JP3772247B2 - Seismic reinforcement method for bending of existing large beams - Google Patents

Seismic reinforcement method for bending of existing large beams Download PDF

Info

Publication number
JP3772247B2
JP3772247B2 JP15416297A JP15416297A JP3772247B2 JP 3772247 B2 JP3772247 B2 JP 3772247B2 JP 15416297 A JP15416297 A JP 15416297A JP 15416297 A JP15416297 A JP 15416297A JP 3772247 B2 JP3772247 B2 JP 3772247B2
Authority
JP
Japan
Prior art keywords
existing
existing large
column
large beam
reinforcing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15416297A
Other languages
Japanese (ja)
Other versions
JPH112031A (en
Inventor
勝道 田渕
一博 井ノ上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP15416297A priority Critical patent/JP3772247B2/en
Publication of JPH112031A publication Critical patent/JPH112031A/en
Application granted granted Critical
Publication of JP3772247B2 publication Critical patent/JP3772247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、鉄筋コンクリート造(以下、RC造と云う。)又は鉄骨鉄筋コンクリート造(以下、SRC造と云う。)構造物の柱梁仕口部における、爾後的な既存大梁の曲げに対する耐震補強方法の技術分野に属し、更に云えば、乾式で、できるだけ現場施工の工程が少ないように工夫した既存大梁の曲げに対する耐震補強方法に関する。
【0002】
【従来の技術】
従来、既存建物の水平耐力の一層の増大を図る場合、或いは地震により既存建物の既存大梁が被害を受けた場合に、当該既存大梁を補強するためには、既存柱や既存大梁の端部、すなわち柱梁仕口部で曲げ耐力を増大させる必要がある。その一般的な補強方法としては、図9に示したように、既存大梁bの下面に増設用の梁主筋cを配筋すると共に、ケミカルアンカー等の後施工アンカーdを既存柱aの断面内に埋め込んで定着する。一方、前記増設用の梁主筋cと既存大梁bの外周に増設用のスターラップeを配筋し、図示を省略した型枠を組み立て、増打ちコンクリートfを打設することにより既存大梁bの補強を行っている。
【0003】
【本発明が解決しようとする課題】
前記図9に示した従来例の場合は、後施工アンカーdを既存柱aの断面内に埋め込むため、既存柱aを傷つけてしまい、柱の力学性能を低下させる虞がある。しかも、既存柱aの断面内には図示を省略した数多くの鉄筋が密に配筋されており、後施工アンカーdをうまく埋め込むことができない。また、増打ちコンクリートfの打設作業は必須であるため、経済的にも工期的にも効率が良いとは云い難く殆ど実施されていないのが実状であった。その他、後施工アンカーdは耐久性が悪いといった問題点もある。
【0004】
したがって、本発明の目的は、既存のRC造又はSRC造構造物の水平耐力の補強を図るべく、その既存RC造建物等の柱梁仕口部において、補強プレート等を使用して効率よく既存大梁の曲げ耐力を増大させる方法、それも既存柱を一切傷付けることなく躯体の健全性を維持して既存大梁を爾後的に合理的に効果的に補強する方法を提供することである。
【0005】
本発明の更なる目的は、補強後の建物の使用性、デザイン性の点で優れ、且つ、乾式で、できるだけ現場施工の工程を少なく実施でき、経済的にも工期的にも優れた既存大梁の曲げに対する耐震補強方法を提供することである。
【0006】
【課題を解決するための手段】
上記従来技術の課題を解決するための手段として、請求項1の発明に係る既存大梁の曲げに対する耐震補強方法は、鉄筋コンクリート造又は鉄骨鉄筋コンクリート造構造物の柱梁仕口部における既存大梁の曲げに対する耐震補強方法であって、
床スラブ11の上面における既存柱1の外周に、同既存柱1を囲み、且つ既存大梁2の平面形状に倣う形状で、複数に分割された平板状の上部外ダイアフラム7を取り付ける工程と、
前記床スラブ11の下面側の前記柱梁仕口部における既存柱1の外周に、既存大梁2の横断面形状に相当する切り欠き部8’を有し複数に分割された柱カバープレート8を取り付ける工程と、
前記床スラブ11の下面に当接するフランジ9aと、前記既存大梁2の側面に当接するウエブ9bとより成り、断面が倒立L字形状の梁補強プレート9を既存大梁2の側面に取り付ける工程と、
前記既存大梁2の下面レベル位置における既存柱1の外周に、前記柱カバープレート8を囲み、且つ既存大梁2の平面形状に倣う形状で、複数に分割された平板状の下部外ダイアフラム10を取り付ける工程と、
前記柱カバープレート8と前記梁補強プレート9及び前記下部外ダイアフラム10の各当接部をそれぞれ一体的に接合する工程と、
前記床スラブ11の下面に密着された梁補強プレート9のフランジ部9aと、上部外ダイアフラム7とを、同床スラブ11を貫通させた複数のボルト12及びこれにねじ込んだナット13により圧着させる工程と、
前記既存大梁2へ打ち込んだ複数のアンカー14により、前記梁補強プレート9のウエブ9bを同既存大梁2の側面に圧着させる工程と、から成ることをそれぞれ特徴とする。
【0008】
請求項の発明に係る既存大梁の曲げに対する耐震補強方法は、請求項に記載した梁補強プレート9及び下部外ダイアフラム10に、梁下のハンチ15を設けることを特徴とする。
【0009】
【発明の実施の形態及び実施例】
以下に、図面に基づいて本発明の実施の形態及び実施例を説明する。
存大梁の曲げに対する耐震補強方法は、RC造建物又はSRC造建物における既存大梁2の水平耐力をより一層増大させる場合や、地震等で損傷を受けた既存大梁2の水平耐力を回復させる場合に、図1及び図2に示したように、補強プレート3及びPC鋼棒4等を使用して柱梁仕口部の既存大梁2を爾後的に補強する方法として好適に実施される。前記補強プレート3は、フランジ3aとウエブ3bとより成るコ字形断面部材(図2参照)を平面的に見て柱梁仕口部の既存柱1と既存大梁2とが形成する水平方向のコーナー部に密着させ得るL型(図1参照)に製作されている。図1中の符号3’は既存柱1の角部に整合させる凹欠部である。当該補強プレート3の高さHは、この補強プレート3を当接させる相手の既存大梁2の梁成と略同じ高さ(図2参照)とする。この補強プレート3は通例、形鋼材の溶接組立品又は鋳鋼製品などとして製作される。
【0010】
以下に、上記補強プレート3及びPC鋼棒4等を使用した既存大梁2の曲げに対する耐震補強方法を説明する。
まず、柱梁仕口部の既存柱1と既存大梁2とが形成する水平方向の四つのコーナー部に、前記補強プレート3を各々密着させる。前記補強プレート3は、そのウエブ3bが既存柱1の角部側面及び既存大梁2の側面に密着され、上部のフランジ3aが床スラブ11の下面に密着される。下部のフランジ3aは、既存大梁2の下面レベル位置と略一致する。次いで、予め補強プレート3のウエブ3bの所定位置に設けてある孔を通じて、前記既存大梁2の軸線と直角方向にPC鋼棒4を複数本(本実施例では4本)貫通させる。その方法としては柱梁仕口部の近傍位置(既存大梁2の端部)にコアボーリング法により孔あけを行い、PC鋼棒を通す手段が一般的である。前記PC鋼棒4の両端部にナット5をねじ込み、所定のトルクまで強く締め付けて前記補強プレート3のウエブ3bを前記既存大梁2の側面にそれぞれ圧着させる。前記補強プレート3のうち前記PC鋼棒4で圧着した部分以外、本実施例では既存大梁2の端部よりも中央側へ寄った部分は、複数のアンカー6を既存大梁2へ打ち込み、同補強プレート3のウエブ3bを前記既存大梁2の側面に圧着させ、もって既存大梁2の曲げに対する耐震補強方法を完了する。前記アンカー6には、ホールインアンカー又はケミカルアンカー等が好適に採用される。
【0011】
以上要するに、前記既存大梁2は、柱梁仕口部の四つのコーナー部へ密着させることにより同既存大梁2を挟んで隣合う補強プレート3を圧着することにより、前記既存柱1と既存大梁2とが一体的に接合される結果となり、補強効果が奏されるのである。つまり、既存大梁2に負荷された曲げモーメントの一部を補強プレート3が負担するので、既存大梁2の曲げ耐力を増大させる結果となる。勿論、既存柱1を一切傷付けない補強方法として実施される。しかも必要な曲げ耐力の増分は、前記補強プレート3を構成するフランジ3aやウエブ3bの大きさや厚さにより調整が可能である。なお、前記PC鋼棒4の本数は、図示例では1本の既存大梁2に4本の割合で使用されているが、要求される既存大梁2の曲げ耐力の程度により2本で済む場合もあるし、5本以上要求される場合もある。
【0012】
次に、請求項記載の発明に係る既存大梁の曲げに対する耐震補強方法について説明する。
この補強方法は、図3乃至図5に示したように、やはりRC造建物又はSRC造建物における柱梁接合部において、上部外ダイアフラム7及び柱カバープレート8、梁補強プレート9、下部外ダイアフラム10等を使用して、当該既存大梁2を爾後的に補強する方法として好適に実施される。前記の各構成要素7、8、9、10は、鋼板の加工品又は鋳鋼製品などとして製作される。前記上部外ダイアフラム7は、図6に示したように、既存柱1を囲み、且つ各既存大梁2の平面形状に倣う形状とされ、少なくとも半割り状に2分割された平板状部材から成る。前記柱カバープレート8は、前記既存大梁2の横断面形状に相当する(略同形、同大の)切り欠き部8’を上半部に有し、平面的に見れば前記既存柱1の外周を囲む角筒を2等分割した筒状部材から成る。前記梁補強プレート9は、床スラブ11の下面に当接するフランジ9aと、前記既存大梁2の側面に当接されるウエブ9bとより成る、断面が倒立L字形の板状部材である。当該梁補強プレート9の高さHは、これを当接する既存大梁2の梁成と略同じ高さとする(図4参照)。前記下部外ダイアフラム10は、前記柱カバープレート8を囲み、且つ既存大梁2の平面形状に倣う形状とされ、少なくとも半割り状に2分割された平板状部材から成り、云うなれば、上部外ダイアフラム7と同様な形状である。但し、上部外ダイアフラム7における既存大梁2の平面形状に倣う部分は、後述するように梁補強プレート9のフランジ9aと床スラブ11を貫通させるボルト12で連結し圧着し得るだけの幅を有する。
【0013】
以下に、上部外ダイアフラム7及び柱カバープレート8、補強プレート9、下部外ダイアフラム10等を使用した既存大梁2の曲げに対する耐震補強方法を説明する。
まず、前記既存柱1の外周に、前記半割り状の上部外ダイアフラム7の各分割片を順に床スラブ11の上面に載せる態様で取り付け、その後各分割片相互の当接部を正規の形状に溶接等の手段で一体的に接合する。次いで、前記床スラブ11の下面側の前記柱梁仕口部における既存柱1の外周に、前記半割り状の柱カバープレート8の各分割片を順に取り付け、半割り片相互の当接部を正規の形状に溶接等の手段により一体的に接合する。次いで、前記既存大梁2の各側面に、前記梁補強プレート9を、そのフランジ9aが床スラブ11の下面に当接し、ウエブ9bが前記既存大梁2の側面に当接する態様に取り付ける。その結果、該ウエブ9bの下端は、当該梁補強プレート9を当接した既存大梁2の下面レベル位置と一致する。前記梁補強プレート9は、そのウエブ9bに予め設けている孔を通じて前記既存大梁2へアンカー14を打ち込み、同既存大梁2へ強固に圧着する。前記アンカー14には、ホールインアンカー又はケミカルアンカー等が好適に採用される。
【0014】
その後、前記既存大梁2の下面レベル位置における既存柱1の外周に、下部外ダイアフラム10の各分割片を順に取り付け、分割片相互の当接部を正規の形状に溶接等の手段により一体的に接合する。更に、前記柱カバープレート8と前記梁補強プレート9及び下部外ダイアフラム10の各当接部もそれぞれ溶接等の手段により一体的に接合する。最後に、前記床スラブ11の下面に密着された梁補強プレート9のフランジ部9aと、上部外ダイアフラム7とを、前記床スラブ11を貫通させた複数のボルト12及びこれにねじ込んだナット13により強く締め付けて圧着する。なお、前記上部外ダイアフラム7及び下部外ダイアフラム10等を接合する手段は、前記溶接のほか、ボルト止めやリベット止め等の手段により一体的に接合することもできる。
【0015】
以上要するに、前記上部外ダイアフラム7及び柱カバープレート8、梁補強プレート9、下部外ダイアフラム10を、ボルト12やアンカー14を使用して柱梁仕口部を囲むように一体的に取り付けることにより、既存大梁2に負荷する曲げ応力は、上部外ダイアフラム7及び下部外ダイアフラム10に伝達して負担されるから、その分だけ補強効果が奏される。勿論、既存柱を一切傷付けることのない補強方法であり、既存大梁2の曲げ耐力を増大させる結果となる。
【0016】
請求項の発明に係る既存大梁の曲げに対する耐震補強方法の場合は、図7の右側に示したように、柱梁仕口部における梁成が異なる場合に好適に実施される。この場合は、梁成を揃えるべく、梁成の小さい側に補強プレート9及び下部外ダイアフラム10に梁下のハンチ15を設け、既存大梁2の下面のハンチ空洞部にコンクリートを充填することにより既存大梁2の曲げ耐力を増大させることができる。なお、柱梁仕口部における梁成が同等の場合でも、更にハンチを設けるべく前記下部外ダイアフラム10を下げて梁成を増大させ、既存鉄筋の応力中心距離を上げることにより既存大梁2の曲げ耐力を増大させる方法も実施できる。
【0017】
その他の実施例として、フリーアクセスフロアの場合には、空きスペースに前記上部外ダイアフラム7を設置することが可能である。しかし、上部外ダイアフラム7が床面上に浮き出すことが不都合な場合には、図8に示したように、床コンクリートを上部外ダイアフラム7が床面と同一レベルにまで沈み込ませる凹部をはつりに形成し、その凹部へ埋め込む態様で実施することもできる。
【0018】
【本発明が奏する効果】
本発明に係る既存大梁の曲げに対する耐震補強方法によれば、補強プレート等を使用して、既存柱を一切傷付けることなく、柱躯体の健全性を維持して、既存大梁を爾後的に合理的に効果的に補強することができる。また、乾式で現場施工の工程を少なく実施でき、経済的にも工期的にも優れている。
【図面の簡単な説明】
【図1】補強プレート及びPC鋼棒等による既存大梁の耐震補強状態を示した横断面図である。
【図2】補強プレート及びPC鋼棒等による既存大梁の耐震補強状態を示した縦断面図である。
【図3】外ダイアフラム等による既存大梁の耐震補強状態を示した横断面図である。
【図4】外ダイアフラム等による既存大梁の耐震補強状態を示した縦断面図である。
【図5】図4に示した外ダイアフラム等の各構成要素を概略的に示した分解斜視図である。
【図6】上部外ダイアフラムの形状を示した平面図である。
【図7】外ダイアフラム等による既存大梁の耐震補強方法の第2の実施例を示した縦断面図である。
【図8】外ダイアフラム等による既存大梁の耐震補強方法の第3の実施例を示した縦断面図である。
【図9】従来技術を示した縦断面図である。
【符号の説明】
1 既存柱
2 既存大梁
3 補強プレート
3a フランジ
3b ウエブ
3’ 凹欠部
4 PC鋼棒
5 ナット
6 アンカー
7 上部外ダイアフラム
8 柱カバープレート
8’ 切り欠き部
9 梁補強プレート
9a フランジ
9b ウエブ
10 下部外ダイアフラム
11 床スラブ
12 ボルト
13 ナット
14 アンカー
15 ハンチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of seismic reinforcement for a bending of an existing large beam in a column beam joint of a reinforced concrete structure (hereinafter referred to as RC structure) or a steel reinforced concrete structure (hereinafter referred to as SRC structure). The present invention relates to a seismic reinforcement method for bending existing large beams that belongs to the technical field and is further devised so as to be dry and have as few on-site construction steps as possible.
[0002]
[Prior art]
Conventionally, in order to reinforce the existing large beam when the horizontal strength of the existing building is further increased, or when the existing large beam of the existing building is damaged by the earthquake, That is, it is necessary to increase the bending strength at the column beam joint. As a general reinforcement method, as shown in FIG. 9, an additional beam main bar c is arranged on the lower surface of the existing large beam b, and a post-installed anchor d such as a chemical anchor is placed in the cross section of the existing column a. Embed in and settle. On the other hand, an additional stirrup e is arranged on the outer periphery of the main beam c for expansion and the existing large beam b, a formwork not shown in the figure is assembled, and the increased concrete f is placed, thereby constructing the existing large beam b. Reinforcement is performed.
[0003]
[Problems to be solved by the present invention]
In the case of the conventional example shown in FIG. 9, since the post-installed anchor d is embedded in the cross section of the existing column a, the existing column a may be damaged, and the dynamic performance of the column may be deteriorated. Moreover, many reinforcing bars (not shown) are densely arranged in the cross section of the existing column a, and the post-construction anchor d cannot be embedded well. Further, since the work of placing the increased-strength concrete f is indispensable, it is difficult to say that the efficiency is economically and in terms of construction period, and it has been hardly carried out. In addition, there is a problem that the post-installed anchor d has poor durability.
[0004]
Accordingly, an object of the present invention is to efficiently use existing reinforcing plates or the like at the column beam joints of existing RC buildings in order to reinforce the horizontal strength of existing RC structures or SRC structures. The method of increasing the bending strength of the girder is to provide a method for reinforcing the existing girder reasonably and effectively afterwards while maintaining the soundness of the frame without damaging the existing columns.
[0005]
A further object of the present invention is an existing large beam that is excellent in terms of usability and design of the building after reinforcement, is dry, and can be carried out with as few on-site construction processes as possible, economically and in terms of construction period. It is to provide a method of seismic reinforcement against bending of steel.
[0006]
[Means for Solving the Problems]
As a means for solving the problems of the prior art, the seismic reinforcement method for bending of an existing large beam according to the invention of claim 1 is for bending of an existing large beam in a column beam joint of a reinforced concrete structure or a steel reinforced concrete structure. A method of seismic reinforcement,
Attaching a plate-shaped upper outer diaphragm 7 divided into a plurality of shapes in a shape that surrounds the existing pillar 1 on the upper surface of the floor slab 11 and that follows the planar shape of the existing large beam 2;
A column cover plate 8 having a notch 8 ′ corresponding to the cross-sectional shape of the existing large beam 2 on the outer periphery of the existing column 1 in the column beam joint on the lower surface side of the floor slab 11 is divided into a plurality of columns. Attaching process;
A step of attaching a beam reinforcing plate 9 having an inverted L-shaped cross section to the side surface of the existing large beam 2, comprising a flange 9 a that contacts the lower surface of the floor slab 11 and a web 9 b that contacts the side surface of the existing large beam 2;
A plate-like lower outer diaphragm 10 is attached to the outer periphery of the existing column 1 at the lower surface level position of the existing beam 2 so as to surround the column cover plate 8 and follow the planar shape of the existing beam 2 and divided into a plurality of flat plates. Process,
A step of integrally joining the contact portions of the column cover plate 8, the beam reinforcing plate 9, and the lower outer diaphragm 10, respectively;
The step of crimping the flange portion 9a of the beam reinforcing plate 9 closely attached to the lower surface of the floor slab 11 and the upper outer diaphragm 7 with a plurality of bolts 12 penetrating the floor slab 11 and nuts 13 screwed into the bolts. When,
And a step of crimping the web 9b of the beam reinforcing plate 9 to the side surface of the existing large beam 2 by a plurality of anchors 14 driven into the existing large beam 2 .
[0008]
Earthquake-proof reinforcement method for existing girders bending according to the invention of claim 2, the beam reinforcement plate 9 and the lower outer diaphragm 10 set forth in claim 1, and providing a haunch 15 under the beam.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments and examples of the present invention will be described below with reference to the drawings.
Seismic reinforcement method for the existing girders bending of, and if the more to further increase the lateral strength of the existing girders 2 in the RC Building or SRC Buildings, when to restore the horizontal strength of the existing girders 2, which was damaged by an earthquake, etc. Moreover, as shown in FIG.1 and FIG.2, it implements suitably as a method of reinforcing the existing large beam 2 of a column beam joint part later using the reinforcement plate 3, PC steel rod 4, etc. later. The reinforcing plate 3 is a horizontal corner formed by the existing column 1 and the existing large beam 2 of the column beam joint when the U-shaped cross-section member (see FIG. 2) composed of the flange 3a and the web 3b is viewed in plan. It is manufactured in an L shape (see FIG. 1) that can be in close contact with the part. Reference numeral 3 ′ in FIG. 1 is a recessed portion that is aligned with the corner of the existing pillar 1. The height H of the reinforcing plate 3 is substantially the same as the height of the existing large beam 2 with which the reinforcing plate 3 is brought into contact (see FIG. 2). The reinforcing plate 3 is usually manufactured as a welded assembly of a shaped steel material or a cast steel product.
[0010]
Below, the earthquake-proof reinforcement method with respect to the bending of the existing large beam 2 using the said reinforcement plate 3, PC steel rod 4, etc. is demonstrated.
First, the reinforcing plates 3 are brought into close contact with four horizontal corner portions formed by the existing columns 1 and the existing large beams 2 of the column beam joint. The reinforcing plate 3 has its web 3 b in close contact with the side surface of the existing pillar 1 and the side surface of the existing large beam 2, and the upper flange 3 a in close contact with the lower surface of the floor slab 11. The lower flange 3 a substantially coincides with the lower surface level position of the existing large beam 2. Next, a plurality of (four in this embodiment) PC steel rods 4 are passed through the holes provided in advance at predetermined positions of the web 3b of the reinforcing plate 3 in a direction perpendicular to the axis of the existing large beam 2. As a method therefor, a method is generally used in which a hole is drilled by a core boring method in the vicinity of the column beam joint (the end of the existing beam 2) and a PC steel rod is passed. A nut 5 is screwed into both ends of the PC steel bar 4, and the web 3b of the reinforcing plate 3 is pressed against the side surface of the existing large beam 2 by tightening firmly to a predetermined torque. In the present embodiment, a portion closer to the center side than the end portion of the existing large beam 2 is driven into the existing large beam 2 by pushing a plurality of anchors 6 into the existing large beam 2 except for the portion pressed by the PC steel rod 4 in the reinforcing plate 3. The web 3b of the plate 3 is crimped to the side surface of the existing large beam 2 to complete the seismic reinforcement method for bending the existing large beam 2. As the anchor 6, a hole-in anchor or a chemical anchor is preferably employed.
[0011]
In short, the existing large beam 2 is brought into close contact with the four corners of the column beam joint portion, and the adjacent reinforcing plate 3 is pressed between the existing large beam 2 so that the existing column 1 and the existing large beam 2 are bonded. As a result, the reinforcing effect is exerted. That is, since the reinforcing plate 3 bears a part of the bending moment loaded on the existing large beam 2, the bending strength of the existing large beam 2 is increased. Of course, it is implemented as a reinforcing method that does not damage the existing pillar 1 at all. In addition, the necessary increase in bending strength can be adjusted by the size and thickness of the flange 3a and the web 3b constituting the reinforcing plate 3. In the illustrated example, the number of the PC steel bars 4 is four for one existing girder 2, but two may be sufficient depending on the required bending strength of the existing girder 2. In some cases, 5 or more are required.
[0012]
Next, the earthquake-proof reinforcement method with respect to the bending of the existing large beam which concerns on invention of Claim 1 is demonstrated.
As shown in FIGS. 3 to 5, this reinforcing method is performed by connecting the upper outer diaphragm 7 and the column cover plate 8, the beam reinforcing plate 9, and the lower outer diaphragm 10 at the column beam joint in the RC building or SRC building. It is suitably implemented as a method of reinforcing the existing large beam 2 later. Each of the components 7, 8, 9, and 10 is manufactured as a processed product of steel plate or a cast steel product. As shown in FIG. 6, the upper outer diaphragm 7 is formed of a flat plate-like member that surrounds the existing pillar 1 and has a shape that follows the planar shape of each existing large beam 2 and is divided into at least a half. The column cover plate 8 has a notch 8 ′ (substantially the same shape and the same size) corresponding to the cross-sectional shape of the existing beam 2 in the upper half. It consists of the cylindrical member which divided | segmented the square cylinder which encloses into 2 equal parts. The beam reinforcing plate 9 is a plate-like member having an inverted L-shaped cross section including a flange 9 a that abuts on the lower surface of the floor slab 11 and a web 9 b that abuts on the side surface of the existing large beam 2. The height H of the beam reinforcing plate 9 is set to be substantially the same as the beam formation of the existing large beam 2 that abuts the plate (see FIG. 4). The lower outer diaphragm 10 is formed of a flat plate member that surrounds the column cover plate 8 and that follows the planar shape of the existing large beam 2 and is divided into at least a half, that is, the upper outer diaphragm. 7 is the same shape. However, the portion of the upper outer diaphragm 7 that follows the planar shape of the existing large beam 2 has a width that can be connected and crimped by a bolt 12 that penetrates the flange 9a of the beam reinforcing plate 9 and the floor slab 11, as will be described later.
[0013]
Below, the seismic reinforcement method with respect to the bending of the existing large beam 2 using the upper outer diaphragm 7, the column cover plate 8, the reinforcing plate 9, the lower outer diaphragm 10, and the like will be described.
First, on the outer periphery of the existing pillar 1, the divided pieces of the half-shaped upper outer diaphragm 7 are attached in such a manner that the divided pieces are sequentially placed on the upper surface of the floor slab 11, and then the contact portions between the divided pieces are made into regular shapes They are joined together by means such as welding. Next, the divided pieces of the half-shaped column cover plate 8 are sequentially attached to the outer periphery of the existing column 1 in the column beam joint on the lower surface side of the floor slab 11, and the abutting portions between the half pieces are attached. They are integrally joined to the regular shape by means such as welding. Next, the beam reinforcing plate 9 is attached to each side surface of the existing large beam 2 in such a manner that the flange 9 a abuts against the lower surface of the floor slab 11 and the web 9 b abuts against the side surface of the existing large beam 2. As a result, the lower end of the web 9b coincides with the lower surface level position of the existing large beam 2 with which the beam reinforcing plate 9 is in contact. The beam reinforcing plate 9 drives the anchor 14 into the existing large beam 2 through a hole provided in the web 9b in advance, and firmly presses the anchor 14 to the existing large beam 2. As the anchor 14, a hole-in anchor, a chemical anchor, or the like is preferably employed.
[0014]
Thereafter, the divided pieces of the lower outer diaphragm 10 are sequentially attached to the outer periphery of the existing pillar 1 at the lower surface level position of the existing large beam 2, and the contact portions between the divided pieces are integrally formed into a regular shape by means such as welding. Join. Further, the contact portions of the column cover plate 8, the beam reinforcing plate 9, and the lower outer diaphragm 10 are also integrally joined by means such as welding. Finally, the flange portion 9a of the beam reinforcing plate 9 closely attached to the lower surface of the floor slab 11 and the upper outer diaphragm 7 are connected by a plurality of bolts 12 penetrating the floor slab 11 and nuts 13 screwed into the bolts. Tighten firmly and crimp. The means for joining the upper outer diaphragm 7 and the lower outer diaphragm 10 can be integrally joined by means such as bolting or riveting, in addition to the welding.
[0015]
In short, by attaching the upper outer diaphragm 7 and the column cover plate 8, the beam reinforcing plate 9, and the lower outer diaphragm 10 integrally using a bolt 12 and an anchor 14 so as to surround the column beam joint, Since the bending stress applied to the existing large beam 2 is transmitted to the upper outer diaphragm 7 and the lower outer diaphragm 10 to be borne, the reinforcing effect is produced accordingly. Of course, a possible no reinforcing method damaging the already Sonbashira all, results in increased bending strength existing girders 2.
[0016]
In the case of the seismic reinforcement method for bending of the existing large beam according to the invention of claim 2 , it is suitably implemented when the beam formation at the column beam joint is different as shown on the right side of FIG. In this case, in order to align the beam formation, a reinforcing plate 9 and a lower outer diaphragm 10 are provided with a haunch 15 below the beam on the smaller beam forming side, and concrete is filled in the hunch cavity on the lower surface of the existing large beam 2. The bending strength of the girder 2 can be increased. Even when the beam formation at the column beam joint is the same, the lower outer diaphragm 10 is lowered to increase the beam formation to further provide a haunch, and the stress center distance of the existing rebar is increased to bend the existing large beam 2. A method of increasing the yield strength can also be implemented.
[0017]
As another embodiment, in the case of a free access floor, the upper outer diaphragm 7 can be installed in an empty space. However, when it is inconvenient for the upper outer diaphragm 7 to be raised on the floor surface, as shown in FIG. 8, the floor concrete is suspended by a recess that allows the upper outer diaphragm 7 to sink to the same level as the floor surface. It is also possible to carry out in a mode in which it is formed to be embedded in the recess.
[0018]
[Effects of the present invention]
According to the seismic reinforcement method for bending of an existing girder according to the present invention, a reinforcing plate or the like is used to maintain the soundness of the column frame without damaging the existing column at all, and to rationalize the existing girder afterwards. Can be effectively reinforced. In addition, it is dry and can be carried out with a small number of on-site construction processes.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a seismic reinforcement state of an existing large beam using a reinforcing plate and a PC steel rod.
FIG. 2 is a longitudinal sectional view showing a seismic strengthening state of an existing large beam using a reinforcing plate and a PC steel bar.
FIG. 3 is a cross-sectional view showing a seismic reinforcement state of an existing large beam by an outer diaphragm or the like.
FIG. 4 is a longitudinal sectional view showing a seismic reinforcement state of an existing large beam by an outer diaphragm or the like.
5 is an exploded perspective view schematically showing each component such as an outer diaphragm shown in FIG. 4. FIG.
FIG. 6 is a plan view showing the shape of the upper outer diaphragm.
FIG. 7 is a longitudinal sectional view showing a second embodiment of the seismic reinforcement method for an existing large beam using an outer diaphragm or the like.
FIG. 8 is a longitudinal sectional view showing a third embodiment of the seismic reinforcement method for an existing large beam using an outer diaphragm or the like.
FIG. 9 is a longitudinal sectional view showing a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Existing pillar 2 Existing large beam 3 Reinforcement plate 3a Flange 3b Web 3 'Recessed part 4 PC steel bar 5 Nut 6 Anchor 7 Upper outer diaphragm 8 Column cover plate 8' Notch 9 Beam reinforcing plate 9a Flange 9b Web 10 Lower lower part Diaphragm 11 Floor slab 12 Bolt 13 Nut 14 Anchor 15 Haunch

Claims (2)

鉄筋コンクリート造又は鉄骨鉄筋コンクリート造構造物の柱梁仕口部における既存大梁の曲げに対する耐震補強方法であって、
床スラブの上面における既存柱の外周に、同既存柱を囲み、且つ既存大梁の平面形状に倣う形状で、複数に分割された平板状の上部外ダイアフラムを取り付ける工程と、
前記床スラブの下面側の前記柱梁仕口部における既存柱の外周に、既存大梁の横断面形状に相当する切り欠き部を有し複数に分割された柱カバープレートを取り付ける工程と、
前記床スラブの下面に当接するフランジと、前記既存大梁の側面に当接するウエブとより成り、断面が倒立L字形状の梁補強プレートを同既存大梁の側面に取り付ける工程と、
前記既存大梁の下面レベル位置における既存柱の外周に、前記柱カバープレートを囲み、且つ既存大梁の平面形状に倣う形状で、複数に分割された平板状の下部外ダイアフラムを取り付ける工程と、
前記柱カバープレートと前記梁補強プレート及び前記下部外ダイアフラムの各当接部をそれぞれ一体的に接合する工程と、
前記床スラブの下面に密着された梁補強プレートのフランジ部と、上部外ダイアフラムとを、同床スラブを貫通させた複数のボルト及びこれにねじ込んだナットにより圧着させる工程と、
前記既存大梁へ打ち込んだ複数のアンカーにより、前記梁補強プレートのウエブを同既存大梁の側面に圧着させる工程と、
から成ることをそれぞれ特徴とする、既存大梁の曲げに対する耐震補強方法。
A seismic reinforcement method for bending of existing large beams in the column beam joints of reinforced concrete structures or steel reinforced concrete structures,
A process of attaching a flat plate-like upper outer diaphragm divided into a plurality of shapes in the shape of the existing pillar in a shape that surrounds the existing pillar on the outer periphery of the existing pillar on the upper surface of the floor slab;
Attaching a column cover plate divided into a plurality having a cutout portion corresponding to the cross-sectional shape of the existing large beam on the outer periphery of the existing column in the column beam joint portion on the lower surface side of the floor slab;
A step of attaching a beam reinforcing plate having an inverted L-shaped cross section to a side surface of the existing large beam, comprising a flange contacting the lower surface of the floor slab and a web contacting the side surface of the existing large beam;
A step of attaching a flat lower outer diaphragm divided into a plurality of shapes in a shape that surrounds the column cover plate and follows the planar shape of the existing large beam on the outer periphery of the existing column at the lower surface level position of the existing large beam;
A step of integrally joining the column cover plate, the beam reinforcing plate, and the contact portions of the lower outer diaphragm, respectively;
A step of crimping the flange portion of the beam reinforcing plate closely attached to the lower surface of the floor slab and the upper outer diaphragm with a plurality of bolts that penetrate the floor slab and nuts screwed into the bolt;
A step of pressure-bonding the web of the beam reinforcing plate to a side surface of the existing large beam by a plurality of anchors driven into the existing large beam;
Seismic reinforcement method for bending of existing large beams, each characterized by comprising
梁補強プレート及び下部外ダイアフラムに、梁下のハンチを設けることを特徴とする、請求項に記載した既存大梁の曲げに対する耐震補強方法。The method for seismic reinforcement against bending of an existing large beam according to claim 1 , wherein a haunch under the beam is provided on the beam reinforcing plate and the lower outer diaphragm.
JP15416297A 1997-06-11 1997-06-11 Seismic reinforcement method for bending of existing large beams Expired - Fee Related JP3772247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15416297A JP3772247B2 (en) 1997-06-11 1997-06-11 Seismic reinforcement method for bending of existing large beams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15416297A JP3772247B2 (en) 1997-06-11 1997-06-11 Seismic reinforcement method for bending of existing large beams

Publications (2)

Publication Number Publication Date
JPH112031A JPH112031A (en) 1999-01-06
JP3772247B2 true JP3772247B2 (en) 2006-05-10

Family

ID=15578196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15416297A Expired - Fee Related JP3772247B2 (en) 1997-06-11 1997-06-11 Seismic reinforcement method for bending of existing large beams

Country Status (1)

Country Link
JP (1) JP3772247B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102587686A (en) * 2012-02-21 2012-07-18 北京工业大学 Device for strengthening PC steel bar in core area of space node of reinforced concrete cylindrical frame

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138410A (en) * 2006-11-30 2008-06-19 Kumagai Gumi Co Ltd Connecting structure of existing building and earthquake-resistant reinforcement
JP4904382B2 (en) * 2009-08-24 2012-03-28 株式会社冨士建鉄 Seismic reinforcement method and structure for existing buildings
JP4904383B2 (en) * 2009-08-24 2012-03-28 株式会社冨士建鉄 Seismic reinforcement method and structure for existing buildings
JP6382049B2 (en) * 2014-09-29 2018-08-29 三菱日立パワーシステムズ環境ソリューション株式会社 Electric dust collector reinforcing structure and electric dust collector
CN104481164B (en) * 2014-11-24 2016-06-01 沈阳建筑大学 The section steel reinforcement method of concrete frame node and add fixing structure
JP6382126B2 (en) * 2015-02-02 2018-08-29 三菱日立パワーシステムズ環境ソリューション株式会社 Installation method of electric dust collector reinforcement structure
CN115341781A (en) * 2022-09-14 2022-11-15 中国电建集团西北勘测设计研究院有限公司 Concrete column connecting and reinforcing method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102587686A (en) * 2012-02-21 2012-07-18 北京工业大学 Device for strengthening PC steel bar in core area of space node of reinforced concrete cylindrical frame
CN102587686B (en) * 2012-02-21 2014-01-22 北京工业大学 Device for strengthening PC steel bar in core area of space node of reinforced concrete cylindrical frame

Also Published As

Publication number Publication date
JPH112031A (en) 1999-01-06

Similar Documents

Publication Publication Date Title
JP3772247B2 (en) Seismic reinforcement method for bending of existing large beams
JP5236152B2 (en) Method of joining precast concrete column beams
KR100609184B1 (en) Joint Structure of Precast Concrete Beam and Column Unit
KR100865133B1 (en) A fixing device, a pre-fabricating forms for concrete-structure and the construction method thereof
JP2927402B2 (en) Column-beam joint structure of concrete building
JP2601113B2 (en) Column-beam connection structure in glulam structure
JP6717782B2 (en) Reinforcement method for existing footing
JP2977367B2 (en) Precast concrete block foundation for modular buildings
KR102169828B1 (en) Joint of columns
JP3177730B2 (en) Structure reinforcement structure
KR101685632B1 (en) Shear connector to increase strength and ductility
JP3503096B2 (en) Structure reinforcement plate structure
JPH0673203U (en) Beam-column joint structure
JP7285202B2 (en) Frame structures and buildings equipped with them
JP4045502B2 (en) Structure
JP2006169837A (en) Column-beam joint structure of reinforced concrete construction
JP2564732B2 (en) Precast concrete block foundation for unit building
JP3622100B2 (en) How to reinforce existing beams
JP2001123675A (en) Temporary bracket jig and temporary bracket structure for building
JP2004027647A (en) Steel structure of house, and its construction method
JP3749935B2 (en) Column and beam construction method and enclosure
JP3162699B2 (en) Column-beam joint structure of concrete members
JPS6037347A (en) Pillar and beam connecting structure in reinforced concrete structure
JPH0681470A (en) Construction method for flat slab
JPH0749680B2 (en) Construction method of precast steel reinforced concrete structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees