JP3627317B2 - Thermocouple structure - Google Patents

Thermocouple structure Download PDF

Info

Publication number
JP3627317B2
JP3627317B2 JP26906295A JP26906295A JP3627317B2 JP 3627317 B2 JP3627317 B2 JP 3627317B2 JP 26906295 A JP26906295 A JP 26906295A JP 26906295 A JP26906295 A JP 26906295A JP 3627317 B2 JP3627317 B2 JP 3627317B2
Authority
JP
Japan
Prior art keywords
protective pipe
thermocouple
filling member
protective
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26906295A
Other languages
Japanese (ja)
Other versions
JPH0989682A (en
Inventor
英男 河村
英紀 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP26906295A priority Critical patent/JP3627317B2/en
Priority to EP96306578A priority patent/EP0764837A1/en
Priority to US08/710,416 priority patent/US5696348A/en
Publication of JPH0989682A publication Critical patent/JPH0989682A/en
Application granted granted Critical
Publication of JP3627317B2 publication Critical patent/JP3627317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【0001】
発明の属する技術分野
この発明は,高温高精度の熱電対の構造に関する。
【0002】
【従来の技術】
従来の熱電対は,高温度の液体や気体の温度を正確に計測するため開発されている。熱電対は,300℃〜1400℃の温度範囲の温度を計測するため,各種の測定材を適合させている。熱電対の素線は,酸化性又は還元性の雰囲気に対して弱い場合が多く,一般的には素線を保護パイプに入れて使用されている。
【0003】
また,従来の熱電対を収容する保護管としては,次のような材料を用いて作製されている。即ち,従来の保護管は,BN(耐熱温度:1000℃),磁器(耐熱温度:1400℃),アルミナ(耐熱温度:1600℃),高クロム鋼(耐熱温度:1050℃),アランダム(耐熱温度:1400℃)等の各種の保護管が使用されている。このような保護管で作製されている熱電対は,耐熱温度まで使用すると,1回の測定で破損し,再度使用できなくなるので,通常,温度測定として600℃〜800℃程度,高温としても1000℃程度の温度雰囲気で使用されているのが現状である。
【0004】
また,Si3 4 を保護パイプに構成した熱電対は,例えば,特開昭55−121972号公報,特開昭61−246636号公報,特開平2−217361号公報に開示されたものがある。
【0005】
特開昭55−121972号公報に開示された気密化窒化珪素焼結体は,熱電対の保護管に適用でき,反応焼結法で生成された限定量の嵩比重を持つSi3 4 焼結体を加湿N2 雰囲気で特定の露点になるように加湿し,1250〜1500℃で加熱処理して表面を気密化したものである。
【0006】
また,特開昭61−246636号公報に開示された溶鋼連続測温用保護管は,熱電対の保護管として使用でき,反応焼結窒化ケイ素から成る保護管とアルミナ内管との間にAlN粉を充填し,AlN粉の上部にアルミナウールを更に充填した保護管を作ったものであり,溶鋼による侵食速度が低減され,長時間の溶鋼温度の測定を可能にしたものである。
【0007】
更に,特開平2−217361号公報に開示された反応焼結窒化ケイ素セラミックスは,熱電対の保護管として使用でき,Si粉末を成形した成形体を,N2 雰囲気中で1200〜1600℃程度で反応焼結させたものである。
【0008】
【発明が解決しようとする課題】
しかしながら,従来の熱電対を保護する保護管は,実際には,1000℃以上の温度では保護管には相当の損傷が発生する。そのため,従来の熱電対は,高温炉や溶湯の温度の測定には困難性があるのが現状である。例えば,熱電対を細い径のパイプ形状に構成した場合に,熱電対を保護する保護管の強度,保護管内の充填材の密度を適正に調整するために,製造上の問題が存在する。また,BNで保護管を作製した熱電対は,O2 の存在下では酸化するため,炉内のO2 を排気してから使用しているのが現状である。
【0009】
また,熱電対を保護管内に配置した構造について,保護管を反応焼結の窒化ケイ素を用いて作製した場合でも,保護管内には一端から他端へ長手方向に延びる種類の異なる一対の線材を配置するが,保護管内に充填させる充填部材として適正な材料を選定しないと,保護管内面と充填部材との間に隙間が発生し,線材が保護管内に存在するO2 と酸化して断線したり,或いは熱ショックを受けて破損するという問題がある。
【0010】
【課題を解決するための手段】
この発明の目的は,上記の課題を解決することであり,Si3 4 やSiCのような耐熱性のセラミックスで保護パイプを形成し,タングステン(W)−レニウム(Re)合金,又は白金(Pt)−ロジウム(Rh)から熱電対素線を作製し,熱電対素線の外側にTiN等を合成させて保護パイプ内に熱電対素線を封じ込めることにより,耐熱性で耐熱ショック性に優れ,耐久性に富んだ熱電対の構造を提供することである。
【0011】
この発明は,耐熱性のセラミックスから成る保護パイプ,前記保護パイプ内に隔置して一端から他端へ長手方向に延びる種類の異なる一対の導体線材,前記保護パイプの一端部に形成された前記導体線材の両端を接続した導体感温部,及び前記保護パイプ内に充填されたSiとTiから成る混合粉末がN 2 雰囲気で一体焼結されている充填部材から成ることを特徴とする熱電対の構造に関する。
【0012】
また,前記保護パイプはS3 4 又はSiCから成り,前記保護パイプ内の前記充填部材はSi 3 4 とTiNから成り,前記導体線材はW−5%ReとW−26%Reから成るものである
【0013】
また,この熱電対の構造は,前記保護パイプには長手方向に隔置して多数の孔が形成され,焼結後に前記孔から露出した前記充填部材の表面にはSi 3 4 がコーティングされているものである
【0014
また,前記保護パイプの端部には取付金具を固定するため,前記保護パイプに形成された前記孔に露出した前記充填部材にAg−Cu−Ti粉末を塗布して前記取付金具と前記充填部材とを固着したものである。即ち,Si3 4 とTiNの混合材は,Ag−Cu−Tiに良好に拡散し,良好な結合状態を得ることができる。
【0015】
前記導体線材は,熱膨張差を吸収するためスパイラル状に曲げられているものである。【0016
【発明の実施の形態】
以下,図面を参照して,この発明による熱電対の構造の実施例を説明する。図1はこの発明による熱電対の構造の一実施例を示す断面図,図2は図1の熱電対の構造の端部を示す拡大断面図,及び図3は図1の線A−Aにおける断面図である。
【0017
この熱電対の構造は,主として,耐熱性で耐腐食性のセラミックスから成る保護パイプ1,保護パイプ1内に隔置して一端から他端へ長手方向に延びる種類の異なる一対の導体線材2,3,保護パイプ1の一端部に形成された線材2,3の両端を接続した導体感温部4,保護パイプ1の他端部から突出した線材2,3にそれぞれ設けたコネクタ11,及び保護パイプ1内に充填されたSi3 4 とTiNとの混合材から成る充填部材9から構成されている。保護パイプ1の先端部には端部を閉鎖する蓋部材7が固定され,蓋部材7は感温部4を構成している。保護パイプ1の他端部には,他の部品に熱電対を取り付けるため取付金具10が固定されている。取付金具10側の突出した線材2,3の端部の取付部14には,コネクタ11が設けられている。コネクタ11は,温度測定機器の端子に接続されるように構成されている。線材2,3の取付部14は,絶縁部材12によって互いに絶縁されている。
【0018
この熱電対の構造において,保護パイプ1は,耐熱性,耐腐食性で耐熱ショック性に優れたSi3 4 又はSiC(炭化ケイ素)から作製されている。保護パイプ1をSi3 4 で作製した場合には,保護パイプ1内にSi3 4 とTiN(窒化チタン)から成る混合材から成る充填部材9を充填する。Si3 4 の保護パイプ1内にSi3 4 とTiNとの混合材の充填部材9を配置した場合には,混合材が焼結することによって無収縮性セラミックスから成る充填部材9を構成し,保護パイプ1と充填部材9との間に隙間等が発生することなく,極めて安定した熱電対の構造を提供することができる。
【0019
この熱電対の構造では,例えば,充填部材9としては,Si粉末90wt%とTi粉末10wt%との混合粉末,場合によっては,該混合粉末に若干の窒化ケイ素粉末を混合した混合粉末を窒化ケイ素の保護パイプ1内に充填し,N2 雰囲気で一体焼結する。この時,SiとTiとの粉末を保護パイプ1に収容して一体焼結する場合に,保護パイプ1の長手方向に多数の孔15を明けておけば,SiとTiとは反応してSi3 4 とTiNとから成る無収縮性セラミックスの複合材ができる。即ち,焼結縮みのないSi3 4 とTiNから成る無収縮性セラミックスの複合材に生成される。次いで,保護パイプ1の一端に取付金具10及びガラス層16を取り付け,他端に蓋部材7に取り付けて熱電対を作製することができる。焼結後に,孔15はSi3 4 のコーティング層17で塞げばよく,複合材は線材2,3の保護膜を構成することになる。この場合,上記混合粉末に種類の異なる一対の線材2,3を配置し,N2 雰囲気で一体焼結して構成することができる。場合によっては,充填部材9を作製した後に,充填部材9の一端部から他端部へ貫通孔を穿孔し,該貫通孔に種類の異なる一対の線材2,3に挿通して構成してもよい。
【0020
一方の線材2はW−5%Reから成り,他方の線材3はW−26%Reから成り,更に,線材2又は3の何れか一方の外周面にはセラミックス粉末から成る絶縁層がコーティングされている。線材2,3のリード部材には,Si3 4 粉末を樹脂材や油脂材に溶かしたペーストから成る絶縁層13がコーティングされている。また,タングステンW線は高融点の材料であり,その熱膨張係数が4.6×10- 6 /Kである。また,Si3 4 の熱膨張係数が3.1×10- 6 /Kであるので,Si3 4 とWとは,熱膨張係数が近似しており,従って,両者の組み合わせによって熱電対を構成する場合には,熱膨張係数から考慮して好ましいものである。しかし,充填部材9と線材2,3とはわずかではあるが熱膨張係数が異なるので,高温時に熱膨張差によって熱膨張量が変化し,線材2,3が断線することがあるので,線材2,3を熱膨張差を吸収できるようにスパイラル状に曲げた形状に構成しておくことが好ましい。
【0021
保護パイプ1は,Y2 3 ,Al2 3 ,SiO2 を含むSi3 4 から作製されている。保護パイプ1の長手方向には,隔置状態に多数の孔15が開けられ,孔15内に侵入した充填部材9の表面にはSi3 4 のコーティング層17がコーティングされ,コーティング層17によって孔15を通じての保護パイプ1の内外の通気が阻止され,保護パイプ1と充填部材9との隙間或いは充填部材9中にO2 の侵入が防止されている。
【0022
保護パイプ1の端部には,取付金具10を固定するため,保護パイプ1に形成された孔15に露出した充填部材9にAg−Cu−Ti粉末の充填材5を塗布し,取付金具10と充填部材9とが固着されている。場合によっては,保護パイプ1と取付金具10との嵌合面において,保護パイプ1の孔15には充填部材9を構成する充填材5が埋め込まれた状態になり,一体焼結によって充填材5が複合材となって保護パイプ1と取付金具10とを堅固に密着して固着させることができる。コネクタ11側の端部には,Y2 3 ,Al2 3 ,SiO2 を含むガラス層16を塗布して保護パイプ1の端部が密封されている。
【0023
また,線材2,3としては,W−Reの他に,白金と白金ロジウムとの組み合わせ,或いはWとWMo(Mo:25%)との組み合わせから作製することもできる。蓋部材7は,炭化ケイ素SiC或いはSi3 4 から作製されている。蓋部材7がSi3 4 で作製される場合には,Si3 4 の他にTiN粉を混入し,無収縮性セラミックスとして構成することが好ましい。
【0024
【発明の効果】
この発明による熱電対の構造は,上記のように,セラミックスから成る保護パイプで構成され,その先端部には窒化ケイ素の蓋部材で密封された導体感温部が形成されているので,耐熱性で耐腐食性であり,特に,耐熱ショック性に優れ,溶融金属炉,プラズマ溶融炉,電気炉等の高温炉の温度管理,温度測定に適している。前記保護パイプの端部に固定された取付金具は,絶縁体保護パイプに強固に固定されているので,耐熱性で耐熱ショック性に優れ,耐久性に富む熱電対を提供できる。
【0025
特に,この熱電対の構造では,保護パイプ内に充填された充填部材は,SiとTiを反応焼結してできたSi3 4 にTiNとの複合材から構成され,該充填部材は焼結時に焼結縮みがなく無収縮性セラミックスを形成し,線材が保護パイプ内で充填部材で強固に保持され,O2 等のガスが存在しない雰囲気に封入されているので,保護パイプ内に緻密な構造を形成し,保護パイプと充填部材との間に隙間を形成することがなく,保護パイプ内へのO2 等のガスの侵入がなく,線材が酸化して断線することがない。しかも,線材を充填部材で強固に保持して保護パイプで保護するので,耐久性に優れ,温度測定精度が高精度となり,安定した信頼性のある熱電対を提供でき,特に,酸化・還元性の雰囲気中で高温度を測定するのに適している。
【0026
この熱電対の構造は,耐熱性で耐熱ショック性に優れているので,反復して使用可能であり,従来のNB等の材料を用いて作製したものに比較して製造コスト,ランニングコスト等を大幅に低減できる。
【図面の簡単な説明】
【図1】この発明による熱電対の構造の一実施例を示す断面図である。
【図2】図1の熱電対の構造における端部の一実施例を示す拡大断面図である。
【図3】図1の線A−Aにおける断面図である。
【図4】図1の熱電対の構造における線材の一部を示す拡大断面図である。
【符号の説明】
1 保護パイプ
2,3 線材
4 感温部
5 充填材
7 蓋部材
9 充填部材
11 コネクタ
12 絶縁部材
13 被覆層
15 孔
17 コーティング層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of a thermocouple with high temperature and high accuracy.
[0002]
[Prior art]
Conventional thermocouples have been developed to accurately measure the temperature of high-temperature liquids and gases. The thermocouple adapts various measuring materials in order to measure the temperature in the temperature range of 300 ° C to 1400 ° C. Thermocouple wires are often weak against oxidizing or reducing atmospheres, and are generally used by putting them in a protective pipe.
[0003]
