JP3009583B2 - Sequential connection type erection method of precast reinforced concrete slab composite girder bridge. - Google Patents

Sequential connection type erection method of precast reinforced concrete slab composite girder bridge.

Info

Publication number
JP3009583B2
JP3009583B2 JP2682994A JP2682994A JP3009583B2 JP 3009583 B2 JP3009583 B2 JP 3009583B2 JP 2682994 A JP2682994 A JP 2682994A JP 2682994 A JP2682994 A JP 2682994A JP 3009583 B2 JP3009583 B2 JP 3009583B2
Authority
JP
Japan
Prior art keywords
girder
slab
composite
main girder
reinforced concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2682994A
Other languages
Japanese (ja)
Other versions
JPH07233509A (en
Inventor
洋一 岩本
恒 関本
厚志 磯田
明信 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2682994A priority Critical patent/JP3009583B2/en
Publication of JPH07233509A publication Critical patent/JPH07233509A/en
Application granted granted Critical
Publication of JP3009583B2 publication Critical patent/JP3009583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はプレキャスト鉄筋コンク
リート床版(以下PC床版という)合成桁橋の逐次結合
式架設工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of successively connecting a precast reinforced concrete slab (hereinafter referred to as a PC slab) to a composite girder bridge.

【0002】[0002]

【従来の技術】従来の通常のコンクリート床版鋼桁橋で
は、床版は鋼桁に車両等の活荷重を伝達する働きをし、
鋼桁が活荷重及び床版や鋼桁の自重よりなる死荷重を支
持するように設計される。これを非合成桁と呼ぶ。これ
に対して、PC床版と鋼桁を結合して一体化し、荷重を
支持する構造を合成桁と称する。
2. Description of the Related Art In a conventional ordinary concrete slab steel girder bridge, the slab functions to transmit a live load of a vehicle or the like to the steel girder.
The steel girders are designed to support live loads and dead loads consisting of the weight of the deck and steel girders. This is called a non-combined digit. On the other hand, a structure in which the PC slab and the steel girder are combined and integrated to support the load is referred to as a composite girder.

【0003】従来の単純桁橋における合成桁橋の施工法
としては、以下図5及び図6に示す2つの方法がある。
図5は活荷重合成桁と称する従来の合成桁橋の施工法を
示す側面図である。まず、図5(イ)に示す支点a間に
鋼製の主桁bを架設した後、PC床版cを主桁bの上に
配置する。(図5(ロ)参照)その後、床版cと主桁b
を結合し、相隣る床版cの間の目地dをモルタル等で充
填し、床版cと主桁bを適宜接合手段eを介して一体化
させる(図5(ハ)参照)。なお床版はPC床版ではな
く、現場打ちの鉄筋コンクリート床版でもよい。
As a method of constructing a composite girder bridge in a conventional simple girder bridge, there are two methods shown in FIGS. 5 and 6 below.
FIG. 5 is a side view showing a construction method of a conventional composite girder bridge called a live load composite girder. First, after a steel main girder b is erected between fulcrums a shown in FIG. 5A, a PC floor slab c is placed on the main girder b. (See Fig. 5 (b).) Then, the floor slab c and the main girder b
And the joints d between the adjacent floor slabs c are filled with mortar or the like, and the floor slab c and the main girder b are appropriately integrated via the joining means e (see FIG. 5C). The floor slab may be a cast-in-place reinforced concrete slab instead of a PC slab.

【0004】この工法においては、主桁b及び床版cの
自重、即ち死活重は主桁bのみで分担し、車両等による
活荷重のみを、主桁bと同主桁b上に設置された床版c
の合成作用によって分担することになる。一方、図6は
死荷重合成桁と称する従来の合成桁の別の施工法を示す
側面図であって、この方法によれば、主桁bと床版cが
一体化するまで、ベントfによって支持しておき、合成
桁として完成してからベントfを取り除き、死活重をも
主桁bと床版cの合成作用によって分担するものであ
る。
[0004] In this method, the dead weight of the main girder b and the floor slab c, that is, dead life is shared only by the main girder b, and only the live load of the vehicle or the like is installed on the main girder b and the main girder b. Floor slab c
Will be shared by the synthesizing action of On the other hand, FIG. 6 is a side view showing another construction method of a conventional composite girder called a dead load composite girder. According to this method, the main girder b and the floor slab c are integrated by the vent f until they are integrated. The vent f is removed after the composite girder is completed and the dead weight is shared by the main girder b and the floor slab c.

【0005】[0005]

【発明が解決しようとする課題】前記従来工法では下記
の問題点がある。 (1)前者の活荷重合成桁は、死荷重を主桁のみで分担
するため、主桁の断面が大きくなり、材料コストが嵩
む。 (2)後者の死荷重合成桁は、合成桁として合理的であ
るが、架設時にベントを必要とし施工コストが嵩むのみ
ならず、深い渓谷等ではベントの設置は不可能となる。
The conventional method has the following problems. (1) In the former live load composite girder, since the dead load is shared only by the main girder, the cross section of the main girder becomes large and the material cost increases. (2) The latter dead load composite girder is reasonable as a composite girder, but it requires a vent when erected, which not only increases the construction cost but also makes it impossible to install a vent in a deep valley or the like.

【0006】本発明は前記従来技術の有する問題点に鑑
みて提案されたもので、その目的とする処は、構造的に
合理的な設計が可能となり、工費の節減が図られ、また
ベントを設置できない深い渓谷等でも架設可能なPC床
版合成桁橋の逐次結合式架設工法を提供する点にある。
The present invention has been proposed in view of the above-mentioned problems of the prior art. The object of the present invention is to enable a structurally rational design, to reduce construction costs, and to provide a vent. It is an object of the present invention to provide a method of successively connecting a PC girder composite girder bridge that can be installed even in a deep valley where it cannot be installed.

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係るPC床版合成桁橋の逐次結合式架設工
法によればプレキャスト鉄筋コンクリート床版と鋼桁の
合成桁橋において、鋼桁の上に前記床版を1枚設置する
ごとに鋼桁と結合して部分的に逐次合成し、前記床版と
鋼桁を先行して結合した部分を合成断面として、後から
設置される床版の自重を分担せしめるものである。
In order to achieve the above-mentioned object, according to the present invention, a composite girder bridge composed of a precast reinforced concrete slab and a steel girder is provided by a method of sequentially connecting a PC slab composite girder bridge. Each time one floor slab is installed on a girder, it is combined with a steel girder and partially combined sequentially, and the part where the floor slab and the steel girder are joined in advance is used as a composite cross section and installed later. The weight of the floor slab is shared.

【0008】[0008]

【作用】本発明の架設工法に使用されるPC床版は工場
生産されて強度を有した状態で架設されるため、鋼桁上
に設置後、鋼桁との結合を行なえば合成作用を発現する
ことができるため、前記PC床版と鋼桁を結合して合成
桁となった部分では、爾後設置される床版の自重をも合
成桁として分担することができる。このように鋼桁にP
C床版を1枚設置するごとに順次両者を合成させていく
と同PC床版の自重を部分的に合成桁断面に分担させる
ことが可能となる。
[Function] Since the PC slab used in the erection method of the present invention is erected in a state of being produced at the factory and having strength, a composite action is exhibited by installing it on a steel girder and joining it with the steel girder. Therefore, in the portion where the PC slab and the steel girder are combined to form a composite girder, the own weight of the floor slab to be subsequently installed can also be shared as the composite girder. Thus, P
When the two are sequentially combined each time one C slab is installed, it becomes possible to partially share the own weight of the PC slab to the combined girder cross section.

【0009】[0009]

【実施例】図1は本発明に係るPC床版合成桁橋の逐次
合成式架設工法の一実施例における架設手順を示す側面
図である。まず図1(イ)に示す支点2の間に鋼製の主
桁1を架設する。次いで図1(ロ)に示すように最初の
PC床版、3Aを主桁1の中央に設置し、後述するよう
に主桁1との結合4はPC床版と主桁の結合部である。
ここでこのPC床版3Aは主桁1と一体化して、以後の
荷重に対して合成作用を発揮できる。次に図1(ハ)に
示すようにPC床版3Bを先に設置したPC床版3Aの
両隣りに設置し、主桁1と結合する。このとき床版は合
成作用として荷重を分担するためには、橋軸方向の一体
性がなければならないため、図1(ニ)に示すように、
床版と床版の間の目地5には圧縮荷重を伝達するために
モルタルや樹脂等を充填する。この状態で次位のPC床
版3Cの自重を合成断面として分担する。
FIG. 1 is a side view showing a construction procedure in an embodiment of a method of sequentially constructing a PC deck composite girder bridge according to the present invention. First, a steel main girder 1 is installed between fulcrums 2 shown in FIG. Next, as shown in FIG. 1 (b), the first PC slab, 3A is installed in the center of the main girder 1, and the connection 4 with the main girder 1 is a connection portion between the PC floor slab and the main girder as described later. .
Here, the PC floor slab 3A is integrated with the main girder 1 and can exert a synthesizing action against the subsequent load. Next, as shown in FIG. 1C, the PC slab 3B is installed on both sides of the previously installed PC slab 3A, and is connected to the main girder 1. At this time, in order to share the load as a combined action, the floor slab must have unity in the bridge axis direction, so as shown in FIG.
The joints 5 between the floor slabs are filled with mortar, resin or the like to transmit a compressive load. In this state, the own weight of the next PC floor slab 3C is shared as a composite section.

【0010】このように設置したPC床版3を順次主桁
1と結合するとともに床版間の目地5をモルタルや樹脂
で充填し、逐次合成桁として作用させることにより、後
から設置する床版の自重を部分的に合成桁として分担し
うるものである。(図1(ホ)参照) 図2において図1に示す実施例における荷重を合成され
た断面が分担していく状態を曲げモーメント分布図によ
り模式的に説明する。図2(イ)は図1の例における最
終状態を示す側面図であって、主桁1に設置する順に従
ってPC床版に3A〜3Eの記号を付す。図2(ロ)は
主桁1自重による曲げモーメント分布6を示す。図2
(ハ)は最初に設置したPC床版3Aの自重による曲げ
モーメント分布7Aを示す。図2(ニ)は次に設置した
PC床版3Bの自重による曲げモーメント分布7Bを示
す。
The PC floor slabs 3 installed in this way are sequentially joined to the main girder 1 and joints 5 between the floor slabs are filled with mortar or resin to function as sequential composite girder, so that the floor slabs to be installed later are provided. Can be partially shared as a composite digit. (Refer to FIG. 1 (e)) In FIG. 2, the state in which the combined cross section in the embodiment shown in FIG. FIG. 2A is a side view showing the final state in the example of FIG. 1, in which PC floor slabs are given symbols 3A to 3E in the order of installation on the main girder 1. FIG. 2B shows a bending moment distribution 6 due to the main girder 1 own weight. FIG.
(C) shows the bending moment distribution 7A of the PC floor slab 3A initially installed due to its own weight. FIG. 2 (d) shows a bending moment distribution 7B of the PC floor slab 3B installed next due to its own weight.

【0011】このモーメント分布のうち、斜線部8A
は、先に設置したPC床版3Aと主桁1の合成断面によ
り分担される部分である。以下、同様に図2(ホ)乃至
図2(ト)においても、先に主桁1に設置、結合された
PC床版と主桁1の合成により分担される曲げモーメン
ト成分を斜線部8B、8Cで示す。全PC床版設置後の
曲げモーメント分布は図2(チ)に9で示す分布とな
り、このうち合成断面が分担する部分は斜線部10と成
る。従って、本発明の工法によれば床版自重による荷重
に対して、図2(チ)の斜線部10の部分は合成断面で
設計すればよく、主桁1の鋼重を大幅に低減できる。
In this moment distribution, a hatched portion 8A
Is a portion shared by the composite cross section of the PC floor slab 3A and the main girder 1 installed earlier. Hereinafter, similarly in FIGS. 2 (e) to 2 (g), the bending moment components shared by the combination of the PC slab and the main girder 1 previously installed and connected to the main girder 1 are represented by hatched portions 8B, Shown at 8C. The bending moment distribution after installation of all the PC slabs is the distribution indicated by 9 in FIG. 2 (h), and the portion shared by the composite cross section is the hatched portion 10. Therefore, according to the construction method of the present invention, the portion of the hatched portion 10 in FIG. 2 (h) may be designed with a synthetic cross section with respect to the load due to the weight of the floor slab, and the steel weight of the main girder 1 can be greatly reduced.

【0012】図3及び図4は夫々本発明の第1実施例の
実施状況を示す。主桁1は、I形断面の鋼板溶接板桁
(プレートガーダー)であり、同主桁1の上部にPC床
版3を設置する。図3において、PC主桁1と床版3の
結合部4を構成する一例としてPC主桁1の上フランジ
上に設けたジベル13に、PC床版3に設けた箱抜き穴
12を嵌合し、モルタル又は樹脂等により箱抜き穴12
を充填する方法を示す。ただしこの方法ではモルタルや
樹脂等の充填剤の硬化までPC床版と主桁の合成成果が
期待できないので、図4に示す如くPC床版3と主桁1
を主桁に設けたスタッドボルト14とPC床版3に設け
た箱抜き穴12の中のナット15により機械的に結合す
る方法を用いた方が効率のよい架設を可能とする。この
場合PC床版3間の目地5には、合成作用時に圧縮力を
伝達できるようにモルタル又は樹脂等を充填する。
FIGS. 3 and 4 show the first embodiment of the present invention. The main girder 1 is a steel plate welding girder (plate girder) having an I-shaped cross section, and a PC floor slab 3 is installed above the main girder 1. In FIG. 3, as an example of a connecting portion 4 between the PC main girder 1 and the floor slab 3, a box hole 12 provided on the PC floor slab 3 is fitted to a dowel 13 provided on the upper flange of the PC main girder 1. And a box hole 12 made of mortar or resin.
The method for filling is shown. However, in this method, the result of synthesizing the PC slab and the main girder cannot be expected until the hardening of the filler such as mortar or resin, and as shown in FIG.
The method of mechanically connecting the stud bolts 14 provided on the main girder with the nuts 15 in the box holes 12 provided on the PC floor slab 3 enables more efficient installation. In this case, the joints 5 between the PC slabs 3 are filled with mortar, resin, or the like so that a compressive force can be transmitted during the synthesizing operation.

【0013】[0013]

【発明の効果】本発明は主桁上にPC床版を逐次設置し
て結合し、主桁とPC床版を順次合成させることによっ
て、前記PC床版と主桁を結合した部分は合成断面とし
て、以後に主桁に設置するPC床版の自重を分担できる
ため、最終的に死荷重に対する主桁の強度に余裕がで
き、構造上、合理的な設計が可能となり、工費の低減に
寄与する。
According to the present invention, the PC slab and the main girder are successively installed on the main girder and connected to each other, and the main girder and the PC slab are sequentially synthesized. As the weight of the PC slab to be installed on the main girder can be shared in the future, the main girder can finally have a sufficient strength against dead load, which enables rational design in terms of structure and contributes to reduction of construction cost I do.

【0014】また本発明によればベントを必要としない
ので、従来の死荷重合成桁よりコストの低減が可能であ
り、またベントを設置できない深い渓谷等にも橋梁の架
設を可能とする。
Further, according to the present invention, since no vent is required, the cost can be reduced as compared with the conventional dead load composite girder, and a bridge can be erected in a deep valley where a vent cannot be installed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(イ)(ロ)(ハ)(ニ)及び(ホ)は本発明
に係るPC床版合成桁橋の逐次結合式架設工法の工程を
示す側面図である。
1 (a), (b), (c), (d) and (e) are side views showing the steps of a sequential connection type erection method for a PC slab composite girder bridge according to the present invention.

【図2】図1に示す工法の各工程における桁の曲げモー
メント分布を示す説明図である。
FIG. 2 is an explanatory view showing a bending moment distribution of a girder in each step of the construction method shown in FIG.

【図3】図1に示す工法における主桁にPC床版を設置
工程の一実施例を示す斜視図である。
FIG. 3 is a perspective view showing one embodiment of a process of installing a PC floor slab on a main girder in the method shown in FIG.

【図4】図3に示すPC床版の設置工程の他の実施例を
示す縦断面図である。
4 is a longitudinal sectional view showing another embodiment of the installation process of the PC floor slab shown in FIG.

【図5】(イ)(ロ)(ハ)は従来工法の一例の工程を
示す側面図である。
FIGS. 5 (a), (b) and (c) are side views showing steps of an example of a conventional method.

【図6】従来工法の他の例を示す側面図である。FIG. 6 is a side view showing another example of the conventional method.

【符号の説明】[Explanation of symbols]

1 主桁 2 支点 3A,3B,3C,3D,3E PC床版 4 PC床版と主桁との結合部 5 目地 1 Main girder 2 Support 3A, 3B, 3C, 3D, 3E PC slab 4 Joint between PC slab and main girder 5 Joint

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸 明信 兵庫県神戸市兵庫区和田崎町一丁目1番 1号 三菱重工業株式会社 神戸造船所 内 (56)参考文献 特開 平4−24306(JP,A) 特開 平7−197420(JP,A) (58)調査した分野(Int.Cl.7,DB名) E01D 21/00 E01D 1/00 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Akinobu Kishi 1-1-1, Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo Inside Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (56) References JP-A-4-24306 (JP) , A) JP-A-7-197420 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) E01D 21/00 E01D 1/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 プレキャスト鉄筋コンクリート床版と鋼
桁の合成桁橋において、鋼桁の上に前記床版を1枚設置
するごとに鋼桁と結合して部分的に逐次合成し、前記床
版と鋼桁を先行して結合した部分を合成断面として、後
から設置される床版の自重を分担せしめることを特徴と
するプレキャスト鉄筋コンクリート床版合成桁橋の逐次
結合式架設工法。
1. A composite girder bridge of a precast reinforced concrete slab and a steel girder, wherein each time one of the floor slabs is installed on a steel girder, the slab is combined with a steel girder and partially and sequentially synthesized to form a slab. A method of successively connecting a precast reinforced concrete slab composite girder bridge, wherein a portion where a steel girder is joined earlier is used as a composite section and the weight of a slab to be installed later is shared.
JP2682994A 1994-02-24 1994-02-24 Sequential connection type erection method of precast reinforced concrete slab composite girder bridge. Expired - Fee Related JP3009583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2682994A JP3009583B2 (en) 1994-02-24 1994-02-24 Sequential connection type erection method of precast reinforced concrete slab composite girder bridge.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2682994A JP3009583B2 (en) 1994-02-24 1994-02-24 Sequential connection type erection method of precast reinforced concrete slab composite girder bridge.

Publications (2)

Publication Number Publication Date
JPH07233509A JPH07233509A (en) 1995-09-05
JP3009583B2 true JP3009583B2 (en) 2000-02-14

Family

ID=12204166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2682994A Expired - Fee Related JP3009583B2 (en) 1994-02-24 1994-02-24 Sequential connection type erection method of precast reinforced concrete slab composite girder bridge.

Country Status (1)

Country Link
JP (1) JP3009583B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100582563B1 (en) * 2004-08-24 2006-05-23 한국시설안전기술공단 Construction method for bridges and bridges production it
JP2008111309A (en) * 2006-10-31 2008-05-15 Mitsui Eng & Shipbuild Co Ltd Method of manufacturing composite girder of steel and concrete for bridge
KR101242842B1 (en) * 2012-07-31 2013-03-12 권예지 Construction method for corrugated steel plate web-psc composite beam

Also Published As

Publication number Publication date
JPH07233509A (en) 1995-09-05

Similar Documents

Publication Publication Date Title
JP4834197B2 (en) Construction method of continuous girder bridge, composite floor slab and continuous girder bridge
JPH09221717A (en) Steel-concrete composite floor-slab bridge and construction method thereof
JP2001342611A (en) Bridge girder
JP3410368B2 (en) Connection method of corrugated steel web girder
JP2007262824A (en) Detachable dry joining structure of precast floor slab
JP3009583B2 (en) Sequential connection type erection method of precast reinforced concrete slab composite girder bridge.
JPH07292783A (en) Connective structure of prestressed concrete members
JP2750556B2 (en) Manufacturing method of prestressed concrete girder
JP2928475B2 (en) Precast concrete girder for composite floor slab
JP2927402B2 (en) Column-beam joint structure of concrete building
JPH11229329A (en) Constructing method for steel-concrete composite floor board bridge
JP3772247B2 (en) Seismic reinforcement method for bending of existing large beams
JPH08184121A (en) Precast flooring joint structure
JPH08302619A (en) Joint structure for composite members
JP3009582B2 (en) Construction method of continuous composite girder bridge between concrete slab and steel girder
JPH01223247A (en) Joint structure between steel-concrete composed board and steel girder
JPH0674621B2 (en) Joint structure of concrete pipe, concrete pipe and construction method
JPH0520817Y2 (en)
JP2903873B2 (en) Beam joint structure of centrifugally formed hollow PC column
JP2004092094A (en) Structure of composite floor slab bridge equipped with double main girder
JP2002364072A (en) Beam for hybrid-structure frame
US20220220734A1 (en) Panelized serrated beam assembly
JPH05222766A (en) Building method
JP2766877B2 (en) Structural member for composite shell structure, composite shell structure using the same, and method of constructing the same
JP2504195B2 (en) Construction method of the frame

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991102

LAPS Cancellation because of no payment of annual fees