JPH09113372A - Multi-point temperature measuring element - Google Patents

Multi-point temperature measuring element

Info

Publication number
JPH09113372A
JPH09113372A JP29221195A JP29221195A JPH09113372A JP H09113372 A JPH09113372 A JP H09113372A JP 29221195 A JP29221195 A JP 29221195A JP 29221195 A JP29221195 A JP 29221195A JP H09113372 A JPH09113372 A JP H09113372A
Authority
JP
Japan
Prior art keywords
temperature measuring
protective tube
holes
thermocouple
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29221195A
Other languages
Japanese (ja)
Inventor
Masanobu Ichinose
正信 一瀬
Sumihiko Kurita
澄彦 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koransha Co Ltd
Original Assignee
Koransha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koransha Co Ltd filed Critical Koransha Co Ltd
Priority to JP29221195A priority Critical patent/JPH09113372A/en
Priority to PCT/JP1995/002411 priority patent/WO1996017230A1/en
Publication of JPH09113372A publication Critical patent/JPH09113372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an element for measuring the temperature at a plurality of points simultaneously with high response while facilitating the handling by integrating two or more single point measuring elements through sintering while setting the temperature measuring point differently. SOLUTION: A pair of thermocouples 3 are inserted into a pipe-like green ceramic matrix having two holes and sealed at the end face thereof thus producing a green matrix for single point temperature measuring element. Green matrixes having different length are immersed into water in order to soften the surface by absorbing water and then they are superposed entirely while setting the temperature measuring contacts 12, 13, 14 at specified positions. Finally, they are integrated through sintering. The inventive multi-point temperature measuring element has higher response than a conventional one and difference between the temperature measuring contact 12 and 13, 14 is small. Furthermore, since a bundle of single point temperature measuring elements having small diameter is employed, extremely steep response can be achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱電対と保護管が一体
となった測温素子の構造に係わり、更に詳しくは多数の
穴を有して絶縁管の役割を兼ね備えた保護管の中に複数
個の熱電対が組み込まれて一体となった多点測温素子の
構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a temperature measuring element in which a thermocouple and a protective tube are integrated, and more specifically, a protective tube having a large number of holes and serving as an insulating tube. The present invention relates to the structure of a multi-point temperature measuring element in which a plurality of thermocouples are incorporated and integrated.

【0002】[0002]

【従来の技術】熱電温度計の測温素子は、一般に、温度
を熱起電力の差で検知する熱電対と熱電対の素線を電気
的に絶縁する絶縁体と必要に応じてこれらを収納し外側
から保護する保護管から構成されている。熱電対には予
めテフロンやガラス系編組等で絶縁した被覆熱電対があ
るが、これは概ね500℃以下の低温領域での測温に限
られており、高温領域での測温は一般に裸熱電対を2つ
孔の磁性絶縁管に通しこれを上記の保護管に挿入して行
われている。また、熱電対の材質は白金やロジウムを用
いた貴金属系とそれ以外の金属又は合金を用いた卑金属
系に分けられるが、卑金属系は耐熱性に劣るため100
0℃以上の高温測定では主に貴金属熱電対が使用されて
いる。この貴金属熱電対は還元性ガス、金属性ガスや不
純物の環境にさらされると、熱起電力の低下を招き温度
誤差が大きくなる。例えば、高温で白金素線がシリカを
含む耐火物に接触しているときCOガスが存在すると、
シリカは還元されて白金に珪素が吸収され非常に脆い合
金を作り断線することがある。また、銅、鉄、鉛、亜
鉛、カドミウム、アルミニウム、錫などの殆どの金属と
低融点の合金もしくは化合物を作り、いずれも熱起電力
が低下して温度精度を悪くしたり、融点降下による溶断
や脆性亀裂で測温不能になる。このように不純物が付着
したり汚染ガスにさらされることから熱電対を保護し劣
化を防ぐ為に保護管を用いるが、測温に際し、特に高温
測定は過酷な汚染環境のもとで行われることが多く、保
護管と絶縁管との僅かな隙間にも汚染物質が入り込ん
で、熱電対の感熱部や絶縁管の継目部分を冒すことが多
い。
2. Description of the Related Art In general, a temperature measuring element of a thermoelectric thermometer stores a thermocouple for detecting a temperature by a difference of thermoelectromotive force and an insulator for electrically insulating a wire of the thermocouple, and, if necessary, accommodating them. It is composed of a protective tube that protects it from the outside. Thermocouples include coated thermocouples that have been previously insulated with Teflon or glass braid, but this is limited to temperature measurement in the low temperature range of approximately 500 ° C or less, and temperature measurement in the high temperature range is generally naked thermoelectricity. The pair is passed through a magnetic insulating tube having two holes, and this is inserted into the above-mentioned protective tube. The material of the thermocouple can be divided into a noble metal system using platinum or rhodium and a base metal system using another metal or alloy, but the base metal system is inferior in heat resistance and therefore 100
Precious metal thermocouples are mainly used for high-temperature measurements above 0 ° C. When this noble metal thermocouple is exposed to the environment of reducing gas, metallic gas and impurities, the thermoelectromotive force is lowered and the temperature error becomes large. For example, if CO gas is present when a platinum wire is in contact with a refractory containing silica at high temperature,
Silica may be reduced and platinum may absorb silicon to form a very brittle alloy, which may cause wire breakage. In addition, low melting point alloys or compounds with most metals such as copper, iron, lead, zinc, cadmium, aluminum, tin, etc. are produced, and the thermoelectromotive force is lowered to deteriorate temperature accuracy, and melting due to lowering of melting point It becomes impossible to measure temperature due to brittle cracks. Protective tubes are used to protect the thermocouple from deterioration and exposure to pollutant gases and prevent deterioration in this way, but when measuring temperature, especially high-temperature measurements should be performed in a severely polluted environment. In many cases, contaminants also enter the slight gap between the protective tube and the insulating tube, and often affect the heat-sensitive part of the thermocouple and the joint part of the insulating tube.

【0003】次に、取扱いに際して、保管時あるいは組
み立て時の熱電対、絶縁管及び保護管の内部の汚染も、
高温において同様に熱電対の劣化を招く。従って、絶縁
管への熱電対の挿入などは、汚れの無い部屋で、手で触
れないように手袋をして、細心の注意を払って行われて
いる。更に、この挿入作業は、素線が未使用のものでは
手間を要しないが、一度使用したものでは変形歪みや表
面荒れを起こしていることが多く、これを絶縁管の細い
孔に長尺にわたって通すことは極めて困難で大変な作業
である。
Next, in handling, contamination of the inside of the thermocouple, the insulating tube and the protective tube during storage or assembly,
At high temperatures, it also leads to thermocouple degradation. Therefore, insertion of a thermocouple into an insulating tube is performed with great care in a clean room with gloves not touching it. Furthermore, this insertion work does not require time and effort if the wire is not used, but it often causes deformation distortion and surface roughness when used once, and this can be extended to a narrow hole of the insulating pipe over a long length. Passing through is a very difficult and difficult task.

【0004】温度計としての性能上の観点からは、温度
精度の他に温度応答性に優れていることが重要である。
測温対象と熱電対の感熱部との間には保護管、空隙、絶
縁管があり、これを通して熱の移動が行われるが、サイ
ズ面では出来るだけ空気層の無い薄肉、小径の管の場合
がその分だけ応答速度が早くなる。ところが、従来の測
温素子では、余り細いものは作られていない。最も細い
絶縁管の外径でも2つ孔のものはφ3mm程度であり、
保護管の肉厚を1mm、空隙を0.5mmとしても保護
管の外径(測温素子の外径)はφ6mmとなる。1つ孔
のものは外径φ1mm程度まであるので、熱電対素線の
1本をこれに入れ他の1本を入れない場合、外径φ3m
mの測温素子が作れるが、強度的に弱く、高温長時間測
定では熱電対素線の劣化が2本の素線を入れたものより
著しく速く、また長尺のものは製作が難しく製造コスト
が高くなる。
From the viewpoint of performance as a thermometer, it is important that the temperature response is excellent in addition to the temperature accuracy.
There is a protection tube, a gap, and an insulation tube between the temperature measurement object and the thermosensitive part of the thermocouple, through which heat is transferred, but in the case of a size, it is a thin wall tube with a small diameter and a small diameter tube. However, the response speed will be correspondingly faster. However, the conventional temperature measuring element has not been made so thin. The outer diameter of the thinnest insulating tube is about 3 mm for two holes,
Even if the thickness of the protective tube is 1 mm and the gap is 0.5 mm, the outer diameter of the protective tube (outer diameter of the temperature measuring element) is 6 mm. The one with one hole has an outer diameter of up to φ1 mm, so if you put one thermocouple wire in this and the other one is not, the outer diameter is φ3 m.
Although a temperature measuring element of m can be made, its strength is weak, and the deterioration of the thermocouple wire is significantly faster than that with two wires when measuring at high temperature for a long time. Becomes higher.

【0005】熱電対と絶縁体と保護管が一体構造となっ
ているものにシース熱電対がある。これは、絶縁体に主
に酸化マグネシウムの粉末、保護管に相当する外被(シ
ース)にステンレスやインコネルなどの耐熱金属が用い
られ、曲げ伸ばしが可能である。従って、折損の危険性
が小さく又気密性も良いので、外部から汚染されること
がなく取扱いも簡便である。サイズも細くかつ非常に長
尺のものが得られ、価格も安い。ただし、使用温度は概
ね1000℃程度迄であり、高温側での長時間測定は外
被金属による熱電対汚染の恐れがある。
A sheath thermocouple has a structure in which the thermocouple, the insulator and the protective tube are integrated. In this case, magnesium oxide powder is mainly used as an insulator, and a heat-resistant metal such as stainless steel or Inconel is used as an outer sheath (sheath) corresponding to a protective tube, which allows bending and stretching. Therefore, since the risk of breakage is small and the airtightness is good, it is easy to handle without being contaminated from the outside. The size is thin and very long, and the price is low. However, the operating temperature is up to about 1000 ° C., and long-time measurement on the high temperature side may cause contamination of the thermocouple by the outer metal.

【0006】以上述べてきたように、従来の測温素子
は、低温域では余り問題ないが1000℃以上の高温域
では主に汚染物質により熱電対が劣化し、また、取扱い
が面倒で汚染原因も生じやすい。性能面やサイズ面から
は、更に細くて長尺のものが求められている。これら
は、シース熱電対の様に熱電対と絶縁体と保護管が一体
構造となってはじめて可能で、本発明者は実願平6−1
5920号で熱電対と保護管が一体となった測温素子を
考案した。これは1000℃以上の高温使用温度でのシ
ース熱電対と言うべきものである。
As described above, the conventional temperature measuring element has no problem in the low temperature region, but in the high temperature region of 1000 ° C. or higher, the thermocouple deteriorates mainly due to the pollutant, and the handling is troublesome and causes the pollution. Is also likely to occur. From the viewpoint of performance and size, thinner and longer products are required. These are possible only when the thermocouple, the insulator, and the protective tube are integrated into one structure like the sheath thermocouple, and the present inventor has proposed the application No. 6-1.
In 5920, we devised a temperature measuring element in which a thermocouple and a protection tube were integrated. This should be called a sheath thermocouple at a high use temperature of 1000 ° C. or higher.

【0007】高温域での測温ニーズの中には、例えば半
導体製造ラインに於ける拡散炉の様に炉内の複数箇所を
同時に測温しなければならないケースがある。ところが
従来の測温素子は、上記の熱電対と保護管が一体となっ
た測温素子を含めて全て一点測温である。測温対象物を
同時に複数箇所測定する場合、一般に2つ穴の絶縁管に
熱電対を通したものを大径サイズの保護管に各々測定箇
所まで複数個挿入して行うか単独に測定箇所の数の分だ
け測温素子を用いて行う。前者の場合、大径サイズ保護
管内部の空気層の熱流の影響を受け、温度精度、応答性
の両面で問題が多い。即ち、上記保護管の外部の温度が
変化した時、保護管内部の低熱伝導の空気層が熱伝達に
よって新しい熱流の定常状態に到達するまでに時間を要
する。後者の場合、全体のサイズが大きくなる。上記の
熱電対と保護管が一体となった測温素子を用いればサイ
ズの大型化を避けることが可能であるが、取扱いが煩雑
になるので、複数個の熱電対を内蔵した一体構造の測温
素子が求められる。
Among the needs for temperature measurement in a high temperature region, there is a case where it is necessary to measure temperature at a plurality of points in the furnace at the same time, such as a diffusion furnace in a semiconductor manufacturing line. However, all the conventional temperature measuring elements, including the temperature measuring element in which the thermocouple and the protection tube are integrated, are one-point temperature measuring elements. When measuring multiple temperature measuring objects at the same time, generally, you should insert a thermocouple through an insulating tube with two holes into a large-diameter protection tube and insert multiple measuring points to each measuring point. The temperature measurement element is used for a few minutes. In the former case, there are many problems in terms of temperature accuracy and responsiveness due to the influence of the heat flow in the air layer inside the large-diameter protection tube. That is, when the temperature outside the protection tube changes, it takes time for the low heat conduction air layer inside the protection tube to reach a steady state of new heat flow by heat transfer. In the latter case, the overall size increases. It is possible to avoid an increase in size by using the temperature measuring element with the above thermocouple and protection tube integrated, but since the handling becomes complicated, the measurement of the integrated structure with multiple thermocouples built in is possible. A temperature element is required.

【0008】[0008]

【発明が解決しようとする課題】本発明はかかる問題点
に鑑みてなされたもので、その目的とするところは取扱
い簡便で、温度応答性に優れ、同時に複数箇所の測温が
できる新しい構造の測温素子を提供せんとするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a new structure that is easy to handle, has excellent temperature responsiveness, and can simultaneously measure temperature at a plurality of points. It is intended to provide a temperature measuring element.

【0009】[0009]

【課題を解決するための手段】本発明者は、上記問題点
は次の手段によって解決できることを見いだした。すな
わち、 1 2つの穴を有する絶縁性セラミック保護管と、該
2つの穴の各々の中をのびるとともに先端部で接合され
て測温接点を形成する2本の異種の金属線からなる熱電
対とからなり、かつ該絶縁性セラミック保護管の該測温
接点側が閉じた構造を有する熱電対と保護管が一体とな
った一点測温素子が、2本以上かつ該測温接点の位置を
違えて焼結一体化された構造を特徴とする多点測温素子
によって解決できる。 2 4つ以上の偶数個の穴を有する絶縁性セラミック
保護管と、該穴の各々の中をのびるとともに素線先端部
で接合されて測温接点を形成する2本の異種の金属線か
らなる熱電対2対以上とからなり、各々の熱電対の測温
接点の位置を違えてかつ該絶縁性セラミック保護管の該
測温接点側が閉じた構造を有することを特徴とする多点
測温素子によって解決できる。 3 3つ以上の穴を有する絶縁性セラミック保護管
と、該穴の各々の中をのびるとともに1本の金属線に異
種の金属線2本以上が位置を違えて結線されて2か所以
上の測温接点を形成する枝状熱電対とからなり、かつ該
絶縁性セラミック保護管の該測温接点側が閉じた構造を
有することを特徴とする多点測温素子。
The present inventor has found that the above problems can be solved by the following means. That is, 1) an insulating ceramic protective tube having two holes, and a thermocouple consisting of two dissimilar metal wires extending in each of the two holes and joined at the tip to form a temperature measuring junction. And a thermocouple having a structure in which the temperature measuring contact side of the insulating ceramic protection tube is closed, and a single point temperature measuring element in which a protective tube is integrated, two or more and the position of the temperature measuring contact is different. It can be solved by a multi-point temperature measuring element characterized by a structure integrated with sintering. 2 Insulating ceramic protective tube having an even number of four or more holes, and two dissimilar metal wires extending in each of the holes and joined at the tip of the wire to form a temperature measuring contact A multi-point temperature measuring element comprising two or more pairs of thermocouples and having a structure in which the position of the temperature measuring contact of each thermocouple is different and the temperature measuring contact side of the insulating ceramic protective tube is closed. Can be solved by 3 An insulating ceramic protective tube having three or more holes, and extending in each of the holes and connecting two or more different metal wires to one metal wire at different positions, A multi-point temperature measuring element comprising a branch thermocouple forming a temperature measuring contact and having a structure in which the temperature measuring contact side of the insulating ceramic protective tube is closed.

【0010】[0010]

【作用】本発明の構造及び作用を図面によって詳細に説
明する。
The structure and operation of the present invention will be described in detail with reference to the drawings.

【0011】図1は、2本以上の一点測温素子1が各々
の測温接点(12,13,14)の位置を違えて焼結一
体化された多点測温素子の代表的構造図である。図2
は、4つ以上の穴を有する絶縁性セラミック保護管2の
中に2対以上の熱電対3を各々の測温接点(12,1
3,14)の位置を違えて内蔵する多点測温素子の代表
的構造図である。図3は、3つ以上の穴を有する絶縁性
セラミック保護管4の中に測温接点(12,13,1
4)の位置を違えて結線された枝状熱電対5を内蔵する
多点測温素子の代表的構造図である。なお図4は、絶縁
管6に通した複数の熱電対3を保護管7に挿入した従来
の多点測温素子の代表的構造図である。図4の従来方式
を用いて多点測温する場合、測温対象である保護管の外
部雰囲気8から感熱部である測温接点(12,13,1
4)に至る伝熱は、外部雰囲気8と保護管外周面9との
間の熱伝達、保護管7の管肉部分10での熱伝導、保護
管内周面11と空気層及び空気層と絶縁管6との間の熱
伝達、絶縁管内部での熱伝導の、所謂多層円管伝熱の複
雑な経路を辿る。従って、応答性が悪く、測温精度も悪
い。即ち、測温接点13,14は空隙部分15,16に
生じる空気対流の影響を受けるので、測温対象物(外部
雰囲気)の温度が変化してから熱流の定常状態に到達す
る迄に時間を要する。これに対して、図1、図2、図3
に示す本発明の多点測温素子の伝熱は、外部雰囲気と保
護管の外周面との間の熱伝達と、保護管の管肉部分での
熱伝導によって直接的に測温接点に伝えられる単層管伝
熱である。従って応答性が良く、上記空隙部分15,1
6の様な空気対流部分も無いので精度が良い。またサイ
ズ面でも従来方式に較べて細くできるので更に応答性が
向上する。また、一体構造であるので取扱い容易であ
る。
FIG. 1 is a typical structural diagram of a multi-point temperature measuring element in which two or more one-point temperature measuring elements 1 are sintered and integrated by changing the position of each temperature measuring contact (12, 13, 14). Is. FIG.
Has two or more pairs of thermocouples 3 in the insulating ceramic protection tube 2 having four or more holes, and each of the temperature measuring contacts (12, 1).
FIG. 3 is a typical structural diagram of a multi-point temperature measuring element which is built in different positions (3, 14). FIG. 3 shows a temperature measuring contact (12, 13, 1) in an insulating ceramic protective tube 4 having three or more holes.
It is a typical structure figure of the multipoint temperature measuring element which incorporates the branch-like thermocouple 5 wired by changing the position of 4). FIG. 4 is a typical structural diagram of a conventional multipoint temperature measuring element in which a plurality of thermocouples 3 passed through an insulating tube 6 are inserted into a protective tube 7. When performing multi-point temperature measurement using the conventional method shown in FIG. 4, the temperature measuring contacts (12, 13, 1), which are the heat-sensitive parts, are exposed from the external atmosphere 8 of the protection tube, which is the temperature measurement target.
The heat transfer up to 4) is heat transfer between the external atmosphere 8 and the outer peripheral surface 9 of the protective tube, heat conduction in the wall portion 10 of the protective tube 7, insulation between the inner peripheral surface 11 of the protective tube and the air layer, and the air layer. It follows a complicated path of heat transfer between the tube 6 and the heat transfer inside the insulating tube, so-called multi-layered tube heat transfer. Therefore, the response is poor and the temperature measurement accuracy is poor. That is, since the temperature measuring contacts 13 and 14 are affected by the air convection generated in the void portions 15 and 16, it takes time until the temperature of the temperature measuring object (external atmosphere) changes and the heat flow reaches a steady state. It costs. On the other hand, FIG. 1, FIG. 2, and FIG.
The heat transfer of the multi-point temperature measuring element of the present invention shown in FIG. 3 is directly transferred to the temperature measuring junction by heat transfer between the external atmosphere and the outer peripheral surface of the protective tube and heat conduction in the tube meat portion of the protective tube. It is a single layer tube heat transfer. Therefore, the responsiveness is good, and the void portions 15 and 1 are
Since there is no air convection part like 6, the accuracy is good. In addition, the size can be made thinner than the conventional method, so that the responsiveness is further improved. Further, since it has an integral structure, it is easy to handle.

【0012】[0012]

【実施例】上記3種類の多点測温素子は、各々製造方法
が異なる。即ち、図1に示す多点測温素子の場合は、先
ず1対の熱電対を2つ穴パイプ状セラミック生素地に挿
入し端面封止して一点測温素子の生素地体を作る。次
に、長さの異なるこの生素地体同士を水に漬け表面を吸
水軟化させてから、測温接点を所定の位置に合わせ全体
を重ね合わせる。最後に焼結一体化させる。図2に示す
多点測温素子の場合は、4つ以上の偶数個の穴を有する
パイプ状セラミック生素地の一端面から、2つの穴を1
組として熱電対挿入の為の穴を所要の測温接点位置まで
ドリルであける。これに各々の熱電対を挿入し端面封止
して多点測温素子の生素地体を作り焼結させる。図2の
場合は、図1と同じ様に先ず一点測温素子の束を作り、
これを保護管に入れスラリーを隙間に流し込み焼結一体
化させて作る方法もあるが、サイズが大きくなることと
製造コストが高くなる為、好ましくない。図3の場合
は、1本の金属線に異種の金属線2本以上が位置を違え
て結線されて2か所以上の測温接点を形成する枝状熱電
対を、一端面から測温接点までの所要の長さに切られた
1つ穴パイプ状セラミック生素地の束に挿入し、熱電対
素線の露出部分に加熱消失性被覆を施し、これを保護管
に入れスラリーを隙間に流し込み焼結一体化させて作
る。この方法はサイズが大きくなる欠点を伴うが、熱電
対素線の2極のうち1極を1本の素線で兼用するので素
線全長が短くて済み、測温接点が多いほどまた長尺であ
るほどコスト面で有利である。
EXAMPLES The above three types of multi-point temperature measuring elements have different manufacturing methods. That is, in the case of the multi-point temperature measuring element shown in FIG. 1, first, a pair of thermocouples is inserted into a two-hole pipe-shaped ceramic green body and the end face is sealed to form a green body of a single-point temperature measuring element. Next, the green bodies having different lengths are soaked in water to absorb and soften the surfaces, and then the temperature measuring contact is set at a predetermined position and the whole is superposed. Finally, it is integrated by sintering. In the case of the multi-point temperature measuring element shown in FIG. 2, two holes are formed from one end surface of the pipe-shaped ceramic green body having an even number of four or more holes.
As a set, a hole for inserting a thermocouple can be drilled to the required temperature measuring contact position. Each thermocouple is inserted into this and the end faces are sealed to form a green body of a multi-point temperature measuring element and sinter it. In the case of FIG. 2, a bundle of one-point temperature measuring elements is first formed as in FIG.
There is also a method in which this is put in a protective tube and the slurry is poured into a gap to be sintered and integrated, but this is not preferable because the size becomes large and the manufacturing cost becomes high. In the case of FIG. 3, a branch thermocouple in which two or more different metal wires are connected to one metal wire at different positions to form a temperature measuring contact at two or more locations, is connected from one end surface to the temperature measuring contact. Insert into a bundle of 1-hole pipe-shaped ceramic green body cut to the required length up to, heat-dissipative coating is applied to the exposed part of the thermocouple wire, put it in a protective tube and pour slurry into the gap It is made by sintering and integrating. Although this method has the drawback of increasing the size, one of the two poles of the thermocouple wire is also used as a single wire, so the total wire length can be shortened, and the longer the number of temperature measuring contacts, the longer the wire length. The higher the value, the more advantageous in terms of cost.

【0013】図1、図2、図3に描く多点測温素子の試
料を上記方法で製作し、図4に描く従来方式との比較を
試みた。試験方法は、上記試料を1000℃に予熱し、
1200℃前後に保持した半導体用高温拡散炉中に迅速
に差し込み、予熱温度(1000℃)から温度変化の前
後の温度差の63.2%に相当する温度(1126.4
℃)までの経過時間、即ち時定数(τ)を測定し、応答
時間(5τ)を推定した。表1に、その比較結果を示
す。
Samples of the multi-point temperature measuring element shown in FIGS. 1, 2 and 3 were manufactured by the above method, and comparison with the conventional method shown in FIG. 4 was attempted. The test method is to preheat the above sample to 1000 ° C.,
It was quickly inserted into a high-temperature diffusion furnace for semiconductors maintained at around 1200 ° C, and the temperature corresponding to 63.2% of the temperature difference before and after the temperature change from the preheating temperature (1000 ° C) (1126.4).
The elapsed time to (° C.), that is, the time constant (τ) was measured, and the response time (5τ) was estimated. Table 1 shows the comparison result.

【0014】 c.f.:図1の1点測温素子径 φ3mm 図2の多点測温素子径 φ6.5mm 図3の多点測温素子径 φ7.5mm 図4の絶縁管径 φ3mm、保護管径φ7.5mm[0014] c. f. : Single-point temperature measuring element diameter φ3 mm in FIG. 1 Multi-point temperature measuring element diameter φ6.5 mm in FIG. 2 Multi-point temperature measuring element diameter φ7.5 mm Insulation tube diameter φ3 mm, protection tube diameter φ7.5 mm

【0015】表1によると、本発明の多点測温素子(図
1、図2、図3)は、従来型(図4)に較べて応答が早
くかつ測温接点12と測温接点13、14との差異が小
さい。特に図1の場合は、小径の一点測温素子の束であ
り、その応答性は極めて急峻である。
According to Table 1, the multi-point temperature measuring element of the present invention (FIGS. 1, 2 and 3) has a quicker response than the conventional type (FIG. 4) and has the temperature measuring contact 12 and the temperature measuring contact 13. , 14 is small. Particularly in the case of FIG. 1, it is a bundle of small-diameter one-point temperature measuring elements, and its response is extremely steep.

【0016】尚、本発明が本実施例のみに限定されるも
のでないことは言うまでもないことである。例えば、本
例の熱電対は他の種類の熱電対に変更することができる
し、外部形状も丸形をはじめ角形や三角形とすることも
できるし、封止された保護管先端部分を丸みをもたせた
ものとしてもフラットとしたものでもよいし、更に多数
箇所の測温接点を有してもよい。
Needless to say, the present invention is not limited to this embodiment. For example, the thermocouple of this example can be changed to another type of thermocouple, and the external shape can be round, rectangular, or triangular, and the tip of the sealed protective tube can be rounded. It may be a flat one, or may have a plurality of temperature measuring contacts.

【0017】[0017]

【発明の効果】本発明によれば、絶縁管に通した複数の
熱電対を保護管に挿入した従来の多点測温方式に較べて
次の様な点が優れている。
According to the present invention, the following points are superior to the conventional multi-point temperature measuring system in which a plurality of thermocouples passed through an insulating tube are inserted into a protective tube.

【0018】1.測温精度が優れている。 2.温度応答性が優れている。 3.一体構造であるので、取扱いが容易である。 4.コンパクトである。 5.安価である。1. Excellent temperature measurement accuracy. 2. Excellent temperature responsiveness. 3. Since it has an integrated structure, it is easy to handle. 4. It is compact. 5. It is cheap.

【0019】具体的な測温対象としては、半導体製造用
拡散炉の温度分布測定、鉄鋼、鋳鉄、非鉄金属に於ける
溶解炉、鍋、タンディッシュ等の温度分布測定に最適で
あり、これらの高温保持装置の自動制御システムの測温
センサーとして使用すれば、その実用的、経済的効果は
極めて大きい。
As a concrete temperature measurement object, it is most suitable for measuring the temperature distribution of a diffusion furnace for semiconductor manufacturing, the temperature distribution measurement of a melting furnace, a pot, a tundish, etc. for steel, cast iron and non-ferrous metals. If it is used as a temperature measuring sensor for an automatic control system of a high temperature holding device, its practical and economical effects are extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、2本以上の一点測温素子が測温接点の
位置を違えて焼結一体化された多点測温素子の代表的構
造図である。
FIG. 1 is a typical structural diagram of a multi-point temperature measuring element in which two or more one-point temperature measuring elements are integrated by sintering at different positions of temperature measuring contacts.

【図2】図2は、4つ以上の穴を有する絶縁性セラミッ
ク保護管の中に2対以上の熱電対を各々の測温接点の位
置を違えて内蔵する多点測温素子の代表的構造図であ
る。
FIG. 2 is a typical multi-point temperature measuring element in which two or more pairs of thermocouples are built in an insulating ceramic protective tube having four or more holes at different positions of each temperature measuring contact. It is a structural drawing.

【図3】図3は、3つ以上の穴を有する絶縁性セラミッ
ク保護管の中に測温接点の位置を違えて結線された枝状
熱電対を内蔵する多点測温素子の代表的構造図である。
FIG. 3 is a typical structure of a multi-point temperature measuring element that incorporates a branch-shaped thermocouple connected at different positions of a temperature measuring contact in an insulating ceramic protective tube having three or more holes. It is a figure.

【図4】14は絶縁管に通した複数の熱電対を保護管に
挿入した従来の多点測温素子の代表的構造図である。
FIG. 4 is a typical structural diagram of a conventional multipoint temperature measuring element in which a plurality of thermocouples passed through an insulating tube are inserted into a protective tube.

【符号の説明】[Explanation of symbols]

1 一点測温素子 2 4つ以上の穴を有する絶縁性セラミック保護管 3 熱電対 4 3つ以上の穴を有する絶縁性セラミック保護管 5 枝状熱電対 6 絶縁管 7 保護管 8 外部雰囲気 9 保護管外周面 10 保護管の管肉部分 11 保護管内周面 12 測温接点 13 測温接点 14 測温接点 15 空隙部分 16 空隙部分 1 One-point temperature measuring element 2 Insulating ceramic protective tube with 4 or more holes 3 Thermocouple 4 Insulating ceramic protective tube with 3 or more holes 5 Branched thermocouple 6 Insulating tube 7 Protective tube 8 External atmosphere 9 Protective Outer peripheral surface of tube 10 Meat portion of protective tube 11 Inner peripheral surface of protective tube 12 Temperature measuring contact 13 Temperature measuring contact 14 Temperature measuring contact 15 Void portion 16 Void portion

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年10月25日[Submission date] October 25, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】[0009]

【課題を解決するための手段】本発明者は、上記問題点
は次の手段によって解決できることを見いだした。すな
わち、 1 2つの穴を有する絶縁性セラミック保護管と、該
2つの穴の各々の中をのびるとともに先端部で接合され
て測温接点を形成する2本の異種の金属線からなる熱電
対とからなり、かつ該絶縁性セラミック保護管の該測温
接点側が閉じた構造を有する熱電対と保護管が一体とな
った一点測温素子が、2本以上かつ該測温接点の位置を
違えて焼結一体化された構造を特徴とする多点測温素子
によって解決できる。 2 4つ以上の偶数個の穴を有する絶縁性セラミック
保護管と、該穴の各々の中をのびるとともに素線先端部
で接合されて測温接点を形成する2本の異種の金属線か
らなる熱電対2対以上とからなり、各々の熱電対の測温
接点の位置を違えてかつ該絶縁性セラミック保護管の該
測温接点側が閉じた構造を有することを特徴とする多点
測温素子によって解決できる。 3 3つ以上の穴を有する絶縁性セラミック保護管
と、該穴の各々の中をのびるとともに1本の金属線に異
種の金属線2本以上が位置を違えて結線されて2か所以
上の測温接点を形成する枝状熱電対とからなり、かつ該
絶縁性セラミック保護管の該測温接点側が閉じた構造を
有することを特徴とする多点測温素子によって解決でき
The present inventor has found that the above problems can be solved by the following means. That is, 1) an insulating ceramic protective tube having two holes, and a thermocouple consisting of two dissimilar metal wires extending in each of the two holes and joined at the tip to form a temperature measuring junction. And a thermocouple having a structure in which the temperature measuring contact side of the insulating ceramic protection tube is closed, and a single point temperature measuring element in which a protective tube is integrated, two or more and the position of the temperature measuring contact is different. It can be solved by a multi-point temperature measuring element characterized by a structure integrated with sintering. 2 Insulating ceramic protective tube having an even number of four or more holes, and two dissimilar metal wires extending in each of the holes and joined at the tip of the wire to form a temperature measuring contact A multi-point temperature measuring element comprising two or more pairs of thermocouples and having a structure in which the position of the temperature measuring contact of each thermocouple is different and the temperature measuring contact side of the insulating ceramic protective tube is closed. Can be solved by 3 An insulating ceramic protective tube having three or more holes, and extending in each of the holes and connecting two or more different metal wires to one metal wire at different positions, It can be solved by a multi-point temperature measuring element , which comprises a branch thermocouple forming a temperature measuring contact, and has a structure in which the temperature measuring contact side of the insulating ceramic protective tube is closed.
You .

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、2本以上の一点測温素子が測温接点の
位置を違えて焼結一体化された多点測温素子の代表的横
造図である。
FIG. 1 is a typical horizontal construction drawing of a multi-point temperature measuring element in which two or more one-point temperature measuring elements are sintered and integrated at different positions of temperature measuring contacts.

【図2】図2は、4つ以上の穴を有する絶縁性セラミッ
ク保護管の中に2対以上の熱電対を各々の測温接点の位
置を違えて内蔵する多点測温素子の代表的構造図であ
る。
FIG. 2 is a typical multi-point temperature measuring element in which two or more pairs of thermocouples are built in an insulating ceramic protective tube having four or more holes at different positions of each temperature measuring contact. It is a structural drawing.

【図3】図3は、3つ以上の穴を有する絶縁性セラミッ
ク保護管の中に測温接点の位置を違えて結線された枝状
熱電対を内蔵する多点測温素子の代表的構造図である。
FIG. 3 is a typical structure of a multi-point temperature measuring element that incorporates a branch-shaped thermocouple connected at different positions of a temperature measuring contact in an insulating ceramic protective tube having three or more holes. It is a figure.

【図4】図4は、絶縁管に通した複数の熱電対を保護管
に挿入した従来の多点測温素子の代表的構造図である。
FIG . 4 is a typical structural diagram of a conventional multi-point temperature measuring element in which a plurality of thermocouples passed through an insulating tube are inserted into a protective tube.

【符号の説明】 1 一点測温素子 2 4つ以上の穴を有する絶縁性セラミック保護管 3 熱電対 4 3つ以上の穴を有する絶縁性セラミック保護管 5 枝状熱電対 6 絶縁管 7 保護管 8 外部雰囲気 9 保護管外周面 10 保護管の管肉部分 11 保護管内周面 12 測温接点 13 測温接点 14 測温接点 15 空隙部分 16 空隙部分 ─────────────────────────────────────────────────────
[Explanation of symbols] 1 single-point temperature measuring element 2 insulating ceramic protective tube having 4 or more holes 3 thermocouple 4 insulating ceramic protective tube having 3 or more holes 5 branch thermocouple 6 insulating tube 7 protective tube 8 External atmosphere 9 Protective tube outer peripheral surface 10 Protective tube inner wall portion 11 Protective tube inner peripheral surface 12 Temperature measuring contact 13 Temperature measuring contact 14 Temperature measuring contact 15 Void portion 16 Void portion ───────────── ──────────────────────────────────────────

【手続補正書】[Procedure amendment]

【提出日】平成7年12月6日[Submission date] December 6, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】図1は、2本以上の一点測温素子1が各々
の測温接点(12,13,14)の位置を違えて焼結一
体化された多点測温素子の代表的構造図である。図2
は、4つ以上の穴を有する絶縁性セラミック保護管2の
中に2対以上の熱電対3を各々の測温接点(12,1
3,14)の位置を違えて内蔵する多点測温素子の代表
的構造図である。図3は、3つ以上の穴を有する絶縁性
セラミック保護管4の中に測温接点(12,13,1
4)の位置を違えて結線された枝状熱電対5を内蔵する
多点測温素子の代表的構造図である。なお図4は、絶縁
管6に通した複数の熱電対3を保護管7に挿入した従来
の多点測温素子の代表的構造図である。図4の従来方式
を用いて多点測温する場合、測温対象である保護管の外
部雰囲気8から感熱部である測温接点(12,13,1
4)に至る伝熱は、外部雰囲気8と保護管外周面9との
間の熱伝達、保護管7の管肉部分10での熱伝導、保護
管内周面11と空気層及び空気層と絶縁管6との間の熱
伝達、絶縁管内部での熱伝導の、所謂多層円管伝熱の複
雑な経路を辿る。従って、応答性が悪く、測温精度も悪
い。即ち、図4においては、測温接点13,14は空隙
部分15,16に生じる空気対流の影響を受けるので、
測温対象物(外部雰囲気)の温度が変化してから熱流の
定常状態に到達する迄に時間を要する。これに対して、
図1、図2、図3に示す本発明の多点測温素子の伝熱
は、外部雰囲気と保護管の外周面との間の熱伝達と、保
護管の管肉部分での熱伝導によって直接的に測温接点に
伝えられる単層管伝熱である。従って応答性が良く、上
記空隙部分15,16の様な空気対流部分も無いので精
度が良い。またサイズ面でも従来方式に較べて細くでき
るので更に応答性が向上する。また、一体構造であるの
で取扱い容易である。
FIG. 1 is a typical structural diagram of a multi-point temperature measuring element in which two or more one-point temperature measuring elements 1 are sintered and integrated by changing the position of each temperature measuring contact (12, 13, 14). Is. FIG.
Has two or more pairs of thermocouples 3 in the insulating ceramic protection tube 2 having four or more holes, and each of the temperature measuring contacts (12, 1).
FIG. 3 is a typical structural diagram of a multi-point temperature measuring element which is built in different positions (3, 14). FIG. 3 shows a temperature measuring contact (12, 13, 1) in an insulating ceramic protective tube 4 having three or more holes.
It is a typical structure figure of the multipoint temperature measuring element which incorporates the branch-like thermocouple 5 wired by changing the position of 4). FIG. 4 is a typical structural diagram of a conventional multipoint temperature measuring element in which a plurality of thermocouples 3 passed through an insulating tube 6 are inserted into a protective tube 7. When performing multi-point temperature measurement using the conventional method shown in FIG. 4, the temperature measuring contacts (12, 13, 1), which are the heat-sensitive parts, are exposed from the external atmosphere 8 of the protection tube, which is the temperature measurement target.
The heat transfer up to 4) is heat transfer between the external atmosphere 8 and the outer peripheral surface 9 of the protective tube, heat conduction in the wall portion 10 of the protective tube 7, insulation between the inner peripheral surface 11 of the protective tube and the air layer, and the air layer. It follows a complicated path of heat transfer between the tube 6 and the heat transfer inside the insulating tube, so-called multi-layered tube heat transfer. Therefore, the response is poor and the temperature measurement accuracy is poor. That is, in FIG. 4, since the temperature measuring contacts 13 and 14 are affected by the air convection generated in the void portions 15 and 16,
It takes time to reach the steady state of the heat flow after the temperature of the temperature measurement object (external atmosphere) changes. On the contrary,
The heat transfer of the multi-point temperature measuring element of the present invention shown in FIGS. 1, 2 and 3 is performed by heat transfer between the external atmosphere and the outer peripheral surface of the protection tube and heat conduction in the tube meat portion of the protection tube. It is a single-layer tube heat transfer that is directly transmitted to the temperature measuring junction. Therefore, the responsiveness is good, and the air convection portions such as the void portions 15 and 16 are not provided, so that the accuracy is high. In addition, the size can be made thinner than the conventional method, so that the responsiveness is further improved. Further, since it has an integral structure, it is easy to handle.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 2つの穴を有する絶縁性セラミック保護
管と、該2つの穴の各々の中をのびるとともに先端部で
接合されて測温接点を形成する2本の異種の金属線から
なる熱電対とからなり、かつ該絶縁性セラミック保護管
の該測温接点側が閉じた構造を有する熱電対と保護管が
一体となった一点測温素子が、2本以上かつ該測温接点
の位置を違えて焼結一体化された構造を特徴とする多点
測温素子。
1. A thermoelectric device comprising an insulating ceramic protective tube having two holes and two dissimilar metal wires extending in each of the two holes and joined at a tip to form a temperature measuring contact. Two or more one-point temperature-measuring elements, which are composed of a pair, and have a structure in which the thermocouple having a structure in which the temperature measuring contact side of the insulating ceramic protection tube is closed and two or more are provided at the position of the temperature measuring contact. A multi-point temperature measuring element featuring a structure that is integrally sintered by mistake.
【請求項2】 4つ以上の偶数個の穴を有する絶縁性セ
ラミック保護管と、該穴の各々の中をのびるとともに素
線先端部で接合されて測温接点を形成する2本の異種の
金属線からなる熱電対2対以上とからなり、各々の熱電
対の測温接点の位置を違えてかつ該絶縁性セラミック保
護管の該測温接点側が閉じた構造を有することを特徴と
する多点測温素子。
2. An insulating ceramic protective tube having an even number of four or more holes and two different types of wires extending in each of the holes and joined at the tip of a wire to form a temperature measuring contact. It is composed of two or more pairs of thermocouples made of metal wires, and has a structure in which the position of the temperature measuring contact of each thermocouple is different and the temperature measuring contact side of the insulating ceramic protective tube is closed. Point temperature measuring element.
【請求項3】 3つ以上の穴を有する絶縁性セラミック
保護管と、該穴の各々の中をのびるとともに1本の金属
線に異種の金属線2本以上が位置を違えて結線されて2
か所以上の測温接点を形成する枝状熱電対とからなり、
かつ該絶縁性セラミック保護管の該測温接点側が閉じた
構造を有することを特徴とする多点測温素子。
3. An insulating ceramic protective tube having three or more holes, and extending in each of the holes and connecting two or more different metal wires to one metal wire at different positions.
It consists of branch thermocouples that form temperature measuring contacts in more than one place,
A multi-point temperature measuring element characterized by having a structure in which the temperature measuring contact side of the insulating ceramic protective tube is closed.
JP29221195A 1994-11-30 1995-10-13 Multi-point temperature measuring element Pending JPH09113372A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29221195A JPH09113372A (en) 1995-10-13 1995-10-13 Multi-point temperature measuring element
PCT/JP1995/002411 WO1996017230A1 (en) 1994-11-30 1995-11-27 Thermo-couple thermometer and method of manufacturing sintered body for the thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29221195A JPH09113372A (en) 1995-10-13 1995-10-13 Multi-point temperature measuring element

Publications (1)

Publication Number Publication Date
JPH09113372A true JPH09113372A (en) 1997-05-02

Family

ID=17778962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29221195A Pending JPH09113372A (en) 1994-11-30 1995-10-13 Multi-point temperature measuring element

Country Status (1)

Country Link
JP (1) JPH09113372A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015750A1 (en) * 2006-08-03 2008-02-07 Fenwal Controls Of Japan, Ltd. Insulating tube, temperature sensor assembly, and thermometer
JP2009074978A (en) * 2007-09-21 2009-04-09 Fenwall Controls Of Japan Ltd Temperature sensor and method of manufacturing temperature sensor
DE102011008176A1 (en) * 2011-01-10 2012-07-12 Klaus Irrgang Thermoelectric temperature sensor for measured value prediction or for correcting mounting error or for determining sensor drift, has thermocouple, temperature-resistant and mechanically flexible sheathed cable with thermal conductors
CN102636277A (en) * 2012-04-10 2012-08-15 巨石集团有限公司 Novel thermocouple for measuring temperature of glass fiber access glass metal and application method thereof
DE202013103733U1 (en) 2013-08-16 2013-10-08 Temperaturmeßtechnik Geraberg GmbH Fast stage temperature sensor
DE202014103008U1 (en) 2014-07-01 2014-10-28 Temperaturmeßtechnik Geraberg GmbH Sheath thermometer with several longitudinally offset measuring points
CN109341885A (en) * 2018-11-08 2019-02-15 鑫国集团有限公司 A kind of two point entity armoured thermocouple of overlength
CN112771357A (en) * 2018-09-28 2021-05-07 罗斯蒙特公司 Error reduced non-invasive process fluid temperature indication

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015750A1 (en) * 2006-08-03 2008-02-07 Fenwal Controls Of Japan, Ltd. Insulating tube, temperature sensor assembly, and thermometer
JP2009074978A (en) * 2007-09-21 2009-04-09 Fenwall Controls Of Japan Ltd Temperature sensor and method of manufacturing temperature sensor
DE102011008176A1 (en) * 2011-01-10 2012-07-12 Klaus Irrgang Thermoelectric temperature sensor for measured value prediction or for correcting mounting error or for determining sensor drift, has thermocouple, temperature-resistant and mechanically flexible sheathed cable with thermal conductors
DE102011008176B4 (en) * 2011-01-10 2013-02-07 Klaus Irrgang Thermoelectric temperature sensor
CN102636277A (en) * 2012-04-10 2012-08-15 巨石集团有限公司 Novel thermocouple for measuring temperature of glass fiber access glass metal and application method thereof
DE202013103733U1 (en) 2013-08-16 2013-10-08 Temperaturmeßtechnik Geraberg GmbH Fast stage temperature sensor
DE202014103008U1 (en) 2014-07-01 2014-10-28 Temperaturmeßtechnik Geraberg GmbH Sheath thermometer with several longitudinally offset measuring points
CN112771357A (en) * 2018-09-28 2021-05-07 罗斯蒙特公司 Error reduced non-invasive process fluid temperature indication
JP2022501607A (en) * 2018-09-28 2022-01-06 ローズマウント インコーポレイテッド Non-invasive process fluid temperature display with reduced error
CN109341885A (en) * 2018-11-08 2019-02-15 鑫国集团有限公司 A kind of two point entity armoured thermocouple of overlength
CN109341885B (en) * 2018-11-08 2024-05-21 鑫国集团有限公司 Ultra-long two-point entity armoured thermocouple

Similar Documents

Publication Publication Date Title
US3038951A (en) Fast acting totally expendable immersion thermocouple
US5348395A (en) Aspirating pyrometer with platinum thermocouple and radiation shields
EP0818671A2 (en) A ceramic sheath type thermocouple
US2999121A (en) Fast acting totally expendable immersion thermocouple
KR20080008996A (en) Temperature sensor for a resistance thermometer, in particular for use in the exhaust gas system of combustion engines
JPH01501108A (en) stable metal sheathed thermocouple cable
JPH07501144A (en) Sealed heat sensitive part of thermocouple
JPH09113372A (en) Multi-point temperature measuring element
US4995733A (en) Measurement sensor for the detection of temperatures in metal or alloy melts
US5232286A (en) Long lasting thermocouple for high temperature measurements of liquid metals, mattes and slags
JP3124998B2 (en) Thermocouple device for tube wall temperature measurement and method of manufacturing the same
US3954508A (en) High temperature thermocouple probe
JP3641759B2 (en) Manufacturing method of temperature sensor with integrated thermocouple and protective tube
JP3014093U (en) Temperature sensor with thermocouple and protective tube integrated
JP2958428B2 (en) SiC protective tube for thermocouple
US2472808A (en) Thermocouple junction with radiation shield
JP3014444U (en) Temperature sensor using ceramic sheath thermocouple
Edler et al. Multiple fixed-point cell
JP3416101B2 (en) Double metal tube sheath
CA2501260A1 (en) Extended temperature range emf device
JPS63300924A (en) Thermoelectric thermometer
JPH1183639A (en) Thermocouple for measuring temperature of molten metal
JP4623481B2 (en) thermocouple
US2584616A (en) Thermocouple device
JP2735797B2 (en) High temperature platinum resistance temperature detector