In addition, as a protective tube for housing a conventional thermocouple, the following materials are used. That is, the conventional protective tube is BN (heat resistant temperature: 1000 ° C.), porcelain (heat resistant temperature: 1400 ° C.), alumina (heat resistant temperature: 1600 ° C.), high chromium steel (heat resistant temperature: 1050 ° C.), alundum (heat resistant temperature) Various protection tubes such as a temperature of 1400 ° C. are used. A thermocouple made of such a protective tube is damaged by a single measurement and cannot be used again if it is used up to a heat-resistant temperature. It is currently used in a temperature atmosphere of about ° C.
[0004]
Further, thermocouples in which Si 3 N 4 is formed as a protective pipe include those disclosed in, for example, Japanese Patent Laid-Open Nos. 55-121972, 61-246636, and 2-217361. .
[0005]
JP 55-121972 Patent airtight silicon nitride sintered body disclosed in the publication can be applied to the protective tube of the thermocouple, Si 3 N 4 sintered with bulk density of the generated limited amount of reaction sintering method The bonded body is humidified to a specific dew point in a humidified N 2 atmosphere and heat-treated at 1250 to 1500 ° C. to make the surface airtight.
[0006]
Further, the molten steel continuous temperature measuring protective tube disclosed in Japanese Patent Application Laid-Open No. 61-246636 can be used as a protective tube for a thermocouple, and between the protective tube made of reaction sintered silicon nitride and the alumina inner tube, AlN A protective tube filled with powder and further filled with alumina wool on top of the AlN powder is made, and the erosion rate by the molten steel is reduced, and the molten steel temperature can be measured for a long time.
[0007]
Furthermore, the reaction sintered silicon nitride ceramics disclosed in JP-A-2-217361 can be used as a protective tube for a thermocouple, and a molded body obtained by molding Si powder can be used at about 1200 to 1600 ° C. in an N 2 atmosphere. Reaction sintered.
[0008]
[Problems to be solved by the invention]
However, the protection tube for protecting a conventional thermocouple actually causes considerable damage to the protection tube at a temperature of 1000 ° C. or higher. For this reason, conventional thermocouples currently have difficulties in measuring the temperature of high-temperature furnaces and molten metal. For example, when the thermocouple is formed in a thin pipe shape, there are manufacturing problems in order to appropriately adjust the strength of the protective tube protecting the thermocouple and the density of the filler in the protective tube. Also, the thermocouple to prepare a protective tube with BN, to oxidize in the presence of O 2, that are used after exhausting the O 2 in the furnace at present.
[0009]
In addition, for a structure in which a thermocouple is arranged in a protective tube, even when the protective tube is made of reaction-sintered silicon nitride, a pair of different types of wires extending in the longitudinal direction from one end to the other end are provided in the protective tube. However, if an appropriate material is not selected as the filling member to be filled in the protective tube, a gap will be generated between the inner surface of the protective tube and the filling member, and the wire will oxidize with O 2 present in the protective tube and break. There is a problem of being damaged by heat shock.
[0010]
[Means for Solving the Problems]
An object of the present invention is to solve the above-mentioned problem, and a protective pipe is formed of a heat-resistant ceramic such as Si 3 N 4 or SiC, and tungsten (W) -rhenium (Re) alloy or platinum ( A thermocouple wire is made from Pt) -Rhodium (Rh), TiN, etc. is synthesized outside the thermocouple wire, and the thermocouple wire is enclosed in a protective pipe, resulting in excellent heat resistance and heat shock resistance. , To provide a thermocouple structure with high durability.
[0011]
The present invention, protective pipe made of heat-resistant ceramics, the above-spaced in a protective pipe extending longitudinally from one end to the other in different pair of conductive wire rod, is formed at one end of the protective pipe a thermoelectric characterized in that it consists filling member conductor temperature sensitive portion of connecting the two ends of the conductive wire rod,及 beauty mixed powder consisting of filled Si and Ti in the protective pipe is integrally sintered in a N 2 atmosphere Concerning the structure of the pair.
[0012]
The protective pipe is made of Si 3 N 4 or SiC , the filling member in the protective pipe is made of Si 3 N 4 and TiN, and the conductor wire is made of W-5% Re and W-26% Re. It consists of .
[0013]
In addition, in this thermocouple structure, a number of holes are formed in the protective pipe so as to be spaced apart in the longitudinal direction, and the surface of the filling member exposed from the holes after sintering is coated with Si 3 N 4. It is what .
[00 14 ]
In addition, in order to fix the mounting bracket to the end of the protective pipe, Ag-Cu-Ti powder is applied to the filling member exposed in the hole formed in the protective pipe, and the mounting bracket and the filling member are applied. Are fixed. That is, the mixed material of Si 3 N 4 and TiN diffuses well into Ag—Cu—Ti, and a good bonding state can be obtained.
[0015]
The conductor wire is bent in a spiral shape to absorb the difference in thermal expansion . [00 16 ]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a thermocouple structure according to the present invention will be described below with reference to the drawings. 1 is a cross-sectional view showing an embodiment of the thermocouple structure according to the present invention, FIG. 2 is an enlarged cross-sectional view showing an end of the thermocouple structure of FIG. 1, and FIG. 3 is taken along line AA in FIG. It is sectional drawing.
[00 17 ]
The structure of this thermocouple is mainly composed of a protective pipe 1 made of heat-resistant and corrosion-resistant ceramics 1 and a pair of conductor wires 2 of different types extending in the longitudinal direction from one end to the other end in a protective pipe 1. 3, a conductor temperature sensing part 4 connecting both ends of the wires 2 and 3 formed at one end of the protective pipe 1, a connector 11 provided on each of the wires 2 and 3 protruding from the other end of the protective pipe 1, and protection The filling member 9 is made of a mixed material of Si 3 N 4 and TiN filled in the pipe 1. A lid member 7 that closes the end portion is fixed to the distal end portion of the protective pipe 1, and the lid member 7 constitutes a temperature sensing portion 4. A mounting bracket 10 is fixed to the other end of the protective pipe 1 to attach a thermocouple to other components. A connector 11 is provided on the mounting portion 14 at the end of the protruding wire rods 2 and 3 on the mounting bracket 10 side. The connector 11 is configured to be connected to a terminal of the temperature measuring device. The attachment portions 14 of the wires 2 and 3 are insulated from each other by the insulating member 12.
[00 18 ]
In this thermocouple structure, the protective pipe 1 is made of Si 3 N 4 or SiC (silicon carbide) having excellent heat resistance, corrosion resistance, and heat shock resistance. When the protective pipe 1 is made of Si 3 N 4 , the protective pipe 1 is filled with a filling member 9 made of a mixed material made of Si 3 N 4 and TiN (titanium nitride). Si 3 in the case of arranging the filler member 9 of the mixed material of Si 3 N 4 and TiN to N 4 protective pipe 1, constituting the filling member 9 made of a non-shrink ceramics by mixing material is sintered In addition, it is possible to provide an extremely stable thermocouple structure without generating a gap or the like between the protective pipe 1 and the filling member 9.
[00 19 ]
In this thermocouple structure, for example, as the filling member 9, a mixed powder of Si powder 90 wt% and Ti powder 10 wt%, or in some cases, a mixed powder obtained by mixing some mixed silicon nitride powder with the mixed powder is silicon nitride. The protective pipe 1 is filled and sintered integrally in an N 2 atmosphere. At this time, when powders of Si and Ti are accommodated in the protective pipe 1 and integrally sintered, if a large number of holes 15 are formed in the longitudinal direction of the protective pipe 1, Si and Ti react with each other to form Si. A non-shrinkable ceramic composite material composed of 3 N 4 and TiN can be formed. That is, it is produced in a non-shrinkable ceramic composite material composed of Si 3 N 4 and TiN without sintering shrinkage. Next, the mounting bracket 10 and the glass layer 16 are attached to one end of the protective pipe 1 and the other end is attached to the lid member 7 to produce a thermocouple. After sintering, the hole 15 may be closed with a coating layer 17 of Si 3 N 4 , and the composite material constitutes a protective film for the wires 2 and 3. In this case, a pair of different types of wire rods 2 and 3 can be disposed on the mixed powder and integrally sintered in an N 2 atmosphere. In some cases, after the filling member 9 is manufactured, a through hole is drilled from one end of the filling member 9 to the other end, and the through hole is inserted into a pair of different types of wires 2 and 3. Good.
[00 20 ]
One wire 2 is made of W-5% Re, the other wire 3 is made of W-26% Re, and the outer peripheral surface of either wire 2 or 3 is coated with an insulating layer made of ceramic powder. ing. The lead members of the wires 2 and 3 are coated with an insulating layer 13 made of a paste obtained by dissolving Si 3 N 4 powder in a resin material or an oil and fat material. Further, tungsten (W) line is a high-melting material, its thermal expansion coefficient of 4.6 × 10 - is a 6 / K. The thermal expansion coefficient the Si 3 N 4 is 3.1 × 10 - since it is 6 / K, the Si 3 N 4 and W, the thermal expansion coefficient has approximate, therefore, the thermocouple by a combination of both Is preferable in consideration of the thermal expansion coefficient. However, since the thermal expansion coefficient is slightly different between the filling member 9 and the wires 2 and 3, the amount of thermal expansion changes due to the difference in thermal expansion at high temperatures, and the wires 2 and 3 may be disconnected. , 3 are preferably formed in a spiral shape so as to absorb the difference in thermal expansion.
[00 21 ]
The protective pipe 1 is made of Si 3 N 4 containing Y 2 O 3 , Al 2 O 3 , and SiO 2 . In the longitudinal direction of the protective pipe 1, a large number of holes 15 are opened in a spaced state, and a coating layer 17 of Si 3 N 4 is coated on the surface of the filling member 9 that has entered the hole 15. Ventilation inside and outside the protective pipe 1 through the hole 15 is prevented, and O 2 is prevented from entering the gap between the protective pipe 1 and the filling member 9 or the filling member 9.
[00 22 ]
In order to fix the fitting 10 to the end of the protective pipe 1, the filler 5 made of Ag—Cu—Ti powder is applied to the filling member 9 exposed in the hole 15 formed in the protective pipe 1. And the filling member 9 are fixed. In some cases, the filler 5 constituting the filler member 9 is embedded in the hole 15 of the protective pipe 1 on the fitting surface between the protective pipe 1 and the mounting bracket 10, and the filler 5 is formed by integral sintering. As a composite material, the protective pipe 1 and the mounting bracket 10 can be firmly adhered and fixed. A glass layer 16 containing Y 2 O 3 , Al 2 O 3 , SiO 2 is applied to the end on the connector 11 side to seal the end of the protective pipe 1.
[00 23 ]
In addition to W-Re, the wires 2 and 3 can also be made from a combination of platinum and platinum rhodium, or a combination of W and WMo (Mo: 25%). The lid member 7 is made of silicon carbide SiC or Si 3 N 4 . When the lid member 7 is made of Si 3 N 4 , it is preferable that TiN powder is mixed in addition to Si 3 N 4 to form a non-shrinkable ceramic.
[00 24 ]
【The invention's effect】
The structure of the thermocouple according to the present invention is composed of a protective pipe made of ceramics as described above, and a conductor temperature sensing part sealed with a silicon nitride lid member is formed at the tip of the pipe. In particular, it has excellent heat shock resistance and is suitable for temperature control and temperature measurement in high-temperature furnaces such as molten metal furnaces, plasma melting furnaces, and electric furnaces. Since the mounting bracket fixed to the end of the protective pipe is firmly fixed to the insulator protective pipe, it is possible to provide a thermocouple with excellent heat resistance, heat shock resistance, and durability.
[00 25 ]
In particular, in this thermocouple structure, the filling member filled in the protective pipe is composed of a composite material of Si 3 N 4 and TiN formed by reaction sintering of Si and Ti, and the filling member is sintered. No shrinkage shrinkage is formed during sintering, non-shrinkable ceramics are formed, the wire is firmly held by the filling member in the protective pipe, and sealed in an atmosphere free from gases such as O 2. The structure does not form a gap between the protective pipe and the filling member, the gas such as O 2 does not enter the protective pipe, and the wire does not oxidize and break. In addition, since the wire is firmly held by the filling member and protected by the protective pipe, it has excellent durability, high temperature measurement accuracy, and can provide a stable and reliable thermocouple. Suitable for measuring high temperature in the atmosphere.
[00 26 ]
This thermocouple structure is heat resistant and has excellent heat shock resistance, so it can be used repeatedly, reducing manufacturing costs, running costs, etc. compared to conventional NB or other materials. It can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a thermocouple structure according to the present invention.
2 is an enlarged cross-sectional view showing one embodiment of an end portion in the structure of the thermocouple of FIG. 1. FIG.
FIG. 3 is a cross-sectional view taken along line AA of FIG.
4 is an enlarged cross-sectional view showing a part of a wire rod in the structure of the thermocouple of FIG. 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Protective pipe 2, 3 Wire 4 Temperature sensing part 5 Filler 7 Lid member 9 Filling member 11 Connector 12 Insulating member 13 Covering layer 15 Hole 17 Coating layer

Claims (5)

耐熱性のセラミックスから成る保護パイプ,前記保護パイプ内に隔置して一端から他端へ長手方向に延びる種類の異なる一対の導体線材,前記保護パイプの一端部に形成された前記導体線材の両端を接続した導体感温部,及び前記保護パイプ内に充填されたSiとTiから成る混合粉末がN 2 雰囲気で一体焼結されている充填部材から成ることを特徴とする熱電対の構造。Protection pipes, the above-spaced in a protective pipe extending longitudinally from one end to the other in different pair of conductive wire rod, both ends of the conductive wire rod formed at one end of the protective pipe made of heat-resistant ceramics thermocouple structure characterized in that it consists filling member is integrally sintered conductor temperature sensing unit that is connected, mixed powder consisting of filled Si and Ti in beauty the protective pipe is in N 2 atmosphere. 前記保護パイプはS3 4 又はSiCから成り,前記保護パイプ内の前記充填部材はSi 3 4 とTiNから成り,前記導体線材はW−5%ReとW−26%Reから成ることを特徴とする請求項1に記載の熱電対の構造。The protective pipe is made of Si 3 N 4 or SiC , the filling member in the protective pipe is made of Si 3 N 4 and TiN, and the conductor wire is made of W-5% Re and W-26% Re. The thermocouple structure according to claim 1, wherein: 前記保護パイプには長手方向に隔置して多数の孔が形成され,焼結後に前記孔から露出した前記充填部材の表面にはSi3 4 がコーティングされていることを特徴とする請求項1又は2に記載の熱電対の構造。Wherein the protective pipe numerous holes are spaced in the longitudinal direction is formed, claims on the surface of the filling member which is exposed from the hole after sintering, characterized in that Si 3 N 4 is coated The structure of the thermocouple as described in 1 or 2 . 前記保護パイプの端部には取付金具を固定するため,前記保護パイプに形成された前記孔に露出した前記充填部材にAg−Cu−Ti粉末を塗布して前記取付金具と前記充填部材とを固着したことを特徴とする請求項3に記載の熱電対の構造。In order to fix the mounting bracket to the end of the protective pipe, Ag-Cu-Ti powder is applied to the filling member exposed in the hole formed in the protective pipe, and the mounting bracket and the filling member are attached. The thermocouple structure according to claim 3 , wherein the thermocouple structure is fixed. 前記導体線材は熱膨張差を吸収するためスパイラル状に曲げられていることを特徴とする請求項1〜のいずれか1項に記載の熱電対の構造。The conductor wire, the structure of the thermocouple as claimed in any one of claim 1 to 4, characterized in that bent spirally to absorb differential thermal expansion.
JP26906295A 1995-09-25 1995-09-25 Thermocouple structure Expired - Fee Related JP3627317B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP26906295A JP3627317B2 (en) 1995-09-25 1995-09-25 Thermocouple structure
EP96306578A EP0764837A1 (en) 1995-09-25 1996-09-11 Thermocouple structure
US08/710,416 US5696348A (en) 1995-09-25 1996-09-17 Thermocouple structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26906295A JP3627317B2 (en) 1995-09-25 1995-09-25 Thermocouple structure

Publications (2)

Publication Number Publication Date
JPH0989682A JPH0989682A (en) 1997-04-04
JP3627317B2 true JP3627317B2 (en) 2005-03-09

Family

ID=17467129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26906295A Expired - Fee Related JP3627317B2 (en) 1995-09-25 1995-09-25 Thermocouple structure

Country Status (1)

Country Link
JP (1) JP3627317B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4832626B2 (en) * 2000-06-30 2011-12-07 いすゞ自動車株式会社 thermocouple
JP4623481B2 (en) * 2000-12-21 2011-02-02 いすゞ自動車株式会社 thermocouple
CN112697292A (en) * 2020-12-17 2021-04-23 中国人民解放军63653部队 Quick-response thermocouple for strong-impact dynamic load environment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547672U (en) * 1978-09-26 1980-03-28
JPS61246636A (en) * 1985-04-25 1986-11-01 Japan Metals & Chem Co Ltd Protective tube for continuously measuring temperature of molten steel
JPS62170656U (en) * 1986-04-17 1987-10-29
JPH06104493A (en) * 1992-09-18 1994-04-15 Sumitomo Electric Ind Ltd Coated thermocouple
JPH0755586A (en) * 1993-08-17 1995-03-03 Meidensha Corp Sheathed thermocouple

Also Published As

Publication number Publication date
JPH0989682A (en) 1997-04-04

Similar Documents

Publication Publication Date Title
US5696348A (en) Thermocouple structure
US6102565A (en) Ceramic sheath type thermocouple
JP4437592B2 (en) Fast response thermocouple
JP3306427B2 (en) Sheath structure
JP3627317B2 (en) Thermocouple structure
JP3572312B2 (en) Ceramic sheath type thermocouple
EP1571431A1 (en) Thermal variable resistance device with protective sheath
JP3306426B2 (en) Thermocouple for measuring molten metal temperature
JP3627316B2 (en) Thermocouple structure
JP3603614B2 (en) thermocouple
JP3952132B2 (en) Thermocouple for molten metal
JP3550828B2 (en) Thermocouple structure
US7915994B2 (en) Thermal variable resistance device with protective sheath
JP3603557B2 (en) Ceramic thermocouple for measuring molten metal temperature
JP3550915B2 (en) Ceramic thermocouple for high temperature measurement
JP3355166B2 (en) Thermocouple for measuring molten metal temperature
JP4484129B2 (en) thermocouple
JP4416146B2 (en) thermocouple
JP3398105B2 (en) thermocouple
JP3329189B2 (en) Ceramic sheath type thermocouple
JP3533944B2 (en) Structure of thermocouple protection tube with destruction detection function
JP3306425B2 (en) Ceramic thermocouple for high temperature measurement
JPS63300924A (en) Thermoelectric thermometer
JPH1114465A (en) Structure of thermocouple
JP3358607B2 (en) Heat-resistant and corrosion-resistant member and thermocouple having protective tube formed from the member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees