる 際の圧力を 1気圧以上とすれば、還元反応が短時間で完結し、より大きな反応率が 得られるため、シリコン中に残留する金属をより少なくすることができるほか、装置の 小型化をも実現することができる。 [0028] As described above, when the pressure when the metal liquid particles are brought into contact with and reacted with gaseous silicon chlorine compound is 1 atm or more, the reduction reaction is completed in a short time, and a larger reaction rate is obtained. Therefore, it is possible to reduce the amount of metal remaining in the silicon and to reduce the size of the apparatus.
[0029] また、本発明のシリコンの製造方法では、前記金属の液状粒子の供給および前記 シリコンの塩素化合物の供給を間欠的に行い、前記金属の液状粒子とシリコンの塩 素化合物の接触、反応を間欠的に行うことができる。 In the silicon production method of the present invention, the supply of the liquid metal particles and the supply of the chlorine compound of the silicon are intermittently performed to contact and react the liquid metal particles and the silicon chloride compound. Can be performed intermittently.
[0030] このように、金属の液状粒子の供給およびシリコンの塩素化合物の供給を間欠的に 行レ、、金属の液状粒子とシリコンの塩素化合物の接触、反応を間欠的に行えば、還 元反応により生成したシリコンが反応空間にとどまり続けることを防止できる。その結 果、反応効率を向上させることができる。 [0030] As described above, if the supply of the metal liquid particles and the supply of the chlorine compound of silicon are intermittently performed, and the contact and reaction between the metal liquid particles and the chlorine compound of silicon are intermittently performed, the reduction is achieved. Silicon generated by the reaction can be prevented from remaining in the reaction space. As a result, reaction efficiency can be improved.
[0031] また、本発明のシリコンの製造方法では、前記金属を液状粒子とすることを、金属 の固体粒子を溶融して金属の液状粒子とすることによって行うことができる。 In the silicon production method of the present invention, the metal can be converted into liquid particles by melting metal solid particles into metal liquid particles.
[0032] このように、金属を液状粒子とすることを、金属の固体粒子を溶融して金属の液状 粒子とすることによって行えば、別個に製造した金属の固体粒子を用いてもシリコン の製造を行うことができる。  [0032] As described above, if the metal is made into liquid particles by melting the metal solid particles into metal liquid particles, silicon can be produced even using separately produced metal solid particles. It can be performed.
[0033] また、本発明のシリコンの製造方法では、前記金属を液状粒子とすることを、線状ま たは柱状金属の中心軸を鉛直方向に向け、該線状または柱状金属の下端部位を加 熱溶融して液状の金属として流下させ、該流下する液状の金属に流体を吹き付けて 作成した金属粒子を液状とすることによって行うことが好ましい。 [0033] Further, in the method for producing silicon of the present invention, the metal is in the form of liquid particles. Alternatively, metal particles created by directing the central axis of a columnar metal vertically, heating and melting the lower end portion of the linear or columnar metal to flow down as a liquid metal, and spraying a fluid on the flowing liquid metal It is preferable to carry out by making liquid.
[0034] このように、金属を液状粒子とすることを、線状または柱状金属の中心軸を鉛直方 向に向け、該線状または柱状金属の下端部位を加熱溶融して液状の金属として流 下させ、該流下する液状の金属に流体を吹き付けて金属の粒子とすることによって 行えば、金属融液を収容容器と接触させることなく金属を粒子化できる。このため、金 属への収容容器からの汚染が少なぐ生成するシリコンへの汚染も少なくすることが できる。  [0034] In this way, to convert the metal into liquid particles, the central axis of the linear or columnar metal is oriented in the vertical direction, and the lower end portion of the linear or columnar metal is heated and melted to flow as a liquid metal. The metal can be made into particles without bringing the metal melt into contact with the storage container by spraying a fluid onto the flowing liquid metal to form metal particles. For this reason, it is possible to reduce the contamination of silicon that is generated with less contamination of the metal from the container.
[0035] この場合、本発明のシリコンの製造方法では、前記線状または柱状金属の加熱溶 融を、高周波誘導加熱によって行うことが好ましい。  In this case, in the silicon production method of the present invention, it is preferable that the linear or columnar metal is melted by high frequency induction heating.
[0036] このように、線状または柱状金属の加熱溶融を高周波誘導加熱によって行えば、非 接触で金属の表層部を有効に加熱溶融することができ、かつ、溶融状態の制御を効 率的に実施することができる。 [0036] As described above, when the linear or columnar metal is heated and melted by high frequency induction heating, the surface layer portion of the metal can be effectively heated and melted in a non-contact manner, and the control of the molten state is efficiently performed. Can be implemented.
[0037] また、本発明のシリコンの製造方法では、前記線状または柱状金属の加熱溶融を、 該線状または柱状金属をその中心軸の周りに回転させながら行うことが好ましレ、。 [0037] In the method for producing silicon of the present invention, it is preferable that the linear or columnar metal is heated and melted while rotating the linear or columnar metal around its central axis.
[0038] このように、線状または柱状金属の加熱溶融を、該線状または柱状金属をその中 心軸の周りに回転させながら行えば、線状または柱状金属の外周表層における金属 の溶融液化を外周にわたって均等化することができるので液状金属の流下量の調節[0038] As described above, if the linear or columnar metal is heated and melted while rotating the linear or columnar metal around its central axis, the metal liquefaction in the outer surface layer of the linear or columnar metal is performed. The flow rate of liquid metal can be adjusted.
、制御がより容易となる。 , The control becomes easier.
[0039] また、本発明のシリコンの製造方法では、前記吹き付ける流体を、水素、ヘリウム、 アルゴンまたはそれらの混合物のレ、ずれかとすることが好ましレ、。 [0039] In the silicon production method of the present invention, it is preferable that the fluid to be sprayed is hydrogen, helium, argon or a mixture thereof.
[0040] このように、吹き付ける流体を、水素、ヘリウム、アルゴンまたはそれらの混合物のい ずれ力、とすれば、液状の金属と反応することなく粒子化することができる。 Thus, if the fluid to be sprayed is any force of hydrogen, helium, argon, or a mixture thereof, particles can be formed without reacting with the liquid metal.
[0041] また、本発明のシリコンの製造方法では、前記吹き付ける流体を、前記シリコンの塩 素化合物を含有するものとすることができる。 [0041] Further, in the method for producing silicon of the present invention, the fluid to be sprayed may contain the silicon chloride compound.
[0042] このように、吹き付ける流体を、シリコンの塩素化合物を含有するものとすれば、液 状の金属を粒子化すると同時に金属の液状粒子とシリコンの塩素化合物との還元反 応を進行させることができ、効率的である。 [0042] As described above, if the fluid to be sprayed contains a chlorine compound of silicon, a liquid metal is formed into particles, and at the same time, a reduction reaction between the metal liquid particles and the chlorine compound of silicon. The response can be advanced and it is efficient.
[0043] また、本発明は、シリコンの製造装置であって、少なくとも、金属の粒子と気体状の シリコンの塩素化合物とを反応させる反応容器と、前記反応容器を加熱する手段と、 前記反応容器内に前記金属の粒子を供給する手段と、前記反応容器内に前記シリ コンの塩素化合物を供給する手段と、前記反応容器内の流体を排出する手段と、生 成したシリコンを捕集するための容器とを備えることを特徴とするシリコンの製造装置 を提供する。  [0043] Further, the present invention is an apparatus for producing silicon, comprising at least a reaction vessel for reacting metal particles and gaseous silicon chlorine compound, means for heating the reaction vessel, and the reaction vessel Means for supplying the metal particles therein, means for supplying the chlorine compound of the silicon into the reaction vessel, means for discharging the fluid in the reaction vessel, and for collecting the produced silicon And a container for manufacturing silicon.
[0044] このように、少なくとも、金属の粒子と気体状のシリコンの塩素化合物とを反応させる 反応容器と、前記反応容器を加熱する手段と、前記反応容器内に前記金属の粒子 を供給する手段と、前記反応容器内に前記シリコンの塩素化合物を供給する手段と 、前記反応容器内の流体を排出する手段と、生成したシリコンを捕集するための容器 と、を備えるシリコンの製造装置であれば、より低コストでシリコンを製造することがで きるシリコンの製造装置とすることができる。  [0044] Thus, at least a reaction vessel for reacting metal particles and gaseous silicon chlorine compound, means for heating the reaction vessel, and means for supplying the metal particles into the reaction vessel A silicon production apparatus comprising: a means for supplying the chlorine compound of the silicon into the reaction container; a means for discharging the fluid in the reaction container; and a container for collecting the produced silicon. For example, a silicon manufacturing apparatus capable of manufacturing silicon at a lower cost can be provided.
[0045] この場合、本発明のシリコンの製造装置では、前記反応容器内で反応中の粒子を 浮遊させる手段を備えることが好ましレ、。  [0045] In this case, it is preferable that the silicon production apparatus of the present invention includes means for suspending particles in the reaction in the reaction vessel.
[0046] このように、反応容器内で反応中の粒子を浮遊させる手段を備えれば、きわめて高 効率に反応を進行させることができるとともに、金属の粒子の粒径が一定せずに分布 を有することによる還元反応の進行の不均等を抑制することができるシリコンの製造 装置とすることができる。  [0046] Thus, if a means for suspending the particles in the reaction vessel is provided, the reaction can proceed with extremely high efficiency, and the particle size of the metal particles can be distributed without being constant. It can be set as the silicon | silicone manufacturing apparatus which can suppress the nonuniformity of the progress of the reduction reaction by having.
[0047] また、本発明のシリコンの製造装置では、前記浮遊手段は、その水平方向の断面 積が下から上に向力うにつれて拡大する漏斗形状を有し、前記シリコンの塩素化合 物を、前記浮遊手段の下部から供給することによって反応空間内の粒子を浮遊させ るものであることが好ましい。  [0047] Further, in the silicon manufacturing apparatus of the present invention, the floating means has a funnel shape in which the horizontal cross-sectional area expands from the bottom to the top, and the chlorinated compound of silicon is It is preferable that the particles in the reaction space are suspended by supplying from the lower part of the suspension means.
[0048] このように、浮遊手段が、その水平方向の断面積が下から上に向力 につれて拡大 する漏斗形状を有し、シリコンの塩素化合物を、浮遊手段の下部から供給することに よって反応空間内の粒子を浮遊させるものであれば、浮遊手段内に流速分布を有す るシリコンの製造装置とすることができる。この結果、金属の粒子が粒径分布を有して いても、対応する適当な気体の流速を有する空間位置に粒子を浮遊させることがで き、還元反応の進行の不均等をより適切に抑制することができるシリコンの製造装置 とすることができる。 [0048] Thus, the floating means has a funnel shape in which the horizontal cross-sectional area expands from the bottom to the top, and reacts by supplying a chlorine compound of silicon from the bottom of the floating means. As long as particles in the space are suspended, a silicon manufacturing apparatus having a flow velocity distribution in the floating means can be obtained. As a result, even if the metal particles have a particle size distribution, the particles can be suspended in a spatial position having an appropriate gas flow velocity. Thus, the silicon production apparatus can more appropriately suppress the progress of the reduction reaction.
[0049] この場合、本発明のシリコンの製造装置では、前記浮遊手段の水平方向の断面積 の拡大比率は、前記金属の粒子の粒径分布に対応するように設定されているもので あることが好ましい。  [0049] In this case, in the silicon manufacturing apparatus of the present invention, the expansion ratio of the horizontal cross-sectional area of the floating means is set so as to correspond to the particle size distribution of the metal particles. Is preferred.
[0050] このように、浮遊手段の水平方向の断面積の拡大比率が、金属の粒子の粒径分布 に対応するように設定されていれば、浮遊手段の反応空間内における粒子の密度を 均等化できるので、還元反応がより効率よく進行する製造装置とすることができる。こ の結果、金属の粒子が粒径分布を有していても、対応する適当な流速を有する空間 位置において浮遊させることをより適切に制御でき、還元反応の進行の不均等をより 適切に抑制することができるシリコンの製造装置とすることができる。  [0050] As described above, if the enlargement ratio of the horizontal sectional area of the floating means is set so as to correspond to the particle size distribution of the metal particles, the particle density in the reaction space of the floating means is equalized. Therefore, it can be set as the manufacturing apparatus which a reduction reaction advances more efficiently. As a result, even if the metal particles have a particle size distribution, it can be more appropriately controlled to float at a corresponding spatial position with an appropriate flow velocity, and the unevenness of the reduction reaction can be suppressed more appropriately. It can be set as the silicon manufacturing apparatus which can do.
[0051] また、本発明のシリコンの製造装置では、前記浮遊手段は粒子の一部を溢流させ る構造を有することが好ましレ、。  [0051] In the silicon manufacturing apparatus of the present invention, it is preferable that the floating means has a structure in which a part of particles overflows.
[0052] このように、浮遊手段は、反応空間内の粒子の一部を溢流させる構造を有するもの であれば、還元反応により生成したシリコンが反応空間にとどまり続けることを防止で きる。その結果、反応効率を向上させることができる。  [0052] Thus, if the floating means has a structure in which a part of particles in the reaction space overflows, it is possible to prevent silicon generated by the reduction reaction from continuing to stay in the reaction space. As a result, reaction efficiency can be improved.
[0053] また、本発明のシリコンの製造装置では、少なくとも前記反応容器の材質を石英と することが好ましい。  [0053] In the silicon production apparatus of the present invention, it is preferable that at least the material of the reaction vessel is quartz.
[0054] このように、反応容器の材質を石英とすれば、生成するシリコンへの反応容器材料 力 の汚染を最小限に抑制することができる。  Thus, if the material of the reaction vessel is quartz, contamination of the reaction vessel material force to the generated silicon can be minimized.
[0055] また、本発明のシリコンの製造装置では、前記反応容器の少なくとも内壁を石英ま たはシリコンとすることが好ましい。 In the silicon production apparatus of the present invention, it is preferable that at least the inner wall of the reaction vessel is made of quartz or silicon.
[0056] このように、反応容器の少なくとも内壁を石英またはシリコンとすることによつても、生 成するシリコンへの反応容器材料力 の汚染を最小限に抑制することができる。 [0056] As described above, even if at least the inner wall of the reaction vessel is made of quartz or silicon, contamination of the reaction vessel material force to the generated silicon can be minimized.
[0057] また、本発明のシリコンの製造装置では、前記シリコンの塩素化合物を供給する手 段は、反応容器内で前記反応容器に供給されるシリコンの塩素化合物を、前記反応 容器を加熱する手段によって予め加熱するものであることが好ましい。 [0057] In the silicon production apparatus of the present invention, the means for supplying the silicon chlorine compound includes means for heating the reaction container with the silicon chlorine compound supplied to the reaction container in the reaction container. It is preferable that the heating is performed in advance.
[0058] このように、シリコンの塩素化合物を供給する手段が、前記反応容器に供給される シリコンの塩素化合物を、前記反応容器を加熱する手段によって予め加熱するもの であれば、効率よく反応を進行させることができる。 [0058] Thus, the means for supplying the silicon chlorine compound is supplied to the reaction vessel. If the chlorine compound of silicon is heated in advance by a means for heating the reaction vessel, the reaction can proceed efficiently.
[0059] また、本発明のシリコンの製造装置では、さらに、前記供給される金属の粒子の量 を制御する手段、前記シリコンの塩素化合物の供給量を制御する手段、前記反応容 器内の反応空間の温度を制御する手段、前記反応容器内の圧力を制御する手段、 のレ、ずれ力、 1つ以上の手段を備えることが好ましレ、。  [0059] In the silicon production apparatus of the present invention, the means for controlling the amount of the metal particles to be supplied, the means for controlling the supply amount of the chlorine compound of the silicon, and the reaction in the reaction vessel It is preferable to provide means for controlling the temperature of the space, means for controlling the pressure in the reaction vessel, a deviation force, and one or more means.
[0060] このように、さらに、供給される金属の粒子の量を制御する手段、シリコンの塩素化 合物の供給量を制御する手段、反応容器内の反応空間の温度を制御する手段、反 応容器内の圧力を制御する手段、のいずれ力、 1つ以上の手段を備えるシリコンの製 造装置であれば、より安定して効率的に反応を制御してシリコンを製造することがで きる。  [0060] Thus, the means for controlling the amount of metal particles to be supplied, the means for controlling the supply amount of the chlorinated silicon compound, the means for controlling the temperature of the reaction space in the reaction vessel, Any device that controls the pressure in the reaction vessel, any silicon manufacturing device equipped with one or more means can control the reaction more stably and efficiently. .
[0061] また、本発明のシリコンの製造装置では、前記反応における副生物を捕集する手 段を備えることが好ましい。  [0061] Further, the silicon production apparatus of the present invention preferably includes a means for collecting by-products in the reaction.
[0062] このように、反応における副生物を捕集する手段を備えるシリコンの製造装置であ れば、環境上も好ましいし、反応における副生物を再利用することも可能であり、より 低コストでシリコンを製造することができる可能性がある。 [0062] As described above, the silicon production apparatus provided with a means for collecting the by-product in the reaction is preferable in terms of the environment, and the by-product in the reaction can be reused. May be able to produce silicon.
[0063] また、本発明のシリコンの製造装置では、少なくとも、未反応のシリコンの塩素化合 物を捕集する手段または循環使用する手段のいずれか一方を備えることが好ましい [0063] Further, the silicon production apparatus of the present invention preferably includes at least one of means for collecting unreacted silicon chlorinated compounds and means for circulating use.
[0064] このように、少なくとも、未反応のシリコンの塩素化合物を捕集する手段または循環 使用する手段のいずれか一方を備えるシリコンの製造装置であれば、未反応のシリ コンの塩素化合物を再利用することができ、より低コストでシリコンを製造することがで きる。 [0064] In this manner, if the silicon production apparatus includes at least one of means for collecting unreacted silicon chlorine compounds and means for circulating use, unreacted silicon chlorine compounds are recycled. It can be used and silicon can be manufactured at a lower cost.
[0065] また、本発明のシリコンの製造装置では、前記生成したシリコンを捕集するための 容器は、該容器内に捕集されたシリコンを加熱する手段を備えることが好ましい。  [0065] In the silicon production apparatus of the present invention, it is preferable that the container for collecting the generated silicon includes a means for heating the silicon collected in the container.
[0066] このように、生成したシリコンを捕集するための容器にシリコンを加熱する手段を備 えれば、生成したシリコンを加熱することによってより確実に反応を完結させることが でき、また副生物や未反応のシリコンの塩素化合物が凝縮するのを防ぐことができる [0067] この場合、本発明のシリコンの製造装置では、前記容器内に捕集されたシリコンを 加熱する手段は、前記捕集されたシリコンを溶融し、一方向から凝固させるものであ ることが好ましい。 [0066] As described above, if the container for collecting the generated silicon is provided with a means for heating the silicon, the reaction can be completed more reliably by heating the generated silicon, and the by-product can be obtained. And the condensation of unreacted silicon chlorine compounds [0067] In this case, in the silicon production apparatus of the present invention, the means for heating the silicon collected in the container melts and collects the collected silicon from one direction. Is preferred.
[0068] このように、容器内に捕集されたシリコンを加熱する手段は、捕集されたシリコンを 溶融し、一方向力 凝固させるものであるシリコンの製造装置であれば、粒状シリコン をシリコンインゴット状にすることができる。また、シリコンの純度を向上させることがで きる。  [0068] As described above, if the means for heating the silicon collected in the container is an apparatus for producing silicon that melts the collected silicon and solidifies it in one direction, the granular silicon is transformed into silicon. Can be ingot-shaped. In addition, the purity of silicon can be improved.
[0069] また、本発明のシリコンの製造装置では、前記生成したシリコンを捕集するための 容器に、シリコンの塩素化合物を供給する手段を備えることが好ましい。  [0069] In the silicon production apparatus of the present invention, it is preferable that the container for collecting the generated silicon is provided with means for supplying a chlorine compound of silicon.
[0070] このように、生成したシリコンを捕集するための容器にシリコンの塩素化合物を供給 する手段を備えれば、より確実に反応を完結させることができる。  [0070] As described above, if the container for collecting the produced silicon is provided with means for supplying the chlorine compound of silicon, the reaction can be completed more reliably.
[0071] また、本発明は上記のシリコンの製造装置を用いて金属の液状粒子とシリコンの塩 素化合物を反応させてシリコンを製造することを特徴とするシリコンの製造方法を提 供する。  [0071] The present invention also provides a method for producing silicon, characterized in that silicon is produced by reacting metal liquid particles with a silicon chloride compound using the above-described silicon production apparatus.
[0072] このように、前記のいずれかのシリコンの製造装置を用いて金属の液状粒子とシリコ ンの塩素化合物を反応させてシリコンを製造すれば、より低コストでシリコンを製造す ること力 Sできる。  [0072] Thus, if silicon is produced by reacting metal liquid particles with a chlorine compound of silicon using any one of the above-described silicon production apparatuses, the ability to produce silicon at a lower cost. S can.
[0073] この場合、本発明のシリコンの製造方法では、前記反応容器への前記金属の粒子 の供給および前記シリコンの塩素化合物の供給を間欠的に行い、前記金属の液状 粒子とシリコンの塩素化合物の反応を間欠的に行うことが好ましい。  In this case, in the method for producing silicon of the present invention, the supply of the metal particles and the supply of the chlorine compound of the silicon to the reaction vessel are intermittently performed, and the liquid particles of the metal and the chlorine compound of the silicon are supplied. It is preferable to perform this reaction intermittently.
[0074] このように、上記のシリコンの製造装置を用いて、反応容器への金属の粒子の供給 およびシリコンの塩素化合物の供給を間欠的に行レ、、金属の液状粒子とシリコンの 塩素化合物の反応を間欠的に行えば、還元反応により生成したシリコンが反応空間 にとどまり続けることを防止できる。その結果、反応効率を向上させることができる。  [0074] Thus, using the above-described silicon production apparatus, the supply of metal particles and the supply of silicon chlorine compound to the reaction vessel are intermittently performed, and the metal liquid particles and silicon chlorine compound are supplied. If this reaction is performed intermittently, it is possible to prevent silicon produced by the reduction reaction from remaining in the reaction space. As a result, reaction efficiency can be improved.
[0075] また、前記気体状のシリコン塩素化合物と前記金属の液状粒子を向流状で接触、 反応させることが好ましい。  [0075] Further, it is preferable that the gaseous silicon chlorine compound and the liquid particles of the metal are contacted and reacted in a countercurrent manner.
[0076] このように、上記のシリコンの製造装置を用いて、気体状のシリコン塩素化合物と金 属の液状粒子を向流状で接触、反応させれば、両者が接触しつつシリコンの塩素化 合物の金属による還元反応が進行するので、反応空間あたりの反応効率を高めるこ とができるので、装置の小型化による製造コスト低減を図ることができる。 [0076] Thus, using the above-described silicon manufacturing apparatus, gaseous silicon chlorine compound and gold If the liquid particles of the genus are contacted and reacted in a countercurrent state, the reduction reaction by the metal of the silicon chlorinated compound proceeds while they are in contact with each other, so the reaction efficiency per reaction space can be increased. The manufacturing cost can be reduced by downsizing the apparatus.
[0077] また、反応中の粒子を浮遊状態にすることが好ましい。  [0077] Further, it is preferable that the particles in the reaction are in a suspended state.
[0078] このように、上記のシリコンの製造装置を用いて、反応中の粒子を浮遊状態になる ようにすれば、シリコンの塩素化合物の金属による還元反応は浮遊状態で進行する ので、きわめて高効率に反応を進行させることができるとともに、金属の液状粒子の 粒径が一定せずに分布を有することによる還元反応の進行の不均等を抑制すること ができる。  [0078] In this way, if the particles during the reaction are made to be in a floating state using the above-described silicon production apparatus, the reduction reaction of the silicon chlorinated compound with the metal proceeds in a floating state. In addition to allowing the reaction to proceed efficiently, it is possible to suppress unevenness in the progress of the reduction reaction due to the distribution of the liquid particle size of the metal being not constant.
[0079] 以上説明したように、本発明によれば、太陽電池等の原料に用いられるシリコン素 材を従来法より安価に製造することができる。 図面の簡単な説明  [0079] As described above, according to the present invention, a silicon material used as a raw material for a solar cell or the like can be manufactured at a lower cost than conventional methods. Brief Description of Drawings
[0080] [図 1]本発明のシリコンの製造装置の一例を示す概略断面図である。  FIG. 1 is a schematic cross-sectional view showing an example of a silicon production apparatus of the present invention.
[図 2]本発明のシリコンの製造装置の別の一例を示す概略断面図である。  FIG. 2 is a schematic cross-sectional view showing another example of the silicon production apparatus of the present invention.
[図 3]本発明のシリコンの製造装置のさらに別の一例を示す概略断面図である。  FIG. 3 is a schematic sectional view showing still another example of the silicon manufacturing apparatus of the present invention.
[図 4]本発明のシリコンの製造装置のさらに別の一例を示す概略断面図である。 発明を実施するための最良の形態  FIG. 4 is a schematic sectional view showing still another example of the silicon production apparatus of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0081] 以下、本発明について、さらに詳しく説明する力 本発明はこれに限定されるもので はない。 [0081] Hereinafter, the present invention will be described in more detail. The present invention is not limited to this.
前述のように、太陽電池等の材料であるシリコンの製造方法であって、コストが低く 、かつ大量に製造する方法が確立されてレ、ないとレ、う問題があった。  As described above, there has been a problem in that a method for producing silicon, which is a material for solar cells, is low in cost and has been established in large quantities.
[0082] そこで、本発明者らは、前述の四塩化珪素の亜鉛還元法や工業的には全く検討さ れていな力つた四塩化珪素のアルミニウム還元法を発展させ、高純度の還元用金属 を粒子状として四塩ィヒ珪素との接触表面積を大きくし、かつそれらを液状することに よって、反応速度を大幅に上げることを考え、本発明を完成させた。  [0082] Therefore, the present inventors have developed the above-described zinc reduction method of silicon tetrachloride and the aluminum reduction method of silicon tetrachloride, which has not been industrially studied at all, to produce a high-purity reducing metal. The present invention has been completed by considering that the reaction rate can be greatly increased by increasing the surface area of contact with tetrasilicate silicon in the form of particles and making them liquid.
[0083] すなわち、本発明は、少なくとも、金属を液状粒子とし、気体状のシリコンの塩素化 合物と接触させ、該シリコンの塩素化合物を還元することによってシリコンを生成する ことを特徴とするシリコンの製造方法及びそのような方法によってシリコンを製造でき る製造装置に関するものである。 That is, in the present invention, at least metal is made into liquid particles, brought into contact with gaseous silicon chlorine compound, and silicon is generated by reducing the silicon chlorine compound. The present invention relates to a silicon manufacturing method and a manufacturing apparatus capable of manufacturing silicon by such a method.
金属と気体状のシリコンの塩素化合物が接触して反応すると、シリコンの塩素化合 物が還元され、金属の塩素化合物とシリコンが生成する。このとき、金属が液状であ れば反応速度が大きぐ反応を効率的に行うことができる。さらに、金属が液状の粒 子であれば、金属の表面積を大きくすることができ、より効率的に反応が進みやすく なる。  When metal and gaseous silicon chlorinated compounds come into contact and react, the chlorinated silicon compounds are reduced to produce metallic chlorinated compounds and silicon. At this time, if the metal is liquid, a reaction with a high reaction rate can be performed efficiently. Furthermore, if the metal is a liquid particle, the surface area of the metal can be increased, and the reaction can proceed more efficiently.
この反応により、金属の液状粒子と反応したシリコンの塩素化合物は還元されシリコ ンとなる。一方、副生物である金属の塩素化合物は気体となり除去される。  By this reaction, the silicon chlorine compound reacted with the metal liquid particles is reduced to silicon. On the other hand, the metal chlorine compound as a by-product is removed as a gas.
[0084] その際に金属粒子とシリコンの塩素化合物を向流状態で反応させることが好ましぐ 特には、反応空間内を上方に流れる気体のシリコンの塩素化合物中を粒子が沈降し つつ還元反応が進行するようにするのが好ましい。それによつて、上下方向に比較 的短い反応空間内で反応を完結させることができるので、装置の容積をより小さく経 済的に構成する事ができる。  [0084] In this case, it is preferable to react the metal particles and the chlorine compound of silicon in a countercurrent state. In particular, the reduction reaction is performed while the particles settle in the gaseous chlorine compound of the gas flowing upward in the reaction space. It is preferable that the process proceeds. As a result, the reaction can be completed within a relatively short reaction space in the vertical direction, so that the volume of the apparatus can be made smaller and economically configured.
[0085] このように、本発明によれば、従来の半導体用シリコン多結晶の中心的な製法であ るトリクロロシランの熱分解法、すなわち、珪石からの冶金用金属シリコンの製造一冶 金用金属シリコンからのシリコンの塩素化合物(主としてトリクロロシラン)の製造一トリ クロロシランの蒸留精製一トリクロロシランの熱分解(一部水素還元を含む)による多 結晶シリコン製造方法に比較して、 (1)トリクロロシランの熱分解法の副生物の四塩 化珪素を有効に利用できること、(2)あるいは、珪石から直接製造した四塩化珪素を 使用して工程を少なくすること、によってより安価にシリコン多結晶を製造する事がで きる。  [0085] Thus, according to the present invention, the conventional pyrolysis method of trichlorosilane, which is the central manufacturing method of silicon polycrystals for semiconductors, that is, the production of metal silicon for metallurgy from quartzite, for metallurgy. Production of chlorinated silicon compounds (mainly trichlorosilane) from metallic silicon. Distillation purification of trichlorosilane. Compared to the production method of polycrystalline silicon by thermal decomposition (including partial hydrogen reduction) of trichlorosilane. Silicon tetrachloride, a by-product of the pyrolysis method of chlorosilane, can be effectively used (2), or silicon polychloride produced directly from silica can be used to reduce the number of processes, thereby reducing silicon polycrystals at a lower cost. Can be manufactured.
[0086] 以下、本発明のシリコンの製造装置を図面を参照して詳細に説明をする力 あくま でも実施様態の一例を示すもので、本発明の技術思想によるものである限りこれに限 定されるものではない。  [0086] In the following, an example of an embodiment is shown to the extent that the silicon manufacturing apparatus of the present invention is described in detail with reference to the drawings, and is limited to this as long as the technical idea of the present invention is used. It is not something.
[0087] 図 1に模式的に示すように、本発明に係るシリコンの製造装置は、大別すると金属 の粒子の供給手段 3と、シリコンの塩素化合物を金属の液状粒子によって還元してシ リコンを生成する反応領域 1とからなる。 反応領域 1は主として反応容器 12と、反応容器 12内に配置された浮遊手段 13と、 反応容器 12内を所定の温度に加熱保持するための加熱手段 14と、および反応容 器 12にシリコンの塩素化合物を供給する手段 15と反応容器 12内の気体状の反応 副生成物や未反応のシリコンの塩素化合物(主に四塩化珪素)等の気体を排出する 手段 17と、副生物捕集手段 20と、未反応物捕集手段 21と、シリコン容器 10と、によ つて構成される。また、反応容器 12は上端で金属の粒子の供給手段 3と連結されて いる。 As schematically shown in FIG. 1, the silicon production apparatus according to the present invention is roughly divided into a metal particle supply means 3 and a silicon chlorine compound that is reduced by liquid metal particles. Reaction region 1 that produces The reaction region 1 mainly includes a reaction vessel 12, a floating means 13 disposed in the reaction vessel 12, a heating means 14 for heating and holding the reaction vessel 12 at a predetermined temperature, and silicon in the reaction vessel 12. Means for supplying chlorine compounds 15 and gaseous reaction in reaction vessel 12 Means for discharging gases such as by-products and unreacted silicon chlorine compounds (mainly silicon tetrachloride) 17 and means for collecting by-products 20, an unreacted material collecting means 21, and a silicon container 10. The reaction vessel 12 is connected to the metal particle supplying means 3 at the upper end.
[0088] このうち、金属の粒子の供給手段 3は、金属をできるだけ汚染させることがないととも に粒径を制御できる金属の液状粒子の供給手段とすれば好ましレ、が、例えば以下の ように構成された、高周波誘導加熱によるものとすることが好ましい。すなわち、線状 または柱状金属 31と、線状または柱状金属 31をその上部で断熱材 30を介して保持 する保持具 32及び保持軸 29と、保持軸 29を回転上下動自在に駆動する図示しな い駆動手段と、線状または柱状金属全体を収容する容器 33と、線状または柱状金 属の下部を加熱溶融する高周波誘導加熱用コイル 35と、高周波誘導加熱用コイル 3 5と線状または柱状金属 31との接触を防止するための例えば石英からなる遮蔽材 36 と、 自由落下する液状金属流 37に向かって流体 39を吹き付けて通常の方法で液状 金属を粒子化する 1つまたは複数のノズル 38と、力 構成される。また、線状または 柱状金属 31をその中心軸の周りに回転させる場合に、中心軸の回転軸からのずれ を調整する手段として、チルト機構 40を備えることが好ましい。また、線状または柱状 金属の下部には、高周波誘導加熱用コイル 35から所定の距離を隔てて溶融ゾーン 34が形成される。  [0088] Of these, the metal particle supply means 3 is preferably a metal liquid particle supply means capable of controlling the particle size while preventing the metal from being contaminated as much as possible. It is preferable to use the high frequency induction heating configured as described above. In other words, a linear or columnar metal 31, a holder 32 and a holding shaft 29 that hold the linear or columnar metal 31 on the upper portion thereof via a heat insulating material 30, and a diagram in which the holding shaft 29 is driven to rotate up and down. Non-driving means, a container 33 that contains the entire linear or columnar metal, a high-frequency induction heating coil 35 that heats and melts the lower part of the linear or columnar metal, and a high-frequency induction heating coil 35 that is linearly or A shielding material 36 made of, for example, quartz to prevent contact with the columnar metal 31 and one or more particles of the liquid metal in a normal manner by spraying the fluid 39 toward the free-falling liquid metal stream 37 The nozzle 38 and force are configured. In addition, when the linear or columnar metal 31 is rotated around its central axis, a tilt mechanism 40 is preferably provided as means for adjusting the deviation of the central axis from the rotational axis. In addition, a melting zone 34 is formed below the linear or columnar metal at a predetermined distance from the high frequency induction heating coil 35.
[0089] すなわち、線状または柱状金属 31の下部には、端部より所定の長さにわたって下 端に向かって、例えば図にその縦断面を示すように、その外径が次第に小さくなつて レ、る溶融ゾーン 34の箇所が存在する。高周波誘導加熱によって加熱された金属表 層は溶融して下方に流下し、最下端部分から自由落下する。この流下量 (体積流下 速度または重量流下速度)は溶融ゾーン 34の形状と高周波誘導加熱電力、線状ま たは柱状金属 31の下降速度等によって決定され、操業中は連続的に適切なほぼ一 定量に調節される。溶融ゾーン 34の断面形状は図中にその一例が示されているが、 金属素材の特性と溶融量によって最適の形状を設定すればよい。 That is, the outer diameter of the linear or columnar metal 31 gradually decreases from the end toward the lower end over a predetermined length from the end, for example, as shown in the longitudinal section in the figure. The melting zone 34 is present. The metal surface layer heated by high-frequency induction heating melts and flows downward, and falls freely from the bottom end. This flow rate (volume flow rate or weight flow rate) is determined by the shape of the melting zone 34, the high frequency induction heating power, the descending speed of the linear or columnar metal 31, etc. Adjusted to quantitative. An example of the cross-sectional shape of the melting zone 34 is shown in the figure, What is necessary is just to set an optimal shape by the characteristic and melting amount of a metal material.
なお、コイル材料からの汚染が特に問題とならない場合には遮蔽材 36は必ずしも 設ける必要はない。  Note that the shielding material 36 is not necessarily provided when contamination from the coil material is not particularly problematic.
[0090] 上記の線状または柱状金属をその中心軸の周りに回転させる手段を備えることが 好ましレ、。このような製造装置であれば、線状または柱状金属の外周表層における 金属の溶融液化を外周にわたって均等化することができるので液状金属の流下量の 調節、制御がより容易となる。  [0090] It is preferable to include means for rotating the linear or columnar metal around its central axis. With such a manufacturing apparatus, the metal liquefaction in the outer surface layer of the linear or columnar metal can be equalized over the outer periphery, so that the flow amount of the liquid metal can be easily adjusted and controlled.
[0091] 上記のような本発明のシリコンの製造装置では、反応容器 12内に金属の液状粒子 が上部から、シリコンの塩素化合物が下部から供給され、加熱手段 14によって反応 容器 12内が適当な温度とされれば、シリコンの塩素化合物が金属によって還元され る反応が進行し、生成したシリコンはシリコン容器 10に収容される。  In the silicon production apparatus of the present invention as described above, the liquid metal particles are supplied into the reaction vessel 12 from the top and the chlorine compound of silicon is supplied from the bottom, and the inside of the reaction vessel 12 is appropriately heated by the heating means 14. If the temperature is reached, a reaction in which the chlorine compound of silicon is reduced by the metal proceeds, and the generated silicon is accommodated in the silicon container 10.
この反応容器 12の構造、構成については移動層(moving bed)粉体反応装置に 関する従来技術を参考にすることができる。  For the structure and configuration of the reaction vessel 12, conventional techniques relating to a moving bed powder reactor can be referred to.
また、加熱装置 14は高周波加熱、ランプ加熱、抵抗加熱等の通常の加熱装置の 中力 適宜選択することができる。  Further, the heating device 14 can be appropriately selected as a medium power of a normal heating device such as high-frequency heating, lamp heating, resistance heating or the like.
[0092] 反応容器内 12内に浮遊手段 13を気体および粒子の運動状態をできるだけ乱さな レ、ような例えばスポーク状のような保持手段 23によって適宜配置することが好ましレ、 。また、この浮遊手段 13は、図 1に示すように、その水平方向の断面積が下から上に 向力うにつれて拡大する漏斗形状を有することが好ましい。このような形状であれば、 シリコンの塩素化合物を、浮遊手段の下部から供給することによって粒子を適切な状 態で浮遊させることができる。このような浮遊手段 13を反応容器 12内に配置すると、 浮遊手段 13の下部から供給される反応気体の線速は、浮遊手段 13の下部付近で は速ぐ上部付近では遅くなる。従って、粒径の大きな粒子は浮遊手段 13の下部付 近で浮遊し、粒径が小さくなるに従ってより上部で浮遊する。従って、たとえ金属の粒 子が粒径分布を有していてもすべての粒子で反応を効率よく進行させることができる  [0092] It is preferable that the floating means 13 is appropriately arranged in the reaction vessel 12 by a holding means 23 such as a spoke-like holding means that disturbs the motion state of gas and particles as much as possible. In addition, as shown in FIG. 1, the floating means 13 preferably has a funnel shape whose horizontal cross-sectional area expands from the bottom to the top. With such a shape, particles can be suspended in an appropriate state by supplying a chlorine compound of silicon from the lower part of the suspension means. When such a floating means 13 is arranged in the reaction vessel 12, the linear velocity of the reaction gas supplied from the lower part of the floating means 13 becomes slower near the upper part, which is faster near the lower part of the floating means 13. Therefore, particles with a large particle size float near the lower part of the floating means 13, and float at a higher part as the particle size decreases. Therefore, even if the metal particles have a particle size distribution, the reaction can proceed efficiently with all particles.
[0093] また、このときの浮遊手段の水平方向の断面積の拡大比率を粒子の粒径分布に対 応して適宜に設定する、より好ましくは浮遊手段の高さ方向(z)に対する半径 (R)の 変化率 (dR/dz)の値を金属粒子の累積重量分布率 (w)の粒径 (r)に対する変化 率(dw/dr)の値に対して一定の対応関係で設定すれば、金属の粒子が粒径分布 を有していても、反応空間内における粒子の体積密度を均等化することができる。 [0093] Further, the expansion ratio of the cross-sectional area in the horizontal direction of the floating means at this time is appropriately set according to the particle size distribution of the particles, more preferably the radius (z) of the floating means with respect to the height direction (z) ( R) If the rate of change (dR / dz) is set in a fixed correspondence to the rate of change (dw / dr) of the cumulative weight distribution rate (w) of the metal particles to the particle size (r), Even if the particles have a particle size distribution, the volume density of the particles in the reaction space can be equalized.
[0094] また、浮遊手段 13には浮遊粒子の一部を適宜溢流させる構造を備えるようにすると よい。例えば図 1に示したように、漏斗形状の浮遊手段 13の円錐状の部分に適宜溢 流孔を設けたり、反応容器 12の内壁と浮遊手段 13の間に隙間を開ける等である。 このような構造のシリコンの製造装置であれば、粒子の一部は溢流孔ゃ隙間から反 応容器 12内を落下してシリコン容器 10に収容されるので連続してシリコンを製造す ること力 Sできる。この装置を用いてシリコンの製造を行うときには前記の還元反応を間 欠的に行う方法を併用してもよい。すなわち、シリコンの塩素化合物供給手段 15から の供給、金属の粒子の供給手段 3からの反応容器への供給を間欠的に行う。  [0094] Further, the floating means 13 may be provided with a structure in which a part of the floating particles is appropriately overflowed. For example, as shown in FIG. 1, an overflow hole is appropriately provided in the conical portion of the funnel-shaped floating means 13, or a gap is formed between the inner wall of the reaction vessel 12 and the floating means 13. In the case of the silicon manufacturing apparatus having such a structure, a part of the particles fall into the reaction container 12 from the overflow holes and the gaps and are stored in the silicon container 10, so that silicon can be continuously manufactured. Power S can be. When silicon is produced using this apparatus, the above-described method of intermittently performing the reduction reaction may be used in combination. That is, the supply of silicon from the chlorine compound supply means 15 and the supply of metal particles from the supply means 3 to the reaction vessel are intermittently performed.
[0095] 反応容器 12、および浮遊手段 13の材料としては、通常の材料から選択できるが、 好ましくはシリコンの汚染を最小限に抑えるために石英、さらに好ましくは純度の高い 合成石英等を用いるか、反応容器 12および浮遊手段 13の少なくとも内壁を石英、ま たは高純度のシリコンとするように設計することが望ましい。この場合、加熱効率の観 点からは透明石英とするのが好適である。  [0095] The reaction vessel 12 and the floating means 13 can be selected from ordinary materials. Preferably, quartz, more preferably synthetic quartz having a high purity, is used to minimize contamination of silicon. It is desirable that at least the inner walls of the reaction vessel 12 and the floating means 13 are designed to be quartz or high-purity silicon. In this case, transparent quartz is preferable from the viewpoint of heating efficiency.
[0096] シリコンの塩素化合物が反応容器 12内に反応空間における温度よりも著しく低い 温度のまま供給されると、反応空間において温度分布が生じる可能性があり、還元反 応の進行の不均等につながる可能性があるので、シリコンの塩素化合物は予め加熱 されていることが好ましい。  [0096] When the chlorine compound of silicon is supplied into the reaction vessel 12 at a temperature that is significantly lower than the temperature in the reaction space, temperature distribution may occur in the reaction space, and the progress of the reduction reaction is uneven. Since there is a possibility of connection, the chlorine compound of silicon is preferably preheated.
また、さらに図 1に示すように、シリコンの塩素化合物を供給する手段 15は、反応容 器内でスパイラル構造の供給管を有するものとしてもよい。このような形状の供給管を もつシリコンの塩素化合物を供給する手段であれば、反応容器に供給されるシリコン の塩素化合物を、反応容器を加熱する手段 14によって予め加熱するものであること とすることができる。このようにすれば、浮遊手段に供給されるシリコンの塩素化合物 の予熱をより効率的に行なうことができる。  Further, as shown in FIG. 1, the means 15 for supplying the silicon chlorinated compound may have a supply pipe having a spiral structure in the reaction vessel. If it is a means for supplying silicon chlorine compound having such a supply pipe, the silicon chlorine compound supplied to the reaction vessel is preheated by means 14 for heating the reaction vessel. be able to. In this way, it is possible to more efficiently preheat the silicon chlorine compound supplied to the floating means.
[0097] また、本発明のシリコンの製造装置では、反応における副生物を捕集する手段 20 を備えることが好ましい。このようにすれば、反応における副生物(アルミニウム塩ィ匕 物等)を有効に回収することができる。また、少なくとも、未反応のシリコンの塩素化合 物を捕集する手段 21または循環使用する手段のいずれか一方を備えることが好まし レ、。それによつて、未反応のシリコンの塩素化合物を回収して再利用するカ または 循環使用することができるので、より低コストでシリコンを製造することができるシリコン の製造装置とすることができる。 In addition, the silicon production apparatus of the present invention preferably includes means 20 for collecting by-products in the reaction. In this way, by-products in the reaction (aluminum salt Etc.) can be collected effectively. In addition, it is preferable to provide at least one of means 21 for collecting unreacted silicon chlorinated compounds 21 and means for recycling. As a result, the chlorine compound of unreacted silicon can be recovered and reused or recycled, so that a silicon production apparatus that can produce silicon at a lower cost can be obtained.
[0098] 未反応のシリコンの塩素化合物や副生する金属塩化物がシリコン受器内部に凝結 することを防止するためにシリコン受器の外部に加熱装置 18を配置する。  [0098] A heating device 18 is disposed outside the silicon receiver in order to prevent unreacted silicon chlorine compounds and by-product metal chlorides from condensing inside the silicon receiver.
また、この加熱装置 18によってシリコン容器 10内の温度をシリコンの融点以上に加 熱すれば、捕集されたシリコンはシリコン容器 10内で溶融される。溶融されたシリコン を下方から上方に向けて徐々に一方向凝固させれば、この冷却の過程でシリコンに 対する偏析係数が 1より小さい不純物は偏析現象によって上方に濃縮されるので、 上部表層部以外のシリコンの部分は純度がその分向上する。  Further, if the temperature in the silicon container 10 is heated to a temperature equal to or higher than the melting point of silicon by the heating device 18, the collected silicon is melted in the silicon container 10. If the molten silicon is gradually solidified in one direction from the bottom to the top, impurities that have a segregation coefficient of less than 1 in the cooling process are concentrated upward due to the segregation phenomenon. The purity of the silicon portion is improved accordingly.
[0099] またシリコン容器 10に、シリコンの塩素化合物を供給する手段 16を備えてもよい。  [0099] The silicon container 10 may be provided with means 16 for supplying a chlorine compound of silicon.
それによつて、シリコン受器内の粒子中に仮に金属が未反応で残っていても、それを 完全に反応させることができる。シリコン容器 10に捕集されたシリコンは、本発明に従 つて、特にアルミニウムの液状粒子によって還元された場合は、ほぼ反応が完結して いる力 金属が未反応で残っている可能性がある。そこで、シリコン容器 10にシリコン の塩素化合物を供給するとともに生成したシリコンを加熱することによってより確実に 反応を完結させることができる。  Thereby, even if the metal remains unreacted in the particles in the silicon receiver, it can be completely reacted. The silicon collected in the silicon container 10 according to the present invention, particularly when it is reduced by liquid particles of aluminum, may leave unreacted force metal that has almost completed the reaction. Therefore, the reaction can be completed more reliably by supplying the silicon chlorine compound to the silicon container 10 and heating the generated silicon.
また、シリコン容器 10に流体の排出口を備えてもよい。  Further, the silicon container 10 may be provided with a fluid outlet.
[0100] なお、図 1のシリコンの製造装置には、反応を的確に安定して実施するために装置 全体を含めて制御するための手段を適宜付加することができる。すなわち、供給され る金属の液状粒子の粒径と量を制御する手段、シリコンの塩素化合物の供給量を制 御する手段、反応容器内の反応空間の温度を制御する手段、反応容器内の圧力を 制御する手段等である。 [0100] In addition, in order to carry out the reaction accurately and stably, means for controlling the entire apparatus can be appropriately added to the silicon manufacturing apparatus of FIG. That is, means for controlling the particle size and amount of the liquid metal particles to be supplied, means for controlling the supply amount of the chlorine compound of silicon, means for controlling the temperature of the reaction space in the reaction vessel, pressure in the reaction vessel It is a means to control.
[0101] 例えば、供給される金属の液状粒子の粒径と量を制御する手段としては、例えば高 周波誘導加熱コイル 35の電力、線状または柱状金属 31の下降速度、ノズル 38から 吐出させるガス流量、あるいは圧力を制御するものとすればよい。シリコンの塩素化 合物の供給量を制御する手段としては、例えば弁 19によって制御することができる。 反応容器内の反応空間の温度を制御する手段としては、加熱手段 14の供給電力を 制御する。また、反応容器内の圧力の制御は圧力計 22等を用いて、公知の技術に よって行なうことができる。 [0101] For example, means for controlling the particle size and amount of the liquid metal particles supplied include, for example, the power of the high-frequency induction heating coil 35, the descending speed of the linear or columnar metal 31, and the gas discharged from the nozzle 38. The flow rate or pressure may be controlled. Chlorination of silicon For example, the valve 19 can control the supply amount of the compound. As a means for controlling the temperature of the reaction space in the reaction vessel, the power supplied to the heating means 14 is controlled. The pressure in the reaction vessel can be controlled by a known technique using the pressure gauge 22 or the like.
[0102] 本発明の装置の他の例を図 2に模式的に示した。図中 5の部分は金属粒子の供給 手段を示す。金属粒子 51はホッパー 52から例えば弁 54、供給用管 53を経て、反応 容器 65の上部において、金属粒子供給口から反応空間 66に所定の供給速度(時 間当たりの体積供給量、または重量供給量)で供給される。ホッパー 52内の粒子は 適宜加熱手段を設けて金属粒子が相互に結合しない範囲でできるだけ高い温度に 予熱される。図 2では外部加熱装置 50を例示するが、ホッパー内部に加熱手段を設 けても良い。金属粒子は供給用管 53を通過する際にも、第二の加熱手段 57によつ て高温に保持される。 [0102] Another example of the apparatus of the present invention is schematically shown in FIG. The part 5 in the figure shows the means for supplying metal particles. The metal particles 51 are supplied from the hopper 52 through, for example, the valve 54 and the supply pipe 53, and at the upper part of the reaction vessel 65, the metal particles 51 are supplied from the metal particle supply port to the reaction space 66 at a predetermined supply rate (volume supply amount or weight supply per time Amount). The particles in the hopper 52 are preheated to a temperature as high as possible within a range in which metal particles are not bonded to each other by appropriately providing heating means. Although FIG. 2 illustrates the external heating device 50, a heating means may be provided inside the hopper. The metal particles are kept at a high temperature by the second heating means 57 even when passing through the supply pipe 53.
[0103] 図中 6の部分は金属粒子とシリコンの塩素化合物を反応させる領域である。反応容 器 65は外部の加熱手段 68によって反応空間 66が所定の反応温度に保持されるよう に、加熱される。金属粒子は反応容器 65内を落下しながらさらに加熱手段 68によつ て加熱昇温され溶融して液状粒子となる。シリコンの塩素化合物は気体状で反応容 器 65下端部のシリコンィ匕合物供給手段 69から所定の重量供給速度(時間当たりの 重量供給量)で供給され、反応容器 65内を上昇流となって通過する間に、落下する 金属粒子と向流状態で接触して金属と反応し、それによつてシリコンの塩素化合物の シリコンへの還元が進行する。未反応のシリコンの塩素化合物と反応の際に副生す るアルミニウム塩化物(主として塩化アルミニウム)等は反応容器上部の排出口 70か ら排出される。排出されたシリコンの塩素化合物とアルミニウム塩ィ匕物の混合気体は 図示しない捕集容器を通して、アルミニウム塩化物を凝縮させて除去したのち、シリコ ンの塩素化合物は再度反応容器に循環使用してもよいし、第二の捕集容器によって 凝縮させて、液状で回収してもよい。  [0103] The portion 6 in the figure is a region where metal particles react with a chlorine compound of silicon. The reaction vessel 65 is heated by an external heating means 68 so that the reaction space 66 is maintained at a predetermined reaction temperature. While falling inside the reaction vessel 65, the metal particles are heated and heated by the heating means 68 and melted into liquid particles. The chlorine compound of silicon is supplied in gaseous form from the silicon compound supply means 69 at the lower end of the reaction vessel 65 at a predetermined weight supply rate (weight supply amount per hour), and flows upward in the reaction vessel 65. While passing, it contacts the falling metal particles in countercurrent and reacts with the metal, which leads to the reduction of silicon to chlorinated compounds. By-products such as aluminum chloride (mainly aluminum chloride) generated during the reaction with unreacted silicon chlorine compounds are discharged from the outlet 70 at the top of the reaction vessel. The discharged gaseous mixture of silicon chloride and aluminum salt is passed through a collection vessel (not shown) to condense and remove the aluminum chloride, and the silicon chlorine compound can be recycled to the reaction vessel again. Alternatively, it may be condensed in a second collection container and recovered in liquid form.
[0104] 反応空間内における粒子の落下速度は主として粒子の径ゃ気体の温度、圧力、密 度、及びそれらによって定まる気体の粘度と気体の上昇流の線速度等によって定まり 、理論的には径の大きい粒子ほど落下速度は速い。使用する金属粒子の粒径はあ る範囲内に分布をしているので、全ての粒子が一様な速度で落下せず、したがって、 粒子の反応空間内での滞留時間はその粒径によって異なり、大きレ、粒子程その滞 留時間は短くなる。したがって、図 2のような径の一様な円筒形の反応容器を使用す る場合には、金属粒子の粒径分布、操業条件における気体の密度や粘度と反応容 器内での線速等を勘案して、反応容器上部の排出口 70から生成シリコンが排出され ない範囲内で、最大径の金属粒子が十分反応するように、反応容器の内径と高さを 最適に設計するのがよい。 [0104] The falling speed of the particles in the reaction space is mainly determined by the diameter of the particles, the temperature, pressure and density of the gas, the viscosity of the gas determined by them, the linear velocity of the upward flow of the gas, etc. The larger the particle size, the faster the falling speed. The particle size of the metal particles used is Therefore, all particles do not fall at a uniform speed, so the residence time of particles in the reaction space depends on the particle size. Time is shortened. Therefore, when using a cylindrical reactor with a uniform diameter as shown in Fig. 2, the particle size distribution of metal particles, gas density and viscosity under operating conditions, linear velocity in the reaction vessel, etc. In consideration of the above, the inner diameter and height of the reaction vessel should be optimally designed so that the metal particles with the largest diameter can sufficiently react within the range where generated silicon is not discharged from the discharge port 70 at the top of the reaction vessel. .
[0105] 反応容器の高さが過大になる場合には、図 2のように反応容器を分割し(図 2では 2 分割を例示してある)、それぞれの反応容器の間に分級器 74を設置し、細粒と粗粒 とに分級する。細粒は細粒排出口 72から取り出し図示しない細粒捕集器内に捕集 する。粗粒は例えば弁 75、粗粒供給管 73を経て第二の反応容器 85に供給しさらに シリコンの塩素化合物と反応させる。第二の反応容器には第一の反応容器と同様に シリコンの塩素化合物供給手段 89よりシリコンの塩素化合物が気体状で供給され、 外部の加熱手段 88によって反応空間 86が所定の温度になるように調節制御される 。第二の反応容器の径と高さは粗粒がガス排出口 80から排出されない範囲内で第 一の反応容器と同様の手続きで設定される。反応後のシリコンの粗粒 95は捕集容器 94に収容される。なお、図 2では分級器としてサイクロン形式の分級器を例示したが 、その他の分級器を使用してもよい。また、第二の反応容器 85の径は、粗粒の沈降 速度を遅くするためにシリコンの塩素化合物の線速度を高めることを目的として第一 の反応容器 65よりも小さくする。  [0105] When the height of the reaction vessel becomes excessive, the reaction vessel is divided as shown in Fig. 2 (two divisions are illustrated in Fig. 2), and a classifier 74 is placed between each reaction vessel. Install and classify into fine and coarse particles. Fine particles are taken out from the fine particle outlet 72 and collected in a fine particle collector (not shown). The coarse particles are supplied to the second reaction vessel 85 through the valve 75 and the coarse particle supply pipe 73, for example, and further reacted with the silicon chlorine compound. Similarly to the first reaction vessel, silicon chlorine compound is supplied in gaseous form from the silicon chlorine compound supply means 89 to the second reaction vessel, and the reaction space 86 is brought to a predetermined temperature by the external heating means 88. Adjusted to control. The diameter and height of the second reaction vessel are set by the same procedure as that for the first reaction vessel as long as coarse particles are not discharged from the gas outlet 80. The coarse silicon particles 95 after the reaction are accommodated in a collection container 94. In FIG. 2, a cyclone type classifier is illustrated as a classifier, but other classifiers may be used. The diameter of the second reaction vessel 85 is made smaller than that of the first reaction vessel 65 for the purpose of increasing the linear velocity of the chlorine compound of silicon in order to reduce the sedimentation rate of the coarse particles.
[0106] 例えば上記図 1あるいは図 2に示すシリコンの製造装置を用いることで、本発明の シリコンの製造方法、すなわち、シリコンの塩素化合物を還元することによってシリコ ンを製造する方法であって、少なくとも、金属を液状粒子とし、該金属の液状粒子を 気体状のシリコンの塩素化合物と接触させ、該シリコンの塩素化合物を還元すること によってシリコンを生成することを特徴とするシリコンの製造方法を実施することがで きる。以下に、その一例を示す。  [0106] For example, by using the silicon manufacturing apparatus shown in Fig. 1 or Fig. 2, the silicon manufacturing method of the present invention, that is, a method of manufacturing silicon by reducing a chlorine compound of silicon, At least, a silicon production method is characterized in that silicon is produced by forming metal by making the metal liquid particles, bringing the metal liquid particles into contact with gaseous silicon chlorine compound, and reducing the silicon chlorine compound. can do. An example is shown below.
[0107] 一般に金属に限らず粉体は粒径分布を有している。このように粒径が一定せずに 分布を有していると、還元反応の進行状況が個々の金属の液状粒子によって異なり 、一部は反応が完結しないままとなることがあり得る。つまり、生成したシリコンに高濃 度の金属が残留したままとなり、品質が低下する。 [0107] In general, powders, not limited to metals, have a particle size distribution. In this way, if the particle size is not constant and distributed, the progress of the reduction reaction varies depending on the liquid particles of each metal. , Some can leave the reaction incomplete. In other words, the high-concentration metal remains in the generated silicon, and the quality deteriorates.
そのため、本発明においては、図 1のように前記浮遊手段 13等を用いて粒子を浮 遊状態に保ちつつ、還元することが好ましい。それによつて、粒子の粒径が一定せず に分布を有していても、還元反応を有効に進行させることができる。しかも、浮遊状態 であれば、気体状のシリコンの塩素化合物との接触が促進し、反応をいつそう効率的 に進行させること力 Sできる。あるいはまた、図 2のように反応塔を複数段に分割する方 法によって行なってもよい。  Therefore, in the present invention, it is preferable to reduce the particles while maintaining the floating state using the floating means 13 or the like as shown in FIG. As a result, the reduction reaction can proceed effectively even if the particle size of the particles is not constant and has a distribution. Moreover, in the floating state, the contact of gaseous silicon with the chlorinated compound is promoted, and it is possible to accelerate the reaction so efficiently. Alternatively, the reaction tower may be divided into a plurality of stages as shown in FIG.
[0108] 本発明において使用するシリコンの塩素化合物は主に四塩ィ匕珪素とすることができ る。本発明において使用するシリコンの塩素化合物は、例えば、珪石に炭素と塩素を 反応させて一段階で製造する方法等を用いて、珪石から直接シリコンの塩素化合物 を合成し、蒸留等の方法で精製したものを用いることができる。この方法で得られた シリコンの塩素化合物は主成分が四塩ィ匕珪素となる。このように珪石から一段階で製 造されたシリコンの塩素化合物を金属によって還元してシリコンを製造するシリコンの 製造方法であれば、従来のトリクロロシランの熱分解法によるシリコンの製造方法より も工程が少ないシリコンの製造方法とすることができる。珪石から一段階で直接シリコ ンの塩素化合物(主に四塩化珪素)を合成するには、例えばドイツ特許第 1079015 号公報、あるいは英国特許第 865939号公報に開示されているような公知の技術を 適宜活用してもよぐまたシリコンの塩素化合物(主に四塩化珪素)の蒸留には同じく 公知である半導体シリコン製造用のトリクロロシランの蒸留精製技術を応用することが できる。 [0108] The chlorine compound of silicon used in the present invention can be mainly tetrasalt-silicon. The silicon chlorine compound used in the present invention is synthesized by directly synthesizing a silicon chlorine compound from silica using, for example, a method in which silica and carbon are reacted in one step with silica and purified by a method such as distillation. Can be used. The main component of the silicon chlorinated compound obtained by this method is tetrasaltary silicon. In this way, the silicon production method that produces silicon by reducing the chlorine compound of silicon produced in one step from quartzite with metal is more effective than the conventional method for producing silicon by pyrolysis of trichlorosilane. It can be set as the manufacturing method of silicon with few. In order to synthesize silicon chlorine compounds (mainly silicon tetrachloride) directly from silica stone in one step, a known technique such as disclosed in German Patent No. 1079015 or British Patent No. 865939 is used. It can be used as appropriate. In addition, a well-known distillation purification technique for trichlorosilane for producing semiconductor silicon can be applied to the distillation of chlorine compounds of silicon (mainly silicon tetrachloride).
また、本発明の方法ではトリクロロシランから半導体用シリコンを製造する際に副生 する四塩ィ匕珪素をも活用することができる。  Further, in the method of the present invention, tetrasalt silicon silicon produced as a by-product when producing silicon for semiconductor from trichlorosilane can also be utilized.
[0109] 本発明において使用する金属は、原理的には塩素一原子当たりの生成自由エネ ルギ一の値がシリコンの塩素化合物の相当生成自由エネルギーの値より低ぐかつ その融点がシリコンの融点より低い金属を用いることができる。また、さらに、シリコン 中の溶解度が低ぐまた生成する金属の塩ィヒ物を容易にシリコンから分離できる金属 であることが好ましい。このような金属であれば、シリコンに残留しても容易に取り除け る。また、さらに、比較的安価に商業的に入手しうる金属であることが望ましい。このよ うな金属として、例えばアルミニウム、亜鉛が挙げられる。これらの金属を用いた場合 の 700°C (973° K)力ら 1200°C (1473° K)の温度範囲における反応の自由エネ ルギ一変化の値(A F)と反応の平衡定数 (K )の値は表 1 (亜鉛は 1気圧、 1000°C [0109] In principle, the metal used in the present invention has a value of free energy of formation per chlorine atom lower than the value of free free energy of formation of chlorine compound of silicon and its melting point is higher than that of silicon. Low metals can be used. Further, it is preferable that the metal has a low solubility in silicon and can easily separate a generated metal salt from silicon. Such metals can be easily removed even if they remain in silicon. The Furthermore, it is desirable that the metal be commercially available at a relatively low cost. Examples of such a metal include aluminum and zinc. When these metals are used, the free energy change value (AF) of the reaction and the equilibrium constant (K) of the reaction in the temperature range of 1200 ° C (1473 ° K) from 700 ° C (973 ° K) force Table 1 (Zinc is 1 atm, 1000 ° C
P  P
以上では気体であるので 1000°C以上の温度における値は記載していなレ、)の如く で、シリコンの塩素化合物の還元は進行しやすぐ特にアルミニウムを用いることが好 ましい。  Since the above is a gas, the value at a temperature of 1000 ° C. or higher is not shown), and the reduction of the chlorine compound of silicon proceeds immediately, and it is particularly preferable to use aluminum.
また、アルミニウムは、 99. 99%以上の純度の素材が柱状のビレットとして比較的 安価に入手できるという点でも有用である。  Aluminum is also useful in that a material with a purity of 99.99% or more can be obtained as a columnar billet at a relatively low cost.
[表 1]  [table 1]
Figure imgf000021_0001
Figure imgf000021_0001
[0111] 本発明によるシリコンの製造方法では、前述のように、ノズル 38からの供給ガス流 量や圧力、金属流 37を調整することによって金属の液状粒子の粒径を 20〜200 μ mとなるように制御することが好ましい。金属の液状粒子の粒径が 20 z mよりも小さい と還元反応後に生成するシリコン粒子の粒径が小さくなりすぎる。生成したシリコン粒 子の粒径が小さすぎると、その取り扱いに特別の配慮を要するうえ、表面積が大きく なることにより不純物などを吸着しやすくなり、品質が低下しやすい。一方、金属の液 状粒子の粒径が 200 μ mよりも大きいと、金属粒子全体がシリコンの塩素化合物と反 応し終わるまでの時間がより長くなり、あるはまた粒子を浮遊させるために過大なる気 体の線速を必要とするので、反応を適正に進めるにはかならずしも好適ではない。 [0111] In the method for producing silicon according to the present invention, as described above, by adjusting the flow rate and pressure of the gas supplied from the nozzle 38 and the metal flow 37, the particle size of the liquid metal particles is set to 20 to 200 µm. It is preferable to control so that it becomes. If the particle size of the metal liquid particles is smaller than 20 zm, the particle size of the silicon particles produced after the reduction reaction becomes too small. If the particle size of the generated silicon particles is too small, special handling is required, and the surface area is increased, so that impurities and the like are easily adsorbed and the quality is likely to deteriorate. On the other hand, if the particle size of the metal liquid particles is larger than 200 μm, it takes longer for the entire metal particle to finish reacting with the chlorine compound of silicon, or it is excessive to float the particle. Therefore, it is not always suitable for the reaction to proceed properly.
[0112] 金属を液状とするためにはその金属の融点以上に加熱することが必要であり、加熱 手段 14を用いて反応空間の温度もこの融点より少なくとも 100°C以上高くするのが 望ましい。金属は液状の粒子の形で反応空間に供給されるので、反応は比較的速 やかに進行する。金属粒子は反応によってシリコンに変換される。この変換を速め、 かつシリコン中に残留する還元用の金属、あるいはその金属中の不純物成分をより 少なくするためには、反応空間の温度を 800°C以上とすると良レ、。ただし、亜鉛はそ の液体の沸点が 1気圧のもとでは、 998°Cであるので、反応空間の気圧の値におけ る沸点より低い温度を反応温度として設定する必要がある。気体状の亜鉛とシリコン の塩素化合物との反応によって生成するシリコンは極めて微細であるので、その後の 取扱レ、等を勘案すると必ずしも望ましレ、性状とは言えなレ、。 [0112] In order to make a metal into a liquid state, it is necessary to heat it to a melting point or higher of the metal, and it is desirable that the temperature of the reaction space should be at least 100 ° C higher than the melting point by using the heating means 14. Since the metal is supplied to the reaction space in the form of liquid particles, the reaction is relatively fast. Proceeds quickly. Metal particles are converted to silicon by reaction. In order to speed up this conversion and reduce the metal for reduction remaining in the silicon or the impurity component in the metal, it is better to set the reaction space temperature to 800 ° C or higher. However, since the boiling point of the liquid is 998 ° C under the pressure of 1 atm, it is necessary to set the temperature lower than the boiling point in the pressure value of the reaction space as the reaction temperature. Silicon produced by the reaction between gaseous zinc and silicon chlorinated compounds is extremely fine, so it is not always desirable to take into account subsequent handling, etc.
[0113] 還元反応を行なう際の気相の圧力は大気圧、好ましくは 1気圧に調節、制御するの がよいが、必ずしもそれに限定される必要はなレ、。 1気圧より高い圧力、例えば 1から 10気圧に設定してもよい。それによつてより小さい反応空間内で反応を行なうことが できるので、装置の生産性を高めることができる。  [0113] The pressure of the gas phase during the reduction reaction should be adjusted and controlled to atmospheric pressure, preferably 1 atmospheric pressure, but is not necessarily limited thereto. It may be set to a pressure higher than 1 atm, for example 1 to 10 atm. As a result, the reaction can be carried out in a smaller reaction space, so that the productivity of the apparatus can be increased.
[0114] 金属の液状粒子とシリコンの塩素化合物を反応させた場合に、還元反応により生成 したシリコンが反応空間にとどまり続けることを防止するために、金属の液状粒子の供 給およびシリコンの塩素化合物の供給を間欠的に行い、金属の液状粒子とシリコン の塩素化合物の接触を間欠的に行ってもよい。  [0114] In order to prevent the silicon produced by the reduction reaction from remaining in the reaction space when the metal liquid particles react with the silicon chlorine compound, the supply of the metal liquid particles and the silicon chlorine compound are prevented. May be intermittently performed to contact the liquid metal particles with the chlorine compound of silicon intermittently.
[0115] 金属を粒子化する方法は、例えば次のような方法を採用できる。すなわち、図 1に 示したように線状または柱状金属の中心軸を鉛直方向に向け、該線状または柱状金 属の下端部位を高周波誘導加熱コイル 35で加熱溶融して液状の金属として流下さ せ、該流下する液状の金属にノズル 38から流体を吹き付けて金属の液状粒子とする ことによって行う方法である。このような方法によれば、従来の粉末冶金等に用いられ る金属粒子製造方法におけるように、金属溶湯を保持する容器を使用しないので、 非接触で金属の液状粒子を形成でき、その容器材料力もの汚染を防止することがで きるので、生成するシリコンへの汚染も少なくすることができる。  [0115] For example, the following method can be employed as a method for forming metal into particles. That is, as shown in FIG. 1, the central axis of the linear or columnar metal is oriented vertically, and the lower end portion of the linear or columnar metal is heated and melted by the high frequency induction heating coil 35 to flow down as a liquid metal. In this method, a fluid is sprayed from the nozzle 38 onto the flowing liquid metal to form liquid metal particles. According to such a method, as in the conventional metal particle production method used for powder metallurgy and the like, since a container for holding a molten metal is not used, liquid metal particles can be formed in a non-contact manner. Since powerful contamination can be prevented, contamination of the silicon produced can be reduced.
[0116] また、本発明では、前述のように金属の溶融を高周波加熱によって行うのが好まし レ、。高周波加熱を用いることによって、金属の表層部を有効に加熱溶融することがで き、かつ、溶融状態の制御を効率的に実施することができる上に、非接触であるので 汚染も少ない。  [0116] In the present invention, it is preferable that the metal is melted by high-frequency heating as described above. By using high-frequency heating, the surface layer of the metal can be effectively heated and melted, the control of the molten state can be carried out efficiently, and since it is non-contact, there is little contamination.
[0117] この場合、線状ないしは柱状金属をその中心軸の周りに回転させるのが好ましい。 すなわち、既に述べたように、保持具 32を回転させることによって線状ないしは柱状 金属をその中心軸の周りに回転させ、線状ないしは柱状金属の外周表層における金 属の溶融液化を外周にわたって均等化することができるので液状金属の流下量の調 節、制御が容易となる。 [0117] In this case, it is preferable to rotate the linear or columnar metal around its central axis. That is, as described above, by rotating the holder 32, the linear or columnar metal is rotated around its central axis, and the molten metal liquefaction on the outer surface layer of the linear or columnar metal is equalized over the outer periphery. This makes it easy to adjust and control the flow rate of the liquid metal.
また、線状ないしは柱状金属を回転させる際には、金属の真直度の程度によるが、 大なり小なり中心軸が完全に静止するように回転させることは実際には困難となるの で、線状ないしは柱状金属の中心軸の回転中心軸に対するずれ (レ、わゆる芯ぶれ) を最小にするための調整手段を具備することが好ましい。これによつて、液状金属の 粒子化をより安定化させることができる。  In addition, when rotating a linear or columnar metal, depending on the degree of straightness of the metal, it is actually difficult to rotate so that the central axis is completely more or less stationary. It is preferable to provide an adjusting means for minimizing the deviation (regularity, loose runout) of the center axis of the columnar metal or the columnar metal with respect to the rotation center axis. This makes it possible to further stabilize the formation of liquid metal particles.
[0118] このとき、流下する液状金属流 37に向けてノズル 38から吹き付ける流体は気体、 好ましくは水素、ヘリウム、またはアルゴン、あるいははそれらの混合気体を用いる。 これらの気体は生成するシリコンの品質に対しても無害である。  [0118] At this time, the fluid sprayed from the nozzle 38 toward the liquid metal stream 37 that flows down is a gas, preferably hydrogen, helium, argon, or a mixed gas thereof. These gases are also harmless to the quality of the silicon produced.
また、吹き付ける流体の少なくとも一部を気体のシリコンの塩素化合物(主に四塩ィ匕 珪素)とすることもできる。吹き付ける流体がシリコンの塩素化合物であれば、反応を 促進することも期待できる。  Further, at least a part of the fluid to be sprayed may be gaseous silicon chlorine compound (mainly tetrasalt-silicon). If the fluid to be sprayed is a chlorine compound of silicon, it can be expected to accelerate the reaction.
[0119] 金属を液状粒子とする方法は、他の方法であってもよい。すなわち、予め公知の技 術によって金属を粒子状とし、それをホッパー等の粉体供給手段からシリコン製造装 置内に供給して溶融し、液状金属粒子として反応させる方法等でもよい。  [0119] The method of converting the metal into liquid particles may be other methods. That is, a method may be used in which a metal is made into particles by a known technique in advance, supplied from a powder supply means such as a hopper into the silicon manufacturing apparatus, melted, and reacted as liquid metal particles.
[0120] 本発明により、前記のいずれかのシリコンの製造装置を用いて金属の液状粒子とシ リコンの塩素化合物を反応させてシリコンを製造すれば、従来のシリコンの製造方法 よりも工程数が減り、より低コストでシリコンを製造することができる。  [0120] According to the present invention, if silicon is produced by reacting liquid metal particles with a chlorine compound of silicon using any one of the above-described silicon production apparatuses, the number of steps can be increased as compared with the conventional silicon production method. Silicon can be manufactured at a lower cost.
[0121] また、このようなシリコンの製造方法において金属の液状粒子とシリコンの塩素化合 物を反応させた場合に、還元反応により生成したシリコンが反応空間にとどまり続け ることを防止するために、反応容器への金属の液状粒子の供給およびシリコンの塩 素化合物の供給を間欠的に行レ、、金属の液状粒子とシリコンの塩素化合物の反応を 間欠的に行ってもよい。 [0121] In addition, in order to prevent silicon generated by the reduction reaction from remaining in the reaction space when liquid metal particles and a silicon chlorinated compound are reacted in such a silicon production method, The supply of the metal liquid particles and the supply of the silicon chloro compound to the reaction vessel may be intermittently performed, and the reaction of the metal liquid particles and the silicon chlorine compound may be performed intermittently.
[0122] また、本発明のシリコンの製造装置は、以下のような構成としてもよい。 In addition, the silicon manufacturing apparatus of the present invention may be configured as follows.
本発明の装置のさらに他の例を図 3に模式的に示す。 予め作成した高純度のアルミニウム等の金属粒子を、アルゴンガス等の不活性ガス を充填したホッパ 111内に収納する。鉛直に設置した円筒形状の反応管 112を外部 の加熱装置 113で内部の温度が所定の反応温度になるように加熱する。蒸留精製し た四塩化珪素を所定の温度に予熱してガス供給口 114から供給する。ホッパ 111か ら金属粒子を例えば弁 118、供給管 115を経て、反応管 112の上部に落下させる。 生成したシリコンは反応管 112の下端に連結した受器 116に収容される。受器 116 は未反応の四塩ィ匕珪素および副生する塩ィ匕アルミニウムが凝結しないように加熱す る。未反応の四塩化珪素および副生する塩化アルミニウムは反応管 112の上端部に 設けたガス排出口 117から排出し、図示しないコンデンサで捕集される。 Still another example of the apparatus of the present invention is schematically shown in FIG. Metal particles such as high-purity aluminum prepared in advance are stored in a hopper 111 filled with an inert gas such as argon gas. A cylindrical reaction tube 112 installed vertically is heated by an external heating device 113 so that the internal temperature becomes a predetermined reaction temperature. Distilled and purified silicon tetrachloride is preheated to a predetermined temperature and supplied from the gas supply port 114. Metal particles are dropped from the hopper 111 to the upper part of the reaction tube 112 through, for example, the valve 118 and the supply tube 115. The generated silicon is accommodated in a receiver 116 connected to the lower end of the reaction tube 112. The receiver 116 is heated so that unreacted tetrasalt silicon and by-product salt aluminium do not condense. Unreacted silicon tetrachloride and by-product aluminum chloride are discharged from a gas discharge port 117 provided at the upper end of the reaction tube 112 and collected by a capacitor (not shown).
[0123] 本発明の装置のさらに他の例を図 4に模式的に示す。  [0123] Still another example of the apparatus of the present invention is schematically shown in FIG.
装置の金属粒子製造部分 7はアルミニウム等の原料金属を保持、駆動する保持- 駆動手段 121、金属を保持状態で収容する外套容器 122、高周波加熱用コイル部 1 23、および噴霧用ノズル部 124から構成される。還元用金属として線状または柱状 金属 125を用意し、その上端の外周にねじ加工を施し、雌ねじ部分を設けること等に よって例えばセラミック製の断熱保持具 126に螺合させ、この保持具を介して回転上 下自在の駆動軸 127に結合する。  The metal particle production part 7 of the apparatus is a holding / driving means 121 for holding and driving a raw metal such as aluminum, an outer container 122 for holding the metal in a holding state, a high-frequency heating coil part 123, and a spraying nozzle part 124. Composed. A linear or columnar metal 125 is prepared as a reducing metal, threaded on the outer periphery of the upper end thereof, and provided with a female thread portion, etc., and screwed into a heat insulating holder 126 made of ceramic, for example, through this holder. It is coupled to a drive shaft 127 that can rotate up and down freely.
[0124] 外套容器 122は例えばステンレス製の円筒状で、水冷外套付きとすることができる 。上端外周にはフランジを備え、回転上下機構と気密状に結合する。線状または柱 状金属 125を回転による芯振れが小さくなるようにセットした後外套容器の下端に高 周波加熱用コイル部 123、さらにその下に噴霧用ノズノレ部 124を、それぞれの中心 軸が線状または柱状金属の回転中心と一致するように調整して気密状に結合する。 噴霧用ノズル 128は噴出流体が線状または柱状金属の回転軸となす挟角を適切に 設定することが好ましい。  [0124] The mantle container 122 is, for example, a stainless steel cylinder and can be provided with a water-cooled mantle. A flange is provided on the outer periphery of the upper end, and it is coupled to the rotary vertical mechanism in an airtight manner. After setting the linear or columnar metal 125 so that the runout due to rotation is reduced, the high-frequency heating coil part 123 is placed at the lower end of the outer container, and the spray nodule part 124 is placed therebelow. It adjusts so that it may correspond to the rotation center of a metal or columnar metal, and it couples in an airtight manner. It is preferable that the spray nozzle 128 appropriately set the included angle between the jet fluid and the rotation axis of the linear or columnar metal.
噴霧用ノズノレ部 124の下端は例えばステンレス製の円筒部 129に結合され、さらに その下に、逆円錐形の例えば石英製の金属粒子容器 130に結合される。金属粒子 容器 130の下端は金属粒子供給弁 131を介して例えば石英製の金属粒子供給管 1 32に繋がっている。金属粒子供給管 132の外側には金属粒子加熱装置 133が設け られ、金属粒子供給管 132内の温度を所定の温度に加熱する。ステンレス製円筒部 129の上部には噴霧用ガス排出管 143を設ける。 The lower end of the spray nozzle portion 124 is coupled to a cylindrical portion 129 made of, for example, stainless steel, and further coupled to a metal particle container 130 made of, for example, quartz having an inverted conical shape. The lower end of the metal particle container 130 is connected to a metal particle supply pipe 1 32 made of, for example, quartz via a metal particle supply valve 131. A metal particle heating device 133 is provided outside the metal particle supply pipe 132 to heat the temperature inside the metal particle supply pipe 132 to a predetermined temperature. Stainless steel cylinder An atomizing gas discharge pipe 143 is provided at the upper part of 129.
[0125] 反応部 8は、例えば透明石英製の反応容器 134内に例えば透明石英製の漏斗状 の浮遊塔 135をその中心軸が反応容器中心軸に合致するように設置することができ る。 [0125] The reaction unit 8 can be installed, for example, in a transparent quartz reaction vessel 134 with a funnel-shaped floating tower 135 made of, for example, transparent quartz so that the central axis thereof coincides with the central axis of the reaction vessel.
浮遊塔 135の円錐形状の寸法(高さと各部の内径)は、以下のように設定することが できる。  The conical dimensions (height and inner diameter of each part) of the floating tower 135 can be set as follows.
すなわち、四塩化珪素の時間当たりの供給量を例えば金属粒子の反応容器への 時間当たりの重量供給量に対する理論反応当量の 1. 5〜5倍量とし、金属粒子製造 部分で生成される粒子を球形と仮定した粒子の粒径分布と、反応温度(例えば 1000 °C)、反応圧力(例えば 1気圧)における四塩ィ匕珪素の密度と粘度の推算値を用いて 、粒子が反応条件における四塩ィ匕珪素の上昇流中に浮遊する流速を算出し、粒子 の浮遊密度(反応空間における流体単位体積中にぉレ、て粒子が占める割合)を所定 の割合以下になるように設定する。  That is, the supply amount of silicon tetrachloride per hour is, for example, 1.5 to 5 times the theoretical reaction equivalent to the supply amount of metal particles to the reaction vessel per hour, and the particles produced in the metal particle production part are Using the particle size distribution assumed to be spherical and the estimated values of the density and viscosity of tetrasalt-silicon at the reaction temperature (eg 1000 ° C) and reaction pressure (eg 1 atm), Calculate the flow velocity floating in the upward flow of salt and silicon, and set the particle floating density (the ratio of particles in the unit volume of the fluid in the reaction space) to a predetermined ratio or less.
[0126] 浮遊塔 135の下端は、例えば石英製の四塩ィ匕珪素ガス加熱上昇管 136に連なつ ている。反応容器 134の外側には反応容器加熱装置 137が設置され浮遊塔内部を 所定の温度に加熱する。  [0126] The lower end of the floating tower 135 is connected to, for example, a quartz tetrasilicate silicon gas heating riser pipe 136 made of quartz. A reaction vessel heating device 137 is installed outside the reaction vessel 134 to heat the inside of the floating tower to a predetermined temperature.
[0127] 反応部 8の下は生成物捕集部 9に連なっている。捕集部 9は捕集部容器 138、受器 139、および捕集部容器加熱装置 140で構成される。捕集部容器 138と受器 139は 副生する金属の塩化物、未反応の四塩化珪素が凝結しないように加熱装置によって 加熱する。  [0127] Under the reaction section 8, the product collection section 9 is connected. The collection unit 9 includes a collection unit container 138, a receiver 139, and a collection unit container heating device 140. The collector container 138 and the receiver 139 are heated by a heating device so that metal chlorides and unreacted silicon tetrachloride as by-products do not condense.
[0128] 四塩化珪素は図示しない蒸発器から予熱器を経て予熱してから四塩化珪素供給 管 141から圧力を調整して受器の上部に導入される。  Silicon tetrachloride is preheated from an evaporator (not shown) through a preheater, and then introduced into the upper portion of the receiver by adjusting the pressure from the silicon tetrachloride supply pipe 141.
未反応の四塩ィ匕珪素と塩ィ匕アルミニウムは上部ジョイントに設けた反応ガス排出口 142から排出され、図示しないコンデンサによって副生した金属の塩化物を凝縮、除 去したのち、さらに四塩化珪素用コンデンサで未反応の四塩化珪素を液化、回収す ることが好ましい。  Unreacted tetrasilicon-silicon and salt-aluminum are discharged from the reaction gas outlet 142 provided in the upper joint, and after condensation and removal of metal chloride by-produced by a capacitor not shown, tetrachloride is further added. It is preferable to liquefy and recover unreacted silicon tetrachloride with a silicon capacitor.
[0129] 逆円錐形状の高周波誘導コイルを用い、金属を所定の割合で溶融流下させ、高純 度の水素、ヘリウム、アルゴン等やそれらの混合物などの不活性ガスを噴霧用ガスと して用いて金属を粒状化させる。粒状化された金属粒子は石英製の金属粒子容器 1 30内に貯留され、弁 131を通して所定の割合で反応容器 134内の浮遊塔 135上部 に供給される。 [0129] Using an inverted conical high-frequency induction coil, the metal is melted down at a predetermined rate, and an inert gas such as high-purity hydrogen, helium, argon, or a mixture thereof is used as the atomizing gas. And used to granulate the metal. The granulated metal particles are stored in a quartz metal particle container 130 and supplied to the upper portion of the floating tower 135 in the reaction container 134 through a valve 131 at a predetermined rate.
[0130] 以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの記載 によって限定されるものではない。 [0130] Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these descriptions.
(実施例 1)  (Example 1)
図 3に模式的に構成を示した装置を用いてシリコンの製造を行なった。 予め作成した純度約 99. 995%のァノレミニゥムの粒径 20 μ m力ら 60 μ mの球状粒 子をアルゴンガスを充填したホッパ 111内に収納した。鉛直に設置した石英製の内 径約 120mm、高さ約 1800mmの円筒形状の反応管 112を外部の加熱装置 113で 内部の温度が 1000 ± 20°Cになるように加熱した。蒸留精製した四塩化珪素を約 40 0°Cに予熱してガス供給口 114から約 560g/hrの割合で供給した。ホッパ 111から 約 400°Cに加熱した金属粒子供給管 115を経て、反応管 112の上部に約 60g/hr の割合で落下させた。生成したシリコンは反応管 112の下端に連結した受器 116に 収容した。受器 116は未反応の四塩化珪素および副生する塩化アルミニウムが凝結 しないように約 700°Cに保温した。未反応の四塩化珪素および副生する塩化アルミ 二ゥムは反応管 112の上端部に設けたガス排出口 117から排出し、図示しないコン デンサで捕集した。受器 116内の生成物を塩ィ匕水素酸で処理してシリコンを得た。 およそ 2時間の反応の結果、約 85gのシリコンを得た。  Silicon was manufactured using the apparatus schematically shown in FIG. Spherical particles having a particle size of 20 μm and a particle size of 60 μm having an purity of about 99.995% purity prepared in advance were stored in a hopper 111 filled with argon gas. A vertically installed quartz reaction tube 112 made of quartz having an inner diameter of about 120 mm and a height of about 1800 mm was heated by an external heating device 113 so that the internal temperature became 1000 ± 20 ° C. Distilled and purified silicon tetrachloride was preheated to about 400 ° C. and supplied from the gas supply port 114 at a rate of about 560 g / hr. The sample was dropped from the hopper 111 through the metal particle supply pipe 115 heated to about 400 ° C. onto the upper part of the reaction pipe 112 at a rate of about 60 g / hr. The generated silicon was accommodated in a receiver 116 connected to the lower end of the reaction tube 112. The receiver 116 was kept at about 700 ° C. so that unreacted silicon tetrachloride and by-product aluminum chloride did not condense. Unreacted silicon tetrachloride and by-product aluminum chloride were discharged from a gas discharge port 117 provided at the upper end of the reaction tube 112 and collected by a capacitor (not shown). The product in the receiver 116 was treated with hydrochloric acid to obtain silicon. As a result of the reaction for about 2 hours, about 85 g of silicon was obtained.
[0131] (実施例 2) [0131] (Example 2)
実施例 1で用いた装置でアルミニウム球状粒子として粒径 60 μ m力 85 μ m、四 塩化珪素の供給量を約 6. 4kg/hr、アルミニウムの供給量を約 670g/hrとした以 外は実施例 1と同じ条件で反応を行い約 900gのシリコンを得た。  Except for the spherical aluminum particles used in Example 1, the particle size of 60 μm, the force of 85 μm, the supply rate of silicon tetrachloride was about 6.4 kg / hr, and the supply rate of aluminum was about 670 g / hr. Reaction was performed under the same conditions as in Example 1 to obtain about 900 g of silicon.
[0132] (実施例 3) [0132] (Example 3)
図 4に模式的に構成を示した装置を用いて四塩ィ匕珪素の粒状アルミニウムによる還 元を行なった。 Fig. 4 shows how the tetrasaltum silicon is returned with granular aluminum using the apparatus schematically shown. I did the original.
還元用金属として径が約 40mm、長さ約 450mm、真直度 lmm以内に加工した純 度約 99. 995%のアルミニウムビレット 125を用意した。その上端約 50mmの外周に ねじ加工を施し、雌ねじ部分を設けたアルミナセラミック製の断熱保持具 126に螺合 させ、この保持具を介して回転上下自在の駆動軸 127に結合した。  As a reducing metal, we prepared aluminum billet 125 with a diameter of about 40mm, a length of about 450mm, and a purity of about 99.995% processed within a straightness of lmm. The outer periphery of the upper end of about 50 mm was threaded, screwed into an alumina ceramic heat insulating holder 126 provided with a female thread portion, and connected to a rotatable drive shaft 127 via this holder.
[0133] 外套容器 122はステンレス製の内径約 160mm、高さ約 500mmの円筒状で、水冷 外套付きとした。アルミニウムビレット 125を回転による芯振れが lmm以内になるよう にセットした後、外套容器の下端に高周波加熱用コイル部 123、さらにその下に噴霧 用ノズノレ部 124を、それぞれの中心軸がアルミニウムビレットの回転中心と一致する ように調整して気密状に組み付けた。噴霧用ノズル 128は噴出流体がアルミニウムビ レットの回転軸となす挟角を約 45° となるように設定した。  [0133] The mantle container 122 was a stainless steel cylindrical shape having an inner diameter of about 160 mm and a height of about 500 mm, and was equipped with a water-cooled mantle. After setting the aluminum billet 125 so that the runout due to rotation is within lmm, the coil portion 123 for high-frequency heating is placed at the lower end of the outer casing, and the nozzle portion 124 for spraying is placed below it. It was adjusted to match the center of rotation and assembled in an airtight manner. The spray nozzle 128 was set so that the included angle between the ejected fluid and the rotation axis of the aluminum billet was about 45 °.
[0134] 円筒部 129は内径約 400mm、高さ約 600mmのステンレス製とし、さらにその下に 、高さ約 460mmの逆円錐形の石英製金属粒子容器 130を結合した。金属粒子容 器 130の下端は金属粒子供給弁 131を介して内径約 20mm、高さ約 1000mmの石 英製金属粒子供給管 132に繋がる。金属粒子供給管 132の外側には金属粒子加熱 装置 133が設けられ、金属粒子供給管 132内の温度を約 600°Cに加熱した。  [0134] The cylindrical portion 129 was made of stainless steel having an inner diameter of about 400 mm and a height of about 600 mm, and an inverted conical quartz metal particle container 130 having a height of about 460 mm was coupled thereto. The lower end of the metal particle container 130 is connected through a metal particle supply valve 131 to a stone particle supply pipe 132 made of stone and having an inner diameter of about 20 mm and a height of about 1000 mm. A metal particle heating device 133 is provided outside the metal particle supply pipe 132, and the temperature inside the metal particle supply pipe 132 is heated to about 600 ° C.
反応部 8は内径約 300mm、高さ約 1200mmの透明石英製反応容器 134内に透 明石英製の漏斗状の浮遊塔 135をその中心軸が反応容器中心軸に合致するように 設置した。浮遊塔 135の上端の内径は約 200mm、下部の内径約 15mmとし、高さ を約 800mmとした。  In the reaction section 8, a transparent quartz funnel-shaped floating tower 135 was installed in a transparent quartz reaction vessel 134 having an inner diameter of about 300 mm and a height of about 1200 mm so that the central axis thereof coincided with the central axis of the reaction vessel. The inner diameter of the upper end of the floating tower 135 was about 200 mm, the inner diameter of the lower part was about 15 mm, and the height was about 800 mm.
[0135] 浮遊塔 135の円錐形状の寸法(高さと各部の内径)は、以下のように設定した。  [0135] The conical dimensions (height and inner diameter of each part) of the floating tower 135 were set as follows.
すなわち、四塩化珪素の時間当たりの供給量を金属粒子の反応容器への時間当 たりの重量供給量に対する理論反応当量の 1. 6倍量とし、金属粒子製造部分で生 成される粒子を球形と仮定した粒子の粒径分布と、反応温度 1000°C、圧力 1気圧に おける四塩化珪素の密度と粘度の推算値を用いて、粒子が反応条件における四塩 化珪素の上昇流中に浮遊する流速を算出し、粒子の浮遊密度(反応空間における 流体単位体積中において粒子が占める割合)を 30%以下になるように設定した。 四塩化珪素ガス加熱上昇管 136は内径約 15mm、高さ約 600mmの石英製とした [0136] 反応容器加熱装置 137によって浮遊塔内部を約 1000°Cに加熱した。捕集部容器 138と受器 139は約 700°Cに保温した。四塩ィ匕珪素は図示しない蒸発器から予熱器 を経て約 500°Cに予熱してから四塩化珪素供給口 141から約 1気圧に圧力を調整し て約 1. 6KgZhrの割合で受器の上部に導入した。 In other words, the amount of silicon tetrachloride supplied per hour is 1.6 times the theoretical reaction equivalent of the amount of metal particles supplied to the reaction vessel per hour, and the particles produced in the metal particle production part are spherical. Using the estimated particle size distribution and estimated values of silicon tetrachloride density and viscosity at a reaction temperature of 1000 ° C and a pressure of 1 atm, particles float in the upward flow of silicon tetrachloride under the reaction conditions. The buoyant density of particles (the proportion of particles in the unit volume of fluid in the reaction space) was set to 30% or less. Silicon tetrachloride gas heating riser 136 is made of quartz with an inner diameter of about 15 mm and a height of about 600 mm. [0136] The inside of the floating tower was heated to about 1000 ° C by the reaction vessel heating device 137. The collector container 138 and the receiver 139 were kept warm at about 700 ° C. Tetrahydrous silicon is preheated from an evaporator (not shown) through a preheater to about 500 ° C and then adjusted to about 1 atm from the silicon tetrachloride supply port 141 at a rate of about 1.6 KgZhr. Introduced at the top.
[0137] 逆円錐形状の高周波誘導コイルを用い、周波数約 100kHz、 40kWHの高周波電 力で、アルミニウムを約 18gZsecの割合で溶融流下させ、露点— 20°C以下の高純 度アルゴンを噴霧用ガスとして用いてアルミニウムを粒状化させた。粒状化されたァ ノレミニゥム粒子は石英製金属粒子容器 130内に貯留され、弁 131を通して約 200g /hrの割合で反応容器 134内の浮遊塔 135上部に供給した。  [0137] Using an inverted conical high-frequency induction coil, aluminum was melted down at a rate of about 18 gZsec with high-frequency power of about 100 kHz and 40 kWH, and high purity argon with a dew point of 20 ° C or less was used as the atomizing gas. Was used to granulate aluminum. The granulated anode particles were stored in a quartz metal particle container 130 and supplied to the upper part of the floating tower 135 in the reaction container 134 at a rate of about 200 g / hr through a valve 131.
[0138] およそ 5時間の反応後に受器 139内の生成物を取り出し、塩化水素酸溶液で処理 して、約 900gのシリコンを得た。 [0138] After approximately 5 hours of reaction, the product in receiver 139 was removed and treated with a hydrochloric acid solution to obtain about 900 g of silicon.
[0139] なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例 示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構 成を有し、同様な作用効果を奏するものは、レ、かなるものであっても本発明の技術的 範囲に包含される。 [0139] The present invention is not limited to the above embodiment. The above-described embodiment is an example, and has substantially the same configuration as the technical idea described in the claims of the present invention, and the one that exhibits the same function and effect is a good one. However, it is included in the technical scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1] シリコンの塩素化合物を還元することによってシリコンを製造する方法であって、少 なくとも、金属を液状粒子とし、該金属の液状粒子を気体状のシリコンの塩素化合物 と接触させ、該シリコンの塩素化合物を還元することによってシリコンを生成することを 特徴とするシリコンの製造方法。  [1] A method for producing silicon by reducing a chlorine compound of silicon, wherein at least the metal is made into liquid particles, the liquid particles of the metal are brought into contact with gaseous silicon chlorine compound, and the silicon is produced. A method for producing silicon, characterized in that silicon is produced by reducing said chlorine compound.
[2] 前記金属の液状粒子を気体状のシリコンの塩素化合物と接触、反応させる際に、 前記気体状のシリコン塩素化合物と前記金属の液状粒子を向流状で接触させること を特徴とする請求項 1に記載のシリコンの製造方法。 [2] When the metal liquid particles are brought into contact with and reacted with gaseous silicon chlorine compound, the gaseous silicon chlorine compound and the metal liquid particles are brought into contact in a countercurrent manner. Item 2. A method for producing silicon according to Item 1.
[3] 前記金属の液状粒子を気体状のシリコンの塩素化合物と接触、反応させる際に、 前記金属の液状粒子を浮遊状態にすることを特徴とする請求項 1に記載のシリコン の製造方法。 3. The method for producing silicon according to claim 1, wherein when the metal liquid particles are brought into contact with and reacted with gaseous silicon chlorine compound, the metal liquid particles are brought into a floating state.
[4] 前記シリコンの塩素化合物の主成分を四塩化珪素とすることを特徴とする請求項 1 ないし請求項 3のいずれか一項に記載のシリコンの製造方法。 4. The method for producing silicon according to any one of claims 1 to 3, wherein a main component of the chlorine compound of silicon is silicon tetrachloride.
[5] 前記四塩化珪素を、珪石に炭素と塩素を作用させて製造することを特徴とする請求 項 4に記載のシリコンの製造方法。 5. The method for producing silicon according to claim 4, wherein the silicon tetrachloride is produced by allowing carbon and chlorine to act on silica stone.
[6] 前記液状粒子とする金属を、該液状粒子とする金属の塩化物における塩素一原子 当たりの生成自由エネルギーの値が、シリコンの塩素化合物における塩素一原子当 たりの生成自由エネルギーの値より低ぐかつ前記液状粒子とする金属の融点がシリ コンの融点より低い金属とすることを特徴とする請求項 1ないし請求項 5のいずれか 一項に記載のシリコンの製造方法。 前記液状粒子とする金属を、アルミニウムまたは亜鉛のレ、ずれ力とすることを特徴と する請求項 1なレ、し請求項 6のレ、ずれか一項に記載のシリコンの製造方法。 [8] 前記金属の液状粒子の粒径を 20〜200 β mとすることを特徴とする請求項 1ないし 請求項 7のいずれか一項に記載のシリコンの製造方法。 [6] The value of the free energy per chlorine atom in the metal chloride as the liquid particle is higher than the free energy value per chlorine atom in the chlorine compound of silicon. 6. The method for producing silicon according to claim 1, wherein the metal used as the liquid particles has a low melting point and a lower melting point than that of silicon. 7. The method for producing silicon according to claim 1, wherein the metal used as the liquid particles is aluminum or zinc and a displacement force. [8] The method for producing silicon according to any one of claims 1 to claim 7, characterized in that a 20 to 200 beta m particle diameter of the metal liquid particles.
[9] 前記金属の液状粒子を気体状のシリコンの塩素化合物と接触、反応させる際の温 度を 800°C以上とすることを特徴とする請求項 1ないし請求項 8のいずれか一項に記 載のシリコンの製造方法。 [9] The temperature according to any one of claims 1 to 8, wherein a temperature at which the metal liquid particles are brought into contact with and reacted with gaseous chlorine compound of silicon is 800 ° C or higher. The manufacturing method of the silicon | silicone described.
[10] 前記金属の液状粒子を気体状のシリコンの塩素化合物と接触、反応させる際の圧 力を 1気圧以上とすることを特徴とする請求項 1ないし請求項 9のいずれか一項に記 載のシリコンの製造方法。 [10] The pressure according to any one of [1] to [9], wherein the pressure at the time of bringing the metal liquid particles into contact with and reacting with the gaseous chlorine compound of silicon is 1 atm or more. The manufacturing method of the said silicon | silicone.
[11] 前記金属の液状粒子の供給および前記シリコンの塩素化合物の供給を間欠的に 行レ、、前記金属の液状粒子とシリコンの塩素化合物の接触、反応を間欠的に行うこと を特徴とする請求項 1ないし請求項 10のいずれか一項に記載のシリコンの製造方法 [11] The supply of the liquid metal particles and the supply of the chlorine compound of silicon are intermittently performed, and the contact and reaction of the liquid metal particles and the chlorine compound of silicon are intermittently performed. The method for producing silicon according to any one of claims 1 to 10.
[12] 請求項 1ないし請求項 11のいずれか一項に記載のシリコンの製造方法であって、 前記金属を液状粒子とすることを、金属の固体粒子を溶融して金属の液状粒子とす ることによって行うことを特徴とするシリコンの製造方法。 [12] The method for producing silicon according to any one of claims 1 to 11, wherein the metal is made into liquid particles by melting metal solid particles into metal liquid particles. A method for producing silicon, characterized in that
[13] 請求項 1ないし請求項 11のいずれか一項に記載のシリコンの製造方法であって、 前記金属を液状粒子とすることを、線状または柱状金属の中心軸を鉛直方向に向け 、該線状または柱状金属の下端部位を加熱溶融して液状の金属として流下させ、該 流下する液状の金属に流体を吹き付けて作成した金属粒子を液状とすることによつ て行うことを特徴とするシリコンの製造方法。 [13] The method for producing silicon according to any one of claims 1 to 11, wherein the metal is a liquid particle, the central axis of a linear or columnar metal is oriented in a vertical direction, The lower end portion of the linear or columnar metal is heated and melted to flow down as a liquid metal, and the metal particles produced by spraying a fluid onto the flowing down liquid metal are made liquid. To manufacture silicon.
[14] 前記線状または柱状金属の加熱溶融を、高周波誘導加熱によって行うことを特徴と する請求項 13に記載のシリコンの製造方法。 [14] The heating or melting of the linear or columnar metal is performed by high frequency induction heating. The method for producing silicon according to claim 13.
[15] 前記線状または柱状金属の加熱溶融を、該線状または柱状金属をその中心軸の 周りに回転させながら行うことを特徴とする請求項 13または請求項 14に記載のシリコ ンの製造方法。 [15] The production of silicon according to claim 13 or 14, wherein the heat-melting of the linear or columnar metal is performed while rotating the linear or columnar metal around its central axis. Method.
[16] 前記吹き付ける流体を、水素、ヘリウム、アルゴンまたはそれらの混合物のいずれ 力、とすることを特徴とする請求項 13ないし請求項 15のいずれか一項に記載のシリコ ンの製造方法。 [16] The method for producing silicon according to any one of claims 13 to 15, wherein the fluid to be sprayed is any one of hydrogen, helium, argon, or a mixture thereof.
[17] 前記吹き付ける流体を、前記シリコンの塩素化合物を含有するものとすることを特徴 とする請求項 13ないし請求項 16のいずれか一項に記載のシリコンの製造方法。 17. The method for producing silicon according to any one of claims 13 to 16, wherein the fluid to be sprayed contains a chlorine compound of the silicon.
[18] シリコンの製造装置であって、少なくとも、 [18] A silicon manufacturing apparatus, at least,
金属の粒子と気体状のシリコンの塩素化合物とを反応させる反応容器と、 前記反応容器を加熱する手段と、  A reaction vessel for reacting metal particles with gaseous silicon chlorine compound, means for heating the reaction vessel,
前記反応容器内に前記金属の粒子を供給する手段と、  Means for supplying particles of the metal into the reaction vessel;
前記反応容器内に前記シリコンの塩素化合物を供給する手段と、  Means for supplying a chlorine compound of the silicon into the reaction vessel;
前記反応容器内の流体を排出する手段と、  Means for draining the fluid in the reaction vessel;
生成したシリコンを捕集するための容器と、  A container for collecting the generated silicon;
を備えることを特徴とするシリコンの製造装置。  An apparatus for producing silicon, comprising:
[19] 前記反応容器内で反応中の粒子を浮遊させる手段を備えることを特徴とする請求 項 18に記載のシリコンの製造装置。 19. The apparatus for producing silicon according to claim 18, further comprising means for suspending particles in the reaction vessel.
[20] 前記浮遊手段は、その水平方向の断面積が下から上に向かうにつれて拡大する漏 斗形状を有し、前記シリコンの塩素化合物を、前記浮遊手段の下部から供給すること によって反応空間内の粒子を浮遊させるものであることを特徴とする請求項 19に記 載のシリコンの製造装置。 [20] The floating means has a funnel shape whose horizontal cross-sectional area expands from the bottom to the top, and the chlorine compound of silicon is supplied from the bottom of the floating means in the reaction space. The particles according to claim 19, wherein the particles are suspended. The silicon production equipment listed.
[21] 前記浮遊手段の水平方向の断面積の拡大比率は、前記金属の粒子の粒径分布 に対応するように設定されているものであることを特徴とする請求項 20に記載のシリ コンの製造装置。 21. The silicon according to claim 20, wherein an enlargement ratio of a horizontal sectional area of the floating means is set to correspond to a particle size distribution of the metal particles. Manufacturing equipment.
[22] 前記浮遊手段は粒子の一部を溢流させる構造を有することを特徴とする請求項 19 ないし請求項 21のいずれか一項に記載のシリコンの製造装置。 22. The silicon manufacturing apparatus according to any one of claims 19 to 21, wherein the floating means has a structure that causes a part of particles to overflow.
[23] 少なくとも前記反応容器の材質を石英とすることを特徴とする請求項 18ないし請求 項 22のレ、ずれか一項に記載のシリコンの製造装置。 23. The silicon manufacturing apparatus according to claim 18, wherein at least the material of the reaction vessel is quartz.
[24] 前記反応容器の少なくとも内壁を石英またはシリコンとすることを特徴とする請求項 18ないし請求項 23のいずれか一項に記載のシリコンの製造装置。 24. The silicon production apparatus according to any one of claims 18 to 23, wherein at least an inner wall of the reaction vessel is made of quartz or silicon.
[25] 前記シリコンの塩素化合物を供給する手段は、反応容器内で前記反応容器に供給 されるシリコンの塩素化合物を、前記反応容器を加熱する手段によって予め加熱す るものであることを特徴とする請求項 18ないし請求項 24のいずれか一項に記載のシ リコンの製造装置。 [25] The means for supplying the silicon chlorine compound is characterized in that the silicon chlorine compound supplied to the reaction vessel in the reaction vessel is preliminarily heated by means for heating the reaction vessel. 25. The silicon manufacturing apparatus according to any one of claims 18 to 24.
[26] 請求項 18なレ、し請求項 25のレ、ずれか一項に記載のシリコンの製造装置にぉレ、て 、さらに、 [26] Claim 18, No. 25, No. 25, and a silicon manufacturing apparatus according to any one of claims, further,
前記供給される金属の粒子の量を制御する手段、  Means for controlling the amount of metal particles supplied;
前記シリコンの塩素化合物の供給量を制御する手段、  Means for controlling the supply amount of chlorine compound of the silicon,
前記反応容器内の反応空間の温度を制御する手段、  Means for controlling the temperature of the reaction space in the reaction vessel;
前記反応容器内の圧力を制御する手段、  Means for controlling the pressure in the reaction vessel;
のいずれ力 4つ以上の手段を備えることを特徴とするシリコンの製造装置。 [27] 前記反応における副生物を捕集する手段を備えることを特徴とする請求項 18ない し請求項 26のいずれか一項に記載のシリコンの製造装置。 Any of these forces A device for producing silicon characterized by comprising four or more means. [27] The silicon production apparatus according to any one of [18] and [26], further comprising means for collecting a by-product in the reaction.
[28] 少なくとも、未反応のシリコンの塩素化合物を捕集する手段または循環使用する手 段のいずれか一方を備えることを特徴とする請求項 18ないし請求項 27のいずれか 一項に記載のシリコンの製造装置。 [28] The silicon according to any one of [18] to [27], further comprising at least one of means for collecting unreacted silicon chlorine compounds and means for recirculating. Manufacturing equipment.
[29] 前記生成したシリコンを捕集するための容器は、該容器内に捕集されたシリコンを 加熱する手段を備えることを特徴とする請求項 18ないし請求項 28のいずれか一項 に記載のシリコンの製造装置。 [29] The container for collecting the generated silicon includes means for heating the silicon collected in the container. Silicon manufacturing equipment.
[30] 前記容器内に捕集されたシリコンを加熱する手段は、前記捕集されたシリコンを溶 融し、一方向力 凝固させるものであることを特徴とする請求項 29に記載のシリコン の製造装置。 [30] The method of claim 29, wherein the means for heating the silicon collected in the container melts and collects the collected silicon in a unidirectional force. Manufacturing equipment.
[31] 前記生成したシリコンを捕集するための容器に、シリコンの塩素化合物を供給する 手段を備えることを特徴とする請求項 18ないし請求項 30のいずれか一項に記載の シリコンの製造装置。 31. The silicon manufacturing apparatus according to claim 18, further comprising means for supplying a chlorine compound of silicon to the container for collecting the generated silicon. .
[32] 請求項 18ないし請求項 31のいずれか一項に記載されたシリコンの製造装置を用 レ、て金属の液状粒子とシリコンの塩素化合物を反応させてシリコンを製造することを 特徴とするシリコンの製造方法。 [32] The silicon production apparatus according to any one of claims 18 to 31 is used to produce silicon by reacting liquid metal particles with a chlorine compound of silicon. Silicon manufacturing method.
[33] 前記反応容器への前記金属の粒子の供給および前記シリコンの塩素化合物の供 給を間欠的に行い、前記金属の液状粒子とシリコンの塩素化合物の反応を間欠的に 行うことを特徴とする請求項 32に記載のシリコンの製造方法。 [33] The supply of the metal particles to the reaction vessel and the supply of the chlorine compound of silicon are intermittently performed, and the reaction between the liquid metal particles and the chlorine compound of silicon is intermittently performed. The method for producing silicon according to claim 32.
[34] 前記気体状のシリコン塩素化合物と前記金属の液状粒子を向流状で接触、反応さ せることを特徴とする請求項 32または請求項 33に記載のシリコンの製造方法。 反応中の粒子を浮遊状態にすることを特徴とする請求項 32または請求項 33に記 載のシリコンの製造方法。 [34] The gaseous silicon chlorine compound and the liquid metal particles are contacted and reacted in a countercurrent manner. 34. The method for producing silicon according to claim 32 or claim 33, wherein: 34. The method for producing silicon according to claim 32 or claim 33, wherein particles in the reaction are suspended.
PCT/JP2007/057044 2006-04-12 2007-03-30 Method and apparatus for producing silicon WO2007119605A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006109598A JP2007284259A (en) 2006-04-12 2006-04-12 Method and apparatus for producing silicon
JP2006-109598 2006-04-12

Publications (1)

Publication Number Publication Date
WO2007119605A1 true WO2007119605A1 (en) 2007-10-25

Family

ID=38609373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057044 WO2007119605A1 (en) 2006-04-12 2007-03-30 Method and apparatus for producing silicon

Country Status (2)

Country Link
JP (1) JP2007284259A (en)
WO (1) WO2007119605A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013013857A1 (en) * 2011-07-25 2013-01-31 Evonik Degussa Gmbh Use of silicon tetrachloride byproducts for producing silicon by reaction with metal reducing agents

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208996A (en) * 2008-03-04 2009-09-17 Sumitomo Chemical Co Ltd Silicon manufacturing method and silicon manufacturing apparatus
JP5586005B2 (en) 2008-12-10 2014-09-10 独立行政法人物質・材料研究機構 Method for producing silicon
JP5574295B2 (en) * 2010-11-11 2014-08-20 有限会社シーエス技術研究所 High purity silicon fine powder production equipment
JP5533601B2 (en) * 2010-11-11 2014-06-25 有限会社シーエス技術研究所 High purity silicon fine powder production equipment
KR101931163B1 (en) * 2011-12-29 2018-12-21 엘지이노텍 주식회사 Apparatus and method for fabricating silicon carbide
JP2014148455A (en) * 2013-01-30 2014-08-21 Yutaka Kamaike Method for manufacturing a silicon crystal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182221A (en) * 1983-03-24 1984-10-17 バイエル・アクチエンゲゼルシヤフト Manufacture of silicon
JPH0264006A (en) * 1988-07-15 1990-03-05 Bayer Ag Production of solar silicon
JPH1192130A (en) * 1997-09-11 1999-04-06 Sumitomo Sitix Amagasaki:Kk Production of high purity silicon
JP2004002138A (en) * 2001-10-19 2004-01-08 Tokuyama Corp Method for manufacturing silicon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182221A (en) * 1983-03-24 1984-10-17 バイエル・アクチエンゲゼルシヤフト Manufacture of silicon
JPH0264006A (en) * 1988-07-15 1990-03-05 Bayer Ag Production of solar silicon
JPH1192130A (en) * 1997-09-11 1999-04-06 Sumitomo Sitix Amagasaki:Kk Production of high purity silicon
JP2004002138A (en) * 2001-10-19 2004-01-08 Tokuyama Corp Method for manufacturing silicon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013013857A1 (en) * 2011-07-25 2013-01-31 Evonik Degussa Gmbh Use of silicon tetrachloride byproducts for producing silicon by reaction with metal reducing agents

Also Published As

Publication number Publication date
JP2007284259A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
US7780938B2 (en) Production of silicon through a closed-loop process
WO2007119605A1 (en) Method and apparatus for producing silicon
EP1437327B1 (en) Method for producing silicon
CA2813630C (en) Granular polycrystalline silicon and production thereof
US4525334A (en) Process for the production of silicon
US20090289390A1 (en) Direct silicon or reactive metal casting
EP1866248B1 (en) Process for the production of si by reduction of sicl4 with liquid zn
TW201130734A (en) Process for production of polysilicon and tetrachloride
US8287645B2 (en) Production process for high purity polycrystal silicon and production apparatus for the same
JP4692247B2 (en) Method for producing high-purity polycrystalline silicon
KR20110069770A (en) High-purity crystalline silicon, high-purity silicon tetrachloride, and processes for producing same
US20060270199A1 (en) Process for producing high-purity silicon and apparatus
US20060086310A1 (en) Production of high grade silicon, reactor, particle recapture tower and use of the aforementioned
TWI494273B (en) Process for deposition of polycrystalline silicon
JP2008037735A (en) Apparatus for manufacturing silicon
WO2008034578A1 (en) Process for the production of germanium-bearing silicon alloys
JP2004035382A (en) Method of manufacturing polycrystalline silicon
JP2004099421A (en) Method for manufacturing silicon
WO2001048277A1 (en) Method and apparatus for producing single crystal of silicon carbide
JP4392671B2 (en) Silicon production equipment
JP2003020216A (en) Method for manufacturing silicon
RU2415080C2 (en) Method and apparatus for purifying silicon
JP2011121800A (en) Cleaning method of reaction furnace for polycrystalline silicon manufacture
RU2163936C2 (en) Continuous magnesium-reduction method of titanium production
JP5419971B2 (en) Method for producing polycrystalline silicon and reactor for producing polycrystalline silicon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740480

Country of ref document: EP

Kind code of ref document: A1