JP2007126342A - Method of manufacturing silicon - Google Patents

Method of manufacturing silicon Download PDF

Info

Publication number
JP2007126342A
JP2007126342A JP2005346998A JP2005346998A JP2007126342A JP 2007126342 A JP2007126342 A JP 2007126342A JP 2005346998 A JP2005346998 A JP 2005346998A JP 2005346998 A JP2005346998 A JP 2005346998A JP 2007126342 A JP2007126342 A JP 2007126342A
Authority
JP
Japan
Prior art keywords
silicon
zinc
gas
reaction
reaction tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2005346998A
Other languages
Japanese (ja)
Inventor
Takayuki Shimamune
孝之 島宗
Nobuo Ishizawa
伸夫 石澤
Yukihiro Kino
幸浩 木野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KINOTECH CORP
Original Assignee
KINOTECH CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KINOTECH CORP filed Critical KINOTECH CORP
Priority to JP2005346998A priority Critical patent/JP2007126342A/en
Publication of JP2007126342A publication Critical patent/JP2007126342A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing silicon in which high purity silicon is prepared by reduction of silicon tetrachloride with zinc; and also to provide a device which enables separation and extraction of silicon alone by dissolving high purity silicon generated by vapor-phase reaction in a system and by substantially excluding separation processes from other reactants. <P>SOLUTION: The device is for manufacturing silicon to obtain high purity silicon by reducing silicon tetrachloride with zinc in a vapor phase and the following manufacturing steps are performed: (1) the step of generating zinc gas; (2) the step of supplying the zinc gas into a reaction column; (3) the step of injecting silicon tetrachloride gas into the flow of the zinc gas in the reaction column; (4) the step of generating silicon by the reaction of the zinc gas and silicon tetrachloride in the reaction column: (5) the step of colliding the reactant gas containing silicon to a wall kept at a temperature above the melting point of silicon for silicon dissolution; (6) the step of leading liquid silicon to a silicon storing tank situated below; (7) the step of separating zinc from a residual reactant gas coming out of the reaction column by cooling the residual reactant gas to liquefy zinc while returning the liquefied zinc to the step of producing zinc gas; and (8) the step of taking out zinc chloride which is generated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は主としてソーラーセルや電子部品に使用するシリコンを低消費エネルギーで得ることが出来る四塩化珪素を金属亜鉛により還元して、高純度シリコンを得るためのシリコンの製造装置に関する。The present invention mainly relates to an apparatus for producing silicon for obtaining high-purity silicon by reducing silicon tetrachloride, which can obtain silicon used for solar cells and electronic components with low energy consumption, with metallic zinc.

高純度シリコンの製造は、粗製シリコンを塩化水素並びに水素で処理してトリクロロシランを製造し、あるいは時としてはジクロロシランやモノクロシランを製造し、これらシラン化合物を原料として化学的気相成長法により製造されている。この方法では極めて高純度のシリコンが得られるが、中間物質である各シラン化合物を生成する段階で、最も安定な四塩化珪素になりやすく目的とするシラン類の歩留まりが50%あるいはそれ以下となってしまうと共に、シリコン生成にかかる反応が極めて遅いので、設備が大型となりその設備投資が極めて大きいこと、また製造に必要とされる電力が多結晶シリコンでも350kWh/kg−シリコンと極めて大きいとされる。このようなシリコンは高集積化し付加価値の高い電子デバイス用としては良いが、今後多量に必要とされるソーラーセル用やいわゆるIC−タグなどに用いる為には過剰品質であるともに、製造に必要とするエネルギーが過大で、製造コストが目的とするソーラーセル用としては大きすぎるという問題点を有している。更にこのプロセスによると多量の四塩化珪素が副生してくる。これによる四塩化珪素は従来から水で分解することにより、石英ガラス原料などに使用されてきたが、シリコンの生産の増加と共に、過剰となって来ており、粗製シリコン原料の歩留まり問題と共に、素材バランスが取りにくい様になってきている。  High-purity silicon is produced by treating crude silicon with hydrogen chloride and hydrogen to produce trichlorosilane, or sometimes dichlorosilane or monochlorosilane, and using these silane compounds as raw materials by chemical vapor deposition. It is manufactured. With this method, extremely high-purity silicon can be obtained, but at the stage of producing each silane compound as an intermediate substance, the yield of the target silanes tends to be the most stable silicon tetrachloride and is 50% or less. In addition, since the reaction for silicon generation is extremely slow, the equipment is large and the equipment investment is extremely large, and the power required for production is considered to be as large as 350 kWh / kg-silicon even for polycrystalline silicon. . Such silicon is good for highly integrated and high-value added electronic devices, but it is too high quality for use in solar cells and so-called IC-tags that will be required in large quantities in the future, and is necessary for manufacturing. The energy is too large and the manufacturing cost is too large for the intended solar cell. Furthermore, this process produces a large amount of silicon tetrachloride as a by-product. Silicon tetrachloride by this has been used for quartz glass raw materials by being decomposed with water conventionally, but it has become excessive with the increase of silicon production, along with the yield problem of crude silicon raw materials It has become difficult to balance.

これに替わるシリコンの製造方法として古くから四塩化珪素を原料とする方法が提案されている。つまり四塩化珪素を高温で金属亜鉛によって還元して高純度シリコンを製造する方法である。1950年代に米国デュポン社が実用化したとされ、そこでは950℃の温度で四塩化珪素と亜鉛をガス相で反応させて固体高純度シリコンを得たとされる。この方法では極めて高純度のシリコンが得られたとされているが、反応生成物の一つとして得られる塩化亜鉛との分離に問題を有していたとされ、上記に示したいわゆるシーメンス法とされるトリクロロシラン(SHCl)を原料とするCVDによるシリコン製造法の完成と共に生産を止められたとされる。一方特開平11−060228及び特開平11−092130には溶融亜鉛と四塩化珪素ガスを反応させることによって高純度シリコンを得る方法が示されているが、いずれもバッチ式で生成したシリコンを亜鉛及び塩化亜鉛と分離しなければならず、煩雑になると共に分離操作による不純物の混入という問題を残していた。As an alternative method for producing silicon, a method using silicon tetrachloride as a raw material has been proposed for a long time. That is, this is a method for producing high-purity silicon by reducing silicon tetrachloride with zinc metal at a high temperature. In the 1950s, it was assumed that DuPont USA was put into practical use, where silicon tetrachloride and zinc were reacted in the gas phase at a temperature of 950 ° C. to obtain solid high-purity silicon. In this method, extremely high-purity silicon is said to have been obtained, but it was considered that there was a problem with the separation from zinc chloride obtained as one of the reaction products, and the so-called Siemens method described above was used. It is said that the production was stopped with the completion of the silicon manufacturing method by CVD using trichlorosilane (SHCl 3 ) as a raw material. On the other hand, JP-A-11-060228 and JP-A-11-092130 show methods for obtaining high-purity silicon by reacting molten zinc with silicon tetrachloride gas. It had to be separated from zinc chloride, which was complicated and left a problem of contamination by impurities during the separation operation.

本発明者らは特開2004−210594で四塩化珪素ガスを亜鉛ガスで還元する高温気相反応に依って原料、副生物はガス状のままシリコンのみを固体あるいは液体で取り出すことによって高純度シリコンを得ている。その場合の消費エネルギーはいわゆるシーメンス法による高純度シリコン製造に要するエネルギーの1/9程度まで減らすことことに成功した。これらに関連して更に特開2003−342016、特開2004−010472、特開2004−035382、特開2004−099421、特開2004−284935等の発明を行っており、シリコンの純度は従来法に比較して若干劣るものの、多結晶、単結晶ともにソーラーセル用として十分であり、また単結晶の場合は電子デバイスとしても特殊な用途以外には十分に使用できることを確認した。これらはいずれクローズド化した粗製シリコンから高純度シリコンを得るための連続装置が主体であり、すでにSiCl4がある場合にはより簡単でしかも取り扱いの容易な製造装置が必要とされている。The present inventors disclosed in Japanese Patent Application Laid-Open No. 2004-210594 high-purity silicon by taking out only silicon in solid or liquid form as a raw material and by-product by a high-temperature gas phase reaction in which silicon tetrachloride gas is reduced with zinc gas. Have gained. In that case, the energy consumption was successfully reduced to about 1/9 of the energy required for high-purity silicon production by the so-called Siemens method. In connection with these, the inventions of JP-A-2003-342016, JP-A-2004-010472, JP-A-2004-035382, JP-A-2004-099421, JP-A-2004-284935 and the like have been carried out. Although it is slightly inferior, it has been confirmed that both polycrystalline and single crystals are sufficient for solar cells, and in the case of single crystals, they can be used sufficiently for electronic devices other than special applications. These are mainly continuous devices for obtaining high-purity silicon from closed crude silicon. When SiCl4 is already present, a simpler and easier-to-handle manufacturing device is required.

特開平11−060228公報Japanese Patent Laid-Open No. 11-060228 特開平11−092130公報Japanese Patent Laid-Open No. 11-092130 特開2004−210594公報Japanese Patent Laid-Open No. 2004-210594 特開2003−342016公報JP 2003-342016 A 特開2004−010472公報JP 2004-010472 A 特開2004−035382公報JP 2004-035382 A 特開2004−099421公報JP 2004-099421 A 特開2004−284935公報JP 2004-284935 A

本発明では四塩化珪素の亜鉛還元によって高純度シリコンを得るシリコン製造装置であり、気相反応により生成した高純度シリコンを系内で溶解し、他の反応成分との分離操作を実質的に廃し、シリコンのみを分離取り出しが可能な装置を提供することを課題とした。The present invention is a silicon production apparatus for obtaining high-purity silicon by zinc reduction of silicon tetrachloride, dissolving high-purity silicon produced by a gas phase reaction in the system, and substantially eliminating the separation operation from other reaction components. An object of the present invention is to provide an apparatus capable of separating and taking out only silicon.

本発明は気相で四塩化珪素を亜鉛還元して、高純度シリコンを得るシリコン製造装置であって
1.亜鉛ガスを作る工程と
2.該亜鉛ガスを反応塔内に送り込む工程と
3.該反応塔内の亜鉛ガスの流れ中に四塩化珪素ガスを吹き込む工程と
4.反応塔内で亜鉛ガスと四塩化珪素が反応してシリコンを生成する工程と
5.該シリコンを含む反応ガスがシリコンの融点以上に保持されたシリコン溶解壁に衝突する工程と
6.液状シリコンが下方に有るシリコン保持槽に導かれる工程と
7.反応塔から出た残部反応ガスを冷却して該残部反応ガス中の亜鉛を液化し分離すると共に亜鉛ガス製造工程に戻す工程と
8.生成した塩化亜鉛を取り出す工程
とからなる高純度シリコン製造装置であって、系内に起こりうる圧力変動を平準化するとともに、固体又は半融体で生成したシリコンを系内で高温壁に衝突させることによって融体化して取り出すことにより、高温反応にもかかわらず、消費エネルギーを小さく押さえることが出来、更に生成シリコンの不純物を最小限とすることが可能となった。
The present invention is a silicon production apparatus for obtaining high-purity silicon by reducing zinc tetrachloride in the vapor phase. 1. a process for producing zinc gas; 2. feeding the zinc gas into the reaction tower; 3. blowing silicon tetrachloride gas into the flow of zinc gas in the reaction tower; 4. a step in which zinc gas reacts with silicon tetrachloride in a reaction tower to produce silicon; 5. a process in which the reaction gas containing silicon collides with a silicon melting wall held above the melting point of silicon; 6. a step of introducing liquid silicon into a silicon holding tank located underneath; 7. a step of cooling the remaining reaction gas from the reaction tower to liquefy and separate zinc in the remaining reaction gas and returning it to the zinc gas production step; A high-purity silicon production apparatus comprising a step of taking out generated zinc chloride, leveling pressure fluctuations that may occur in the system, and causing silicon generated in a solid or semi-melt to collide with a hot wall in the system As a result, it was possible to keep the energy consumption small despite the high temperature reaction, and to minimize impurities in the generated silicon.

四塩化珪素の亜鉛還元によるシリコンの生成はSiCl4+2Zn+Si+2ZnClで示されるように、気相反応の場合、シリコンの融点は1410℃であるので気相からはずれてしまい実質的に3分子のガスから2分子のガスを得ることとなり、圧力の変動が問題となる。As shown by SiCl 4 + 2Zn + Si + 2ZnCl 2 , silicon generation by zinc reduction of silicon tetrachloride is, in the case of a gas phase reaction, the melting point of silicon is 1410 ° C. As a result, a fluctuation in pressure becomes a problem.

本発明では還元反応が極めて早いことを考慮して気相反応でも四塩化珪素を系外から吹き込むようにすることによって実質的には2Zn→2ZnClとなるようにして圧力変動を防ぐようにした。つまり金属亜鉛を溶解しあらかじめガス化した後、該亜鉛ガスを反応塔に、出来れば早い旋回流を作るように供給する。なお亜鉛ガスの代わりに亜鉛ガスと塩化亜鉛ガスの混合ガスを送ることももちろん可能である。この中に四塩化珪素を吹き込む。つまり、これら混合ガスや亜鉛ガスはあらかじめ反応塔外で生成させ、ほぼ反応温度又は反応温度に近い適正な温度まで加温して反応塔に供給するようにする。このようなガスの流れを有する反応塔に同じく加温した四塩化珪素ガスを吹き込むと極めて早い反応に加えてこのような流れの中での会合チャンスが増加するので殆ど瞬間的に反応が完了して、シリコンが固体または半液体で生成すると共に、反応ガスは塩化亜鉛ガスになる。なおこの反応においては亜鉛過剰となるようにすることが必要であり、これによって反応が安定化するとともに、副反応が全く起こらなくなる。The present invention has been to prevent the pressure fluctuation in the manner substantially the 2Zn → 2ZnCl 2 by such blown from outside of the system silicon tetrachloride in consideration to a gas phase reaction that reduction reaction is very fast . That is, after zinc metal is dissolved and gasified in advance, the zinc gas is supplied to the reaction tower so as to create a fast swirl flow if possible. Of course, it is also possible to send a mixed gas of zinc gas and zinc chloride gas instead of zinc gas. Silicon tetrachloride is blown into this. That is, these mixed gas and zinc gas are previously generated outside the reaction tower, heated to a reaction temperature or an appropriate temperature close to the reaction temperature, and supplied to the reaction tower. When the heated silicon tetrachloride gas is blown into the reaction tower having such a gas flow, in addition to the extremely fast reaction, the chance of association in such a flow increases, so the reaction is almost instantaneously completed. Thus, silicon is generated in a solid or semi-liquid state, and the reaction gas becomes zinc chloride gas. In this reaction, it is necessary to make the zinc excessive, which stabilizes the reaction and prevents side reactions from occurring at all.

反応の温度は1100℃から1350℃つまりシリコンの融点以下が望ましく、此により気相反応により生成する極めてシリコンは部分的に融点降下によって半融体としてまた一部は固体として生成するが、その流れが反応塔内で種結晶なしに集合して微細な単結晶、あるいは多結晶の繊維状やデンドライト状のシリコンとなりながら成長する。この成長工程で反応ガスである金属亜鉛ガスあるいは塩化亜鉛ガスと高度に分離して高純度化が進むと考えられる。この反応をシリコンの融点以上で行うことも出来るが、この場合生成したシリコンの融体が微少な液滴となるためか、気相からの分離が困難となりやすい為か収率が悪くなり、また後段の分離工程などに悪影響を及ぼしやすい。また1100℃以下の低温度でも本反応が進むが反応がわずかに遅いので、ガス中で生成するシリコンの結晶としての成長が十分に起こりにくくなり、亜鉛や塩化亜鉛の混入が若干多くなるために純度の低下が起こる可能性がある。The temperature of the reaction is preferably 1100 ° C. to 1350 ° C., that is, below the melting point of silicon, and as a result, extremely silicon produced by the gas phase reaction is partially produced as a semi-melt and partially as a solid due to the melting point drop. Grows in the reaction tower without seed crystals and becomes fine single crystal or polycrystalline fibrous or dendritic silicon. It is considered that this growth process is highly separated from metallic zinc gas or zinc chloride gas, which is a reaction gas, so that the purity becomes higher. This reaction can be carried out at a temperature higher than the melting point of silicon. In this case, however, the yield of the silicon deteriorates because the generated silicon melt is a fine droplet or it is difficult to separate from the gas phase. It tends to adversely affect the subsequent separation process. In addition, this reaction proceeds even at a low temperature of 1100 ° C. or lower, but the reaction is slightly slow, so that the growth of silicon crystals generated in the gas is not likely to occur sufficiently, and zinc and zinc chloride are slightly mixed in. A decrease in purity may occur.

この反応では実質的に2分子のガスから2分子のガスを形成するので圧力変化はないはずであるが、現実にはそれぞれの蒸気圧が異なるために、実質的には圧力の上昇が起こる。この圧力上昇と後段の分離、あるいは液化プロセスによる温度変化に伴う減圧によって、ガスの動きを加速しガスはシリコンとともにより速い速度で、融体化工程に移動する。融体化工程では流体の方向を変えるようになっているが、慣性モーメントの小さいガスは方向の変動について行くのに対して、固体は高温の壁に衝突するように移動する。これによって壁温度がシリコンの融点より高い1450℃から1600℃に保持された融体化工程部の壁に選択的に固体となり高純度化したシリコンが衝突、融体化する。このときにシリコンは繊維状あるいは細いデンドライト状となっており、その表面積が大きいために容易に融体化し該融体化工程部の壁に沿って下部のシリコン保持槽に保持される。この部分ではガスは反応塔内を速い速度で通過するために温度の上昇は最小限にとどめられる。In this reaction, bimolecular gas is substantially formed from bimolecular gas, so there should be no pressure change. However, in reality, since each vapor pressure is different, a pressure increase substantially occurs. This pressure increase and subsequent separation, or reduced pressure associated with temperature change due to the liquefaction process, accelerates the movement of the gas, and the gas moves to the fusion process with silicon at a faster rate. In the fusing process, the direction of the fluid is changed, but a gas having a small moment of inertia follows a change in direction, whereas a solid moves so as to collide with a hot wall. As a result, the silicon, which is selectively solid and becomes highly purified, collides with the wall of the fusing step where the wall temperature is maintained at 1450 ° C. to 1600 ° C., which is higher than the melting point of silicon, and melts. At this time, the silicon is in the form of fibers or fine dendrites, and since it has a large surface area, it is easily melted and held in the lower silicon holding tank along the wall of the melting process section. In this part, the gas passes through the reaction column at a high speed, so that the temperature rise is minimized.

融体化工程においては反応塔壁を外部から加熱する外部加熱法でも良いが、熱集中を起こさせ、エネルギー消費を低下させるために、またガス部分の温度の上昇を最小限に押させるためには内部に発熱体を有する、たとえば高周波誘導加熱方式がより望ましく、該発熱部としては導電性である炭化珪素あるいは表面を炭化珪素化したグラファイトであることが望ましい。高周波誘導加熱の条件は特には指定されず、目的温度まで上昇できれば良い。In the melting process, an external heating method in which the reaction tower wall is heated from the outside may be used, but in order to cause heat concentration, reduce energy consumption, and to minimize the rise in the temperature of the gas part. Has a heating element inside, for example, a high-frequency induction heating method is more preferable, and the heating part is preferably conductive silicon carbide or graphite having a silicon carbide surface. The conditions for high-frequency induction heating are not particularly specified, and it is sufficient that the temperature can be raised to the target temperature.

融体化工程でシリコンを分離させたガスは温度を下げながら亜鉛分離工程に送られる。この駆動力は先に示した温度変化に起因する圧力変化である。塩化亜鉛の融点は704℃であり、亜鉛の融点は907℃であるので、この温度の間で亜鉛は液として塩化亜鉛から分離されるが、実際には蒸気圧を有するので、650℃から750℃として、サイクロン的にガスを回転させながら亜鉛を液滴として、サイクロン下部に液状亜鉛として集めるようにするが他の方法でも良い。たとえば650℃から750℃に保持した壁にこのガスをぶつけて亜鉛を液として分離し、塩化亜鉛をガスとして次工程に送るようにしても良いことはもちろんである。なおここで指定した温度は一部塩化亜鉛の沸点より低く設定されているが、これは亜鉛の分離をよりよくするためである。更にこの温度域では気相からの塩化亜鉛ガスは実質的にはあまり出ず、また出てきた分は液として亜鉛とは分離するのでそこで分離して亜鉛は亜鉛の液化工程に戻し、更にガス化工程でガスとして反応塔に送り再び四塩化珪素の還元用として使用する。 なお僅かに分離されてくる塩化亜鉛は塩化亜鉛の取り出し工程に送る。The gas from which the silicon has been separated in the melting step is sent to the zinc separation step while the temperature is lowered. This driving force is a pressure change caused by the temperature change described above. Since zinc chloride has a melting point of 704 ° C. and zinc has a melting point of 907 ° C., during this temperature, zinc is separated from zinc chloride as a liquid, but actually has a vapor pressure, so 650 ° C. to 750 ° C. While the gas is rotated in a cyclone manner at a temperature of zinc, the zinc is collected as droplets and collected as liquid zinc in the lower part of the cyclone, but other methods may be used. For example, this gas may be struck against a wall held at 650 ° C. to 750 ° C. to separate zinc as a liquid, and zinc chloride may be sent as a gas to the next process. The temperature specified here is partly set lower than the boiling point of zinc chloride, in order to improve the separation of zinc. Furthermore, in this temperature range, the zinc chloride gas from the gas phase is substantially not emitted, and the portion that has come out is separated from zinc as a liquid, so that the zinc is separated and returned to the zinc liquefaction process. In the conversion step, it is sent to the reaction tower as a gas and used again for reducing silicon tetrachloride. The zinc chloride slightly separated is sent to the zinc chloride removal step.

亜鉛の分離工程により亜鉛を除去した塩化亜鉛ガスは更に温度を下げられ融体として取り出す。なお融体とした塩化亜鉛の一部を必要に応じて再びガス化し、雰囲気ガスとして反応塔に戻すことが出来る。また残部の塩化亜鉛は塩化亜鉛として製品化しても良いし、電解により亜鉛と塩素に分離して亜鉛を反応工程に戻しても良い。
このようにして四塩化珪素から高純度シリコンを得るが、上記に示したのは一つの実施形態であり、上記工程を含む製造装置で各工程が別のメカニズムで働いても良いことはもちろんである。
The zinc chloride gas from which zinc has been removed in the zinc separation step is further lowered in temperature and taken out as a melt. In addition, a part of zinc chloride used as a melt can be gasified again as necessary and returned to the reaction tower as an atmospheric gas. The remaining zinc chloride may be commercialized as zinc chloride, or may be separated into zinc and chlorine by electrolysis and returned to the reaction step.
In this way, high-purity silicon is obtained from silicon tetrachloride. The above is one embodiment, and it goes without saying that each process may work with a different mechanism in the manufacturing apparatus including the above-described process. is there.

本発明により原料として極めて容易に得られる、あるいは従来副生物として取り扱い上問題であった、四塩化珪素を原料とし、極めて早い反応速度で高純度シリコンを得ることが出来る。また反応速度が極めて早いので小型の設備ですむという特徴を持つと同時に、工程内で実質的な精錬効果があるので高純度化すること、また製品シリコンを液状とすることにより、連続運転が可能であるという効果を有する。According to the present invention, high purity silicon can be obtained at a very high reaction rate using silicon tetrachloride as a raw material, which can be obtained very easily as a raw material, or has been a problem in handling as a conventional byproduct. In addition, the reaction speed is extremely fast, so it is possible to use a small facility. At the same time, there is a substantial refining effect in the process, so it can be highly purified, and the product silicon can be made into a liquid to enable continuous operation. It has the effect of being.

図1に本発明のシリコン製造装置のフローを図によって示した。ここに示すように単純な構成からなり、温度も融体化工程がシリコンの融点より高いものの他の部分は従来法であるシーメンス法CVD工程の1250℃とほぼ同等か低く、反応速度が極めて大きいので消費エネルギーは極めて少なくなる。なおここに示されるプロセスの材質は特には指定されないが、反応塔部分と融解工程部分は石英ガラスであることが望ましく、亜鉛ガスが過剰にあることにより殆ど消耗が無く、不純物の混入の起こらないことが確かめられている。FIG. 1 shows a flow of the silicon manufacturing apparatus of the present invention. As shown here, it has a simple structure, and the temperature of the melt process is higher than the melting point of silicon. The other parts are almost equal to or lower than 1250 ° C. of the conventional Siemens CVD process, and the reaction rate is extremely high. So energy consumption is extremely low. Although the material of the process shown here is not particularly specified, it is desirable that the reaction tower portion and the melting step portion are made of quartz glass, and since there is an excess of zinc gas, there is almost no consumption and no contamination of impurities occurs. It has been confirmed.

図2には塩化亜鉛が雰囲気ガスとして工程内に組み入れられるシリコン製造装置のフローを示した。塩化亜鉛ガスをプロセス内に組み入れることにより設備規模は若干大きくなるものの、より系内の圧力変動が少なくなり反応速度が適正化され、わずかではあるが製品シリコンをより高純度化出来るようになる。
以下実施例により示すが此に限定されないことは言うまでもない。
FIG. 2 shows a flow of a silicon manufacturing apparatus in which zinc chloride is incorporated into the process as an atmospheric gas. By incorporating zinc chloride gas into the process, the scale of the equipment is slightly increased, but the pressure fluctuation in the system is reduced, the reaction rate is optimized, and the product silicon can be purified to a higher degree.
Although it shows by an Example below, it cannot be overemphasized that it is not limited to this.

図1に示すシリコン製造装置を使用してシリコンの製造を行った。つまり原料としては本工程で得た塩化亜鉛を溶融塩電解して得た高純度亜鉛(6−ナインに相当)を亜鉛溶解工程により溶解し、定量を連続的にガス化工程に送るようにした。ガス化工程の温度は1000℃でありこれによってガス化された亜鉛は更に温度を上げながら1200℃とし1200℃に保持された反応塔に送るようにした。円筒形の反応塔内に円周方向にガス流れを作るようにガスを吹き出すようにしてわずかな正圧で送り込み反応塔からシリコン融解工程に流れるようにガスを送り込んだ。なお亜鉛ガスの供給量は四塩化珪素還元に要する理論量の1.5倍として亜鉛ガスが常に過剰となるようにした。四塩化珪素は市販の4−ナイングレードのものを再蒸留して6−ナインとし、ガス化工程でガス化し、約1.5気圧で反応塔に噴射した。噴射プロセスは石英ガラス管に複数の穴を開け穴の方向は円周方向として反応塔内に回転運動を与えるようにした。此により噴射直後から塩化亜鉛の白色の煙となったが、これによってガス量が増加し、それが低圧に保持されている融解槽に移動し、シリコンが液滴として下方に落下していった。なお亜鉛と塩化亜鉛からなる反応ガスはバイパスから温度を低下しながらサイクロン式の亜鉛分離槽に送られ亜鉛を分離し、更に塩化亜鉛回収部分で塩化亜鉛の融体となった。なお亜鉛分離部分の温度は700℃であり、液化した亜鉛には塩化亜鉛は殆ど認められなかった。温度を650℃まで下げたところわずかに塩化亜鉛が融体亜鉛の表面に認められた。此により得られたシリコンの純度は6−ナイン5以上でありこのままソーラーセル用シリコンとして使用できることが分かった。Silicon was manufactured using the silicon manufacturing apparatus shown in FIG. In other words, high-purity zinc (corresponding to 6-nine) obtained by melting salt electrolysis of zinc chloride obtained in this step as a raw material was dissolved in the zinc dissolution step, and the quantitative amount was continuously sent to the gasification step. . The temperature of the gasification step was 1000 ° C., and the gasified zinc was 1200 ° C. while further raising the temperature, and was sent to the reaction tower maintained at 1200 ° C. A gas was blown into the cylindrical reaction tower so as to create a gas flow in the circumferential direction, and the gas was fed from the reaction tower to the silicon melting step with a slight positive pressure. The amount of zinc gas supplied was 1.5 times the theoretical amount required for silicon tetrachloride reduction so that the zinc gas was always excessive. Silicon tetrachloride was re-distilled from commercially available 4-nine grade to 6-nine, gasified in the gasification step, and injected into the reaction tower at about 1.5 atm. In the injection process, a plurality of holes were made in a quartz glass tube, and the direction of the holes was set to the circumferential direction so as to give a rotational motion in the reaction tower. This resulted in zinc chloride white smoke immediately after injection, which increased the gas volume and moved it to the melting tank held at a low pressure, and the silicon dropped downwards as droplets. . The reaction gas composed of zinc and zinc chloride was sent to a cyclone-type zinc separation tank while the temperature was lowered from the bypass to separate the zinc, and the zinc chloride was melted in the zinc chloride recovery section. The temperature of the zinc separation part was 700 ° C., and almost no zinc chloride was observed in the liquefied zinc. When the temperature was lowered to 650 ° C., a slight amount of zinc chloride was observed on the surface of the melt zinc. It was found that the silicon thus obtained had a purity of 6-nine 5 or more and can be used as it is as solar cell silicon.

図2のシリコン製造装置を使用してシリコンの製造を行った。この装置は実施例1に使用したシリコンの製造装置に塩化亜鉛ガス化工程を加えたもので亜鉛ガスの代わりに亜鉛ガスと塩化亜鉛ガスの混合ガスを送るようにしたものである。塩化亜鉛は系からとりだした融体を亜鉛蒸発部にほぼ定量となるように滴下して塩化亜鉛ガスとして亜鉛ガスと混合し、温度を1250℃として反応塔に送るようにした。塩化亜鉛ガス量は体積で亜鉛ガスとほぼ同じになるようにした。四塩化珪素ガスは実施例1と同じ条件で送り込んだが、供給量は亜鉛ガスに合わせて実施例1の1/2となるようにした。反応塔温度を1250℃、すなわち反応温度を1250℃とした以外実施例1と同様の条件でシリコンを製造した。なお亜鉛分離工程の温度は650℃とした。反応ガス中の塩化亜鉛ガスが増加した分、塩化亜鉛の回収工程が煩雑になったこと、また分離した亜鉛にわずかに塩化亜鉛が混入したが、その代わり回収塩化亜鉛中の亜鉛が激減した。生成したシリコン融体は坩堝中で固化し、酸洗浄してから分析したところ、6−ナイン5から7−ナインの間であり、わずかに高純度化の出来たことが分かった。Silicon was manufactured using the silicon manufacturing apparatus of FIG. This apparatus is obtained by adding a zinc chloride gasification step to the silicon production apparatus used in Example 1, and sending a mixed gas of zinc gas and zinc chloride gas instead of zinc gas. Zinc chloride was added dropwise to the zinc evaporation section so that the melt extracted from the system was almost quantitatively mixed with zinc gas as zinc chloride gas, and the temperature was set to 1250 ° C. and sent to the reaction tower. The amount of zinc chloride gas was set to be almost the same as that of zinc gas by volume. Silicon tetrachloride gas was fed in under the same conditions as in Example 1, but the supply amount was set to 1/2 that of Example 1 in accordance with the zinc gas. Silicon was produced under the same conditions as in Example 1 except that the reaction tower temperature was 1250 ° C., that is, the reaction temperature was 1250 ° C. The temperature of the zinc separation step was 650 ° C. As the amount of zinc chloride gas in the reaction gas increased, the zinc chloride recovery process became complicated, and a slight amount of zinc chloride was mixed in the separated zinc, but instead the zinc in the recovered zinc chloride was drastically reduced. The generated silicon melt was solidified in a crucible and analyzed after acid cleaning. As a result, it was found that it was between 6-nine 5 and 7-nine, and it was slightly purified.

産業上の利用の可能性Industrial applicability

今後多量に必要とされるソーラーセルを主とするシリコンの画期的な省エネルギー性と生産性を向上する高純度シリコンの製造装置であり、主として、単結晶、多結晶としてソーラーセル用、またICタグなどの電子デバイス用等に使用するシリコンの生産に大きな貢献をするものであり、それらへの大きな活用が見込まれる。It is a high-purity silicon manufacturing device that improves the ground-breaking energy saving and productivity of silicon, mainly solar cells that will be required in large quantities in the future, mainly for solar cells as single crystals and polycrystals, and ICs. It greatly contributes to the production of silicon used for electronic devices such as tags, and is expected to be used for such applications.

本発明にかかるシリコンの製造装置の構成を示した図である。It is the figure which showed the structure of the manufacturing apparatus of the silicon concerning this invention. 本発明にかかるシリコン製造装置の別の構成を示した図であり、塩化亜鉛と亜鉛の混合ガスを雰囲気ガスとするものである。It is the figure which showed another structure of the silicon manufacturing apparatus concerning this invention, and uses the mixed gas of zinc chloride and zinc as atmospheric gas.

符号の説明Explanation of symbols

1 反応塔
2 亜鉛(亜鉛+塩化亜鉛)ガス供給口
3 四塩化珪素ガス供給口
4 亜鉛―四塩化珪素反応部
5 シリコン析出部
6 シリコン融解部
7 シリコン融解部高温壁
8 生成シリコン貯槽
9 亜鉛液化分離部
10 塩化亜鉛液化部
11 亜鉛液化部
12 亜鉛ガス化部
13 塩化亜鉛貯槽
14 亜鉛原料貯槽
15 四塩化珪素ガス化部
16 四塩化珪素原料貯槽
17 塩化亜鉛ガス化部
1 Reaction Tower 2 Zinc (Zinc + Zinc Chloride) Gas Supply Port 3 Silicon Tetrachloride Gas Supply Port 4 Zinc-Silicon Tetrachloride Reaction Portion 5 Silicon Precipitation Portion 6 Silicon Melting Portion 7 Silicon Melting Portion Hot Wall 8 Generated Silicon Storage Tank 9 Zinc Liquefaction Separation part 10 Zinc chloride liquefaction part 11 Zinc liquefaction part 12 Zinc gasification part 13 Zinc chloride storage tank 14 Zinc raw material storage tank 15 Silicon tetrachloride gasification part 16 Silicon tetrachloride raw material storage tank 17 Zinc chloride gasification part

Claims (15)

気相で四塩化珪素を亜鉛還元して、高純度シリコンを得るシリコン製造装置であって
1.亜鉛ガスを作る工程と
2.該亜鉛ガスを反応塔内に送り込む工程と
3.該反応塔内の亜鉛蒸気の流れ中に四塩化珪素ガスを吹き込む工程と
4.反応塔内で亜鉛蒸気と四塩化珪素が反応してシリコンを生成する工程と
5.該シリコンを含む反応ガスがシリコンの融点以上に保持されたシリコン溶解壁に衝突する工程と
6.液状シリコンが下方に有るシリコン保持槽に導かれる工程と
7.反応塔から出た残部反応ガスを冷却して該残部反応ガス中の亜鉛を液化し分離すると共に亜鉛ガス製造工程に戻す工程と
8.生成した塩化亜鉛を取り出す工程
とからなる高純度シリコン製造装置。
1. A silicon production apparatus for obtaining high-purity silicon by reducing zinc tetrachloride in a gas phase. 1. a process for producing zinc gas; 2. feeding the zinc gas into the reaction tower; 3. blowing silicon tetrachloride gas into the flow of zinc vapor in the reaction tower; 4. a step in which zinc vapor reacts with silicon tetrachloride in a reaction tower to produce silicon; 5. a process in which the reaction gas containing silicon collides with a silicon melting wall held above the melting point of silicon; 6. a step of introducing liquid silicon into a silicon holding tank located underneath; 7. a step of cooling the remaining reaction gas from the reaction tower to liquefy and separate zinc in the remaining reaction gas and returning it to the zinc gas production step; A high-purity silicon production apparatus comprising a step of taking out generated zinc chloride.
亜鉛ガスが亜鉛ガスと塩化亜鉛ガスとの混合ガスであることを特徴とする請求項1のシリコン製造装置2. The silicon manufacturing apparatus according to claim 1, wherein the zinc gas is a mixed gas of zinc gas and zinc chloride gas. 塩化亜鉛ガスを供給するための工程を有することを特徴とする請求項1及び2のシリコン製造装置3. A silicon manufacturing apparatus according to claim 1, further comprising a step of supplying zinc chloride gas. 反応塔に送られた亜鉛ガスがと塔内で旋回流となりながら該反応塔内を進むようにしたことを特徴とする請求項1から3のシリコン製造装置4. The silicon production apparatus according to claim 1, wherein the zinc gas sent to the reaction tower advances in the reaction tower while being swirled in the tower. 四塩化珪素はあらかじめ気化加熱して加圧状態で反応塔に送り込むようにしたことを特徴とする請求項1から4のシリコン製造装置5. The silicon production apparatus according to claim 1, wherein the silicon tetrachloride is vaporized and heated in advance and sent to the reaction tower in a pressurized state. 反応塔温度が1100℃から1350℃であることを特徴とする請求項1から5のシリコン製造装置6. The silicon production apparatus according to claim 1, wherein the reaction tower temperature is 1100 ° C. to 1350 ° C. 反応塔内反応部部分とシリコン溶解部分との間に邪魔板を設けることを特徴とする請求項1から6のシリコン製造装置7. A silicon production apparatus according to claim 1, wherein a baffle plate is provided between the reaction part in the reaction tower and the silicon dissolution part. シリコン溶融部の温度が1450℃から1600℃であることを特徴とする請求項1から7のシリコン製造装置8. The silicon manufacturing apparatus according to claim 1, wherein the temperature of the silicon melting part is 1450 ° C. to 1600 ° C. シリコン溶解部分は外部から炉壁を加温してシリコンの融解温度以上としたことを特徴とする請求項1から8のシリコン製造装置9. The silicon manufacturing apparatus according to claim 1, wherein the silicon melting portion is heated above the furnace wall from the outside to be equal to or higher than the melting temperature of silicon. シリコン溶解部分は反応塔内に入れられた発熱体を外部から誘導加熱で加温することを特徴とする請求項1から8のシリコン製造装置9. The silicon production apparatus according to claim 1, wherein the silicon melting portion heats a heating element placed in the reaction tower by induction heating from outside. シリコン保持槽が外部加熱機構を有し、融体で保持される様にしたことを特徴とする請求項1から10のシリコン製造装置11. The silicon manufacturing apparatus according to claim 1, wherein the silicon holding tank has an external heating mechanism and is held by a melt. シリコン保持槽が邪魔板を通して外部とつながっており、連続的に融体シリコンを取り出すようにしたことを特徴とする請求項1から11のシリコン製造装置12. The silicon manufacturing apparatus according to claim 1, wherein the silicon holding tank is connected to the outside through a baffle plate so that molten silicon is continuously taken out. シリコンが分離された残部反応ガスを亜鉛の沸点温度以下に下げ、サイクロン型の分離槽にて亜鉛を融体として残部反応ガスから分離回収するようにしたことを特徴とする請求項1から12のシリコン製造装置13. The residual reaction gas from which silicon has been separated is lowered below the boiling point temperature of zinc and separated and recovered from the remaining reaction gas as a melt in a cyclone type separation tank. Silicon production equipment 亜鉛分離槽の温度が750から650℃であることを特徴とする。請求項1から13のシリコン製造装置The temperature of the zinc separation tank is 750 to 650 ° C. Silicon production apparatus according to claims 1 to 13 亜鉛分離槽から出た塩化亜鉛を更に冷却、液化すると共に、残留亜鉛を回収して亜鉛ガス発生槽に導き、更に塩化亜鉛の一部を雰囲気ガスとしてガス化工程を経由して反応塔内に供給するようにしたことを特徴とする請求項1から14のシリコン製造装置The zinc chloride from the zinc separation tank is further cooled and liquefied, and the residual zinc is recovered and led to a zinc gas generation tank. Further, a part of zinc chloride is used as an atmospheric gas in the reaction tower via a gasification step. 15. The silicon manufacturing apparatus according to claim 1, wherein the silicon manufacturing apparatus is supplied.
JP2005346998A 2005-11-02 2005-11-02 Method of manufacturing silicon Ceased JP2007126342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005346998A JP2007126342A (en) 2005-11-02 2005-11-02 Method of manufacturing silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005346998A JP2007126342A (en) 2005-11-02 2005-11-02 Method of manufacturing silicon

Publications (1)

Publication Number Publication Date
JP2007126342A true JP2007126342A (en) 2007-05-24

Family

ID=38149297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005346998A Ceased JP2007126342A (en) 2005-11-02 2005-11-02 Method of manufacturing silicon

Country Status (1)

Country Link
JP (1) JP2007126342A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037174A (en) * 2008-08-07 2010-02-18 Silicon Plus Corp Manufacturing apparatus of polysilicon and manufacturing method of polysilicon
WO2010029894A1 (en) * 2008-09-09 2010-03-18 チッソ株式会社 High-purity crystalline silicon, high-purity silicon tetrachloride, and processes for producing same
CN102730691A (en) * 2012-07-10 2012-10-17 内蒙古盾安光伏科技有限公司 Energy utilization in polysilicon hydrogenation process
CN103058195A (en) * 2013-01-22 2013-04-24 华陆工程科技有限责任公司 Method for increasing efficiency of reductive deposition reaction for polycrystalline silicon production

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234719A (en) * 2001-01-31 2002-08-23 Yutaka Kamaike Apparatus for producing silicon material and method therefor
JP2003342016A (en) * 2002-05-24 2003-12-03 Takayuki Shimamune Method for manufacturing polycrystalline silicon
JP2004010472A (en) * 2002-06-06 2004-01-15 Takayuki Shimamune Method for producing silicon
JP2004099421A (en) * 2002-09-12 2004-04-02 Takayuki Shimamune Method for manufacturing silicon
JP2004284935A (en) * 2003-03-19 2004-10-14 Takayuki Shimamune Apparatus and method for manufacturing silicon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234719A (en) * 2001-01-31 2002-08-23 Yutaka Kamaike Apparatus for producing silicon material and method therefor
JP2003342016A (en) * 2002-05-24 2003-12-03 Takayuki Shimamune Method for manufacturing polycrystalline silicon
JP2004010472A (en) * 2002-06-06 2004-01-15 Takayuki Shimamune Method for producing silicon
JP2004099421A (en) * 2002-09-12 2004-04-02 Takayuki Shimamune Method for manufacturing silicon
JP2004284935A (en) * 2003-03-19 2004-10-14 Takayuki Shimamune Apparatus and method for manufacturing silicon

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037174A (en) * 2008-08-07 2010-02-18 Silicon Plus Corp Manufacturing apparatus of polysilicon and manufacturing method of polysilicon
WO2010029894A1 (en) * 2008-09-09 2010-03-18 チッソ株式会社 High-purity crystalline silicon, high-purity silicon tetrachloride, and processes for producing same
JPWO2010029894A1 (en) * 2008-09-09 2012-05-17 Jnc株式会社 High purity crystalline silicon, high purity silicon tetrachloride and methods for producing them
US8658118B2 (en) 2008-09-09 2014-02-25 Jnc Corporation High purity crystalline silicon, high purity silicon tetrachloride for processes for producing the same
CN102730691A (en) * 2012-07-10 2012-10-17 内蒙古盾安光伏科技有限公司 Energy utilization in polysilicon hydrogenation process
CN103058195A (en) * 2013-01-22 2013-04-24 华陆工程科技有限责任公司 Method for increasing efficiency of reductive deposition reaction for polycrystalline silicon production

Similar Documents

Publication Publication Date Title
JP4692247B2 (en) Method for producing high-purity polycrystalline silicon
US8287645B2 (en) Production process for high purity polycrystal silicon and production apparatus for the same
JP2008534415A (en) Method for producing Si by reduction of SiCl4 using liquid Zn
JP5040716B2 (en) High purity polycrystalline silicon manufacturing apparatus and manufacturing method
US7538044B2 (en) Process for producing high-purity silicon and apparatus
KR20140015255A (en) Fluorspar/iodide process for silicon purification
JP2012111986A (en) Titanium metal production apparatus and production method for titanium metal
JP4713941B2 (en) Method for producing silicon
JPH1111925A (en) Production of polycrystalline silicon and zinc oxide
JP2007126342A (en) Method of manufacturing silicon
JP2008037735A (en) Apparatus for manufacturing silicon
JP4692324B2 (en) High purity polycrystalline silicon production equipment
JP4392675B1 (en) High purity silicon production equipment
JP2010052960A (en) Method for production of high-purity silicon, production apparatus, and high-purity silicon
JP4392670B2 (en) Manufacturing method of high purity silicon
JP2004210594A (en) Method of manufacturing high purity silicon
WO2008034578A1 (en) Process for the production of germanium-bearing silicon alloys
JP2004035382A (en) Method of manufacturing polycrystalline silicon
JP2011121848A (en) Method for producing high purity silicon
JP5359119B2 (en) Manufacturing method of high purity silicon
JP2004099421A (en) Method for manufacturing silicon
JP2007217262A (en) Apparatus for manufacturing silicon
JP2004010472A (en) Method for producing silicon
US9352970B2 (en) Method for producing silicon for solar cells by metallurgical refining process
JP4392671B2 (en) Silicon production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081029

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081029

A711 Notification of change in applicant

Effective date: 20091221

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110304

A131 Notification of reasons for refusal

Effective date: 20110413

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110527

Free format text: JAPANESE INTERMEDIATE CODE: A523

A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20120215

Free format text: JAPANESE INTERMEDIATE CODE: A01

A045 Written measure of dismissal of application

Effective date: 20120627

Free format text: JAPANESE INTERMEDIATE CODE: A045