JP3329189B2 - Ceramic sheath type thermocouple - Google Patents
Ceramic sheath type thermocoupleInfo
- Publication number
- JP3329189B2 JP3329189B2 JP14653396A JP14653396A JP3329189B2 JP 3329189 B2 JP3329189 B2 JP 3329189B2 JP 14653396 A JP14653396 A JP 14653396A JP 14653396 A JP14653396 A JP 14653396A JP 3329189 B2 JP3329189 B2 JP 3329189B2
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- protective tube
- type thermocouple
- thermal expansion
- ceramic sheath
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 title claims description 79
- 230000001681 protective effect Effects 0.000 claims description 44
- 239000002131 composite material Substances 0.000 claims description 31
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 16
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 16
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 9
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 238000013329 compounding Methods 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- -1 sialon Chemical compound 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 238000005452 bending Methods 0.000 description 10
- 239000002002 slurry Substances 0.000 description 8
- 238000009423 ventilation Methods 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 7
- 238000009529 body temperature measurement Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052702 rhenium Inorganic materials 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000004043 responsiveness Effects 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 229910001026 inconel Inorganic materials 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 229910000809 Alumel Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910001179 chromel Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229920001558 organosilicon polymer Polymers 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Description
【0001】[0001]
【発明の属する技術分野】この発明は、セラミック保護
管を持つセラミックシース型熱電対に関する。The present invention relates to a ceramic sheath type thermocouple having a ceramic protection tube.
【0002】[0002]
【従来の技術】従来、シース型熱電対は、金属製グロー
プラグや高温で使用されるSUSシース型部品の保護管
として使用され、SUS等の金属で作製されたものがあ
る。また、SUSシース型熱電対は、1000℃以上の
雰囲気で使用されるものがあり、その場合には、インコ
ネル等の特殊耐熱合金で作製されている。熱電対は、3
00℃〜1400℃の温度範囲の温度を計測するため、
各種の測定材を適合させている。また、熱電対の素線
は、酸化性又は還元性の雰囲気に対して弱い場合が多い
ので、一般的には保護パイプ内に入れて使用されてい
る。また、従来のセラミックシース型熱電対として、通
気用の孔を側面に形成した窒化珪素製保護管内に、W−
Re素線を内包し、それらの空間をTiNが分散した反
応焼結窒化珪素を充填した構造のものが知られている。2. Description of the Related Art Conventionally, a sheath-type thermocouple has been used as a metal glow plug or a protective tube for a SUS sheath-type component used at a high temperature, and is made of a metal such as SUS. Some SUS sheathed thermocouples are used in an atmosphere of 1000 ° C. or higher, and in that case, are made of a special heat-resistant alloy such as Inconel. Thermocouple is 3
To measure the temperature in the temperature range from 00 ° C to 1400 ° C,
Various measuring materials are adapted. In addition, since the thermocouple wire is often weak against an oxidizing or reducing atmosphere, it is generally used in a protective pipe. Further, as a conventional ceramic sheath type thermocouple, a W-hole is formed in a silicon nitride protective tube having a ventilation hole formed on a side surface.
There is known a structure in which a Re wire is included and the space is filled with reactive sintered silicon nitride in which TiN is dispersed.
【0003】また、特開平6−160200号公報に
は、気密端子付シース型熱電対が開示されている。該熱
電対は、過渡的な温度変化等により、端子部に温度勾配
が生じても測定誤差を生じさせないものであり、アルメ
ル線とクロメル線の異種金属線からなる熱電対素線をス
テンレス製シース内に無機絶縁材と共に、相互に絶縁し
て収納し、シースの基端側を気密端子部により気密に封
止する。気密端子部のセラミック端板に取り付けられた
2本のコパール製の貫通パイプの内部に絶縁スリーブが
挿入され、各熱電対素線はその内部を通って貫通パイプ
と直接接触せずに外部に引き出されている。[0003] Japanese Patent Application Laid-Open No. 6-160200 discloses a sheath-type thermocouple with an airtight terminal. The thermocouple does not cause a measurement error even if a temperature gradient occurs in a terminal portion due to a transient temperature change or the like, and a thermocouple element wire composed of a dissimilar metal wire of an alumel wire and a chromel wire is made of a stainless steel sheath. The sheath is housed in an insulated state together with an inorganic insulating material, and the base end side of the sheath is hermetically sealed by an airtight terminal portion. An insulating sleeve is inserted inside two copearl through pipes attached to the ceramic end plate of the hermetic terminal portion, and each thermocouple wire is drawn out without passing through the inside and directly contacting the through pipe. Have been.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、従来の
保護管をSUSで作製した場合には、保護管は、その耐
熱使用限界温度が900℃程度と低い耐熱温度である
上、硫黄ガス中での使用では保護管の金属が硫黄ガスに
侵されるので、硫黄ガス中での使用が困難である。ま
た、保護管をインコネル等の特殊耐熱合金で作製した場
合には、その保護管はSUSの保護管に比較して耐熱温
度が高くなるが、コストが約2倍とアップすることにな
る。However, when a conventional protective tube is made of SUS, the protective tube has a low heat-resistant use temperature of about 900 ° C. and has a low heat-resistant temperature in sulfur gas. In use, the metal in the protective tube is attacked by sulfur gas, so that use in sulfur gas is difficult. Further, when the protective tube is made of a special heat-resistant alloy such as Inconel, the heat-resistant temperature of the protective tube is higher than that of the SUS protective tube, but the cost is approximately doubled.
【0005】また、上記セラミックシース型熱電対は、
高温大気中で使用した場合に、保護管に形成した通気孔
から内部への酸素の侵入によってW−Re素線が劣化す
るという問題がある。更に、W−Re素線の熱膨張係数
は4.8×10- 6 /℃であり、W線の熱膨張係数より
更に大きく、繰り返しの使用によって周囲を形成する材
料との熱膨張係数差に起因する応力により劣化する可能
性がある。また、上記セラミックシース型熱電対は、測
温の応答性を向上させる必要があった。[0005] Further, the ceramic sheath type thermocouple includes:
When used in a high-temperature atmosphere, there is a problem that the W-Re element wire is deteriorated due to the intrusion of oxygen into the inside from the ventilation hole formed in the protective tube. Furthermore, the thermal expansion coefficient of the W-Re wire is 4.8 × 10 - was 6 / ° C., even greater than the thermal expansion coefficient of the W line, the difference in thermal expansion coefficient between the material forming the periphery by the use of repetition Deterioration may occur due to the resulting stress. Further, the ceramic sheath-type thermocouple needs to improve the response of temperature measurement.
【0006】また、前掲特開平6−160200号公報
に開示された気密端子付シース型熱電対は、保護管とし
てステンレス製シースを用いているが、該ステンレス製
シースは外部雰囲気中に直接晒された状態であり、例え
ば、雰囲気中に硫黄ガス等のガスが存在する場合には、
シース自体に腐食が発生し、耐久性が低下するという問
題を有している。The sheath-type thermocouple with an airtight terminal disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 6-160200 uses a stainless steel sheath as a protective tube, and the stainless steel sheath is directly exposed to an external atmosphere. State, for example, when there is a gas such as sulfur gas in the atmosphere,
There is a problem that corrosion occurs in the sheath itself and durability is reduced.
【0007】[0007]
【課題を解決するための手段】この発明の目的は、上記
の課題を解決することであり、セラミック保護管内に配
置したW−Re素線と該W−Re素線を内包する複合セ
ラミックスとの熱膨張係数を近づけ、保護管内に発生す
る熱膨張差で発生する熱応力を小さくし、保護管内への
酸素の侵入を防止し、測温の応答性を向上させたセラミ
ックシース型熱電対を提供することである。SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems, and it is an object of the present invention to combine a W-Re element disposed in a ceramic protective tube with a composite ceramic containing the W-Re element. Provided a ceramic sheath type thermocouple with close thermal expansion coefficient, reduced thermal stress generated by the difference in thermal expansion generated in the protective tube, prevented intrusion of oxygen into the protective tube, and improved responsiveness of temperature measurement It is to be.
【0008】この発明は、窒化珪素、サイアロン及び炭
化珪素から選択されるセラミックスによって作製された
保護管、前記保護管の内部に配置された測温点となる結
合部を有するW−Re素線、前記W−Re素線を内包す
るように前記保護管内に充填された4.0×10- 6 /
℃〜5.5×10- 6 /℃の範囲の熱膨張係数を有する
反応焼結窒化珪素セラミックスを主成分とする複合セラ
ミックス、及び前記保護管の外周面に形成された窒化珪
素皮膜、から成るセラミックシース型熱電対に関する。The present invention provides a protective tube made of ceramics selected from silicon nitride, sialon, and silicon carbide, a W-Re wire having a joint serving as a temperature measuring point disposed inside the protective tube, wherein W-Re wire filled in the protective tube so as to include the 4.0 × 10 - 6 /
° C. to 5.5 × 10 - consisting of 6 / ° C. reaction sintering silicon nitride ceramic having a thermal expansion coefficient in the range of the composite ceramics composed mainly, and silicon nitride film, formed on the outer peripheral surface of the protective tube It relates to a ceramic sheath type thermocouple.
【0009】また、前記保護管はその両端が開口したパ
イプから成り、前記測温点が前記保護管の開口端面に位
置し、前記開口端面には窒化珪素皮膜が形成されてい
る。従って、このセラミックシース型熱電対は、前記測
温点の近傍が測温雰囲気に対して緻密で且つ熱容量が小
さくなり、応答性を向上できる。Further, the protection tube is formed of a pipe having both ends opened, the temperature measuring point is located on an opening end surface of the protection tube, and a silicon nitride film is formed on the opening end surface. Therefore, in the ceramic sheath type thermocouple, the vicinity of the temperature measurement point is dense and has a small heat capacity with respect to the temperature measurement atmosphere, and the responsiveness can be improved.
【0010】また、前記複合セラミックスには、4.0
×10- 6 /℃以上の熱膨張係数を有する相が分散して
いる。更に、前記複合セラミックスに分散した前記相
は、AlNとAl2 O3 のうち少なくとも1種及びTi
Nから構成されている。また、前記複合セラミックスに
分散された前記相を形成するAlNとAl2 O3 の配合
量は前記複合セラミックスに対して15〜55wt%の
範囲である。[0010] Further, the composite ceramics may have a composition of 4.0.
A phase having a coefficient of thermal expansion of × 10 −6 / ° C. or more is dispersed. Further, the phase dispersed in the composite ceramic is at least one of AlN and Al 2 O 3 and Ti
N. The compounding amount of AlN and Al 2 O 3 forming the phase dispersed in the composite ceramic is in the range of 15 to 55 wt% based on the composite ceramic.
【0011】このセラミックシース型熱電対は、上記の
ような構成によって、前記保護管の外周面に窒化珪素皮
膜が形成されているので、前記保護管内に酸素の侵入を
防止でき、W−Re素線の劣化を防止できる。また、保
護管内に充填される複合セラミックスにAlNやAl2
O3 を添加して分散させることによって、複合セラミッ
クスの熱膨張係数をW−Re素線の熱膨張係数にほぼ等
しくなるように近づけることができるので、W−Re素
線の熱応力による劣化を防止できる。従って、このセラ
ミックシース型熱電対は、前記皮膜の保護膜がより長時
間にわたって安定し、それにともない耐久性も改善され
る。In this ceramic sheath type thermocouple, since a silicon nitride film is formed on the outer peripheral surface of the protective tube by the above-described configuration, intrusion of oxygen into the protective tube can be prevented. Deterioration of the wire can be prevented. Moreover, AlN or Al 2
By adding and dispersing O 3 , the thermal expansion coefficient of the composite ceramics can be made to be close to the thermal expansion coefficient of the W-Re strand, so that the deterioration of the W-Re strand due to thermal stress can be reduced. Can be prevented. Therefore, in this ceramic sheath type thermocouple, the protective film of the film is stabilized for a longer time, and the durability is accordingly improved.
【0012】[0012]
【発明の実施の形態】以下、図1を参照して、この発明
によるセラミックシース型熱電対の実施例を説明する。
図1はこのセラミックシース型熱電対の一実施例を示す
断面図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a ceramic sheath type thermocouple according to the present invention will be described below with reference to FIG.
FIG. 1 is a sectional view showing one embodiment of the ceramic sheath type thermocouple.
【0013】図1に示すように、このセラミックシース
型熱電対は、窒化珪素(Si3 N4)、サイアロン(s
ialon)及び炭化珪素(SiC)から選択されるセ
ラミックスによって作製された保護管1、保護管1の内
部に配置された測温点9となる結合部を有するW−Re
素線2,3、及びW−Re素線2,3を内包するように
保護管1内に充填された4.0×10- 6 /℃〜5.5
×10- 6 /℃の範囲の熱膨張係数を有する反応焼結窒
化珪素セラミックスを主成分とする複合セラミックス4
から構成されている。W−Re素線は、一方の線材がW
−5%Reから構成されたW−Re素線2と、他方の線
材がW−26%Reから構成されたW−Re素線3から
構成されている。As shown in FIG. 1, this ceramic sheath type thermocouple is made of silicon nitride (Si 3 N 4 ), sialon (s
ialon) and a protective tube 1 made of ceramics selected from silicon carbide (SiC), and a W-Re having a bonding portion disposed inside the protective tube 1 and serving as a temperature measuring point 9.
Strands 2, 3, and W-Re wire 2,3 was filled in a protective tube 1 so as to include the 4.0 × 10 - 6 /℃~5.5
Composite ceramics 4 composed mainly of reaction sintered silicon nitride ceramics having a coefficient of thermal expansion in the range of × 10 −6 / ° C.
It is composed of In the W-Re element wire, one of the wires is W
A W-Re wire 2 made of -5% Re and a W-Re wire 3 made of W-26% Re are used as the other wire.
【0014】また、保護管1は、その両端が開口した径
の小さい長尺のパイプから構成されている。保護管1の
開口端面には、一端に測温点9が位置し、他端に端子取
付部7が設けられている。測温点9が位置した開口端面
には、CVD等によって窒化珪素から成る皮膜6が全面
を覆うように形成されている。また、保護管1には通気
用孔8が形成されており、保護管1内に充填された複合
セラミックス4の反応焼結を良好に達成するように構成
されている。更に、保護管1の外周面は、CVD等によ
って窒化珪素から成る皮膜5が全面を覆うように形成さ
れている。The protective tube 1 is formed of a long pipe having a small diameter with both ends opened. A temperature measuring point 9 is located at one end of the open end surface of the protective tube 1, and a terminal mounting portion 7 is provided at the other end. On the opening end face where the temperature measuring point 9 is located, a film 6 made of silicon nitride is formed by CVD or the like so as to cover the entire surface. Further, a ventilation hole 8 is formed in the protective tube 1 so that the composite ceramics 4 filled in the protective tube 1 can be satisfactorily reactively sintered. Further, the outer peripheral surface of the protective tube 1 is formed by CVD or the like so as to cover the entire surface with a film 5 made of silicon nitride.
【0015】このセラミックシース型熱電対では、保護
管1内に充填された複合セラミックス4には、4.0×
10- 6 /℃以上の熱膨張係数を有する相が分散してお
り、該相はAlNとAl2 O3 のうち少なくとも1種及
びTiNから構成されている。複合セラミックス4に分
散された相を形成するAlNとAl2 O3 の配合量は、
複合セラミックス4に対して15〜55wt%の範囲に
構成されている。In this ceramic sheath type thermocouple, the composite ceramics 4 filled in the protective tube 1 has a size of 4.0 ×
10 - 6 / phase having a coefficient of thermal expansion than ℃ are dispersed, said phase is composed of at least one and TiN of AlN and Al 2 O 3. The compounding amounts of AlN and Al 2 O 3 forming a phase dispersed in the composite ceramics 4 are as follows:
It is configured in the range of 15 to 55 wt% with respect to the composite ceramics 4.
【0016】〔実施例1〕このセラミックシース型熱電
対は、例えば、次のようにして作製できる。まず、保護
管1を、内径φ4mm、外径φ6mm及び長さ300m
mで且つ両端が開口したサイアロンパイプで作製する。
W−Re素線2,3として、一方の線材がW−5%Re
から構成されたW−Re素線2と、他方の線材がW−2
6%Reから構成されたW−Re素線3との二種類の素
線を一端で互いに直列に結線して作製する。そこで、保
護管1内にW−Re素線2,3の互いに結線した接合部
9が保護管1の開口端面に位置するようにW−Re素線
2,3を配置すると共に、保護管1内にスラリーを充填
する。スラリーは、Si粉末を55wt%、AlNを3
5wt%及びTiを10wt%で配合した混合粉末を含
むものである。次いで、保護管1内のスラリーが乾燥し
た後、これを0.93MPaの窒素雰囲気中の炉内で反
応焼結した。Embodiment 1 This ceramic sheath type thermocouple can be manufactured, for example, as follows. First, the protective tube 1 was set to an inner diameter of 4 mm, an outer diameter of 6 mm, and a length of 300 m.
It is made of a sialon pipe having a length of m and open at both ends.
One of the W-Re wires 2 and 3 is W-5% Re.
And the other wire is W-2.
It is manufactured by connecting two types of wires, including a W-Re wire 3 composed of 6% Re, in series at one end. Therefore, the W-Re wires 2 and 3 are arranged in the protection tube 1 such that the joint portions 9 of the W-Re wires 2 and 3 which are connected to each other are located on the opening end surfaces of the protection tube 1 and the protection tube 1 is provided. Fill the inside with the slurry. The slurry was composed of 55 wt% of Si powder and 3 of AlN.
It contains a mixed powder in which 5 wt% and 10 wt% of Ti are blended. Next, after the slurry in the protection tube 1 was dried, the slurry was subjected to reaction sintering in a furnace in a nitrogen atmosphere of 0.93 MPa.
【0017】次に、炉内に四塩化珪素、アンモニア、窒
素ガスを導入し、保護管1の外面に厚さ約0.1mmの
Si3 N4 膜5,6を形成した。それによって、保護管
1の通気用孔8が閉鎖されると共に、保護管1の一端面
を含む全面にSi3 N4 膜5,6が形成され、通気用孔
8からの酸素侵入を抑制でき、耐酸化性を向上させるこ
とができる。次いで、保護管1の他端から突出している
W−Re素線2,3に端子取付部7を取り付けた。この
セラミックシース型熱電対は、上記のように作製され、
W−Re素線2,3の接合部9が測温点を構成すること
になる。Next, silicon tetrachloride, ammonia and nitrogen gas were introduced into the furnace, and Si 3 N 4 films 5 and 6 having a thickness of about 0.1 mm were formed on the outer surface of the protective tube 1. Thereby, the ventilation hole 8 of the protection tube 1 is closed, and the Si 3 N 4 films 5 and 6 are formed on the entire surface including one end surface of the protection tube 1, so that the invasion of oxygen from the ventilation hole 8 can be suppressed. And the oxidation resistance can be improved. Next, the terminal attachment portions 7 were attached to the W-Re strands 2 and 3 projecting from the other end of the protection tube 1. This ceramic sheath type thermocouple is manufactured as described above,
The junction 9 of the W-Re strands 2 and 3 constitutes a temperature measuring point.
【0018】この実施例では、サイアロンパイプを用い
てセラミックシース型熱電対を作製したが、先端を有す
る鞘状の保護管を使用した場合でも、保護管の外面に皮
膜を形成することによって、通気用孔を閉鎖し、通気用
孔からの酸素侵入を抑制できる結果、耐酸化性を向上さ
せることができるものである。また、保護管1の外面に
皮膜5,6を形成する方法として、化学蒸着(CVD)
の他、イオンアシストデポジション(IAD)、スパッ
タリング、有機珪素ポリマー塗布法等によって達成でき
るものである。In this embodiment, a ceramic sheath-type thermocouple is manufactured using a sialon pipe. However, even when a sheath-shaped protective tube having a tip is used, a ventilation film can be formed by forming a film on the outer surface of the protective tube. As a result of closing the holes and suppressing oxygen intrusion from the ventilation holes, the oxidation resistance can be improved. As a method of forming the coatings 5 and 6 on the outer surface of the protection tube 1, chemical vapor deposition (CVD)
In addition, it can be achieved by ion assist deposition (IAD), sputtering, an organic silicon polymer coating method, or the like.
【0019】次に、このセラミックシース型熱電対にお
ける端子取付部7のリード線を接続し、セラミックシー
ス型熱電対の測温点側の端部を大気中1000℃の炉内
に配置し、時間経過に伴う熱起電力の変化を測定した。
この実施例では、複合セラミックス4として熱膨張係数
(α)は4.0×10- 6 /℃のものを使用した。ま
た、比較例として保護管1の外面に皮膜5,6を形成し
ないものを作製した。その結果を図4に示す。図4から
分かるように、本発明の保護管1にCVDでSi3 N4
皮膜5,6を形成したものは、4000時間経過した後
でも、熱起電力の変位(%)は生じることなく、使用前
の熱起電力を維持していることが分かった。これに対し
て、比較例の保護管1にCVDでSi3 N4 皮膜を形成
しなかったものは、使用後、熱起電力の変位(%)が大
きく発生し、使用前の熱起電力を維持できないことが分
かった。Next, the lead wire of the terminal mounting portion 7 of the ceramic sheath type thermocouple is connected, and the end of the ceramic sheath type thermocouple on the temperature measuring point side is placed in a furnace at 1000 ° C. in the atmosphere. The change of the thermoelectromotive force over time was measured.
In this embodiment, the thermal expansion coefficient as the ceramic composite 4 (alpha) is 4.0 × 10 - were from 6 / ° C.. Further, as a comparative example, a protective tube 1 in which the films 5 and 6 were not formed on the outer surface was manufactured. FIG. 4 shows the results. As can be seen from FIG. 4, the protection tube 1 of the present invention is formed by CVD using Si 3 N 4.
It was found that the coatings 5 and 6 maintained the thermoelectromotive force before use without displacement (%) of the thermoelectromotive force even after 4000 hours. On the other hand, in the case where the Si 3 N 4 film was not formed by CVD on the protective tube 1 of the comparative example, the displacement (%) of the thermoelectromotive force was greatly generated after use, and the thermoelectromotive force before use was reduced. It turned out that it could not be maintained.
【0020】〔実施例2〕実施例1で使用したスラリー
からAlNを除いたスラリーを用いて、該スラリーを保
護管1に充填し、実施例1と同様の方法でセラミックシ
ース型熱電対を作製し、これを比較例とした。即ち、A
lNを除いたスラリーは、Si,Tiのみから成る混合
粉末を原料にして複合セラミックスを形成し、更に、複
合セラミックスとして熱膨張係数(α)が3.2××1
0- 6 /℃のものを使用した。また、実施例1で作製し
た本発明品のものは、複合セラミックス4が熱膨張係数
(α)が4.0×10- 6 /℃〜5.5×10- 6 /℃
の範囲のものを使用し、セラミックシース型熱電対を作
製し、本発明品とした。[Example 2] Using a slurry obtained by removing AlN from the slurry used in Example 1, filling the slurry into a protective tube 1, and producing a ceramic sheath type thermocouple in the same manner as in Example 1. This was used as a comparative example. That is, A
The slurry excluding 1N forms a composite ceramic using a mixed powder consisting of only Si and Ti as a raw material, and has a thermal expansion coefficient (α) of 3.2 ×× 1 as the composite ceramic.
0 - using the 6 / ℃ ones. Further, those of the present invention product prepared in Example 1, composite ceramic 4 thermal expansion coefficient (alpha) is 4.0 × 10 - 6 /℃~5.5×10 - 6 / ℃
A ceramic sheath-type thermocouple was prepared using the above-mentioned range, and was used as a product of the present invention.
【0021】複合セラミックスの熱膨張係数を変えるた
めの添加物として、添加物自体の熱膨張係数がSi3 N
4 の熱膨張係数よりも大きく、1400℃程度でも安定
な物質であれば使用可能であるが、その点から考慮する
と、熱膨張係数が大きく、高温でも安定で溶融しない材
料として、AlNやAl2 O3 が最適であることが分か
った。また、複合セラミックス4に分散された相を形成
するAlNとAl2 O3 の配合量としては、図2及び図
面3に示すグラフから分かるように、複合セラミックス
4に対して15〜55wt%の範囲であることが分か
る。As an additive for changing the thermal expansion coefficient of the composite ceramic, the additive itself has a thermal expansion coefficient of Si 3 N.
Any substance that is larger than the coefficient of thermal expansion of 4 and is stable at about 1400 ° C. can be used. However, in view of this, AlN or Al 2 is a material that has a large coefficient of thermal expansion and is stable and does not melt even at high temperatures. O 3 has been found to be optimal. As can be seen from the graphs shown in FIGS. 2 and 3, the amount of AlN and Al 2 O 3 forming a phase dispersed in the composite ceramics 4 is in the range of 15 to 55 wt% with respect to the composite ceramics 4. It turns out that it is.
【0022】即ち、図2には、Tiの配合量を10wt
%とした時の、AlNの添加量(wt%)に対する抗折
強度(曲げ強度:MPa)と熱膨張係数(1/℃)との
関係が示されている。図2に示すように、抗折強度と熱
膨張係数とを考慮すると、AlNの添加量が15wt%
以下では熱膨張係数が低く成り過ぎ、また、55wt%
以上では複合セラミックスが緻密化せず、抗折強度が極
端に低下することが分かる。また、図3には、Tiの配
合量を10wt%とした時の、Al2 O3 の添加量(w
t%)に対する抗折強度(曲げ強度)(MPa)と熱膨
張係数(1/℃)との関係が示されている。図3に示す
ように、抗折強度と熱膨張係数とを考慮すると、Al2
O3 の添加量が15wt%以下では熱膨張係数が低く成
り過ぎ、また、55wt%以上では複合セラミックスが
緻密化せず、抗折強度が極端に低下することが分かる。That is, FIG. 2 shows that the compounding amount of Ti is 10 wt.
The relationship between the bending strength (bending strength: MPa) and the coefficient of thermal expansion (1 / ° C.) with respect to the amount of AlN added (wt%) is shown. As shown in FIG. 2, considering the bending strength and the coefficient of thermal expansion, the amount of AlN added is 15 wt%.
Below, the thermal expansion coefficient becomes too low, and 55 wt%
From the above, it can be seen that the composite ceramic is not densified and the bending strength is extremely reduced. FIG. 3 shows the amount of Al 2 O 3 added (w
The relationship between the bending strength (bending strength) (MPa) and the coefficient of thermal expansion (1 / ° C.) with respect to (t%) is shown. As shown in FIG. 3, considering the bending strength and the coefficient of thermal expansion, Al 2
It can be seen that when the added amount of O 3 is less than 15 wt%, the thermal expansion coefficient becomes too low, and when the added amount is more than 55 wt%, the composite ceramic does not become dense and the bending strength is extremely lowered.
【0023】そこで、本発明品と、AlNを除いて作製
した比較例とを用いて、1100℃の溶解した銅の測温
を繰り返し実施した時の測温回数に伴う熱起電力の変化
を測定した。その結果を図5に示す。図5から分かるよ
うに、本発明品のセラミックシース型熱電対は、105
回の繰り返し使用に対しても熱起電力の変位(%)は生
じることなく、使用前の熱起電力を維持していることが
分かった。これに対して、比較例のセラミックシース型
熱電対は、繰り返し使用後の熱起電力の変位(%)が発
生し、使用前の熱起電力を維持できないことが分かっ
た。Therefore, using the product of the present invention and a comparative example prepared without AlN, the change of the thermoelectromotive force with the number of times of temperature measurement when the temperature measurement of the melted copper at 1100 ° C. was repeatedly performed was measured. did. The result is shown in FIG. As can be seen from FIG. 5, the ceramic sheathed thermocouple of the present invention has a 10 5
It was found that the displacement (%) of the thermoelectromotive force did not occur even after repeated use, and the thermoelectromotive force before use was maintained. On the other hand, it was found that in the ceramic sheath type thermocouple of the comparative example, the displacement (%) of the thermoelectromotive force after repeated use occurred, and the thermoelectromotive force before use could not be maintained.
【0024】また、本発明品と比較例のセラミックシー
ス型熱電対を、104 回の繰り返し使用した後に、それ
らの断面を観察した結果、本発明品のセラミックシース
型熱電対には微小な亀裂は発生していなかった。これに
対して、AlNを添加していない複合セラミックスを用
いた比較例のセラミックシース型熱電対は、W−Re素
線の一部に熱応力による微小な亀裂が発生していたこと
が分かった。Further, the ceramic sheath thermocouple comparative examples and the present invention product, 10 four times after repeated use, observation of their cross-section, the ceramic sheath thermocouple of the present invention product is a microcrack Had not occurred. On the other hand, in the ceramic sheath type thermocouple of the comparative example using the composite ceramics to which AlN was not added, it was found that a small crack was generated in a part of the W-Re strand by thermal stress. .
【0025】[0025]
【発明の効果】この発明によるセラミックシース型熱電
対は、上記のように構成され、次のような効果を有す
る。即ち、このセラミックシース型熱電対は、W−Re
素線を内包するように保護管内に4.0×10- 6 /℃
〜5.5×10- 6 /℃の範囲の熱膨張係数を有する反
応焼結窒化珪素セラミックスを主成分とする複合セラミ
ックスが充填され、前記保護管の外周面に窒化珪素皮膜
が形成されているので、前記保護管から酸素が内部に侵
入することがなく、W−Re素線が劣化するようなこと
が無い。また、前記複合セラミックスの熱膨張係数は適
正な量の添加物によって前記W−Re素線の熱膨張係数
に近づけられるので、繰り返し使用によっても前記W−
Re素線に亀裂等の破損が発生せず、熱膨張差に起因す
る前記W−Re素線の劣化が発生しない。更に、このセ
ラミックシース型熱電対の測温点は、Si3 N4 皮膜で
被覆されているのみであり、その領域の熱容量が小さ
く、緻密であるので、測温において極めて応答性が良好
になる。従って、このセラミックシース型熱電対は、繰
り返しの使用回数は大幅に延ばすことができ寿命を長く
できる。また、前記保護管には被膜が配置されているの
で腐食が発生せず、酸化による線材の断線等が発生せ
ず、耐久性に富んだセラミックシース型熱電対を提供で
きる。The ceramic sheath type thermocouple according to the present invention is configured as described above and has the following effects. That is, this ceramic sheath type thermocouple is made of W-Re
The protective tube so as to include a strand 4.0 × 10 - 6 / ℃
~5.5 × 10 - 6 / ℃ composite ceramics mainly a reaction sintering silicon nitride ceramic having a thermal expansion coefficient in the range of is filled, a silicon nitride film on the outer peripheral surface of the protective tube is formed Therefore, oxygen does not enter the inside from the protective tube, and the W-Re strand does not deteriorate. In addition, the coefficient of thermal expansion of the composite ceramics can be brought close to the coefficient of thermal expansion of the W-Re strand by an appropriate amount of additive.
No damage such as cracks occurs in the Re wire, and the W-Re wire does not deteriorate due to a difference in thermal expansion. Further, the temperature measuring point of this ceramic sheath type thermocouple is only covered with the Si 3 N 4 film, and the heat capacity in that region is small and dense, so that the responsiveness in the temperature measurement becomes extremely good. . Therefore, the number of times of use of the ceramic sheath type thermocouple can be greatly extended, and the life can be extended. Further, since the protective tube is provided with the coating, no corrosion occurs, no breakage of the wire due to oxidation occurs, and the like, and a highly durable ceramic sheath type thermocouple can be provided.
【図1】この発明によるセラミックシース型熱電対の一
実施例を示す断面図である。FIG. 1 is a sectional view showing one embodiment of a ceramic sheath type thermocouple according to the present invention.
【図2】複合セラミックスにおけるAlNの添加量に対
する抗折強度と熱膨張係数との関係を示すグラフであ
る。FIG. 2 is a graph showing the relationship between bending strength and coefficient of thermal expansion with respect to the amount of AlN added to a composite ceramic.
【図3】複合セラミックスにおけるAl2 O3 の添加量
に対する抗折強度と熱膨張係数との関係を示すグラフで
ある。FIG. 3 is a graph showing the relationship between the bending strength and the coefficient of thermal expansion with respect to the amount of Al 2 O 3 added to the composite ceramics.
【図4】セラミックシース型熱電対の使用時間に対する
熱起電力の変位を示すグラフである。FIG. 4 is a graph showing displacement of a thermoelectromotive force with respect to a use time of a ceramic sheath type thermocouple.
【図5】セラミックシース型熱電対の繰り返しの使用回
数に対する熱起電力の変位を示すグラフである。FIG. 5 is a graph showing the displacement of the thermoelectromotive force with respect to the number of times the ceramic sheath type thermocouple is used repeatedly.
1 保護管 2,3 W−Re素線 4 複合セラミックス 5 外周面皮膜 6 端面皮膜 7 端子取付部 8 通気用孔 9 測温点 DESCRIPTION OF SYMBOLS 1 Protection tube 2, 3 W-Re element wire 4 Composite ceramics 5 Outer surface coating 6 End coating 7 Terminal mounting part 8 Ventilation hole 9 Temperature measuring point
フロントページの続き (56)参考文献 特開 昭63−11574(JP,A) 特開 昭61−246636(JP,A) 特開 平9−89682(JP,A) 特開 平8−15047(JP,A) 特開 昭55−27820(JP,A) 特開 平8−2969(JP,A) 実開 昭63−72530(JP,U) 実開 平2−146335(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01K 7/02 G01K 1/08 Continuation of the front page (56) References JP-A-63-11574 (JP, A) JP-A-61-246636 (JP, A) JP-A-9-89682 (JP, A) JP-A 8-15047 (JP, A) JP-A-55-27820 (JP, A) JP-A-8-2969 (JP, A) JP-A-63-72530 (JP, U) JP-A-2-146335 (JP, U) (58) Field surveyed (Int.Cl. 7 , DB name) G01K 7/02 G01K 1/08
Claims (5)
選択されるセラミックスによって作製された保護管、前
記保護管の内部に配置された測温点となる結合部を有す
るW−Re素線、前記W−Re素線を内包するように前
記保護管内に充填された4.0×10- 6 /℃〜5.5
×10- 6 /℃の範囲の熱膨張係数を有する反応焼結窒
化珪素セラミックスを主成分とする複合セラミックス、
及び前記保護管の外周面に形成された窒化珪素皮膜、か
ら成るセラミックシース型熱電対。1. A protective tube made of ceramics selected from silicon nitride, sialon, and silicon carbide, a W-Re wire having a joint serving as a temperature measuring point disposed inside the protective tube, and the W filled in the protective tube so as to include a -Re strand 4.0 × 10 - 6 /℃~5.5
A composite ceramic mainly composed of reactive sintered silicon nitride ceramics having a coefficient of thermal expansion in the range of × 10 −6 / ° C.
And a silicon sheath formed on the outer peripheral surface of the protection tube.
から成り、前記測温点が前記保護管の開口端面に位置
し、前記開口端面には窒化珪素皮膜が形成されている請
求項1に記載のセラミックシース型熱電対。2. The protection tube according to claim 1, wherein the protection tube comprises a pipe having both ends opened, the temperature measuring point is located on an opening end surface of the protection tube, and a silicon nitride film is formed on the opening end surface. The described ceramic sheath type thermocouple.
0- 6 /℃以上の熱膨張係数を有する相が分散している
請求項1又は2に記載のセラミックシース型熱電対。3. The composite ceramic has a size of 4.0 × 1.
0 - 6 / phase having a coefficient of thermal expansion than ℃ are dispersed claim 1 or 2 ceramic sheath thermocouple described.
なくとも1種及びTiNから構成されている請求項3に
記載のセラミックシース型熱電対。4. The ceramic sheath thermocouple according to claim 3, wherein said phase is composed of at least one of AlN and Al 2 O 3 and TiN.
形成するAlNとAl2 O3 の配合量は前記複合セラミ
ックスに対して15〜55wt%の範囲である請求項1
〜4のいずれか1項に記載のセラミックシース型熱電
対。5. The compounding amount of AlN and Al 2 O 3 forming a phase dispersed in the composite ceramics is in a range of 15 to 55 wt% based on the composite ceramics.
The ceramic sheath-type thermocouple according to any one of Items 1 to 4, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14653396A JP3329189B2 (en) | 1996-05-17 | 1996-05-17 | Ceramic sheath type thermocouple |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14653396A JP3329189B2 (en) | 1996-05-17 | 1996-05-17 | Ceramic sheath type thermocouple |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09304192A JPH09304192A (en) | 1997-11-28 |
JP3329189B2 true JP3329189B2 (en) | 2002-09-30 |
Family
ID=15409804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14653396A Expired - Fee Related JP3329189B2 (en) | 1996-05-17 | 1996-05-17 | Ceramic sheath type thermocouple |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3329189B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108303188A (en) * | 2018-02-01 | 2018-07-20 | 辽宁伊菲科技股份有限公司 | A kind of manufacturing method of silicon nitride secondary protection tube |
-
1996
- 1996-05-17 JP JP14653396A patent/JP3329189B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09304192A (en) | 1997-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6102565A (en) | Ceramic sheath type thermocouple | |
US6190038B1 (en) | Thermocouple lance with alternating molybdenum layered sheath for measuring temperature in molten metal bath | |
US5696348A (en) | Thermocouple structure | |
EP0887632A1 (en) | A ceramic thermocouple for measuring temperature of molten metal | |
JP3306427B2 (en) | Sheath structure | |
JP3572312B2 (en) | Ceramic sheath type thermocouple | |
JP3329189B2 (en) | Ceramic sheath type thermocouple | |
EP1571431A1 (en) | Thermal variable resistance device with protective sheath | |
JP2002013984A (en) | Thermocouple | |
JP3550915B2 (en) | Ceramic thermocouple for high temperature measurement | |
JP3603557B2 (en) | Ceramic thermocouple for measuring molten metal temperature | |
US7915994B2 (en) | Thermal variable resistance device with protective sheath | |
JP3306426B2 (en) | Thermocouple for measuring molten metal temperature | |
JP3603614B2 (en) | thermocouple | |
JP3627317B2 (en) | Thermocouple structure | |
JP3306425B2 (en) | Ceramic thermocouple for high temperature measurement | |
JPH0755586A (en) | Sheathed thermocouple | |
JPH1114465A (en) | Structure of thermocouple | |
JP3398105B2 (en) | thermocouple | |
JP3550828B2 (en) | Thermocouple structure | |
JP3355166B2 (en) | Thermocouple for measuring molten metal temperature | |
EP1538432A1 (en) | Extended temperature range thermal variable-resistance device | |
JP3627316B2 (en) | Thermocouple structure | |
JP3641759B2 (en) | Manufacturing method of temperature sensor with integrated thermocouple and protective tube | |
JP2002223009A (en) | Thermoelectric couple for molten metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110719 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110719 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120719 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120719 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130719 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |