JP3014093U - Temperature sensor with thermocouple and protective tube integrated - Google Patents

Temperature sensor with thermocouple and protective tube integrated

Info

Publication number
JP3014093U
JP3014093U JP1994015920U JP1592094U JP3014093U JP 3014093 U JP3014093 U JP 3014093U JP 1994015920 U JP1994015920 U JP 1994015920U JP 1592094 U JP1592094 U JP 1592094U JP 3014093 U JP3014093 U JP 3014093U
Authority
JP
Japan
Prior art keywords
thermocouple
protective tube
temperature
temperature measuring
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1994015920U
Other languages
Japanese (ja)
Inventor
正信 一瀬
澄彦 栗田
Original Assignee
株式会社香蘭社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社香蘭社 filed Critical 株式会社香蘭社
Priority to JP1994015920U priority Critical patent/JP3014093U/en
Application granted granted Critical
Publication of JP3014093U publication Critical patent/JP3014093U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

(57)【要約】 【目的】 熱電温度計において、熱電対と絶縁管と保護
管が一体化した測温センサーの構造を提供する。 【構成】 別々に製作された保護管、絶縁管、熱電対よ
り成る従来の測温センサーでは、組み立てに際して裸の
熱電対の汚染など取扱に細心の注意を要し、保護管と絶
縁管との間の隙間は高温長時間測定では汚染物質の介在
を招きやすく、またサイズ的にも小径長尺のものは製作
困難である。本考案では、シース熱電対における金属保
護管や絶縁粉末にあたる部材が2つ穴の絶縁性セラミッ
ク保護管である。従って、従来のシース熱電対では不可
能な高温域の測温ができる。 【効果】 熱電対素線の劣化が小さいので耐用が長く取
扱い簡便で応答性が良い。特に、汚染環境下での高温測
定に有効である。
(57) [Abstract] [Purpose] To provide a structure of a temperature measuring sensor in which a thermocouple, an insulating tube, and a protective tube are integrated in a thermoelectric thermometer. [Constitution] In the conventional temperature measuring sensor consisting of a protective tube, an insulating tube and a thermocouple, which are separately manufactured, it is necessary to handle with care such as contamination of a bare thermocouple when assembling. The gap between them is likely to cause the inclusion of contaminants when measured at high temperature for a long time, and it is difficult to manufacture a small size and long size. In the present invention, the metal protective tube in the sheath thermocouple and the member corresponding to the insulating powder are the two-hole insulating ceramic protective tube. Therefore, it is possible to measure the temperature in a high temperature range, which is impossible with the conventional sheath thermocouple. [Effect] Since the deterioration of the thermocouple wire is small, it has a long service life, is easy to handle, and has good responsiveness. Especially, it is effective for high temperature measurement in a contaminated environment.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、熱電対と保護管が一体となった測温センサーの構造に係わり、更に 詳しくは2つの穴を有して絶縁管の役割を兼ね備えた保護管の中に熱電対が組み 込まれて一体となった測温センサーの構造に関するものである。 The present invention relates to a structure of a temperature measuring sensor in which a thermocouple and a protection tube are integrated, and more specifically, a thermocouple is incorporated in a protection tube which has two holes and serves as an insulating tube. The present invention relates to the structure of a temperature measuring sensor integrated into one.

【0002】[0002]

【従来の技術】[Prior art]

熱電温度計の測温センサーは、一般に、温度を熱起電力の差で検知する熱電対 と熱電対の素線を電気的に絶縁する絶縁体と必要に応じてこれらを収納し外側か ら保護する保護管から構成されている。熱電対には予めテフロンやガラス系編組 等で絶縁した被覆熱電対があるが、これは概ね500℃以下の低温領域での測温 に限られており、高温領域での測温は一般に裸熱電対を2つ孔の磁性絶縁管に通 しこれを上記の保護管に挿入して行われている。また、熱電対の材質は白金やロ ジウムを用いた貴金属系とそれ以外の金属又は合金を用いた卑金属系に分けられ るが、卑金属系は耐熱性に劣るため1000℃以上の高温測定では主に貴金属熱 電対が使用されている。この貴金属熱電対は還元性ガス、金属性ガスや不純物の 環境にさらされると、熱起電力の低下を招き温度誤差が大きくなる。例えば、高 温で白金素線がシリカを含む耐火物に接触しているときCOガスが存在すると、 シリカは還元されて白金に珪素が吸収され非常に脆い合金を作り断線することが ある 。また、銅、鉄、鉛、亜鉛、カドミウム、アルミニウム、錫などの殆どの金属と 低融点の合金もしくは化合物を作り、いずれも熱起電力が低下して温度精度を悪 くしたり、融点降下による溶断や脆性亀裂で測温不能になる。このように不純物 が付着したり汚染ガスにさらされることから熱電対を保護し劣化を防ぐ為に保護 管を用いるが、測温に際し、特に高温測定は過酷な汚染環境のもとで行われるこ とが多く、保護管と絶縁管との僅かな隙間にも汚染物質が入り込んで、熱電対の 感熱部や絶縁管の継目部分を侵すことが多い。溶鋼の連続測温の場合などは、熱 電対を保護する上記の保護管の外側に更に耐溶損性保護管を用いるが、これはB N系やALN系のような高耐食性の非酸化物セラミックス、MoやZr系サーメ ット、アルミナグラファイトなどの炭素含有耐火物で作られており、それぞれ高 温において還元ガスや金属蒸気、ガラスなどを発生し前述のような汚染環境を作 る。1500℃〜1600℃の溶鋼測温のレベルでは一般に材料強度の低下、変 形、熱衝撃、部材間の膨張差など様々な要因で、熱電対を保護する保護管はしば しば折損し、熱電対は直接汚染環境に晒されることになる。この点からも溶鋼な どの連続測温では従来の方式は問題が多く、スポット的測温を除いて余り普及し ていない。 Generally, the temperature sensor of a thermocouple is a thermocouple that detects temperature by the difference in thermoelectromotive force and an insulator that electrically insulates the wires of the thermocouple, and if necessary, accommodates them and protects them from the outside. It consists of a protective tube. Thermocouples include coated thermocouples that have been previously insulated with Teflon or glass braid, but these are generally limited to temperature measurements in the low temperature region of 500 ° C or less, and temperature measurements in the high temperature region are generally naked thermocouples. The pair is passed through a two-hole magnetic insulating tube, which is inserted into the above-mentioned protective tube. The material of thermocouple is divided into noble metal type using platinum or rhodium and base metal type using other metal or alloy. However, base metal type is inferior in heat resistance, so it is mainly used for high temperature measurement of 1000 ℃ or more. A precious metal thermocouple is used for. When this noble metal thermocouple is exposed to the environment of reducing gas, metallic gas and impurities, the thermoelectromotive force is lowered and the temperature error becomes large. For example, if CO gas is present when the platinum wire is in contact with a refractory containing silica at a high temperature, silica may be reduced and platinum may absorb silicon to form a very brittle alloy, resulting in a wire breakage. In addition, alloys or compounds with low melting points are made with most metals such as copper, iron, lead, zinc, cadmium, aluminum, tin, etc., and in all cases, the thermoelectromotive force decreases and temperature accuracy deteriorates, and melting due to lowering of melting point It becomes impossible to measure temperature due to brittle cracks. Protective tubes are used to protect the thermocouple and prevent deterioration from impurities such as these being attached or being exposed to polluted gas, but during temperature measurement, especially high temperature measurement is performed in a severe polluted environment. In many cases, contaminants enter the small gap between the protective tube and the insulating tube, and often invade the heat-sensitive part of the thermocouple and the joint part of the insulating tube. In the case of continuous temperature measurement of molten steel, a corrosion-resistant protective tube is used outside the above-mentioned protective tube for protecting the thermocouple. This is a highly corrosion-resistant non-oxide such as BN and ALN. It is made of ceramics, carbon-containing refractory materials such as Mo and Zr-based cermets, and alumina graphite. They generate reducing gas, metal vapor, glass, etc. at high temperatures, respectively, and create the polluted environment as described above. At the level of molten steel temperature measurement from 1500 ℃ to 1600 ℃, the protective tube that protects the thermocouple often breaks due to various factors such as deterioration of material strength, deformation, thermal shock, and difference in expansion between members. Thermocouples will be directly exposed to the polluted environment. From this point as well, the conventional method has many problems in continuous temperature measurement such as molten steel, and is not widely used except for spot temperature measurement.

【0003】 次に、取扱いに際して、保管時あるいは組み立て時の熱電対、絶縁管及び保護 管の内部の汚染も、高温において同様に熱電対の劣化を招く。従って、絶縁管へ の熱電対の挿入などは、汚れの無い部屋で、手で触れないように手袋をして、細 心の注意を払って行われている。更に、この挿入作業は、素線が未使用のもので は手間を要しないが、一度使用したものでは変形歪みや表面荒れを起こしている ことが多く、これを絶縁管の細い孔に長尺にわたって通すことは極めて困難で大 変な作業である。Next, during handling, contamination of the inside of the thermocouple, the insulating tube and the protective tube during storage or assembly also leads to deterioration of the thermocouple at high temperatures. Therefore, inserting thermocouples into insulating tubes is done in a clean room with gloves that are not touched by hand and with great care. Furthermore, this insertion work does not require time and effort if the wire is not used, but it often causes deformation distortion and surface roughness when used once. It is a very difficult and catastrophic task to pass through.

【0004】 温度計としての性能上の観点からは、温度精度の他に温度応答性に優れている ことが重要である。測温対象と熱電対の感熱部との間には保護管、空隙、絶縁管 があり、これを通して熱の移動が行われるが、サイズ面では出来るだけ空気層の 無い薄肉、小径の管の場合がその分だけ応答速度が早くなる。ところが、従来の 測温センサーでは、余り細いものは作られていない。最も細い絶縁管の外径でも 2つ孔のものはφ3mm程度であり、保護管の肉厚を1mm、空隙を0.5mm としても保護管の外径(測温センサーの外径)はφ6mmとなる。1つ孔のもの は外径φ1mm程度まであるので、熱電対素線の1本をこれに入れ他の1本を入 れない場合、外径φ3mmの測温センサーが作れるが、強度的に弱く、高温長時 間測定では熱電対素線の劣化が2本の素線を入れたものより著しく速く、また長 尺のものは製作が難しく製造コストが高くなる。From the viewpoint of performance as a thermometer, it is important that the temperature response is excellent in addition to the temperature accuracy. There is a protective tube, a gap, and an insulating tube between the temperature measurement target and the thermosensitive part of the thermocouple, through which heat is transferred, but in the case of a size, there is a thin wall with a small diameter and a small diameter tube. However, the response speed will be correspondingly faster. However, conventional temperature sensors have not been made to be very thin. The outer diameter of the thinnest insulating tube with two holes is about 3 mm, and even if the thickness of the protective tube is 1 mm and the gap is 0.5 mm, the outer diameter of the protective tube (outer diameter of the temperature sensor) is 6 mm. Become. The one with one hole has an outer diameter of up to φ1 mm, so if you cannot put one of the thermocouple wires in this and the other cannot, you can make a temperature sensor with an outer diameter of φ3 mm, but it is weak in strength. In high temperature long time measurement, the deterioration of thermocouple wire is significantly faster than that with two wires, and the long wire is difficult to manufacture and the manufacturing cost is high.

【0005】 熱電対と絶縁体と保護管が一体構造となっているものにシース熱電対がある。 これは、絶縁体に主に酸化マグネシウムの粉末、保護管に相当する外被(シース )にステンレスやインコネルなどの耐熱金属が用いられ、曲げ伸ばしが可能であ る。従って、折損の危険性が小さく又気密性も良いので、外部から汚染されるこ とがなく取扱いも簡便である。サイズも細くかつ非常に長尺のものが得られ、価 格も安い。ただし、使用温度は概ね1000℃程度迄であり、高温側での長時間 測定は外被金属による熱電対汚染の恐れがある。A sheath thermocouple is one in which a thermocouple, an insulator, and a protective tube are integrally structured. This is because magnesium oxide powder is mainly used as the insulator, and heat-resistant metal such as stainless steel or Inconel is used for the outer sheath (sheath) corresponding to the protective tube, which enables bending and stretching. Therefore, since the risk of breakage is low and the airtightness is good, there is no contamination from the outside and the handling is simple. The size is small and the length is very long, and the price is low. However, the operating temperature is up to about 1000 ° C, and long-time measurement on the high temperature side may cause thermocouple contamination by the outer metal.

【0006】 以上述べてきたように、従来の測温センサーは、低温域では余り問題ないが1 000℃以上の高温域では主に汚染物質により熱電対が劣化し、また、取扱いが 面倒で汚染原因も生じやすい。性能面やサイズ面からは、更に細くて長尺のもの が求められている。これらは、シース熱電対の様に熱電対と絶縁体と保護管が一 体となってはじめて可能で、1000℃以上の使用温度での高温用一体構造測温 センサーが要望されている。つまり、外被がセラミックスのシース熱電対が要望 されているのである。As described above, the conventional temperature measuring sensor has no problem in the low temperature range, but in the high temperature range of 1000 ° C. or higher, the thermocouple is deteriorated mainly by pollutants, and the handling is troublesome. Causes are also likely to occur. From the viewpoint of performance and size, thinner and longer products are required. These are only possible with a thermocouple, an insulator, and a protective tube as a unit, like a sheath thermocouple, and there is a demand for an integrated temperature sensor for high temperatures at a use temperature of 1000 ° C or higher. In other words, there is a demand for a sheath thermocouple with a ceramic jacket.

【0007】[0007]

【考案が解決しようとする課題】[Problems to be solved by the device]

本考案はかかる問題点に鑑みてなされたもので、その目的とするところは取扱 い簡便で、温度応答性に優れ、雰囲気ガスによる劣化が防止できる新しい構造の 測温センサーを提供せんとするものである。 The present invention has been made in view of the above problems, and its purpose is to provide a temperature measuring sensor having a new structure that is easy to handle, has excellent temperature responsiveness, and can prevent deterioration due to atmospheric gas. Is.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

本考案者は、上記問題点は次の手段によって解決できることを見いだした。 すなわち、 The present inventor has found that the above problems can be solved by the following means. That is,

【0009】 1.2つの穴を有する絶縁性セラミック保護管と、該2つの穴の各々の中をのび るとともに先端部で接合されて測温接点を成形する2本の異種の金属線からなる 熱電対とからなり、かつ該絶縁性セラミック保護管の該測温接点側が閉じた構造 を有することを特徴とする熱電対と保護管が一体となった測温センサーによって 解決できる。 2.測温接点部において、熱電対とセラミック素地との間に隙間が設けられてい ることを特徴とする上記1に記載の測温センサーによって解決できる。1. An insulating ceramic protective tube having two holes and two dissimilar metal wires extending in each of the two holes and joined at the tip to form a temperature measuring contact. This can be solved by a temperature measuring sensor in which the thermocouple and the protective tube are integrated, which is composed of a thermocouple and has a structure in which the temperature measuring contact side of the insulating ceramic protective tube is closed. 2. This can be solved by the temperature measuring sensor described in the above 1, characterized in that a gap is provided between the thermocouple and the ceramic body in the temperature measuring contact portion.

【0010】[0010]

【作用】[Action]

本考案の構造及び作用を図面によって詳細に説明する。 The structure and operation of the present invention will be described in detail with reference to the drawings.

【0011】 図1は、測温接点がセラミックス素地中に埋め込まれた構造の、熱電対と保護 管が一体となった測温センサーの断面図である。2本の熱電対素線2は2つの穴 の中をのびていて、熱電対の測温接点3は2つ穴保護管1の一端を封止された側 の素地中に閉じ込められ、外部の汚染物質や還元性雰囲気から保護される。熱電 対をセラミック素地へ組み込むには多くの方法があるが、十分な機密性が得られ るものであればどの様な方法でもよい。この方法によっては、熱電対の測温接点 部分が素地中に埋め込まれて熱電対と素地間に空隙を有するものと有しないもの とがあるが、それぞれに一長一短がある。即ち、空隙を有しない場合は一般に製 作容易であり、また素地と測温接点間の直接伝熱により非常に応答性の優れたも のが得られるが、高温使用時に熱電対が素地との熱膨張差により損傷されやすい 。 一方、空隙を有するものは熱電対が素地と別個に伸縮自在であるので損傷を招 くことがなく、高温での多数回の繰り返し使用に適している。FIG. 1 is a cross-sectional view of a temperature measuring sensor having a structure in which a temperature measuring contact is embedded in a ceramics body, in which a thermocouple and a protective tube are integrated. The two thermocouple wires 2 extend through the two holes, and the thermocouple temperature-measuring contact 3 is confined in the body on the side where one end of the two-hole protective tube 1 is sealed, Protected from pollutants and reducing atmosphere. There are many ways to incorporate a thermocouple into a ceramic body, but any method that provides sufficient confidentiality can be used. Depending on this method, there is a method in which the temperature measuring junction part of the thermocouple is embedded in the base material and has no air gap between the thermocouple and the base material, but each method has advantages and disadvantages. In other words, if there are no voids, it is generally easy to manufacture, and direct heat transfer between the substrate and the temperature-measuring contact provides very excellent responsiveness. It is easily damaged by the difference in thermal expansion. On the other hand, those having voids do not cause damage because the thermocouple can expand and contract separately from the substrate, and are suitable for repeated use at high temperatures.

【0012】 図2と図3はこれを説明したもので、空隙を形成する手段によって種々の形状 をとることができる。即ち、図2は、仕切り蓋によって測温接点と素地との間に 空隙が設けられた構造の、熱電対と保護管が一体となった測温センサーの断面図 である。これは、裸の熱電対素線の測温接点が生素地中に埋め込まれる前に、平 蓋5で熱電対と生素地との間を仕切ることによって空隙4の部分を形成したもの である。図2中の点線で囲われた部分が平蓋5であるが、これはセラミック素地 と同組成の材料で作られて、本焼成後はセラミック素地と一体化している。図3 は、加熱消失性被覆が用いられて空隙が設けられた構造の、熱電対と保護管が一 体となった測温センサーの断面図である。これは、予め熱電対素線の測温接点部 分に加熱消失性被覆を施しておき、これがセラミック素地中に埋め込まれた後、 焼成時に被覆部分が消失し空隙4を形成したものである。空隙を設けることは、 2つの穴が空隙によって連結させられ、熱電対素線がセラミック素地に固定され ずにその連結穴の中を通っていることであり、空隙が大きくなればなるほど測温 接点の位置が保護管の先端位置からずれて測温誤差を招き易くなるので、できる だけ小さくすることが好ましい。図3の場合は、測温接点の形状に沿って薄い空 隙が形成されて測温接点が殆ど動けない様になっているので、測温接点がずれる 心配は全く無い。FIG. 2 and FIG. 3 explain this, and various shapes can be taken by means of forming the voids. That is, FIG. 2 is a cross-sectional view of a temperature measuring sensor in which a thermocouple and a protective tube are integrated, which has a structure in which a gap is provided between the temperature measuring contact and the substrate by a partition cover. This is one in which the gap 4 is formed by partitioning the thermocouple and the green body with a flat lid 5 before the temperature measuring junction of the bare thermocouple wire is embedded in the green body. The portion surrounded by the dotted line in FIG. 2 is the flat lid 5, which is made of a material having the same composition as the ceramic base material, and is integrated with the ceramic base material after the main firing. FIG. 3 is a cross-sectional view of a temperature measuring sensor in which a thermocouple and a protective tube are integrated, which has a structure in which a heat-dissipative coating is used to provide a gap. In this case, a heat-dissipative coating is applied to the temperature-measuring contact portion of the thermocouple wire in advance, and after this is embedded in the ceramic body, the coating part disappears during firing to form the void 4. Providing a gap means that the two holes are connected by the gap, and the thermocouple wire passes through the connecting hole without being fixed to the ceramic body. The larger the gap, the more the temperature measuring junction. Since the position of is likely to deviate from the position of the tip of the protection tube and cause an error in temperature measurement, it is preferable to make it as small as possible. In the case of FIG. 3, since a thin space is formed along the shape of the temperature measuring contact so that the temperature measuring contact can hardly move, there is no fear that the temperature measuring contact is displaced.

【0013】 2つ穴保護管の材質は、熱電対を劣化させず高温での絶縁性に優れたセラミッ クスであれば何でも使用できる。例えば、還元性雰囲気に弱い白金系のR熱電対 の場合等はAl23 、MgO等の酸化物が適しており、また使用目的に応じて 適宜変えることも自由である。As the material of the two-hole protective tube, any ceramic can be used as long as it is a ceramic excellent in insulating property at high temperature without deteriorating the thermocouple. For example, in the case of a platinum-based R thermocouple that is weak in a reducing atmosphere, oxides such as Al 2 O 3 and MgO are suitable, and it is also possible to change them appropriately according to the purpose of use.

【0014】 測温接点の位置は、前述の如く測温精度の観点から保護管の先端付近になけれ ばならないが、更に、応答性の観点から測温接点と保護管最先端までの厚さを出 来るだけ薄く制御するのが良い。これはセラミックスの材質や使用目的にもよる が、概ね1〜4mm程度が好ましく、これ以上では耐熱衝撃性の観点からも好ま しくない。The position of the temperature measuring contact must be near the tip of the protective tube from the viewpoint of temperature measuring accuracy as described above, but from the viewpoint of responsiveness, the thickness between the temperature measuring contact and the leading edge of the protective tube must be determined. It is better to control as thinly as possible. Although this depends on the material of the ceramic and the purpose of use, it is preferably about 1 to 4 mm, and more than this is not preferable from the viewpoint of thermal shock resistance.

【0015】 以下、本考案の効果を実施例によって説明する。Hereinafter, effects of the present invention will be described with reference to embodiments.

【0016】[0016]

【実施例】【Example】

熱電対の測温接点が素地中に埋め込められた構造(図1)と両者の間に空隙が 設けられた構造(図2及び図3)のものについて、外径φ4mm、穴径φ1mm 、保護管長さ500mmでRタイプの熱電対が組み込まれた試料(一体型測温セ ンサー)を作製した。これを現在実際に行われている製鋼タンディッシュの溶鋼 測温に使用した。即ち、タンディッシュの横壁にセットされた外部保護管(AL N系耐溶鋼用保護管)の中に、この一体型測温センサーを挿入し溶鋼温度を連続 的に測定した。測温時間は1回当たり連続8時間とし、同じセンサーを10回( 80時間 )繰り返し使用した後、簡易な方法で熱電対精度を検定した。この検定は、電気 炉で1200℃における標準熱電対に対する温度誤差を調べたもので、±3℃の 誤差範囲(電気炉自体の誤差±1℃を含む。)のものを合格とする。 The outer diameter φ4 mm, hole diameter φ1 mm, and protective tube length for the structure in which the thermocouple temperature measuring contact is embedded in the substrate (Fig. 1) and the structure with a gap between them (Figs. 2 and 3) A sample (integrated temperature measuring sensor) having a length of 500 mm and incorporating an R type thermocouple was prepared. This was used for the temperature measurement of molten steel in steelmaking tundish, which is currently in practice. That is, this integrated temperature measuring sensor was inserted into an external protection tube (ALN-based protection tube for molten steel) set on the lateral wall of the tundish to continuously measure the temperature of molten steel. The temperature measurement time was set to 8 hours per one time, the same sensor was repeatedly used 10 times (80 hours), and then the thermocouple accuracy was tested by a simple method. This test examines the temperature error with respect to the standard thermocouple at 1200 ° C in the electric furnace, and passes the error within ± 3 ° C (including the error of the electric furnace itself ± 1 ° C).

【0017】 上記試験に供した一体型測温センサー(図1、図2、図3の構造のもの各4本 )は、いずれも保護管破損や熱電対断線を生じず、検定結果も合格であった。All of the integrated temperature measuring sensors (four each having the structure shown in FIGS. 1, 2, and 3) used in the above test did not cause damage to the protective tube or breakage of the thermocouple, and the verification result was acceptable. there were.

【0018】 尚、上記のタンディッシュで実際に用いられている従来型連続測温センサー( 熱電対、保護管、絶縁管により組み立てられている。)の耐用に関する実情とこ の一体型測温センサーとの比較を表1に示す。It should be noted that the actual conditions regarding the service life of the conventional continuous temperature measuring sensor (assembled with a thermocouple, a protective tube, and an insulating tube) actually used in the above-mentioned tundish and the integrated temperature measuring sensor. Table 1 shows the comparison.

【0019】[0019]

【表1】 (注) ・サンプル数は、従来型測温センサー144本、一体型測温センサー12本で ある。 ※・保護管が破損した場合、破損した保護管のみ新しく取り替えて、熱電対が断 線する迄あるいは10回(80時間)に達する迄、テストを継続した。[Table 1] (Note) ・ The number of samples is 144 conventional temperature sensors and 12 integrated temperature sensors. * If the protective tube is damaged, replace the damaged protective tube with a new one and continue the test until the thermocouple breaks or reaches 10 times (80 hours).

【0020】 表1によると、上記従来型測温センサーの場合は保護管が破損(クラック)さ れやすく、保護管内部に汚染ガスが入り込み急速に熱電対を劣化させ、断線を招 く傾向を示している。保護管を小サイズ(外径φ6mm、内径φ4mm)にして も改善されなかった(保護管破損時期;平均2.5回(20時間))。これに対し て、一体型測温センサーの場合は、上記測温条件のもとでは全く問題無く、安定 して多数回長時間耐用が達成され、更に応答性の面でも小サイズであるが故に急 峻性が得られることがわかった。According to Table 1, in the case of the conventional temperature measuring sensor, the protective tube is easily damaged (cracked), and the pollutant gas enters the protective tube to rapidly deteriorate the thermocouple and cause a disconnection. Shows. Even if the protective tube was made small (outer diameter φ6 mm, inner diameter φ4 mm), there was no improvement (breakage time of protective tube; average 2.5 times (20 hours)). On the other hand, in the case of the integrated temperature measuring sensor, there is no problem under the above temperature measuring conditions, stable long-term service life is achieved, and it is also small in terms of responsiveness. It was found that steepness was obtained.

【0021】 尚、本考案が本実施例のみに限定されるものでないことは言うまでもないこと である。 例えば、本例のR熱電対は他の種類の熱電対に変更することができるし、外部 形状も丸形をはじめ角形や楕円形とすることもできるし、封止された保護管先端 部分を丸みをもたせたものとしてもよいしフラットにしてもよい。Needless to say, the present invention is not limited to this embodiment. For example, the R thermocouple of this example can be changed to other types of thermocouples, and the external shape can be a round shape, a square shape, or an elliptical shape. It may be rounded or flat.

【0022】[0022]

【考案の効果】[Effect of device]

本考案によれば、従来の熱電対と絶縁管と保護管の組立式測温センサーに較べ て、以下の様な点が優れている。 According to the present invention, the following points are superior to the conventional thermocouple, the assembly type temperature sensor of the insulating tube and the protective tube.

【0023】 1.絶縁管と保護管を兼ねており、他の保護管が必要無く直接測温できる。 2.保護管が必要無く外径を小さくできるので、温度応答性に優れている。 3.シース熱電対のように一体構造であるので、組立てに際し熱電対汚染の恐れ が無い。 4.シース熱電対のように一体構造で熱電対素線の露出部分が無いので、汚染環 境での測温で熱電対劣化が小さく寿命が長くなる。 5.シース熱電対のように一体構造であるので、取扱が容易である。 6.細いものが得られるので、測定困難な場所の高温測定ができる。1. Since it serves as both an insulating tube and a protective tube, it can measure temperature directly without the need for other protective tubes. 2. Since the outer diameter can be reduced without the need for a protective tube, it has excellent temperature responsiveness. 3. Since it has an integral structure like a sheath thermocouple, there is no risk of thermocouple contamination during assembly. 4. Unlike the sheath thermocouple, there is no exposed part of the thermocouple wire, so the thermocouple deterioration is small and the life is long due to temperature measurement in a contaminated environment. 5. Since it has an integral structure like a sheath thermocouple, it is easy to handle. 6. Since a thin product can be obtained, high-temperature measurement can be performed in places where measurement is difficult.

【0024】 具体的な例では、特に、溶鋼温度測定の様な汚染環境の著しい場合はその差は 大きく、従来の組立式測温センサーでは高価な貴金属熱電対の劣化消耗が激しく ランニングコストと測温精度両面に問題があるが、本考案の測温センサーでは長 時間高精度に測温できるので、その実用的、経済的効果は極めて大きい。 また、従来は困難であった鍋底や炉底などの様な危険を伴う箇所の測温に際し 、測温孔を最小限に留めることができるので安全に行えるなど、適用範囲が広い 。 すなわち、高温用のシース熱電対とも言えるものである。In a specific example, the difference is large especially in a contaminated environment where molten steel temperature is measured, and the conventional assembly-type temperature measuring sensor suffers from severe deterioration and wear of the expensive precious metal thermocouple, which results in a running cost. Although there are problems in terms of both temperature accuracy, the temperature sensor of the present invention can measure temperature with high accuracy for a long time, so its practical and economical effects are extremely large. In addition, it has a wide range of applications, such as safe operation because it can keep the temperature measuring holes to a minimum when measuring temperature in dangerous places such as pot bottoms and furnace bottoms, which was difficult in the past. That is, it can be said that it is a sheath thermocouple for high temperature.

【提出日】平成7年1月19日[Submission date] January 19, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】 図1は、測温接点がセラミックス素地中に埋め 込まれた構造の、熱電対と保護管が一体となった測温センサーの断面図である。 2本の熱電対素線2は2つの穴の中をのびていて、熱電対の測温接点3は2つ穴 保護管1の一端を封止された側の素地中に閉じ込められ、外部の汚染物質や還元 性雰囲気から保護される。熱電対をセラミック素地へ組み込むには多くの方法が あるが、十分な気密性が得られるものであればどの様な方法でもよい。この方法 によっては、熱電対の測温接点部分が素地中に埋め込まれて熱電対と素地間に空 隙を有するものと有しないものとがあるが、それぞれに一長一短がある。即ち、 空隙を有しない場合は一般に製作容易であり、また素地と測温接点間の直接伝熱 により非常に応答性の優れたものが得られるが、高温使用時に熱電対が素地との 熱膨張差により損傷されやすい。一方、空隙を有するものは熱電対が素地と別個 に伸縮自在であるので損傷を招くことがなく、高温での多数回の繰り返し使用に 適している。FIG. 1 is a cross-sectional view of a temperature measuring sensor having a structure in which a temperature measuring contact is embedded in a ceramic body and in which a thermocouple and a protective tube are integrated. The two thermocouple wires 2 extend through the two holes, and the thermocouple temperature measuring contacts 3 are two holes. One end of the protective tube 1 is confined in the body on the sealed side, Protected from pollutants and reducing atmosphere. There are many methods for incorporating the thermocouple into the ceramic body, but any method can be used as long as it can provide sufficient airtightness . Depending on this method, there is a method in which the temperature measuring junction of the thermocouple is embedded in the substrate and there is a space between the thermocouple and the substrate, but there are advantages and disadvantages. In other words, if there are no voids, it is generally easy to manufacture, and a very excellent responsiveness can be obtained by direct heat transfer between the base material and the temperature measuring junction. It is easily damaged by the difference. On the other hand, those with voids do not cause damage because the thermocouple can expand and contract separately from the base material, and are suitable for repeated use many times at high temperatures.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】 尚、上記のタンディッシュで実際に用いられて いる従来型連続測温センサー(熱電対、保護管、絶縁管により組み立てられてい る。)の耐用に関する実状とこの一体型測温センサーとの比較を表1に示す。[0018] Incidentally, conventional continuous temperature measuring sensor actually used in the above tundish (thermocouple protective tube, that has been assembled by an insulating tube.) Circumstances regarding the service of the the integrated temperature measuring sensor Table 1 shows the comparison.

【図面の簡単な説明】[Brief description of drawings]

【図1】測温接点がセラミックス素地中に埋め込まれた
構造の、熱電対と保護管が一体となった測温センサーの
断面図。
FIG. 1 is a cross-sectional view of a temperature measuring sensor having a structure in which a temperature measuring contact is embedded in a ceramic body and a thermocouple and a protective tube are integrated.

【図2】仕切り蓋によって測温接点と素地との間に空隙
が設けられた構造の、熱電対と保護管が一体となった測
温センサーの断面図。
FIG. 2 is a cross-sectional view of a temperature measuring sensor in which a thermocouple and a protective tube are integrated, which has a structure in which a gap is provided between the temperature measuring contact and the substrate by a partition cover.

【図3】加熱消失性被覆が用いられて空隙が設けられた
構造の、熱電対と保護管が一体となった測温センサーの
断面図。
FIG. 3 is a cross-sectional view of a temperature measuring sensor in which a thermocouple and a protection tube are integrated, which has a structure in which a heat-dissipative coating is used and a gap is provided.

【符号の説明】[Explanation of symbols]

1 絶縁性セラミックス素地の2つ穴保護管 2 熱電対素線 3 熱電対の測温接点 4 熱電対と絶縁性セラミックス素地との間の空隙 5 仕切り蓋(平蓋) 1 Two-hole protective tube of insulating ceramics base 2 Thermocouple wire 3 Thermocouple temperature measuring junction 4 Gap between thermocouple and insulating ceramics base 5 Partition lid (flat lid)

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 2つの穴を有する絶縁性セラミック保護
管と、該2つの穴の各々の中をのびるとともに先端部で
接合されて測温接点を成形する2本の異種の金属線から
なる熱電対とからなり、かつ該絶縁性セラミック保護管
の該測温接点側が閉じた構造を有することを特徴とする
熱電対と保護管が一体となった測温センサー。
1. A thermoelectric tube comprising an insulating ceramic protective tube having two holes, and two dissimilar metal wires extending in each of the two holes and joined at a tip to form a temperature measuring contact. A temperature measuring sensor comprising a thermocouple and a protective tube, which is composed of a pair and has a structure in which the temperature measuring contact side of the insulating ceramic protective tube is closed.
【請求項2】 測温接点部において、熱電対とセラミッ
ク素地との間に隙間が設けられていることを特徴とする
上記請求項1に記載の測温センサー。
2. The temperature measuring sensor according to claim 1, wherein in the temperature measuring contact portion, a gap is provided between the thermocouple and the ceramic body.
JP1994015920U 1994-11-30 1994-11-30 Temperature sensor with thermocouple and protective tube integrated Expired - Lifetime JP3014093U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1994015920U JP3014093U (en) 1994-11-30 1994-11-30 Temperature sensor with thermocouple and protective tube integrated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1994015920U JP3014093U (en) 1994-11-30 1994-11-30 Temperature sensor with thermocouple and protective tube integrated

Publications (1)

Publication Number Publication Date
JP3014093U true JP3014093U (en) 1995-08-01

Family

ID=43149715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1994015920U Expired - Lifetime JP3014093U (en) 1994-11-30 1994-11-30 Temperature sensor with thermocouple and protective tube integrated

Country Status (1)

Country Link
JP (1) JP3014093U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186432A (en) * 2015-03-27 2016-10-27 東京窯業株式会社 Temperature measurement probe
JPWO2019150622A1 (en) * 2018-01-30 2020-02-06 株式会社フルヤ金属 Thermocouple structure and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186432A (en) * 2015-03-27 2016-10-27 東京窯業株式会社 Temperature measurement probe
JPWO2019150622A1 (en) * 2018-01-30 2020-02-06 株式会社フルヤ金属 Thermocouple structure and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6190038B1 (en) Thermocouple lance with alternating molybdenum layered sheath for measuring temperature in molten metal bath
WO1991007643A1 (en) Thermocouple-type temperature sensor and method of measuring temperature of molten steel
JP6740328B2 (en) thermometer
CA1098337A (en) Pyrometric sheath and process
JP3014093U (en) Temperature sensor with thermocouple and protective tube integrated
JPH09113372A (en) Multi-point temperature measuring element
JP3641759B2 (en) Manufacturing method of temperature sensor with integrated thermocouple and protective tube
RU2117265C1 (en) Device measuring temperature of corrosive melts
JP3014444U (en) Temperature sensor using ceramic sheath thermocouple
JP3306426B2 (en) Thermocouple for measuring molten metal temperature
JP3603557B2 (en) Ceramic thermocouple for measuring molten metal temperature
JP3550915B2 (en) Ceramic thermocouple for high temperature measurement
JP3355166B2 (en) Thermocouple for measuring molten metal temperature
JP3627317B2 (en) Thermocouple structure
JP7342626B2 (en) Temperature measurement equipment
JP2002022554A (en) Thermocouple for high temperature, and manufacturing method therefor
JPH01272932A (en) Protection device for thermocouple for high-purity and high-temperature atmosphere
JPS63300924A (en) Thermoelectric thermometer
JP2001183239A (en) Continuous temperature measuring device
JP2735797B2 (en) High temperature platinum resistance temperature detector
JPH04332831A (en) Temperature measuring element protecting tube
JP3550828B2 (en) Thermocouple structure
JP2003004539A (en) Thermocouple for molten metal
JP2003004546A (en) Thermocouple for molten metal
JP2881434B2 (en) Prevention method of thermocouple deterioration of protective tube type continuous thermometer