JP3019174B2 - Manufacturing method of multi-wavelength laser - Google Patents
Manufacturing method of multi-wavelength laserInfo
- Publication number
- JP3019174B2 JP3019174B2 JP4150630A JP15063092A JP3019174B2 JP 3019174 B2 JP3019174 B2 JP 3019174B2 JP 4150630 A JP4150630 A JP 4150630A JP 15063092 A JP15063092 A JP 15063092A JP 3019174 B2 JP3019174 B2 JP 3019174B2
- Authority
- JP
- Japan
- Prior art keywords
- laser
- wavelength
- substrate
- layer
- growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Semiconductor Lasers (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、同一基板上に複数の発
振波長(フォトルミネセンス波長)の異なるレーザが整
列した多波長レーザの製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multi-wavelength laser in which a plurality of lasers having different oscillation wavelengths (photoluminescence wavelengths) are arranged on the same substrate.
【0002】[0002]
【従来の技術】オプトエレクトロニクスを始めとした各
種システムの高度化、高機能化に伴い、それらに用いる
装置の主要部品である半導体素子には高集積化が要求さ
れている。2. Description of the Related Art With the advancement and sophistication of various systems such as optoelectronics, high integration is required for semiconductor elements, which are main components of devices used for these systems.
【0003】前記部品の代表的なものとして多波長レー
ザがある。例えば、エレクトロニクスレターズ(Ele
ctronics Letters)26巻13号(1
990年)940頁にあるように、半導体薄膜で活性層
を積層する際に、分子線エピタキシー(MBE;mol
ecular beam epitaxy)装置内の半
導体基板を回転させずに意図的に厚さを変化させる技術
が開発されている。この薄膜成長方法で形成した薄膜で
は必ず基板の一方から他方に向かって一定の割合で厚さ
が変化している。これを用いて多重量子井戸(MQW;
Multi Quantum−Well)を作製してレ
ーザの活性層とした場合、その発振波長も同様に一方か
ら他方に向かって変化している。しかしながら、一列に
並んだレーザの波長を任意に変化させることや、一素子
のみ変化させることは困難であった。A typical example of the above-mentioned components is a multi-wavelength laser. For example, Electronics Letters (Ele
tronics Letters) Vol. 26 No. 13 (1
(1990) p. 940, when laminating an active layer with a semiconductor thin film, molecular beam epitaxy (MBE; mol
2. Description of the Related Art A technique has been developed in which a thickness is intentionally changed without rotating a semiconductor substrate in an electronic beam epitaxy apparatus. In the thin film formed by this thin film growth method, the thickness always changes at a constant rate from one side of the substrate to the other side. Using this, multiple quantum wells (MQW;
When a Multi Quantum-Well is manufactured and used as an active layer of a laser, the oscillation wavelength similarly changes from one side to the other side. However, it has been difficult to arbitrarily change the wavelength of the lasers arranged in a line or to change only one element.
【0004】[0004]
【発明が解決しようとする課題】本発明の課題は、半導
体基板上に光を照射しながら、この基板上に半導体薄膜
を選択的に成長もしくは組成制御する方法を用い、成長
する薄膜の厚さもしくは組成を部分的に変化させて、異
なった発振波長のレーザが同一基板上に任意の順番に並
んだ多波長レーザを提供することにある。An object of the present invention is to provide a method for selectively growing or controlling the composition of a semiconductor thin film on a semiconductor substrate while irradiating the light on the semiconductor substrate. Another object of the present invention is to provide a multi-wavelength laser in which lasers having different oscillation wavelengths are arranged in an arbitrary order on the same substrate by partially changing the composition.
【0005】[0005]
【課題を解決するための手段】本発明は、有機金属分子
線エピタキシャル法により、光を単結晶基板上に照射し
ながら該基板上に半導体薄膜を成長させる方法におい
て、活性層を成長する際に光の照射を開始する時間を照
射領域毎に変化させて成長させることを最も主要な特徴
とする。SUMMARY OF THE INVENTION The present invention relates to a method of growing a semiconductor thin film on a single crystal substrate while irradiating the substrate with light by the metalorganic molecular beam epitaxial method. The most important feature is that the growth is performed by changing the time at which light irradiation is started for each irradiation region.
【0006】本発明は、新たに確認された以下のような
現象に基づいてなされたものである。The present invention has been made based on the following newly confirmed phenomena.
【0007】すなわち、InGaAs膜やInGaAs
P膜の成長において、膜の成長速度が基板温度の上昇に
伴って一定となるか、もしくは減少するような成長条件
下で、基板面上の一部に光照射して基板温度を部分的に
増加させると、光照射部での成長速度とガリウム組成と
が、非光照射部に比べ減少する。That is, an InGaAs film or InGaAs
In the growth of the P film, a part of the substrate surface is irradiated with light under a growth condition in which the growth rate of the film becomes constant or decreases as the substrate temperature increases, and the substrate temperature is partially reduced. When it is increased, the growth rate and the gallium composition in the light-irradiated part decrease as compared with the non-light-irradiated part.
【0008】この現象を量子井戸構造の作製に応用する
と、作製したレーザの発振波長を変化させることが可能
となる。If this phenomenon is applied to the fabrication of a quantum well structure, the oscillation wavelength of the fabricated laser can be changed.
【0009】図1には、多重量子井戸を形成する井戸層
となるInGaAsP膜成長時にレーザ光を照射した部
分におけるフォトルミネセンス波長の、レーザ光照射開
始時間の該InGaAsP膜成長開始時からの遅れ時間
への依存性を示す。井戸層となるInGaAsP膜の成
長開始時から、レーザ光照射の時間が遅れるに従い、そ
の照射部分におけるフォトルミネセンス波長は短波側に
変化する。したがって、数本の線状のパターンを描画す
る時に、井戸層となるInGaAsP膜の成長開始時か
らレーザ光照射の時間の遅れをパターン毎に変化させれ
ば、パターン毎にフォトルミネセンス波長を変化させる
ことが可能となる。図1は、量子井戸層の成長時に光照
射を行なった場合について示したものであるが、障壁層
の成長時に光照射を行なっても、同様の効果を得ること
ができる。FIG. 1 shows the delay of the laser light irradiation start time from the start of the growth of the InGaAsP film in the portion irradiated with the laser light during the growth of the InGaAsP film serving as the well layer forming the multiple quantum well. Shows time dependency. As the time of laser light irradiation is delayed from the start of the growth of the InGaAsP film serving as a well layer, the photoluminescence wavelength in the irradiated portion changes to the shorter wavelength side. Therefore, when writing several linear patterns, if the time delay of laser light irradiation is changed for each pattern from the start of growth of the InGaAsP film serving as a well layer, the photoluminescence wavelength changes for each pattern. It is possible to do. FIG. 1 shows the case where light irradiation is performed during the growth of the quantum well layer. However, the same effect can be obtained by performing light irradiation during the growth of the barrier layer.
【0010】このように、多重量子井戸を作製する際
に、本方法を井戸層成長時もしくは障壁層成長時に用い
ることにより、部分的に発振波長の異なった多重量子井
戸を持つレーザを得ることができる。As described above, when a multi-quantum well is manufactured, by using this method at the time of growing a well layer or a barrier layer, it is possible to obtain a laser having a multi-quantum well having a partially different oscillation wavelength. it can.
【0011】また、図2〜4に示すように、この方法を
レーザの活性層成長時に用いることにより、場所により
発振波長(フォトルミネセンス波長)の異なった活性層
を有するレーザ用結晶が得られ、この結晶を用いてレー
ザ構造を作製することができる。As shown in FIGS. 2 to 4, by using this method at the time of growing an active layer of a laser, a laser crystal having an active layer having a different oscillation wavelength (photoluminescence wavelength) depending on the location can be obtained. A laser structure can be manufactured using this crystal.
【0012】図2〜4において、1は基板、2は下方ク
ラッド、3はガイド層、4は活性層、5はガイド層、6
は上方クラッド層、7,8は電極である。41,42は
レーザ光の一部照射により作製した互いにフォトルミネ
センス波長の異なる活性層である。2 to 4, 1 is a substrate, 2 is a lower cladding, 3 is a guide layer, 4 is an active layer, 5 is a guide layer, 6
Is an upper cladding layer, and 7 and 8 are electrodes. Reference numerals 41 and 42 denote active layers formed by partial irradiation of laser light and having different photoluminescence wavelengths.
【0013】図2に示すように、単結晶基板1上にクラ
ッド層2およびガイド層3を成長させる。その後、前記
ガイド層3の上に、レーザ光の一部照射をその照射時間
を変えて行ない、これにより、フォトルミネセンス波長
が互いに異なる活性層4,41,42を作製する。続い
て、この上に、図3に示すように、連続してガイド層
5,上方クラッド層6を成長させる。次に、図4に示す
ように、これをレーザアレイに加工する。このようにし
て製作した各レーザの発振波長は異なる。As shown in FIG. 2, a clad layer 2 and a guide layer 3 are grown on a single crystal substrate 1. Thereafter, partial irradiation of laser light is performed on the guide layer 3 while changing the irradiation time, whereby active layers 4, 41 and 42 having different photoluminescence wavelengths are produced. Subsequently, as shown in FIG. 3, the guide layer 5 and the upper clad layer 6 are successively grown thereon. Next, as shown in FIG. 4, this is processed into a laser array. The oscillation wavelength of each laser manufactured in this way is different.
【0014】このように、レーザを単結晶基板上に部分
的かつ照射時間を変えて照射してレーザ構造を作製する
ことにより、活性層の構造が異なった、すなわち、発振
波長の異なったレーザが任意の順番に並んだ多波長レー
ザを作製することが可能となる。As described above, by irradiating a single crystal substrate with a laser beam while partially changing the irradiation time to form a laser structure, a laser having a different active layer structure, that is, a laser having a different oscillation wavelength can be obtained. Multi-wavelength lasers arranged in an arbitrary order can be manufactured.
【0015】なお、図2においては、リッジ型のレーザ
を示したが、埋め込み型、等の必要に応じた構造とする
ことが可能である。Although a ridge type laser is shown in FIG. 2, it is possible to use a buried type laser or the like as required.
【0016】[0016]
【作用】このように、本発明方法は、レーザを単結晶基
板上に部分的に照射してレーザ構造を作製するものであ
り、これにより、同一基板上に活性層の構造が異なっ
た、すなわち、発振波長の異なったレーザが任意の順番
に並んだ多波長レーザを作製することができる。As described above, according to the method of the present invention, a laser structure is produced by partially irradiating a laser on a single crystal substrate, whereby the structure of the active layer is different on the same substrate. A multi-wavelength laser in which lasers having different oscillation wavelengths are arranged in an arbitrary order can be manufactured.
【0017】以下、本発明を実施例によりさらに詳しく
説明する。Hereinafter, the present invention will be described in more detail with reference to examples.
【0018】[0018]
【実施例】以下の具体的実施例は、図2〜4を参照して
説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following specific embodiments will be described with reference to FIGS.
【0019】有機金属分子線エピタキシャル装置を用い
て、350μm厚さのn型InP基板1の上にn型In
Pクラッド層2を厚さ0.5μm成長させ、続いて、n
型InGaAsPガイド層3を厚さ0.1μm成長させ
た。次に、活性層4を構成する量子井戸のInGaAs
P(等価波長1. 1μm)障壁層と、InGaAsP
(等価波長1. 4μm)井戸層とを、交互に成長させ
た。この際、井戸層成長時に5Wのアルゴンレーザ光
(照射ビーム径約400μmφ)を井戸層の成長を開始
した時から3秒後に照射し、また、該照射部から1mm
離れた場所を12秒後に照射した。An n-type InP substrate 1 having a thickness of 350 μm is placed on an n-type InP substrate 1 using an organometallic molecular beam epitaxy apparatus.
A P-cladding layer 2 is grown to a thickness of 0.5 μm, followed by n
The type InGaAsP guide layer 3 was grown to a thickness of 0.1 μm. Next, InGaAs of the quantum well constituting the active layer 4 is used.
P (equivalent wavelength 1.1 μm) barrier layer and InGaAsP
(Equivalent wavelength: 1.4 μm) and well layers were alternately grown. At this time, a 5 W argon laser beam (irradiation beam diameter: about 400 μmφ) is irradiated 3 seconds after the growth of the well layer is started at the time of growth of the well layer, and 1 mm from the irradiated portion.
The remote location was irradiated after 12 seconds.
【0020】次に、InGaAsPガイド層5を0.1
μm、p型InPクラッド層6を1.5μmそれぞれ成
長させた。前記のレーザ照射部および非照射部を用いて
3本のレーザが任意の順番に並んだレーザを作製した。
これら3本のレーザの各々は、発振波長が互いに約10
0nm異なっていた。Next, the InGaAsP guide layer 5 is
μm and a p-type InP cladding layer 6 were grown 1.5 μm, respectively. Using the laser irradiation part and the non-irradiation part, a laser in which three lasers were arranged in an arbitrary order was produced.
Each of these three lasers has an oscillation wavelength of about 10
0 nm different.
【0021】この場合の有機金属分子線エピタキシャル
成長による成長条件は、以下の通りであった。原料はア
ルシンAsH3 ,フォスフィンPH3 ,トリメチルイン
ジウムTMIn、トリエチルガリウムTEGaを使用
し、到達真空度は1×10-9Torrで、基板成長温度
は510℃であった。多重量子井戸の成長速度は1. 3
μm/hであった。In this case, the growth conditions by the metalorganic molecular beam epitaxial growth were as follows. The raw materials used were arsine AsH 3 , phosphine PH 3 , trimethylindium TMIn, and triethylgallium TEGa, the ultimate vacuum was 1 × 10 −9 Torr, and the substrate growth temperature was 510 ° C. The growth rate of the multiple quantum well is 1.3
μm / h.
【0022】[0022]
【発明の効果】以上説明したように、本発明方法によれ
ば、所望の波長が所望の順番に並んだ多波長レーザを形
成することができる。そのため、本製造方法を用いるこ
とにより、将来のキーデバイスとして期待されている多
波長レーザアレイを始めとした光素子や光・電子集積回
路(OEIC;opto−electronic in
tegrated circuit)の形成が可能とな
る。As described above, according to the method of the present invention, a multi-wavelength laser having desired wavelengths arranged in a desired order can be formed. Therefore, by using this manufacturing method, an optical element such as a multi-wavelength laser array, which is expected as a key device in the future, or an opto-electronic integrated circuit (OEIC).
The formation of an integrated circuit is possible.
【図面の簡単な説明】[Brief description of the drawings]
【図1】多重量子井戸を形成する井戸層となるInGa
AsP膜成長時にレーザ光を照射した部分のフォトルミ
ネセンス波長の、レーザ光照射開始時間の該InGaA
sP膜成長開始時からの遅れ時間への依存性を示すグラ
フである。FIG. 1 shows InGa serving as a well layer forming a multiple quantum well.
The photoluminescence wavelength of the portion irradiated with the laser beam during the growth of the AsP film is the InGaAs at the laser beam irradiation start time.
6 is a graph showing dependence on a delay time from the start of sP film growth.
【図2】本発明のレーザの作製工程中の多波長レーザの
断面構成図である。FIG. 2 is a cross-sectional configuration diagram of a multi-wavelength laser during a manufacturing process of the laser of the present invention.
【図3】本発明のレーザの作製工程中の多波長レーザの
断面構成図である。FIG. 3 is a cross-sectional configuration diagram of a multi-wavelength laser during a laser manufacturing process of the present invention.
【図4】本発明のレーザの作製終了後の多波長レーザの
断面構成図である。FIG. 4 is a cross-sectional configuration diagram of a multi-wavelength laser after a laser of the present invention has been manufactured.
1 基板 2 下方クラッド 3 ガイド層 4 活性層 5 ガイド層 6 上方クラッド層 7 電極 8 電極 41 活性層 42 活性層 DESCRIPTION OF SYMBOLS 1 Substrate 2 Lower clad 3 Guide layer 4 Active layer 5 Guide layer 6 Upper clad layer 7 Electrode 8 Electrode 41 Active layer 42 Active layer
フロントページの続き (56)参考文献 特開 昭64−27285(JP,A) 特開 平2−32584(JP,A) 特開 昭63−227089(JP,A) 特開 平1−300516(JP,A) 特開 平4−263418(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01S 5/00 Continuation of the front page (56) References JP-A-64-27285 (JP, A) JP-A-2-32584 (JP, A) JP-A-62-227089 (JP, A) JP-A-1-300516 (JP) , A) JP-A-4-263418 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01S 5/00
Claims (1)
同一の単結晶基板上に多波長のレーザ構造を成長させる
多波長レーザの製造方法であって、 前記単結晶基板上の一部にレーザ光を照射しながら該基
板上にIII−V族半導体薄膜からなる活性層を成長さ
せる際に、該レーザ光を複数本の線上に照射することと
し、この時、照射する領域毎に照射を開始する時間を変
化させるとともに、該照射した領域の少なくとも一部を
用いて複数本からなるレーザの一部を形成することを特
徴とする多波長レーザの製造方法。1. A multi-wavelength laser manufacturing method for growing a multi-wavelength laser structure on the same single crystal substrate by metalorganic molecular beam epitaxy, wherein a part of the single crystal substrate is irradiated with laser light. While growing an active layer made of a group III-V semiconductor thin film on the substrate, the laser light is irradiated onto a plurality of lines, and at this time, the time for starting irradiation for each irradiated region is A method of manufacturing a multi-wavelength laser, wherein a part of a plurality of lasers is formed by using at least a part of the irradiated region while changing the irradiation area.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4150630A JP3019174B2 (en) | 1992-06-10 | 1992-06-10 | Manufacturing method of multi-wavelength laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4150630A JP3019174B2 (en) | 1992-06-10 | 1992-06-10 | Manufacturing method of multi-wavelength laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05343801A JPH05343801A (en) | 1993-12-24 |
JP3019174B2 true JP3019174B2 (en) | 2000-03-13 |
Family
ID=15501057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4150630A Expired - Fee Related JP3019174B2 (en) | 1992-06-10 | 1992-06-10 | Manufacturing method of multi-wavelength laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3019174B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4233801B2 (en) * | 2002-04-08 | 2009-03-04 | 士郎 酒井 | InGaN-based compound semiconductor light emitting device manufacturing method |
DE102017108949B4 (en) | 2016-05-13 | 2021-08-26 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Semiconductor chip |
DE102017109809B4 (en) | 2016-05-13 | 2024-01-18 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Method for producing a semiconductor chip |
DE102017109812A1 (en) | 2016-05-13 | 2017-11-16 | Osram Opto Semiconductors Gmbh | Light-emitting semiconductor chip and method for producing a light-emitting semiconductor chip |
-
1992
- 1992-06-10 JP JP4150630A patent/JP3019174B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05343801A (en) | 1993-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5151913A (en) | Semiconductor laser | |
US5065200A (en) | Geometry dependent doping and electronic devices produced thereby | |
JP3977920B2 (en) | Manufacturing method of semiconductor device | |
JP4002422B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3019174B2 (en) | Manufacturing method of multi-wavelength laser | |
JP3045115B2 (en) | Method for manufacturing optical semiconductor device | |
JP2950028B2 (en) | Method for manufacturing optical semiconductor device | |
JPH03151684A (en) | Manufacture of multi-wavelength integrated semiconductor laser | |
JPH06132610A (en) | Semiconductor laser array element and manufacture thereof | |
JP2000031596A (en) | Semiconductor laser and its manufacture | |
JPH05110186A (en) | Monolithic optical element and manufacture of the same | |
JP2542570B2 (en) | Method for manufacturing optical integrated device | |
JP2682482B2 (en) | Method for manufacturing compound semiconductor integrated circuit | |
JP3132433B2 (en) | Method for manufacturing disordered crystal structure, method for manufacturing semiconductor laser, and method for manufacturing semiconductor laser with window structure | |
JP2546381B2 (en) | Distributed feedback semiconductor laser and manufacturing method thereof | |
JPH09283858A (en) | Compd. semiconductor optical device manufacturing method and apparatus | |
JPH06283803A (en) | Semiconductor light emitting device | |
JP2500615B2 (en) | Method for manufacturing embedded optical semiconductor device | |
JP3082444B2 (en) | Manufacturing method of semiconductor laser | |
JP3298572B2 (en) | Method for manufacturing optical semiconductor device | |
JP3314794B2 (en) | Semiconductor laser and method of manufacturing the same | |
JP2630273B2 (en) | Distributed feedback semiconductor laser | |
JPH11154771A (en) | Manufacture of quantum dot structure and semiconductor light-emitting element using the same | |
JPH05102611A (en) | Manufacture of photoelectron semiconductor device | |
JPH07193322A (en) | Manufacture of semiconductor laser array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |