JP2008111309A - Method of manufacturing composite girder of steel and concrete for bridge - Google Patents

Method of manufacturing composite girder of steel and concrete for bridge Download PDF

Info

Publication number
JP2008111309A
JP2008111309A JP2006296109A JP2006296109A JP2008111309A JP 2008111309 A JP2008111309 A JP 2008111309A JP 2006296109 A JP2006296109 A JP 2006296109A JP 2006296109 A JP2006296109 A JP 2006296109A JP 2008111309 A JP2008111309 A JP 2008111309A
Authority
JP
Japan
Prior art keywords
steel
girder
concrete
bridge
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006296109A
Other languages
Japanese (ja)
Inventor
Ryuichi Kaida
龍一 皆田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2006296109A priority Critical patent/JP2008111309A/en
Publication of JP2008111309A publication Critical patent/JP2008111309A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a composite girder of steel and concrete for a bridge, capable of easily adjusting stress in a factory, without requiring a device and an PC steel material for introducing prestress, by reducing the structural height. <P>SOLUTION: This composite girder 24 is manufactured by driving and hardening concrete 23 in an upper end part, in a state of being supported by a support 11 in four places in total of both end parts of a manufactured steel girder 20 and two places of an intermediate part. The dead load bending moment of a steel member and the concrete opposing by the steel girder 20, is reduced more than a two-point support state in a four-point support state of the composite girder 24 in manufacture. When installing this composite girder 24, since a concrete member opposes in the steel girder 20 and the concrete 23 by contributing to opposition to the bending moment by being supported at two points of both end parts, the dead load bending moment of the steel member opposed to the concrete member and the concrete member is reduced, and a cross section of the concrete 23 can be reduced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、中小支間長に掛け渡されるのに適した橋梁の桁に用いられる鋼とコンクリートとの複合構造を備えた複合桁の製作方法に関する。   The present invention relates to a method for manufacturing a composite girder having a composite structure of steel and concrete used for a bridge girder suitable for being spanned between small and medium span lengths.

河川や渓谷を越える河川橋や、道路や鉄道との平面交差を避けるために設けられる高架橋等の各種の橋梁では、地形や河川阻害率、交差構造物あるいは航路などの制約を受けるため、構造高を低くしなければならない場合がある。例えば、図8は河川Rを越えて架設される河川橋の一例を示すもので、この河川橋1は、河川Rを跨ぐ部分の長径間部DLと河岸Sを跨ぐ部分の短径間部DSとに掛け渡されている。図8に示す河川橋では、長径間部DLにトラス橋2の構造が採用され、短径間部DSに単純桁橋3が採用された構造とされている。 River bridges that cross rivers and canyons, and various bridges such as viaducts that are installed to avoid planar crossings with roads and railways are subject to constraints such as topography, river obstruction rate, crossing structures, and routes. May have to be lowered. For example, Figure 8 shows one example of a river bridge to be laid across the river R, the river bridge 1, the short span of the portion straddling the long span portion D L and the banks S portion across the river R It is passed over to the D S. The river bridge shown in FIG. 8, the structure of the truss bridge 2 is employed in the long span part D L, simple Ketakyo 3 are the adopted structure in the short span portion D S.

前記短径間部Dsは、この河川橋1により接続させる取付道路4と接続させる部分となり、この短径間部DSは、長径間部DLと比べて支間長が小さいものである。この短径間部DSに掛け渡される橋梁では、取付道路4の路面と橋下空間の制約から、構造高の制限がない場合には、単純合成桁橋や単純非合成桁橋が、構造高の制限がある場合には、単純鋼床版桁橋または合成床版橋などが採用されているのが一般的である。すなわち、基礎5aと躯体5bとからなる下部構造5に支承6を介して橋桁となる上部構造となる前記単純桁橋3が構築された構造とされている。 The short span portion Ds becomes a part to be connected to the mounting road 4 to connect this river bridge 1, this short span portion D S is one span length than the long span part D L is small. The bridge passed over this short span portion D S, the restriction of the road surface and Hashimoto space mounting road 4, if there is no structural height restrictions, simple synthesis girder bridge or simple non-synthetic girder bridge, structure height In general, simple steel floor slab bridges or composite floor slab bridges are used. That is, the simple girder bridge 3 that is an upper structure that becomes a bridge girder via a support 6 is constructed in a lower structure 5 that includes a foundation 5a and a housing 5b.

図7はこの種の短径間部DSに採用されている鋼I桁の概略構造を示すもので、主桁7が、対傾構8や荷重分配横桁9などによって補強された構造とされている。主桁7は、せん断力に抗する力を担当する鋼ウェブ7aと、鋼ウェブ7aの上端部に配されて曲げモーメントに抗する力を担当する上フランジ7bと、下端部に配された下フランジ7cとが組み合わされてI型の断面構造とされている。なお、この鋼I桁上に設置される図示しない床版とはスラブアンカーで結合して、設計上桁断面に考慮しない非合成桁と、スタッドジベル等で結合して、設計上桁断面に考慮する合成桁とがある。 Figure 7 shows a steel I girder schematic structure employed in the short span portion D S of this type, the main spar 7, is a reinforced by such pair傾構8 and load distribution crossbeam 9 structure ing. The main girder 7 includes a steel web 7a responsible for the force against the shearing force, an upper flange 7b disposed on the upper end portion of the steel web 7a and responsible for a force resisting the bending moment, and a lower portion disposed on the lower end portion. The flange 7c is combined to form an I-shaped cross-sectional structure. In addition, it connects with the floor slab not shown installed on this steel I girder with a slab anchor, and it combines with the non-synthetic girder which is not considered in the cross section of the design by the stud gibber etc. There are composite digits to do.

ところで、本願出願人は、構造高を小さくして建設コストを削減できると共に、現場工期を短縮することができる鋼とコンクリートの複合桁構造を提案した(特許文献1参照)。この複合桁は、橋桁の主桁を構成する鋼ウェブの下端に鋼製の下フランジを有し、前記鋼ウェブの上端に鉄筋コンクリート製の上フランジを有する構造を備えたものである。   By the way, the applicant of the present application has proposed a composite girder structure of steel and concrete capable of reducing the construction cost by reducing the structural height and shortening the construction period (see Patent Document 1). This composite girder is provided with a structure having a steel lower flange at the lower end of the steel web constituting the main girder of the bridge girder and a reinforced concrete upper flange at the upper end of the steel web.

図3は、前記複合桁を製作する工程の一例を説明する図で、図4は製作された複合桁を橋桁に施工する各工程の状態における曲げモーメント分布と応力とを示す図である。すなわち、図3は、製作された鋼桁11の上部にコンクリート12を打ち込むことにより複合桁13を完成させる製作方法であり、コンクリート12の打ち込み時には、鋼桁11が平面14に載置されている。この複合桁13を橋桁として支承15に架設した状態が図4(a)であり、同図の下部に曲線13aで示す曲げモーメントを示し、右側に曲げモーメントが最大となる部位における応力度を示してある。複合桁13の上側では圧縮応力Spが生じ、下側では引張応力Stが生じる。この橋桁の表面に舗装等の橋面工を施工すると、図4(b)に示すように、曲げモーメント13bが生じ、累計の応力度Sp、Stが生じる。さらに車両等の通行により活荷重が載荷された状態が図4(c)に示してあり、曲げモーメント13cが生じ、累計応力度Sp、Stが大きくなり、コンクリート12で対抗する断面力が大きくなる。このため、断面を大きくする必要が生じて、桁高を小さくすることの障害となる。   FIG. 3 is a diagram for explaining an example of a process of manufacturing the composite girder, and FIG. 4 is a diagram showing a bending moment distribution and stress in each process state in which the manufactured composite girder is applied to the bridge girder. That is, FIG. 3 shows a manufacturing method for completing the composite girder 13 by driving concrete 12 into the upper part of the manufactured steel girder 11. The steel girder 11 is placed on the flat surface 14 when the concrete 12 is driven. . Fig. 4 (a) shows the state where this composite girder 13 is installed on the support 15 as a bridge girder. The lower part of the figure shows the bending moment shown by the curve 13a, and the right side shows the stress level at the part where the bending moment is maximum. It is. A compressive stress Sp is generated on the upper side of the composite girder 13, and a tensile stress St is generated on the lower side. When a bridge work such as pavement is constructed on the surface of this bridge girder, as shown in FIG. 4 (b), a bending moment 13b is generated, and cumulative stresses Sp and St are generated. Further, a state in which a live load is loaded by the passage of a vehicle or the like is shown in FIG. 4C, a bending moment 13c is generated, the cumulative stresses Sp and St are increased, and the cross-sectional force that is opposed by the concrete 12 is increased. . For this reason, it becomes necessary to enlarge the cross section, which is an obstacle to reducing the height of the beam.

また、図5は鋼桁11の端部を支承16で支持させた状態で、この鋼桁11の上部にコンクリート12を打ち込むことにより複合桁17を完成させるもので、鋼桁11は支持された状態で図5(b)の下部に示すように自重による曲げモーメント17aが生じ、右側に示すように圧縮応力度Spと引張応力度Stが生じる。この場合には、曲げモーメント17aに鋼桁11のみが対抗した状態となる。この複合桁17を橋桁として支承15に架設した図6(a)の状態では、製作時と同様に、鋼桁11のみで曲げモーメント17aに対抗した状態となりコンクリート12はほとんど寄与しない。さらに、図6(b)は橋面工を施した状態で、曲げモーメント17bが生じ、鋼桁11に生じる累計応力度Sp、Stでは、コンクリート12に圧縮応力Spが生じ、鋼桁11には引張応力Stが加算される。図5(c)は活荷重が載荷された状態を示しており、曲げモーメント17cが生じて、さらに大きな引張応力Stが鋼桁11に生じることになる。この複合桁17ではコンクリート12が曲げモーメント17cに対抗する部材として十分に寄与せず、複合桁1の構造として十分には機能していない。   FIG. 5 shows a state in which the end of the steel girder 11 is supported by the support 16 and the composite girder 17 is completed by driving concrete 12 into the upper part of the steel girder 11. The steel girder 11 is supported. In this state, a bending moment 17a is generated by its own weight as shown in the lower part of FIG. 5B, and a compressive stress level Sp and a tensile stress level St are generated as shown on the right side. In this case, only the steel beam 11 opposes the bending moment 17a. In the state of FIG. 6A in which the composite girder 17 is installed as a bridge girder on the support 15, the steel girder 11 alone is in opposition to the bending moment 17a, and the concrete 12 hardly contributes. Further, in FIG. 6B, the bending moment 17b is generated in the state where the bridge work is performed, and the compressive stress Sp is generated in the concrete 12 in the cumulative stress level Sp and St generated in the steel beam 11, and the steel beam 11 is The tensile stress St is added. FIG. 5 (c) shows a state in which a live load is loaded. A bending moment 17 c is generated, and a larger tensile stress St is generated in the steel beam 11. In the composite girder 17, the concrete 12 does not sufficiently contribute as a member that resists the bending moment 17c, and does not sufficiently function as the structure of the composite girder 1.

他方、曲げモーメントに十分に対抗する応力を生じさせる複合桁として、I断面を有する鋼桁に曲げ変形を生じさせる荷重を与え、引張側フランジのまわりにコンクリートを打ち込んで、硬化させた後、鋼桁に与えていた荷重を除去して、コンクリートに圧縮プレストレスを導入したプレビーム合成桁や、コンクリート部材の引張部にPC鋼材を配して緊張するポストテンション方式と、コンクリート部材の圧縮部にPC鋼材を配して、これを圧縮するポストコンプレッション方式とを併用してプレストレスを与える、いわゆるバイプレ工法により複合桁を製作する。また、例えば特許文献2には、プレストレス合成桁の製造方法として、上下フランジを有する鋼桁の両端部を支承し、前記鋼桁の上フランジ両端部に定着具を付設してこの定着具間に張設したアウトケーブルに所定の引張力を与えることにより該鋼桁に前撓み荷重を付加し、ついでこの前撓み荷重を付加した状態で鋼桁の引張応力側である下フランジに沿ってコンクリートを打設し、さらに前記コンクリートの硬化後に前記前撓み荷重の付加を解除して下フランジ側コンクリートにプレストレスを導入することが開示されている。   On the other hand, as a composite girder that generates stress sufficiently against the bending moment, a steel girder having an I cross section is subjected to a load that causes bending deformation, and concrete is driven around the tension side flange to be hardened. A pre-beam composite girder in which compressive pre-stress is introduced into the concrete by removing the load applied to the girder, a post-tension system in which PC steel is placed on the tension part of the concrete member, and a PC in the compression part of the concrete member A composite girder is manufactured by a so-called bi-pres- sion method in which steel materials are arranged and pre-stressed in combination with a post-compression method for compressing the steel materials. Further, for example, in Patent Document 2, as a method of manufacturing a prestressed composite girder, both ends of a steel girder having upper and lower flanges are supported, and fixing tools are attached to both ends of the upper flange of the steel girder. By applying a predetermined tensile force to the out cable stretched on the steel girder, a pre-deflection load is applied to the steel girder, and then, with this pre-deflection load applied, the concrete along the lower flange on the steel girder's tensile stress side And, after the concrete is hardened, the application of the pre-deflection load is released and prestress is introduced into the lower flange side concrete.

特願2005−302669Japanese Patent Application No. 2005-302669 特公平4−26025号Japanese Patent Publication No. 4-26025

しかしながら、前述したように、鋼桁を引張側に、コンクリートを圧縮側に配して曲げモーメントに対抗する構造として、これを工場等においてプレキャストする場合には、製作過程の合成時から死荷重、活荷重といずれの場合の荷重もコンクリートが対抗することになり、圧縮力が大きくなって断面を大きくして、コンクリートの厚さを大きくする必要がある。このため、桁高を小さくすることが阻害されてしまう。   However, as described above, the steel girder is placed on the tension side, and the concrete is placed on the compression side to counter the bending moment. When this is precast in a factory or the like, the dead load from the synthesis of the manufacturing process, The live load and the load in either case will be countered by the concrete, and it is necessary to increase the compressive force, increase the cross section, and increase the thickness of the concrete. For this reason, reducing the digit height is hindered.

また、前述した特許文献2に記載されているように、PC鋼材等を用いてプレストレスを導入する場合には、そのための装置や治具等を必要として複合桁の製作コストを上昇させてしまう。   In addition, as described in Patent Document 2 described above, when pre-stress is introduced using PC steel or the like, the manufacturing cost of the composite girder is increased by requiring an apparatus or a jig for that purpose. .

そこで、この発明は、プレキャストにより製作する場合に、プレストレスを導入するための装置等を必要とすることなく、鋼桁とコンクリート部材とにより曲げモーメントに均衡して対抗させて、コンクリート部材の厚さを小さくして桁高を極力小さくすることができる橋梁の鋼とコンクリートの複合桁の製作方法を提供することを目的としている。   Therefore, in the case where the present invention is manufactured by precast, the thickness of the concrete member is adjusted by balancing the bending moment by the steel girder and the concrete member without using a device for introducing prestress. The purpose of the present invention is to provide a method for manufacturing bridge steel and concrete composite girders that can reduce the height of the girder as much as possible.

前記目的を達成するための技術的手段として、この発明に係る橋梁の鋼とコンクリートの複合桁の製作方法は、鋼とコンクリートとの複合構造による桁構造を有する複合桁製作方法において、製作された鋼桁の両端部と、それぞれの端部から適宜距離を隔てた位置とのそれぞれで支持部材により支持させ、前記鋼桁の上部にコンクリートを打ち込んで、コンクリートを硬化させることを特徴としている。   As a technical means for achieving the above object, a method for manufacturing a composite girder of steel and concrete for a bridge according to the present invention is manufactured in a method for manufacturing a composite girder having a girder structure by a composite structure of steel and concrete. The steel girder is supported by a support member at both ends of the steel girder and at positions appropriately spaced from the respective end portions, and concrete is driven into the upper part of the steel girder to harden the concrete.

すなわち、鋼桁を4点にて支持させた状態で、上部にコンクリートを打ち込むことにより複合桁を製作するものである。4点で支持することにより、最大断面力が発生する桁支間中央の前死荷重による断面力を低下させられる。この状態でコンクリートが打ち込まれる。完成した複合桁を橋桁として架設した状態では両端部の2点で支持された状態となり、支間中央の正曲げモーメントが低減されて、最適な断面の複合桁を製作できる。   That is, a composite girder is manufactured by driving concrete into the upper part with the steel girder supported at four points. By supporting at four points, the cross-sectional force due to the pre-dead load at the center of the beam span where the maximum cross-sectional force is generated can be reduced. Concrete is driven in this state. When the completed composite girder is installed as a bridge girder, it is supported at two points on both ends, and the positive bending moment at the center of the span is reduced, and a composite girder with an optimal cross section can be manufactured.

また、請求項2の発明に係る橋梁の鋼とコンクリートの複合桁の製作方法は、前記鋼桁は、鋼ウェブと鋼下フランジとからなることを特徴としている。   According to a second aspect of the present invention, there is provided a method for manufacturing a composite girder of steel and concrete for a bridge, wherein the steel girder comprises a steel web and a steel lower flange.

鋼桁としてはI型鋼による鋼I桁や箱桁を用いることもできるが、鋼ウェブと、この鋼ウェブの下部に取り付けた鋼下フランジとにより構成したものである。   The steel girder can be a steel I girder or box girder made of I-type steel, but is composed of a steel web and a steel lower flange attached to the lower part of the steel web.

この発明に係る橋梁の鋼とコンクリートの複合桁の製作方法によれば、プレストレスを導入するための荷重を鋼桁に載荷し、除去する装置が不要であり、PC鋼材等の配筋施工を必要とすることなく断面力をコントロールできて、桁高を極力小さくして最適な断面の複合桁を安価なコストで製作できる。   According to the method of manufacturing a composite girder of steel and concrete for a bridge according to the present invention, a device for loading and removing a load for introducing prestress on the steel girder is not necessary, and reinforcement work such as PC steel is performed. The cross-sectional force can be controlled without the need, and the girder height can be made as small as possible to produce a composite girder with an optimal cross-section at a low cost.

また、請求項2の発明に係る橋梁の鋼とコンクリートの複合桁の製作方法によれば、製作コスト及び建設コストを、さらに削減することができる。   Moreover, according to the manufacturing method of the bridge steel and concrete composite girder according to the invention of claim 2, the manufacturing cost and the construction cost can be further reduced.

なお、鋼桁に鋼ウェブを用いてその上部にコンクリートを打ち込む場合には、座屈するおそれが生じる場合があり、そのような場合には、複合桁の製作時に鋼ウェブを補強して座屈に対抗するよう補強手段を施すこともできる。さらに、複合桁の架設時にはこの補強手段を取り外せるようにしてあることが好ましい。   In addition, when using a steel web for the steel girder and driving concrete into the top, there is a risk of buckling. In such a case, the steel web is reinforced and buckled during the manufacture of the composite girder. Reinforcing means can be applied to counteract. Furthermore, it is preferable that the reinforcing means can be removed when the composite girder is installed.

以下、図示した好ましい実施の形態に基づいて、この発明に係る橋梁の鋼とコンクリートの複合桁の製作方法を具体的に説明する。   Hereinafter, based on the preferred embodiment shown in the drawings, a method for manufacturing a composite girder of steel and concrete for a bridge according to the present invention will be specifically described.

図1に製作工程を示しており、I型鋼や箱桁、鋼ウェブ等による鋼桁20を製作し、製作された鋼桁20を同図(b)に示すように、鋼桁20の両端部と中間部の2箇所の合計4箇所で製作支承21a、21b、21c、21dにより支持させた状態に設置する。この状態では、同図(b)の下部に示す曲げモーメント22が生じて鋼桁20が対抗する。すなわち、製作支承21b、21c間と製作支承21a、21b間、製作支承21c、21d間では正曲げモーメントが生じ、製作支承21b、21cにより支持された近傍では負曲げモーメントが生じる。また、圧縮応力Spと引張応力Stとが生じる。このとき、鋼桁20の中央に生じる最大の正曲げモーメントは、前述した図5及び図6に示した2点支持の場合に比べて小さくなる。また、曲げモーメントの最大値が製作支承21b、21cの間に生じるように、製作支承21a〜21dの位置を設定することが好ましく、製作支承21a、21b間距離と製作支承21b、21c間距離と製作支承21c、21d間距離とが、1:2〜2.5:1となるようにすることが好ましい。例えば、鋼桁20を23mとした場合、製作支承21a、21b間距離と製作支承21c、21d間距離とをそれぞれ5mとし、製作支承21b、21c間距離を13mとする。   The manufacturing process is shown in FIG. 1. A steel girder 20 made of I-shaped steel, box girder, steel web, etc. is produced, and the produced steel girder 20 is formed at both ends of the steel girder 20 as shown in FIG. And it is installed in a state where it is supported by the production supports 21a, 21b, 21c, 21d at a total of four places, two places in the middle part. In this state, the bending moment 22 shown in the lower part of FIG. That is, a positive bending moment is generated between the production supports 21b and 21c, between the production supports 21a and 21b, and between the production supports 21c and 21d, and a negative bending moment is generated in the vicinity supported by the production supports 21b and 21c. Further, a compressive stress Sp and a tensile stress St are generated. At this time, the maximum positive bending moment generated at the center of the steel beam 20 is smaller than that in the case of the two-point support shown in FIGS. In addition, it is preferable to set the positions of the production supports 21a to 21d so that the maximum value of the bending moment occurs between the production supports 21b and 21c, and the distance between the production supports 21a and 21b and the distance between the production supports 21b and 21c. It is preferable that the distance between the production supports 21c and 21d is 1: 2 to 2.5: 1. For example, when the steel girder 20 is 23 m, the distance between the production supports 21a and 21b and the distance between the production supports 21c and 21d are 5 m, respectively, and the distance between the production supports 21b and 21c is 13 m.

製作支承21a、21b、21c、21dの4点で支持させてあるこの鋼桁20の上部にコンクリート23を打ち込み、コンクリート23を硬化させて複合桁24が完成する。完成した複合桁24を橋梁の架設現場に搬入して、図2(a)に示すように、橋脚に設置された架設支承25で2点支持させて架設する。2点支持による複合桁24に生じる曲げモーメント26で示してあり、鋼桁20による曲げモーメント22を併記してある。これらを比較して、鋼桁20に生じる曲げモーメント22に対して複合桁24に生じる曲げモーメント26の増加分に対抗する部材としてコンクリート23が寄与する。また、図2(b)は橋面工の施工後を、図2(c)は活荷重載荷時をそれぞれ示しており、それぞれ曲げモーメント27、累計の圧縮応力Sp、Stと曲げモーメント28、累計の圧縮応力Sp、Stとが生じる。いずれの場合にもコンクリート23が負担する合成前死荷重による断面力が小さいため、コンクリート23の断面を大きくすることなく対抗させることができる。したがって、桁高を小さく抑えることができる。   Concrete 23 is driven into the upper part of the steel girder 20 supported at four points of the production supports 21a, 21b, 21c, and 21d, and the concrete 23 is hardened to complete the composite girder 24. The completed composite girder 24 is carried into the bridge construction site, and is constructed with two points supported by a construction support 25 installed on the pier as shown in FIG. 2 (a). A bending moment 26 generated in the composite girder 24 by two-point support is shown, and a bending moment 22 by the steel girder 20 is also shown. Comparing these, concrete 23 contributes to the bending moment 22 generated in the steel girder 20 as a member that counteracts the increase in the bending moment 26 generated in the composite girder 24. Fig. 2 (b) shows the work after the bridge work, and Fig. 2 (c) shows the condition when the live load is applied. The bending moment 27, the cumulative compressive stress Sp, St and the bending moment 28, respectively. Compressive stresses Sp and St are generated. In any case, since the cross-sectional force due to the pre-synthesis dead load borne by the concrete 23 is small, it can be countered without increasing the cross-section of the concrete 23. Therefore, the digit height can be kept small.

前記鋼桁20は、鋼I桁や箱桁、鋼ウェブ等を利用することができる。鋼ウェブと鋼下フランジとを用いる場合には、コンクリート23を打ち込むことにより座屈するおそれがある。このため、鋼ウェブと鋼下フランジとによる鋼桁20にコンクリート23を打ち込む際には、補強手段を講じることが好ましい。例えば、鋼ウェブの上端に山形鋼をボルト・ナットや接着剤等により固定してコンクリート23を打ち込み、コンクリートの硬化後にこの山形鋼を取り外すようにしたり、コンクリート23を打ち込む際の型枠で座屈力に対抗させたりすることが好ましい。   The steel girder 20 can be a steel I girder, box girder, steel web or the like. When using a steel web and a steel lower flange, there is a risk of buckling when the concrete 23 is driven. For this reason, when the concrete 23 is driven into the steel girder 20 by the steel web and the steel lower flange, it is preferable to take a reinforcing means. For example, angle steel is fixed to the upper end of the steel web with bolts, nuts, adhesive, etc., and concrete 23 is driven in. After the concrete has hardened, this angle steel is removed, or buckled by the formwork when the concrete 23 is driven in. It is preferable to counteract the force.

この発明に係る橋梁の鋼とコンクリートの複合桁の製作方法によれば、橋桁に生じる曲げモーメントを鋼部材とコンクリート部材とで効率よく対抗することにより、コンクリート部材の断面を小さくして桁高を小さくできて構造高の制限を受けることがなく、また、この複合桁をプレキャストする場合に、プレストレスを導入するための装置やPC鋼材を必要としないため、橋梁の建設コストの削減に寄与しする。   According to the manufacturing method of the steel and concrete composite girder of the bridge according to the present invention, the bending moment generated in the bridge girder is efficiently countered by the steel member and the concrete member, thereby reducing the cross section of the concrete member and increasing the girder height. It can be made smaller and is not subject to structural height restrictions, and when precasting this composite girder, it does not require prestressing equipment or PC steel, contributing to the reduction of bridge construction costs. To do.

この発明に係る橋梁の鋼とコンクリートの複合桁の製作方法の工程を説明する図である。It is a figure explaining the process of the manufacturing method of the composite girder of steel and concrete of a bridge concerning this invention. この方法により製作された複合桁を架設する場合の曲げモーメントと断面力とを説明する図である。It is a figure explaining the bending moment and cross-sectional force at the time of constructing the composite girder manufactured by this method. 従来の複合桁の製作方法の一例を示す図で、図1に相当する図である。It is a figure which shows an example of the manufacturing method of the conventional composite girder, and is a figure equivalent to FIG. 図3に示した製作方法による複合桁を架設した場合の曲げモーメント断面力とを説明する図で、図2に相当する図である。It is a figure explaining the bending moment cross-sectional force at the time of constructing the composite girder by the manufacturing method shown in FIG. 3, and is a figure equivalent to FIG. 従来の複合桁の製作方法の他の例を示す図で、図1に相当する図である。It is a figure which shows the other example of the manufacturing method of the conventional composite girder, and is a figure equivalent to FIG. 図5に示した製作方法による複合桁を架設した場合の曲げモーメント断面力とを説明する図で、図2に相当する図である。It is a figure explaining the bending moment cross-sectional force at the time of constructing the composite girder by the manufacturing method shown in FIG. 5, and is a figure equivalent to FIG. 従来の鋼I桁の構造の概略を説明する斜視図である。It is a perspective view explaining the outline of the structure of the conventional steel I girder. 中小支間長の橋梁構造の一例を説明する図である。It is a figure explaining an example of the bridge structure of the length of a medium and small branch.

符号の説明Explanation of symbols

20 鋼桁
21a、21b、21c、21d 製作支承
22 曲げモーメント
23 コンクリート
24 複合桁
25 架設支承
26 曲げモーメント
27 曲げモーメント
28 曲げモーメント
Sp 圧縮応力
St 引張応力
20 steel girders
21a, 21b, 21c, 21d Production support
22 Bending moment
23 Concrete
24 composite digits
25 Construction support
26 Bending moment
27 Bending moment
28 Bending moment Sp Compressive stress St Tensile stress

Claims (2)

鋼とコンクリートとの複合構造による桁構造を有する複合桁製作方法において、
製作された鋼桁の両端部と、それぞれの端部から適宜距離を隔てた位置とのそれぞれで支持部材により支持させ、
前記鋼桁の上部にコンクリートを打ち込んで、コンクリートを硬化させることを特徴とする橋梁の鋼とコンクリートの複合桁の製作方法。
In a composite girder manufacturing method having a girder structure with a composite structure of steel and concrete,
It is supported by the support members at both ends of the manufactured steel beam and at positions appropriately spaced from the respective ends,
A method for producing a bridge steel-concrete composite girder, wherein concrete is driven into the upper portion of the steel girder to harden the concrete.
前記鋼桁は、鋼ウェブと鋼下フランジとからなることを特徴とする請求項1に記載の橋梁の鋼とコンクリートの複合桁の製作方法。   2. The method of manufacturing a composite steel girder of bridge steel and concrete according to claim 1, wherein the steel girder comprises a steel web and a steel lower flange.
JP2006296109A 2006-10-31 2006-10-31 Method of manufacturing composite girder of steel and concrete for bridge Pending JP2008111309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006296109A JP2008111309A (en) 2006-10-31 2006-10-31 Method of manufacturing composite girder of steel and concrete for bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296109A JP2008111309A (en) 2006-10-31 2006-10-31 Method of manufacturing composite girder of steel and concrete for bridge

Publications (1)

Publication Number Publication Date
JP2008111309A true JP2008111309A (en) 2008-05-15

Family

ID=39443971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296109A Pending JP2008111309A (en) 2006-10-31 2006-10-31 Method of manufacturing composite girder of steel and concrete for bridge

Country Status (1)

Country Link
JP (1) JP2008111309A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824802B (en) * 2010-02-08 2014-04-30 铁道第三勘察设计院集团有限公司 Site installation and debugging method of adjustable bridge steel support and matched steel support
CN110055892A (en) * 2019-05-13 2019-07-26 华南理工大学 A kind of steel reinforced concrete combination beam deck installation structure and construction method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4311263Y1 (en) * 1966-03-26 1968-05-16
JPS4818984Y1 (en) * 1965-12-02 1973-05-30
JPS6282147A (en) * 1985-10-04 1987-04-15 佐藤鉄工株式会社 Novel prestressed synthetic beam and its construction
JPH07233509A (en) * 1994-02-24 1995-09-05 Mitsubishi Heavy Ind Ltd Building method for composite girder bridge to be formed by successively joining reinforced precast concrete floor slab to beam
JPH0892915A (en) * 1994-09-26 1996-04-09 Kawada Kensetsu Kk Execution method of multi-span continuous steel girder with reinforced concrete floor slab

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4818984Y1 (en) * 1965-12-02 1973-05-30
JPS4311263Y1 (en) * 1966-03-26 1968-05-16
JPS6282147A (en) * 1985-10-04 1987-04-15 佐藤鉄工株式会社 Novel prestressed synthetic beam and its construction
JPH07233509A (en) * 1994-02-24 1995-09-05 Mitsubishi Heavy Ind Ltd Building method for composite girder bridge to be formed by successively joining reinforced precast concrete floor slab to beam
JPH0892915A (en) * 1994-09-26 1996-04-09 Kawada Kensetsu Kk Execution method of multi-span continuous steel girder with reinforced concrete floor slab

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824802B (en) * 2010-02-08 2014-04-30 铁道第三勘察设计院集团有限公司 Site installation and debugging method of adjustable bridge steel support and matched steel support
CN110055892A (en) * 2019-05-13 2019-07-26 华南理工大学 A kind of steel reinforced concrete combination beam deck installation structure and construction method

Similar Documents

Publication Publication Date Title
KR100609304B1 (en) Precast Composition I-Beam with Concrete Panel and Corrugated Steel Web Girder
KR20010078870A (en) Development and construction methods of the prestressed composite truss beams
KR20020071612A (en) Pssc complex girder
KR101222620B1 (en) Prestressed concrete girder and it&#39;s manufacture and construction method which used pretensioning steel plate
CN110846996A (en) Construction method of continuous composite beam bridge and continuous composite beam bridge
JP2003268719A (en) Steel-concrete composite beam and its installation method
JP2007077658A (en) Construction method for bridge girder
JP2006009449A (en) Truss panel girder and precast truss panel
CN211340366U (en) Continuous combined beam bridge
KR100592196B1 (en) large number bracket in which supporter was installed is used and it is a bridge, multiplex point installed so that support might be carried out support bracket and its installation method
JP3739045B2 (en) Construction method of steel PC composite bridge
JP2004076457A (en) Method for building steel pc composite bridge
JP3877995B2 (en) How to build a string string bridge
KR101067717B1 (en) Process for producing prestressed concrete girder and concrete girder structure
JP2008111309A (en) Method of manufacturing composite girder of steel and concrete for bridge
JPH04228710A (en) Road slab for bridge
JP2000104221A (en) Combined truss bridge and erection method of the same
JP2963879B2 (en) Bridge girder
JPH08503279A (en) Prestressed composite beam construction method and prestressed composite beam for its continuous beam
KR20060017949A (en) Field-fabricated prestressing steel-composed girder and construction method of continuous bridge using the girder
KR100724739B1 (en) Construction method of PSC Girder bridge using Retensionable and Detensionable anchorage with unbonded tendon
JP2005155080A (en) Construction method of bridge girder
JP2004156343A (en) Composite truss bridge and its construction method
CN220433380U (en) Post-tensioned prestressing T-shaped beam
KR100310301B1 (en) Leaf-restrest box girder composite bridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090310

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Effective date: 20110128

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20110426

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

A02 Decision of refusal

Effective date: 20110802

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111219

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20120210

Free format text: JAPANESE INTERMEDIATE CODE: A912