JP3550915B2 - Ceramic thermocouple for high temperature measurement - Google Patents

Ceramic thermocouple for high temperature measurement Download PDF

Info

Publication number
JP3550915B2
JP3550915B2 JP29982096A JP29982096A JP3550915B2 JP 3550915 B2 JP3550915 B2 JP 3550915B2 JP 29982096 A JP29982096 A JP 29982096A JP 29982096 A JP29982096 A JP 29982096A JP 3550915 B2 JP3550915 B2 JP 3550915B2
Authority
JP
Japan
Prior art keywords
thermocouple
temperature measurement
temperature
ceramic
protection tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29982096A
Other languages
Japanese (ja)
Other versions
JPH10132666A (en
Inventor
英紀 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP29982096A priority Critical patent/JP3550915B2/en
Priority to EP97304858A priority patent/EP0818671A3/en
Priority to US08/890,427 priority patent/US6102565A/en
Publication of JPH10132666A publication Critical patent/JPH10132666A/en
Application granted granted Critical
Publication of JP3550915B2 publication Critical patent/JP3550915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、セラミックスから成る保護管を持つ高温測温用セラミック熱電対に関する。
【0002】
【従来の技術】
従来、約1500℃の鋳鉄溶湯を測温するための熱電対は、材料として比較的に融点が高く、大気中で安定であるPt−Rhを素線とし、該Pt−Rh素線をアルミナシリカファイバー製のパイプに固定して作製したものが使用されている。このような熱電対は、鋳鉄溶湯の測温を約2回程度行った後に、正確な温度の測定が不能となり、廃棄しているのが現状であり、熱電対を多回数利用できずに熱電対そのものが極めて高価なものになっている。また、一般的に、シース型熱電対は、W−Reを素線とし、高温で使用されるSUSシース型部品の保護管として使用され、SUS等の金属で作製されたものが知られている。SUSシース型熱電対は、1000℃以上の雰囲気で使用されるものがあり、その場合には、インコネル等の特殊耐熱合金で作製されている。通常、熱電対は、300℃〜1400℃の温度範囲の温度を計測するため、各種の測定材を適合させている。
【0003】
また、熱電対の素線は、酸化性又は還元性の雰囲気に対して弱い場合が多いので、一般的には保護パイプ内に入れて使用されている。また、従来の高温測温用セラミック熱電対として、通気用の孔を側面に形成した窒化珪素製保護管内に、W−Re素線を内包し、それらの空間をTiNが分散した反応焼結窒化珪素を充填した構造のものが知られている。
【0004】
また、特開平6−160200号公報には、気密端子付シース型熱電対が開示されている。該熱電対は、過渡的な温度変化等により、端子部に温度勾配が生じても測定誤差を生じさせないものであり、アルメル線とクロメル線の異種金属線からなる熱電対素線をステンレス製シース内に無機絶縁材と共に、相互に絶縁して収納し、シースの基端側を気密端子部により気密に封止する。気密端子部のセラミック端板に取り付けられた2本のコパール製の貫通パイプの内部に絶縁スリーブが挿入され、各熱電対素線はその内部を通って貫通パイプと直接接触せずに外部に引き出されている。
【0005】
【発明が解決しようとする課題】
ところで、熱電対はその種類に応じて、熱起電力は、次のようになっている。PR(Pt−Rh)熱電対の熱起電力は、500℃で1.241mVであり、1000℃で4.833mVである。また、CA(クロメル−アルメル)熱電対の熱起電力は、500℃で20.64mVであり、1000℃で41.269mVである。更に、W−Re熱電対の熱起電力は、500℃で8.655mVであり、1000℃で18.257mVである。
【0006】
また、これらの熱電対の使用可能温度及び使用雰囲気は、図4に示すとおりである。Pt−Rh熱電対は、不活性ガス雰囲気での使用はできず、大気中での使用可能温度は1500℃が限界温度である。CA熱電対は、大気中及び不活性ガス雰囲気中での使用が可能であり、両者での使用可能温度は800℃が限界温度である。更に、W−Re熱電対は、大気中及び不活性ガス雰囲気中での使用が可能であり、大気中での使用可能温度は400℃が限界温度であり、不活性ガス雰囲気中での使用可能温度は2300℃が限界温度である。
【0007】
Pt−Rh素線を用いたPR熱電対について、上記のように、PR熱電対の熱起電力は、CA熱電対の約1/15であり、W−Re熱電対の約1/7と小さいため、それらの熱電対に比較して測温の精度が劣り、応答性が悪いという問題を有している。そのため、現場においては、溶鉱炉の溶湯を測温するため、溶解炉の近傍で作業者が温度が安定するまでの約8秒間、その測定場所に居ることを余儀なくされる。また、熱電対による溶湯の測温に際して、熱電対のPt−Rh素線に鋳鉄が付着し、それを除去するための工程は煩雑になり、しかも現行品は寿命が2回程度の測温であり、熱電対の交換作業も手間がかかるという問題がある。また、熱電対におけるW−Re素線は、大気中では酸化し易く、鋳鉄溶湯の温度測定には使用できないものである。
【0008】
従来の保護管をSUSで作製した場合には、保護管は、その耐熱使用限界温度が900℃程度と低い耐熱温度である上、硫黄ガス中での使用では保護管の金属が硫黄ガスに侵されるので、硫黄ガス中での使用が困難である。また、保護管をインコネル等の特殊耐熱合金で作製した場合には、その保護管はSUSの保護管に比較して耐熱温度が高くなるが、コストが約2倍とアップすることになる。
【0009】
また、上記高温測温用セラミック熱電対は、高温大気中で使用した場合に、保護管に形成した通気孔から内部への酸素の侵入によってW−Re素線が劣化するという問題がある。更に、W−Re素線の熱膨張係数は4.8×10− 6 /℃であり、W線の熱膨張係数より更に大きく、繰り返しの使用によって周囲を形成する材料との熱膨張係数差に起因する応力により劣化する可能性がある。また、上記高温測温用セラミック熱電対は、保護管内にW−Re素線を内包し、保護管の空間をTiN分散反応焼結Si を充填した構造では、測温の応答性が良好でなく、更に応答性を向上させる必要があった。
【0010】
【課題を解決するための手段】
この発明の目的は、上記の課題を解決することであり、W−Re線をその先端部を保護管から露出させた状態で、露出したW−Re線の表面にCVD法による緻密な炭化ケイ素や窒化ケイ素の皮膜を形成し、保護管のうち注湯部分には炭化ケイ素ファイバー製の着脱自在なソケットを装着し、保護管が直接溶湯に触れない構造に構成し、耐熱性及び耐腐食性を向上させると共に、測温応答性を向上させると共に、反復使用を可能にして熱電対を長寿命に向上させた高温測温用セラミック熱電対を提供することである。
【0011】
この発明は、窒化珪素、サイアロン及び炭化珪素から選択されるセラミックスによって作製された保護管、前記保護管の内部に配置された異なる組成の一対のW−Re素線、前記W−Re素線の端部が互いに接合され且つ前記保護管から露出している測温部を構成する結合部分、前記保護管から露出した前記W−Re素線の前記結合部分に形成された炭化ケイ素、及び窒化ケイ素又はそれらの複合材料から成る皮膜、前記保護管の内部に充填された焼結時に寸法変化の小さい耐熱性充填材、から成る高温測温用セラミック熱電対に関する。
【0012】
また、前記耐熱性充填材はTiを含む反応焼結セラミックスであるので、前記保護管と前記耐熱性充填材との間の境界には隙間が発生ぜず、ガタが発生することなく、Nガスが良好に封入され、W−Re線の酸化を防止でき、熱電対の耐久性を向上させると共に、反応焼結セラミックスが遮熱機能を発揮し、先端部の結合部分の測温領域の熱容量を確実に小さするように狭い領域に限定することができ、溶湯等の被測温物体の温度測定にあたって熱電対の測温領域のみの温度上昇で済み、迅速に且つ正確に温度測定が可能になる。
【0013】
この高温測温用セラミック熱電対は、上記のように構成したので、W−Re線の熱起電力が比較的に大きく、また、測温部となる先端部は露出した構造であって熱容量が最小限に構成でき、温度への応答性が良好になり、しかもW−Re線の融点が3000℃であり、鋳鉄溶湯中で溶けることはない。また、W−Re線の表面に対してW−Re線の熱膨張係数に近い材料の緻密なCVD法による窒化ケイ素又は炭化ケイ素の皮膜を形成することによって、W−Re線の測温部での酸化を防止できる。また、反応焼結材の耐熱性充填材と保護管とが密着し、両者間の境界部に隙間が形成されず、熱の通過面積を大きくすることができ、また、前記測温部の近傍が皮膜で覆われて熱容量が小さく構成されているので、測温雰囲気に対して熱伝導性が良好になって応答性を向上できる。
【0014】
また、前記保護管のうち測温部側の端部には炭化ケイ素製ファイバーから成るソケットが設けられている。前記ソケットは耐酸化性に優れているので、前記ソケットを熱電対に嵌装することによって、前記保護管の注湯領域の熱衝撃による破損を防止することができ、前記保護管の寿命を向上させることができる。
【0015】
また、前記皮膜はCVD法で合成して形成されている。更に、前記皮膜は、前記保護管の全表面に設けられている。CVD法による窒化ケイ素又は炭化ケイ素の皮膜は、結晶粒子が大きく、不純物をほとんど含まないために、フォノン散乱が小さく、熱伝導率が大きい。そのために、上記皮膜を備えた熱電対は、耐熱性、耐衝撃性に対しても優れている。また、鋳鉄溶湯は、上記皮膜には濡れ難いため、熱電対の表面にFe金属が付着し難く、作業性が良好であり、また、測温精度も向上する。
【0016】
ここで、耐熱衝撃温度をTcとした場合に、熱伝導率をλ、皮膜の厚さをd、熱伝達率をh、ポアソン比をν、強度をσ、ヤング率E及び線膨張係数をαとすると、次の式が成り立つ。
Tc=〔1.5+3.25λ/(d×h)〕×(1−ν)×σ/E×α
皮膜が窒化ケイ素である場合には、各因子は次のとおりである。
λ=40W/m・k
d=0.1×10− 3
h=100,000W/m・K
ν=0.29
σ=400MPa
E=300×10MPa
α=3.2×10− 6 /℃
従って、〔1.5+3.25λ/(d×h)〕をXとすると、

Figure 0003550915
従って、この高温測温用セラミック熱電対は、窒化ケイ素の皮膜を設けることによって、鋳鉄溶湯の測温時の1500℃にも耐えることができる。
【0017】
【発明の実施の形態】
以下、図1を参照して、この発明による高温測温用セラミック熱電対の実施例を説明する。図1はこの高温測温用セラミック熱電対の実施例を示す断面図、図2は図1の高温測温用セラミック熱電対の先端部を示す拡大断面図、及び図3は図1の高温測温用セラミック熱電対を注湯後の経過時間に対する熱電対の温度上昇状態を示すグラフである。
【0018】
図1に示すように、この高温測温用セラミック熱電対は、保護管1の内部に充填する充填材料及び保護管1の先端の測温部2の構造に特徴を有するものである。測温部2を保護管1の先端部4から突出させ、測温部2の熱容量を小さく構成し、測温の対象物の温度に直ちに上昇できる構造に構成されている。更に、保護管1の内部に内包されるW−Re素線6,7の酸化腐食による断線を阻止するため、反応焼結セラミックスから成る充填材3が保護管1の内部に充填され、ガラスから成る封止部材12で保護管1内が密封されている。
【0019】
この高温測温用セラミック熱電対は、窒化ケイ素(Si )、サイアロン(sialon)及び炭化ケイ素(SiC)から選択されるセラミックスによって作製された保護管1、保護管1の内部に配置された異なる組成の一対のW−Re素線6,7、W−Re素線6,7の端部を互いに接合し且つ保護管1の先端部4から露出している結合部分9、保護管1から露出した結合部分9に設けられ且つ炭化ケイ素、窒化ケイ素又はそれらの複合材料から成る皮膜8、保護管1の内部に充填された焼結時に寸法変化の小さい耐熱性充填材3から構成されている。また、耐熱性充填材3は、Tiを含む反応焼結セラミックスで作製されている。保護管1のうち測温部側の端部には、炭化ケイ素製ファイバーから成るソケット5が設けられている。更に、皮膜8は、CVD法で合成して形成されているものであり、保護管1の表面にも全面に設けられ、それによって、熱電対の耐熱性を向上させている。
【0020】
この高温測温用セラミック熱電対において、充填材3は、Tiを含有させたスラリーを保護管1に充填して反応焼結した場合に、Tiを含有することで焼結膨張し、充填材3が保護管1の内壁面に密着し、保護管1と充填材3との境界に隙間等が形成されることがない。充填材3は、SiCウィスカー等のセラミック繊維、或いはSi 系反応焼結セラミックスから成る材料で構成されている。保護管1の内部には、N やArの不活性ガスが封入されていると共に、保護管1の内部に前記不活性ガスを封入するため、保護管1の開口端部にはポリイミド樹脂や鉛ガラス等の封止部材12が嵌合して密閉されている。充填材3を反応焼結セラミックスから構成した場合には、保護管1に充填されたスラリーをN 雰囲気で反応焼結することによって必然的にN が封入されることになる。
【0021】
〔実施例1〕
第1実施例の高温測温用セラミック熱電対は、図1に示すように作製されているものである。W−Re線6,7は、異なる組成を有するW−5Reと、W−26Reからそれぞれ構成され、それぞれ線径が0.5mmであり、長さが300mmであり、先端部が互いに結合されている結合部分9を備えている。また、保護管1を、外径がφ8mmの窒化ケイ素から作製した。保護管1内にW−Re線6,7を配置し、その時、結合部分9を保護管1の端部から露出させて配置した。次いで、保護管1の空間部にW−Re線6,7を包み込むようにTi,Siを含む原料粉末を充填し、これを1400℃の窒素雰囲気中で反応焼結し、反応焼結の熱電対を作製した。次いで、四塩化ケイ素とアンモニアガスを原料ガスとし、また、水素ガスと窒素ガスをキャリヤガスとして、反応焼結の熱電対を1500℃中の炉内に導入し、それらを反応させ、それによって熱電対の測温部となる先端部を含む熱電対の保護管1の全表面に厚さ約100ミクロンの窒化ケイ素製の皮膜8,17を設けた。
【0022】
また、上記と同様の工程によって、原料ガスをアンモニアガスに代えて、メタンガスを用い、反応焼結の熱電対を1500℃中の炉内に導入し、それらを反応させ、それによって熱電対の測温部となる先端部を含む熱電対の保護管1の全表面に厚さ約100ミクロンの炭化ケイ素製の皮膜8,17を設けた。
【0023】
次いで、保護管1の開口端部をケイ素系のガラス12で封止し、W−Re線6,7の端部にニッケル製の導線19をそれぞれ銀蝋20で結線した。また、注湯領域18に位置する保護管1の先端部4には、炭化ケイ素ファイバーを編んで作製したソケット5が取り付けられている。更に、熱電対を用いて溶湯の測温を行う場合の作業性を容易にするため、保護管1の端部には、ねじ16を備えたSUS製連結具11を介して長さ約1.5mの中空部15を備えたSUS製パイプ10が接続されている。パイプ10の端部には端子封止部材13が設けられ、端子封止部材13から導線19の端子14が延び出している。
【0024】
上記のように作製された高温測温用セラミック熱電対(本発明品)を用いて、その注湯領域18を1450℃の鋳鉄溶湯に注入し、その時の測温応答性を試験した。また、この高温測温用セラミック熱電対の比較のため、従来の熱電対(従来品)を用いて同様に測温応答性を試験した。本発明品と従来品との測温応答性の比較結果を図3に示す。図3のグラフから分かるように、本発明品は鋳鉄溶湯の温度1450℃を2秒程度で測温できるのに対し、従来品は鋳鉄溶湯の温度1450℃を7秒程度で測温時間を必要とした。即ち、本発明品は、従来品に比較して測温応答性が極めて良好であることが分かる。また、本発明品は、鋳鉄溶湯を1500回以上の測温したが、損傷等が発生しなかった。これに対して、従来品は、2回程度で測温部へのFeの付着或いは測温部での化学変化が発生し、鋳鉄溶湯の測温の精度が発揮できず、損傷したことが分かった。
【0025】
【発明の効果】
この発明による高温測温用セラミック熱電対は、上記のように、測温部を形成するW−Re線の結合部分を保護管から露出させ、その露出したW−Re線の表面に窒化ケイ素又は炭化ケイ素の皮膜を設けたので、測温部での熱容量が可及的に小さく構成され、熱電対の測温部が被測温物体の温度にまで直ちに上昇し、測温応答性が良好になり、鋳鉄溶湯等の被測温物体の温度を短時間で高精度に測定できる。また、前記保護管は前記皮膜で被覆され、しかも注湯領域に炭化ケイ素ファイバーから成るソケットが嵌装されているので、耐熱性及び耐酸化性に優れ、しかも、窒化ケイ素や炭化ケイ素は鋳鉄溶湯に対して濡れ難いので、熱電対の注湯領域に金属が付着することがなく、熱電対を多数回にわたって反復使用しても、溶湯等の被測温物体の温度を高精度に且つ迅速に測定でき、その寿命を向上させることができる。また、測温領域の温度は、保護管内の充填材によって遮熱され、保護管を通じて後方へ熱が逃げ難くなり、測温領域の熱電対の熱容量が小さいこととの作用によって、熱電対の測温応答性を向上させることができる。
【図面の簡単な説明】
【図1】この高温測温用セラミック熱電対の一実施例を示す断面図である。
【図2】図1の高温測温用セラミック熱電対の先端部を示す拡大断面図である。
【図3】図1の高温測温用セラミック熱電対を注湯後の経過時間に対する熱電対の温度上昇状態を示すグラフである。
【図4】熱電対を構成する材料による使用可能温度を示すグラフである。
【符号の説明】
1 保護管
2 測温部
3 充填材
4 先端部
5 ソケット
6,7 W−Re素線
8 測温部の皮膜
9 結合部分
18 注湯領域[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ceramic thermocouple for high temperature measurement having a protective tube made of ceramics.
[0002]
[Prior art]
Conventionally, a thermocouple for measuring the temperature of a cast iron melt at about 1500 ° C. has a relatively high melting point and is stable in the atmosphere using Pt-Rh as a strand, and the Pt-Rh strand is made of alumina silica. The one fixed to a fiber pipe is used. Such thermocouples have been discarded after measuring the temperature of the molten cast iron about two times, and are now discarded, and the thermocouple cannot be used many times. The pairs themselves are extremely expensive. In general, a sheath-type thermocouple using W-Re as a strand, used as a protective tube for a SUS sheath-type component used at a high temperature, and made of a metal such as SUS is known. . Some SUS sheath type thermocouples are used in an atmosphere of 1000 ° C. or higher, and in that case, are made of a special heat-resistant alloy such as Inconel. Normally, thermocouples are adapted to various measuring materials in order to measure temperatures in a temperature range of 300 ° C. to 1400 ° C.
[0003]
Further, since the thermocouple wire is often weak against an oxidizing or reducing atmosphere, it is generally used in a protective pipe. In addition, as a conventional ceramic thermocouple for high temperature measurement, a W-Re element wire is enclosed in a protective tube made of silicon nitride having a ventilation hole formed on a side surface, and the space is formed by reactive sintering and nitriding in which TiN is dispersed. A structure filled with silicon is known.
[0004]
Japanese Patent Application Laid-Open No. H6-160200 discloses a sheath-type thermocouple with an airtight terminal. The thermocouple does not cause a measurement error even if a temperature gradient occurs in the terminal portion due to a transient temperature change or the like, and a thermocouple element wire composed of a dissimilar metal wire of an alumel wire and a chromel wire is made of a stainless steel sheath. The sheath and the inorganic insulating material are housed in a mutually insulated state, and the base end side of the sheath is hermetically sealed by an airtight terminal portion. An insulating sleeve is inserted into two copearl through pipes attached to the ceramic end plate of the hermetic terminal, and each thermocouple wire is drawn out without passing through the inside thereof and directly contacting the through pipe. Have been.
[0005]
[Problems to be solved by the invention]
By the way, the thermoelectromotive force is as follows according to the type of the thermocouple. The thermoelectromotive force of the PR (Pt-Rh) thermocouple is 1.241 mV at 500 ° C. and 4.833 mV at 1000 ° C. The thermoelectromotive force of a CA (Chromel-Alumel) thermocouple is 20.64 mV at 500 ° C. and 41.269 mV at 1000 ° C. Further, the thermoelectromotive force of the W-Re thermocouple is 8.655 mV at 500 ° C. and 18.257 mV at 1000 ° C.
[0006]
The usable temperature and the use atmosphere of these thermocouples are as shown in FIG. The Pt-Rh thermocouple cannot be used in an inert gas atmosphere, and its usable temperature in the atmosphere is 1500 ° C. as a limit temperature. The CA thermocouple can be used in the atmosphere and in an inert gas atmosphere, and its usable temperature is 800 ° C. in both cases. Furthermore, the W-Re thermocouple can be used in the atmosphere and in an inert gas atmosphere. The usable temperature in the atmosphere is 400 ° C., which is the limit temperature, and can be used in an inert gas atmosphere. The limit temperature is 2300 ° C.
[0007]
Regarding the PR thermocouple using the Pt-Rh strand, as described above, the thermoelectromotive force of the PR thermocouple is about 1/15 that of the CA thermocouple and about 1/7 that of the W-Re thermocouple. Therefore, there is a problem that the accuracy of temperature measurement is inferior to those thermocouples, and the responsiveness is poor. Therefore, at the site, in order to measure the temperature of the molten metal in the blast furnace, the operator is forced to stay at the measurement place for about 8 seconds until the temperature stabilizes near the blast furnace. In addition, when measuring the temperature of the molten metal using a thermocouple, the cast iron adheres to the Pt-Rh strand of the thermocouple, and the process for removing the cast iron becomes complicated. There is a problem that the work of replacing the thermocouple also takes time. Further, the W-Re element wire in the thermocouple is easily oxidized in the atmosphere and cannot be used for measuring the temperature of the molten cast iron.
[0008]
When a conventional protective tube is made of SUS, the protective tube has a low heat-resistant operating temperature limit of about 900 ° C, and when used in a sulfur gas, the metal of the protective tube is eroded by the sulfur gas. Therefore, use in sulfur gas is difficult. When the protective tube is made of a special heat-resistant alloy such as Inconel, the heat-resistant temperature of the protective tube is higher than that of the SUS protective tube, but the cost is approximately doubled.
[0009]
Further, when the ceramic thermocouple for high temperature temperature measurement is used in a high temperature atmosphere, there is a problem that the W-Re element wire is deteriorated due to intrusion of oxygen into the inside from a ventilation hole formed in the protective tube. Furthermore, the thermal expansion coefficient of the W-Re wire is 4.8 × 10 - was 6 / ° C., even greater than the thermal expansion coefficient of the W line, the difference in thermal expansion coefficient between the material forming the periphery by the use of repetition Deterioration may occur due to the resulting stress. In addition, the ceramic thermocouple for high temperature measurement described above has a structure in which a W-Re element wire is included in a protection tube and the space of the protection tube is filled with TiN dispersion reaction sintered Si 3 N 4, and the response of temperature measurement is high. It was not good, and the response had to be further improved.
[0010]
[Means for Solving the Problems]
An object of the present invention is to solve the above-described problems, and a method in which a W-Re wire is exposed on a surface of the exposed W-Re wire in a state where the tip of the W-Re wire is exposed from a protective tube by dense CVD using a CVD method. Or silicon nitride film, and a detachable socket made of silicon carbide fiber is attached to the pouring part of the protective tube, so that the protective tube does not directly touch the molten metal, and has heat resistance and corrosion resistance. It is an object of the present invention to provide a ceramic thermocouple for high-temperature temperature measurement that improves the temperature measurement response, improves the temperature measurement responsiveness, and enables the thermocouple to have a long life by being repeatedly used.
[0011]
The present invention provides a protective tube made of ceramics selected from silicon nitride, sialon and silicon carbide, a pair of W-Re wires having different compositions disposed inside the protective tube, and a W-Re wire. A joint part whose ends are joined to each other and constitutes a temperature measuring part exposed from the protective tube, silicon carbide formed at the joint part of the W-Re strand exposed from the protective tube, and silicon nitride The present invention also relates to a ceramic thermocouple for high-temperature temperature measurement, comprising a coating made of a composite material thereof and a heat-resistant filler filled in the inside of the protective tube and having a small dimensional change during sintering.
[0012]
Further, since the heat-resistant filler is a reaction sintered ceramic containing Ti, no gap is generated at the boundary between the protective tube and the heat-resistant filler, no backlash is generated, and N 2 is used. The gas is well sealed, the oxidation of the W-Re wire can be prevented, the durability of the thermocouple is improved, and the reaction sintered ceramics exerts a heat shielding function, and the heat capacity of the temperature measuring area at the joint portion at the tip end. Can be limited to a narrow area so that the temperature of the object to be measured such as molten metal can be measured only by increasing the temperature of the temperature measuring area of the thermocouple, and the temperature can be measured quickly and accurately. Become.
[0013]
Since the ceramic thermocouple for high temperature temperature measurement is configured as described above, the thermoelectromotive force of the W-Re wire is relatively large, and the tip portion serving as a temperature measurement unit has an exposed structure and has a large heat capacity. The structure can be minimized, the responsiveness to temperature is improved, and the melting point of the W-Re wire is 3000 ° C., so that it does not melt in the molten cast iron. Further, by forming a film of silicon nitride or silicon carbide by a dense CVD method on a surface of the W-Re line with a material having a coefficient of thermal expansion close to that of the W-Re line, the temperature of the W-Re line can be measured. Oxidation can be prevented. Further, the heat-resistant filler of the reaction sintered material and the protective tube are in close contact with each other, and no gap is formed at the boundary between them, so that a heat passing area can be increased, and the vicinity of the temperature measuring section can be increased. Is covered with a film and is configured to have a small heat capacity, so that thermal conductivity to a temperature measurement atmosphere is improved and responsiveness can be improved.
[0014]
Further, a socket made of silicon carbide fiber is provided at an end of the protective tube on the temperature measuring unit side. Since the socket is excellent in oxidation resistance, by fitting the socket into a thermocouple, it is possible to prevent the pouring area of the protective tube from being damaged by a thermal shock, thereby improving the life of the protective tube. Can be done.
[0015]
The coating is formed by a CVD method. Further, the coating is provided on the entire surface of the protection tube. The film of silicon nitride or silicon carbide formed by the CVD method has large crystal grains and almost no impurities, so that phonon scattering is small and thermal conductivity is large. Therefore, the thermocouple provided with the above-mentioned film is excellent in heat resistance and impact resistance. In addition, the molten cast iron is hard to wet the above-mentioned film, so that Fe metal does not easily adhere to the surface of the thermocouple, the workability is good, and the temperature measurement accuracy is improved.
[0016]
Here, when the thermal shock temperature is Tc, the thermal conductivity is λ, the film thickness is d, the heat transfer coefficient is h, the Poisson's ratio is ν, the strength is σ t , the Young's modulus E and the linear expansion coefficient are Assuming α, the following equation holds.
Tc = [1.5 + 3.25λ / (d × h)] × (1-ν) × σ t / E × α
When the coating is silicon nitride, each factor is as follows.
λ = 40W / mk
d = 0.1 × 10 −3 m
h = 100,000 W / m 2 · K
ν = 0.29
σ t = 400 MPa
E = 300 × 10 3 MPa
α = 3.2 × 10 - 6 /
Therefore, when [1.5 + 3.25λ / (d × h)] is X,
Figure 0003550915
Accordingly, the ceramic thermocouple for high temperature temperature measurement can withstand 1500 ° C. at the time of measuring the temperature of the molten cast iron by providing the silicon nitride film.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a ceramic thermocouple for high temperature measurement according to the present invention will be described with reference to FIG. FIG. 1 is a sectional view showing an embodiment of the ceramic thermocouple for high temperature measurement, FIG. 2 is an enlarged sectional view showing a tip of the ceramic thermocouple for high temperature measurement of FIG. 1, and FIG. It is a graph which shows the temperature rise state of the thermocouple with respect to the elapsed time after pouring a warm ceramic thermocouple.
[0018]
As shown in FIG. 1, the ceramic thermocouple for high temperature temperature measurement is characterized by a filling material to be filled in the inside of the protection tube 1 and a structure of a temperature measurement section 2 at a tip of the protection tube 1. The temperature measuring section 2 is made to protrude from the distal end portion 4 of the protective tube 1 so that the heat capacity of the temperature measuring section 2 is reduced, and the temperature measuring section 2 is configured to be able to immediately rise to the temperature of the object to be measured. Further, in order to prevent disconnection of the W-Re wires 6 and 7 contained in the protection tube 1 due to oxidative corrosion, a filler 3 made of reactive sintered ceramics is filled in the protection tube 1 and made of glass. The inside of the protection tube 1 is sealed by the sealing member 12.
[0019]
The ceramic thermocouple for high temperature measurement is disposed inside a protective tube 1 made of ceramics selected from silicon nitride (Si 3 N 4 ), sialon (sialon) and silicon carbide (SiC). In addition, a pair of W-Re wires 6 and 7 having different compositions, ends of the W-Re wires 6 and 7 are joined to each other, and a joint portion 9 exposed from a distal end portion 4 of the protection tube 1 and a protection tube 1 And a coating 8 made of silicon carbide, silicon nitride or a composite material thereof, and a heat-resistant filler 3 having a small dimensional change during sintering, which is filled in the inside of the protective tube 1. I have. The heat-resistant filler 3 is made of reactive sintered ceramics containing Ti. A socket 5 made of a silicon carbide fiber is provided at an end of the protective tube 1 on the temperature measurement side. Further, the coating 8 is formed by synthesizing by a CVD method, and is provided on the entire surface of the protective tube 1 as well, thereby improving the heat resistance of the thermocouple.
[0020]
In the ceramic thermocouple for high-temperature measurement, when the slurry containing Ti is filled in the protective tube 1 and subjected to reaction sintering, the filler 3 sinters and expands due to the inclusion of Ti. Closely adheres to the inner wall surface of the protective tube 1, and no gap is formed at the boundary between the protective tube 1 and the filler 3. The filler 3 is made of a ceramic fiber such as a SiC whisker or a material made of a Si 3 N 4 reactive sintered ceramic. An inert gas such as N 2 or Ar is sealed inside the protective tube 1, and the inert gas is sealed inside the protective tube 1. A sealing member 12 made of lead glass or the like is fitted and hermetically sealed. When the filler 3 is made of reactive sintered ceramics, the slurry filled in the protective tube 1 is reactively sintered in an N 2 atmosphere to inevitably encapsulate N 2 .
[0021]
[Example 1]
The ceramic thermocouple for high temperature measurement of the first embodiment is manufactured as shown in FIG. The W-Re wires 6 and 7 are each composed of W-5Re and W-26Re having different compositions, each having a wire diameter of 0.5 mm, a length of 300 mm, and a tip portion joined to each other. The connecting portion 9 is provided. The protection tube 1 was made of silicon nitride having an outer diameter of φ8 mm. The W-Re wires 6 and 7 were arranged in the protection tube 1, and at this time, the joint portion 9 was arranged so as to be exposed from the end of the protection tube 1. Next, a raw material powder containing Ti and Si is filled in the space of the protective tube 1 so as to wrap the W-Re wires 6 and 7, and the raw material powder is subjected to reaction sintering in a nitrogen atmosphere at 1400 ° C. A pair was made. Next, a thermocouple for reaction sintering is introduced into a furnace at 1500 ° C. using silicon tetrachloride and ammonia gas as raw material gases, and hydrogen gas and nitrogen gas as carrier gases, and they are reacted to form a thermoelectric element. Coatings 8, 17 made of silicon nitride having a thickness of about 100 μm were provided on the entire surface of the thermocouple protection tube 1 including the tip portion serving as a temperature measuring part of the pair.
[0022]
In the same process as above, methane gas was used as a raw material gas instead of ammonia gas, and a thermocouple for reaction sintering was introduced into a furnace at 1500 ° C., where they were reacted, thereby measuring the thermocouple. Coatings 8, 17 made of silicon carbide and having a thickness of about 100 microns were provided on the entire surface of the thermocouple protection tube 1 including the tip part which becomes a warm part.
[0023]
Next, the open end of the protective tube 1 was sealed with silicon-based glass 12, and nickel-made conductors 19 were connected to the ends of the W-Re wires 6 and 7 with silver wax 20, respectively. Further, a socket 5 made by knitting silicon carbide fiber is attached to the tip 4 of the protective tube 1 located in the pouring area 18. Further, in order to facilitate the workability when measuring the temperature of the molten metal using a thermocouple, the end of the protective tube 1 has a length of about 1. A SUS pipe 10 having a 5 m hollow portion 15 is connected. A terminal sealing member 13 is provided at an end of the pipe 10, and the terminal 14 of the conductive wire 19 extends from the terminal sealing member 13.
[0024]
Using the ceramic thermocouple for high temperature temperature measurement (product of the present invention) manufactured as described above, the pouring area 18 was poured into a cast iron melt at 1450 ° C., and the temperature measurement response at that time was tested. Further, for comparison of the ceramic thermocouple for high temperature measurement, a temperature measurement response was similarly tested using a conventional thermocouple (conventional product). FIG. 3 shows a comparison result of the temperature measurement response between the product of the present invention and the conventional product. As can be seen from the graph of FIG. 3, the product of the present invention can measure the temperature of the molten cast iron at 1450 ° C. in about 2 seconds, whereas the conventional product requires the temperature of the molten cast iron of 1450 ° C. in about 7 seconds and requires a temperature measuring time. And That is, it can be seen that the product of the present invention has extremely good temperature measurement response compared to the conventional product. In addition, according to the product of the present invention, the temperature of the cast iron melt was measured 1500 times or more, but no damage or the like occurred. On the other hand, it was found that the conventional product was damaged due to the adhesion of Fe to the temperature measuring part or the chemical change in the temperature measuring part in about two times, and the accuracy of the temperature measurement of the molten cast iron could not be exhibited. Was.
[0025]
【The invention's effect】
As described above, the ceramic thermocouple for high-temperature temperature measurement according to the present invention exposes the joint portion of the W-Re wire forming the temperature measuring section from the protective tube, and forms silicon nitride or silicon nitride on the surface of the exposed W-Re wire. Since the silicon carbide coating is provided, the heat capacity at the temperature measuring section is made as small as possible, and the temperature measuring section of the thermocouple immediately rises to the temperature of the object to be measured, and the temperature measuring response is good. Thus, the temperature of the object to be measured such as molten cast iron can be measured in a short time with high accuracy. In addition, since the protective tube is covered with the coating and a socket made of silicon carbide fiber is fitted in a pouring area, the protective tube is excellent in heat resistance and oxidation resistance, and silicon nitride and silicon carbide are made of molten cast iron. No metal adheres to the pouring area of the thermocouple, so even if the thermocouple is used repeatedly many times, the temperature of the object to be measured such as molten metal can be accurately and quickly measured. It can be measured and its life can be improved. In addition, the temperature in the temperature measurement area is shielded by the filler in the protection tube, making it difficult for heat to escape backward through the protection tube, and the heat capacity of the thermocouple in the temperature measurement area is small. Temperature responsiveness can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one embodiment of a ceramic thermocouple for high temperature measurement.
FIG. 2 is an enlarged cross-sectional view showing a distal end portion of the ceramic thermocouple for high temperature measurement of FIG.
3 is a graph showing a temperature rise state of the thermocouple with respect to an elapsed time after pouring the ceramic thermocouple for high temperature temperature measurement of FIG. 1;
FIG. 4 is a graph showing usable temperatures of materials constituting a thermocouple.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Protective tube 2 Temperature measuring part 3 Filling material 4 Tip part 5 Socket 6, 7 W-Re element wire 8 Film of temperature measuring part 9 Joining part 18 Pouring area

Claims (5)

窒化珪素、サイアロン及び炭化珪素から選択されるセラミックスによって作製された保護管、前記保護管の内部に配置された異なる組成の一対のW−Re素線、前記W−Re素線の端部が互いに接合され且つ前記保護管から露出している測温部を構成する結合部分、少なくとも前記保護管から露出した前記W−Re素線の前記結合部分に形成された炭化ケイ素、窒化ケイ素又はそれらの複合材料から成る皮膜、前記保護管の内部に充填された焼結時に寸法変化の小さい耐熱性充填材、から成る高温測温用セラミック熱電対。A protection tube made of ceramics selected from silicon nitride, sialon and silicon carbide, a pair of W-Re wires having different compositions arranged inside the protection tube, and ends of the W-Re wires are mutually separated. A joining portion that is joined and forms a temperature measuring unit exposed from the protection tube, at least silicon carbide, silicon nitride, or a composite thereof formed at the joining portion of the W-Re strand exposed from the protection tube A ceramic thermocouple for high temperature measurement, comprising: a coating made of a material; and a heat-resistant filler filled in the inside of the protective tube and having a small dimensional change during sintering. 前記耐熱性充填材はTiを含む反応焼結セラミックスである請求項1に記載の高温測温用セラミック熱電対。The ceramic thermocouple for high temperature measurement according to claim 1, wherein the heat-resistant filler is a reaction sintered ceramic containing Ti. 前記保護管のうち前記測温部側の端部には炭化ケイ素製ファイバーから成るソケットが設けられている請求項1又は2に記載の高温測温用セラミック熱電対。The ceramic thermocouple for high-temperature temperature measurement according to claim 1 or 2, wherein a socket made of silicon carbide fiber is provided at an end of the protection tube on the temperature measurement unit side. 前記皮膜はCVD法で合成して形成されている請求項1〜3のいずれか1項に記載の高温測温用セラミック熱電対。The ceramic thermocouple for high temperature measurement according to any one of claims 1 to 3, wherein the coating is formed by a CVD method. 前記皮膜は前記保護管の全表面に設けられている請求項1〜4のいずれか1項に記載の高温測温用セラミック熱電対。The ceramic thermocouple for high temperature measurement according to any one of claims 1 to 4, wherein the coating is provided on the entire surface of the protection tube.
JP29982096A 1996-07-12 1996-10-25 Ceramic thermocouple for high temperature measurement Expired - Fee Related JP3550915B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29982096A JP3550915B2 (en) 1996-10-25 1996-10-25 Ceramic thermocouple for high temperature measurement
EP97304858A EP0818671A3 (en) 1996-07-12 1997-07-03 A ceramic sheath type thermocouple
US08/890,427 US6102565A (en) 1996-07-12 1997-07-09 Ceramic sheath type thermocouple

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29982096A JP3550915B2 (en) 1996-10-25 1996-10-25 Ceramic thermocouple for high temperature measurement

Publications (2)

Publication Number Publication Date
JPH10132666A JPH10132666A (en) 1998-05-22
JP3550915B2 true JP3550915B2 (en) 2004-08-04

Family

ID=17877323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29982096A Expired - Fee Related JP3550915B2 (en) 1996-07-12 1996-10-25 Ceramic thermocouple for high temperature measurement

Country Status (1)

Country Link
JP (1) JP3550915B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3603614B2 (en) * 1998-09-16 2004-12-22 いすゞ自動車株式会社 thermocouple
US6352362B2 (en) * 1999-09-14 2002-03-05 General Electric Company Method of preventing leakage of a fluid along and through an insulating jacket of a thermocouple
JP2014074651A (en) * 2012-10-04 2014-04-24 Nakayama:Kk Consumption type thermocouple
CN109974879A (en) * 2019-03-15 2019-07-05 上海电仪仪器仪表有限公司 A kind of thermocouple thermometer structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997025A (en) * 1982-11-25 1984-06-04 Toshiba Corp Thermocouple structure body
US4796671A (en) * 1986-03-18 1989-01-10 Hitachi Metals, Ltd. Protective tube for thermocouple and method of producing same
JPS62170656U (en) * 1986-04-17 1987-10-29
JPH01202634A (en) * 1988-02-08 1989-08-15 Paloma Ind Ltd Thermocouple
JPH0238391A (en) * 1988-07-29 1990-02-07 Hitachi Metals Ltd Member for dipping in molten metal and production thereof
DE3842965A1 (en) * 1988-12-21 1990-06-28 Bayer Ag METHOD FOR PRODUCING REACTION-SINTERIZED SILICON NITRIDE CERAMICS, SILICON NITRIDE CERAMICS OBTAINED THEREOF AND THE USE THEREOF
JPH0755586A (en) * 1993-08-17 1995-03-03 Meidensha Corp Sheathed thermocouple
JPH09105677A (en) * 1995-10-12 1997-04-22 Isuzu Ceramics Kenkyusho:Kk Ceramic sheath type component and manufacture thereof

Also Published As

Publication number Publication date
JPH10132666A (en) 1998-05-22

Similar Documents

Publication Publication Date Title
US6102565A (en) Ceramic sheath type thermocouple
US6280083B2 (en) Thermocouple lance with layered sheath for measuring temperature in molten metal
US5696348A (en) Thermocouple structure
EP0887632A1 (en) A ceramic thermocouple for measuring temperature of molten metal
JP4437592B2 (en) Fast response thermocouple
JP3306427B2 (en) Sheath structure
JP3572312B2 (en) Ceramic sheath type thermocouple
JP3550915B2 (en) Ceramic thermocouple for high temperature measurement
JP4832626B2 (en) thermocouple
JP3306426B2 (en) Thermocouple for measuring molten metal temperature
JP3603557B2 (en) Ceramic thermocouple for measuring molten metal temperature
JP3603614B2 (en) thermocouple
JP3306425B2 (en) Ceramic thermocouple for high temperature measurement
JP3627317B2 (en) Thermocouple structure
JP3355166B2 (en) Thermocouple for measuring molten metal temperature
JP3329189B2 (en) Ceramic sheath type thermocouple
JPH11311574A (en) Ceramic thermocouple for molten copper
JP3627316B2 (en) Thermocouple structure
JP2000088667A (en) Fiber-reinforced thermocouple
JPH11201831A (en) Metal fusion temperature measuring thermocouple
JPH1114465A (en) Structure of thermocouple
JP3550828B2 (en) Thermocouple structure
JP3533944B2 (en) Structure of thermocouple protection tube with destruction detection function
JP3641759B2 (en) Manufacturing method of temperature sensor with integrated thermocouple and protective tube
JP2002223009A (en) Thermoelectric couple for molten metal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees