JP2996518B2 - 蓄熱型空調設備および空調方法 - Google Patents

蓄熱型空調設備および空調方法

Info

Publication number
JP2996518B2
JP2996518B2 JP3020009A JP2000991A JP2996518B2 JP 2996518 B2 JP2996518 B2 JP 2996518B2 JP 3020009 A JP3020009 A JP 3020009A JP 2000991 A JP2000991 A JP 2000991A JP 2996518 B2 JP2996518 B2 JP 2996518B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
concentrated
storage liquid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3020009A
Other languages
English (en)
Other versions
JPH04260759A (ja
Inventor
章 山田
康雄 小関
利介 小野田
文昭 八星
博國 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP3020009A priority Critical patent/JP2996518B2/ja
Priority to US07/834,781 priority patent/US5285645A/en
Publication of JPH04260759A publication Critical patent/JPH04260759A/ja
Application granted granted Critical
Publication of JP2996518B2 publication Critical patent/JP2996518B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、昼夜間の電力負荷の平
準化を目的として、例えば、夜間電力により蓄熱し、昼
間に空調や給湯を行うような蓄熱型空調設備、および空
調方法に関する。
【0002】
【従来の技術】発電設備の稼働率を安定させる方策とし
て、昼夜間の電力負荷を平準化させる事が望まれてい
る。特に、夏季冷房期の昼間の電力負荷が非常に大きく
なり、電力供給側の能力が限界に近くなっている昨今で
は、昼夜間の電力負荷の平準化するための技術に期待が
寄せられている。そこで、夜間の電力を蓄熱しておき、
これを昼間に冷熱として取り出す蓄熱型空調設備が開発
されている。
【0003】従来、このような蓄熱型空調設備として
は、例えば、特開昭62−218773号公報に記載さ
れているものがある。
【0004】この蓄熱型空調設備は、濃度差蓄熱方式を
採用するもので、冷媒を断熱圧縮する圧縮機を有するヒ
ートポンプ装置と、蓄熱液を蒸発させて得られる濃縮蓄
熱液および凝縮液で冷房および暖房を行う濃度差蓄熱装
置とで構成されている。濃度差蓄熱装置は、濃縮蓄熱液
を貯蔵する濃縮蓄熱液室と凝縮液を貯蔵する凝縮液室と
が設けられている容器を備えており、この容器の濃縮蓄
熱液室には、断熱圧縮された冷媒と蓄熱液と熱交換さ
せる濃縮蓄熱液熱交換器と、濃縮蓄熱液室内に濃縮蓄熱
液を散布する濃縮蓄熱液散布器とが設けられ、凝縮液室
には、断熱圧縮された冷媒と凝縮液とを熱交換させる凝
縮液熱交換器と、凝縮液室内に凝縮液を散布する凝縮液
散布器とが設けられている。
【0005】この蓄熱型空調設備は、蓄熱時には、断熱
圧縮されて昇温された冷媒を濃縮蓄熱液熱交換器内を通
して、蓄熱液を加熱して蒸発させ、残ったものを濃縮蓄
熱液として濃縮蓄熱液室内に貯蔵しておき、蒸発したも
のを凝縮液室内に導き、これを凝縮させて凝縮液室に貯
蔵しておく。冷暖房時には、それぞれの散布器から凝縮
液、濃縮蓄熱液を散布して、散布された凝縮液を低圧下
で蒸発させ、この凝縮液を散布された濃縮蓄熱液に吸収
させる。そして、冷房時は、空調器を通った媒体から凝
縮液の蒸発潜熱を奪って、媒体を冷却し、この媒体を直
ちに空調器に供給し、暖房時は、濃縮蓄熱液から発する
吸収熱で空調器を通る媒体を加熱している。
【0006】また、蓄熱液は、同一の貯槽内に貯蔵さ
れ、そこから蓄熱液を抜き出すときには、常に、貯槽の
下部から抜き出し、貯槽内に蓄熱液を戻すときには、常
に容器の上部から戻している。
【0007】
【発明が解決しようとする課題】蓄熱型空調設備は、近
年、都市部において、多数見かけるようになってきた
が、地価の高騰等の影響により、小型化が非常に望まれ
ている。
【0008】しかしながら、従来の蓄熱型空調設備で
は、冷房時、空調器の媒体から凝縮液の蒸発潜熱を奪っ
て、媒体を目的の温度まで冷却して直接空調器等に送っ
ているために、低温で凝縮液が蒸発するよう、蒸発した
凝縮液を吸収してこの凝縮液が蒸発する環境を低圧に維
持するための濃縮蓄熱液を濃度が薄くなるまで使用する
ことができず、液の貯槽が大型化してしまう。
【0009】また、暖房時においても、凝縮液を加熱す
ることなく、単に低圧条件下で蒸発させているので、容
器内の圧力条件を低くする必要があり、そのため濃縮蓄
熱液を濃度が薄くなるまで使用することができず、液の
貯槽が大型化してしまう。
【0010】一般に、高濃度のものは低濃度のものより
も密度が高いために、これらを同一容器内に入れると、
高濃度のものが容器の下方に沈降して行く。従来の蓄熱
型空調設備では、蓄熱時にも、蓄熱液を貯槽の下部から
抜き出し、濃縮された蓄熱液を貯槽の上部から入れてい
るため、濃縮されて高濃度になった蓄熱液が下方へ沈降
して行き、濃縮されていない低濃度の蓄熱液と混ざって
しまい、高濃度の蓄熱液を得ることができない。そのた
め、ある程度の高濃度になった蓄熱液を比較的大量に多
く貯蔵しておく必要があり、蓄熱液の貯槽が大型化して
しまう。
【0011】このように、従来の蓄熱型空調設備では、
蓄熱液の取り扱いが可能な濃度範囲が狭いために、蓄熱
液の貯蔵量が多くなり、設備が大型化するという問題点
がある。
【0012】また、従来の蓄熱型空調設備では、温度レ
ベルの異なる濃縮操作と希釈操作とを同一容器で実施し
ているため、濃縮操作の起動時には、容器が加熱される
までに余分な熱を必要とし、希釈操作の起動時には、容
器が冷却されるまで、所定温度の冷熱が取り出せないと
いう問題点がある。
【0013】本発明は、このような従来の問題点につい
て着目してなされたもので、第1の目的は、蓄熱液の取
扱が可能な濃度範囲を広くして、貯蔵する蓄熱液の量を
少なくし、設備の小型化を図ることである。
【0014】本発明の第2の目的は、濃縮操作の起動時
に必要であった余分な熱をなくし、希釈操作の起動時間
短縮化を図ることである。
【0015】
【課題を解決するための手段】濃縮蓄熱液をその濃度が
比較的低濃度になるまで、使用することができ、設備の
小型化を図ることができる蓄熱型空調設備は、冷媒の断
熱膨張により低温を得るヒートポンプ装置と、蓄熱液を
蒸発させて得られる凝縮液および濃縮蓄熱液を用いて空
調器に供給する媒体を少なくとも冷却する濃度差蓄熱装
置とを備えている蓄熱型空調設備であって、前記濃度差
蓄熱装置には、前記凝縮液を低圧下で蒸発させて、前記
空調器から送られてくる前記媒体から熱を奪い、該媒体
を冷却させる蒸発器が設けられ、前記ヒートポンプ装置
には、前記蒸発器で冷却された前記媒体を前記冷媒と熱
交換させてさらに冷却し、該媒体を前記空調器に供給す
る熱交換器が設けられていることを特徴とするものであ
る。
【0016】また、濃縮蓄熱液をその濃度が比較的低濃
度になるまで使用することができる他の蓄熱型空調設備
は、冷媒を断熱圧縮して高温を得るヒートポンプ装置
と、蓄熱液を蒸発させて得られる濃縮蓄熱液および凝縮
液を用いて、少なくとも暖房および/または給湯を行う
濃度差蓄熱装置とを備えている蓄熱型空調設備であっ
て、前記濃度差蓄熱装置には、前記ヒートポンプ装置で
昇温された冷媒から直接的または間接的に熱を奪って、
前記凝縮液を蒸発させる蒸発器と、蒸発した前記凝縮液
に前記濃縮蓄熱液を散布する濃縮蓄熱液散布器と、蒸発
した前記凝縮液を吸収して発熱した濃縮蓄熱液を、空調
器および/または給湯器を通る媒体と熱交換させて、該
媒体を加熱する吸収器とを備えていることを特徴とする
ものである。
【0017】濃縮された蓄熱液と濃縮されていない蓄熱
液とが混ざりずらく、高濃度の濃縮蓄熱液を得ることが
でき、設備の小型化を図ることができる蓄熱型空調設備
は、蓄熱液貯槽の上部に上部ノズルが、下部に下部ノズ
ルがそれぞれ設けられ、前記上部ノズルおよび前記下部
ノズルのそれぞれの接続先を、前記蓄熱液が前記蓄熱液
貯槽に戻ってくる蓄熱液戻りラインと、前記蓄熱液貯槽
から前記蓄熱液を排出する蓄熱液排出ラインとに切り換
え可能な3方弁を備えていることを特徴とするものであ
る。
【0018】濃縮操作の起動時に必要であった余分な熱
をなくし、希釈操作の起動時間短縮化を図ることができ
る蓄熱型空調設備は、蓄熱液を蒸発させて濃縮する濃縮
用容器と、凝縮液を濃縮蓄熱液に吸収させて、該濃縮蓄
熱液を希釈する希釈用容器とが、それぞれ別体で設けら
れていることを特徴とするものである。
【0019】
【作用】蓄熱動作では、夜間電力でヒートポンプ装置を
駆動して、蓄熱液を蒸発させて、凝縮液と濃縮蓄熱液と
を得て蓄熱する。このとき、蓄熱液貯槽の上部ノズルに
接続されている3方弁を蓄熱液排出ライン側に設定して
おき、下部ノズルに接続されている3方弁を蓄熱液戻り
ライン側に設定しておく。このように、3方弁を設定し
ておくと、濃縮されていない低濃度の蓄熱液は上部ノズ
ルから抜き取られ、濃縮された高濃度の蓄熱液は下部ノ
ズルから蓄熱液貯槽内に供給される。
【0020】したがって、高濃度で密度の高い蓄熱液
は、蓄熱液貯槽の下部から貯槽内に供給されるため、低
濃度の蓄熱液と混ざりずらくなり、高濃度の蓄熱液を得
ることができ、蓄熱液貯槽の小型化を図ることができ
る。
【0021】冷房動作では、蓄熱動作で得られた凝縮液
を低圧下で蒸発させ、空調器から蒸発器内に送られてき
た媒体から熱を奪い、媒体を冷却する。そして、この媒
体ををヒートポンプ装置の熱交換器内に通し、ヒートポ
ンプ装置を循環する冷媒と熱交換させてさらに冷却し
て、媒体を目的の温度まで冷却する。
【0022】このように、空調器から送られてきた媒体
を濃度差蓄熱装置のみで目的の温度冷却しなくても良い
場合には、凝縮液の蒸発温度を比較的高く設定すること
ができるために、容器内の圧力も比較的高く設定するこ
とができる。ところで、蒸発した凝縮液を吸収してこの
凝縮液が蒸発する環境を低圧に維持するための濃縮蓄熱
液は、一般の水溶液と同様に、濃度が高くなるほど水蒸
気圧が下がる。
【0023】したがって、容器内の圧力を比較的高い圧
力に設定することができるので、水蒸気圧が高い低濃度
の濃縮蓄熱液を使用することができるようになり、蓄熱
液貯槽の小型化を図ることができる。
【0024】暖房または給湯動作では、ヒートポンプ装
置で昇温された冷媒を用いて直接的または間接的に凝縮
液を加熱し蒸発させ、この蒸発した凝縮液に濃縮蓄熱液
を散布し、凝縮液を濃縮蓄熱液に吸収させる。濃縮蓄熱
液は、このとき、発熱するので、この熱で、空調器また
は給湯器を通る媒体を加熱する。
【0025】このように、凝縮液を加熱し蒸発させてい
るので、容器内の圧力が比較的高くても、凝縮液は蒸発
する。
【0026】したがって、冷房動作時と同様の理由で、
暖房時においても比較的低濃度の濃縮蓄熱液を使用でき
るようになり、蓄熱液貯槽の小型化を図ることができ
る。
【0027】なお、暖房または給湯動作時、および冷房
動作時には、蓄熱液貯槽の上部ノズルに接続されている
3方弁は蓄熱液戻りライン側に設定され、下部ノズルに
接続されている3方弁は蓄熱液排出ライン側に設定され
ており、濃度の高い濃縮蓄熱液が容器の下部に供給され
ている。
【0028】濃縮用容器と希釈用容器とをそれぞれ別体
で備えているものでは、蓄熱動作から冷房動作、または
蓄熱動作から暖房動作に移行する際、各動作ごとで温度
レベルが異なることに起因する各容器構成部材の顕熱変
化のための熱損失を削減でき、起動時間を短縮すること
ができる。
【0029】
【実施例】以下、本発明の一実施例を図1から図7を用
いて説明する。
【0030】図1は、本発明の一実施例である蓄熱型空
調設備の系統を示す。
【0031】圧縮式ヒートポンプ装置は、冷媒を圧縮す
る圧縮機1と、空調器10等の媒体等と冷媒とを熱交換
させる第1の熱交換器4と、冷媒を断熱膨張させる膨張
弁3と、空気と冷媒とを熱交換させる第2の熱交換器2
と、四方切り替え弁1000と、これらを接続する配管
系100,110,140,…,190とを有して構成
されている。
【0032】一方、濃度差蓄熱装置は、蓄熱液を濃縮す
る濃縮用容器5と、蓄熱液を希釈する希釈用容器6と、
蓄熱液貯槽7と、凝縮液貯槽8と、熱回収器11と、蓄
熱液貯槽7内の蓄熱液を熱回収器11に送り込むポンプ
15と、凝縮液貯槽8内の凝縮液を希釈容器6に送り込
むポンプ14と、これらを接続する配管系360,37
0,…,510とを有して構成されている。
【0033】濃縮用容器5および希釈用容器6は、それ
ぞれ、一時的に、濃縮蓄熱液を貯蔵する濃縮蓄熱液室5
5,65と凝縮液を貯蔵する凝縮液室56,66とを有
しており、これらの室は、相互に蒸気が移動できるよう
に連通している。なお、連通箇所には、移動する蒸気に
随伴されるミスト(微細液滴)を除去するための、例え
ば、エリミネータなどの装置(図示せず)が設けられ
る。さらに、濃縮用容器5には、濃縮蓄熱液室55内に
蓄熱液を散布する蓄熱液散布器53と、散布された蓄熱
液を蒸発させる蒸発器51と、凝縮液室56内の蒸気を
凝縮させる凝縮器52とが収納されている。また、希釈
用容器6には、濃縮蓄熱液室65内に濃縮蓄熱液を散布
する濃縮蓄熱液散布器63と、散布された濃縮蓄熱液を
冷却する吸収器61と、凝縮液室66内に凝縮液を散布
する凝縮液散布器64と、散布された凝縮液を蒸発させ
る蒸発器62とが収納されている。
【0034】蓄熱液貯槽7の上部ノズルと下部ノズルの
先には、それぞれ3方弁1120,1100が接続され
ている。さらに、これらの3方弁1120,1100に
は、それぞれ、蓄熱液戻りライン430,460と蓄熱
液排出ライン360,370とが接続されている。
【0035】なお、蓄熱液には一般に塩類水溶液が用い
られており、したがって凝縮液は水となる。
【0036】その他の構成機器として、冷水塔9、室内
空調器10および給湯熱交換器12がある。
【0037】次に、本実施例の作用について説明する。
【0038】ここで、本実施例においては、ヒートポン
プ装置内を循環する冷媒としてR−22を、冷水塔9、
室内空調器10、給湯熱交換器12等を通る媒体として
水を、蓄熱液としてLiBr水溶液を使用するものとす
る。
【0039】まず、蓄熱動作について図2を用いて説明
する。なお、図2は、蓄熱動作について理解しやすくす
るため、第1図に示した蓄熱型空調設備のうち蓄熱動作
に関係するもののみに番号を付している。
【0040】圧縮機1で圧縮され、温度と圧力とが上昇
したR−22ガスは、配管系100、四方切り替え弁1
000、配管系110を流れ、3方弁(以下、弁と記
す)1010により、配管系120へと流れる。濃度差
蓄熱装置の濃縮用容器5内の空気などの非凝縮性ガスは
抽気により排除されており、濃縮用容器5に収納されて
いる蒸発器51の伝熱管内に、前述した配管系120か
らのR−22ガスが流入する。この時、蓄熱液は、蓄熱
液貯槽7から、蓄熱液貯槽7の上部ノズル、弁112
0、ポンプ15等を介して濃縮用容器5の蓄熱液散布器
53へ導入され、蒸発器51の伝熱管外に散布されてい
る。散布された蓄熱液は、蒸発器51の伝熱管内のR−
22ガスと熱交換し、加熱されて、水蒸気を発生する。
一方、R−22ガスは湿りガスとなって、配管系13
0、弁1020、配管系140を経て第2の熱交換器2
へ導入される。
【0041】第2の熱交換器2の伝熱管21は、ファン
(図示せず)等で送気される空気により冷却されてお
り、ここで、R−22ガス(湿り状態)は液化して、配
管系150を通り、膨張弁3へと流れる。液化したR−
22は、膨張弁3で断熱膨張して、低温低圧の湿りガス
となって配管系160、弁1030、配管系210を経
て、凝縮器52の伝熱管内へ導入される。
【0042】凝縮器52の伝熱管外には、蒸発器51内
で発生した水蒸気が流れ込むため、この水蒸気と、凝縮
器52の伝熱管内のR−22ガス(湿り状態)とが熱交
換して、水蒸気は凝縮水となり、R−22は飽和ガスと
なる。
【0043】R−22ガスは、配管系220、弁104
0、配管系190、四方切り替え弁1000、配管系2
00を経て、再び圧縮機1へ導入される。一方、凝縮水
は、配管系510、弁1150、配管系500を経て、
凝縮液貯槽8へ導入される。
【0044】蒸発濃縮された蓄熱液は、配管系410、
熱回収器11、弁1130、配管系430、配管系46
0、弁1100を経由して、蓄熱液貯槽7へ導入され
る。
【0045】濃縮されて密度が高くなった濃縮蓄熱液
は、このように、蓄熱液貯槽7の下部から貯槽7内に供
給されるので、密度が高くなった濃縮蓄熱液と未だ凝縮
されていない蓄熱液とが混ざりずらくなり、高濃度の濃
縮蓄熱液を得ることができる。
【0046】以上により、蓄熱液は濃縮貯蔵される。濃
縮蓄熱液は後述するように、水蒸気を吸収する性質を強
めており、結果的に蓄熱したことになる。
【0047】次に、冷房動作について図3から図6を用
いて説明する。なお、図3は、第1図に示した蓄熱型空
調設備のうち冷房動作に関係するもののみに番号を付し
ている。
【0048】図3に示すように、圧縮機1で圧縮され、
温度と圧力とが上昇したR−22ガスは、前述した蓄熱
動作のときと同様の流れで弁1010まで到達し、さら
に弁1020、配管系140を経て、第2の熱交換器2
へ導入される。第2の熱交換器2の伝熱管21は前述同
様に空気で冷却されており、R−22ガスは凝縮して飽
和液となる。R−22液は、その後、配管系150を経
て、膨張弁3を通過する際に、断熱膨張して低温低圧の
湿りガスとなる。そして、配管系160、弁1030、
配管系170を経て、第1の熱交換器4へ導入される。
【0049】第1の熱交換器4の伝熱管41内は、後述
するように濃度差蓄熱装置の蒸発器62で約10℃まで
冷却された冷水が、配管系280から導入されており、
第1の熱交換器4ではこの冷水とR−22ガス(湿り状
態)とが熱交換する。冷水は、ここで、10℃から7℃
まで冷却されて、配管系310、配管系330、弁10
90、配管系350を経て、室内空調器10の伝熱管1
01ヘと導入される。一方、湿り状態のR−22ガス
は、熱交換により飽和ガスとなり、配管系180、弁1
040、配管系190、四方切り替え弁1000および
配管系200を経て、再び圧縮機1へ導入される。
【0050】濃度差蓄熱装置の希釈用容器6の蒸発器6
2には、伝熱管内に室内空調器10の熱交換器101で
約12℃まで昇温された冷水が、配管系340、弁10
80、配管系320、弁1070、配管系300、ポン
プ13、配管系290を経て導入されており、蒸発器6
2の伝熱管外に、凝縮貯槽8から、ポンプ14、凝縮
液散布器64を経て凝縮水が散布されている。ここで、
室内空調器10から送られてきた冷水と凝縮水とが熱交
換し、凝縮水は気化して蒸気となり、約12℃の冷水は
10℃まで冷却される。
【0051】希釈用容器6の吸収器61には、伝熱管内
に、冷却塔9から、配管系250、弁1060、ポンプ
12、配管系231を経て32℃の冷却水が供給され、
吸収器61の伝熱管外に、蓄熱液貯槽7の底部から、弁
1100、配管系360、ポンプ15、濃縮蓄熱液液散
布器63等を経て濃縮蓄熱液が散布されている。この濃
縮蓄熱液は、蒸発器62で発生した蒸気を吸収し高温に
なり、冷却水と熱交換する。冷却水は、ここで、32℃
から37℃に昇温されて、配管系230、弁1050、
配管系240を経て、再び冷却塔9に送られる。
【0052】なお、蒸発器62の伝熱管外において、凝
縮水が10℃前後の温度で蒸発することができるのは、
発生した蒸気を直ちに濃縮蓄熱液で吸収させ、蒸発器6
2の伝熱管外の圧力、つまり希釈用容器6内の圧力を下
げているからである。このときに、希釈用容器6内の圧
力を一定の圧力以下に維持しておくためには、発生した
蒸気を直ちに濃縮蓄熱液に吸収させることはもとより、
蒸気を吸収して発熱した濃縮蓄熱液が蒸発しないことが
重要である。ところで、蓄熱液は、一般の水溶液と同様
に、濃度が高くなると蒸気圧が下がる性質がある。した
がって、低圧下で、蒸気を吸収した濃縮蓄熱液が蒸発し
ないためには、高濃度の濃縮蓄熱液が必要となる。これ
を言い替えると、高圧下の場合には、低濃度の濃縮蓄熱
液で十分であるということである。
【0053】したがって、本実施例のように、室内から
熱を奪って12℃まで昇温した冷水を、始めに濃度差蓄
熱装置の希釈用容器6で10℃に冷却し、次に圧縮式ヒ
ートポンプ装置の第1の熱交換器4で7℃まで冷却する
と、従来技術のように濃度差蓄熱装置のみで、例えば、
冷水を12℃から7℃まで冷却するよりも、高い圧力下
で凝縮液を蒸発させることができるので、比較的低濃度
の濃縮蓄熱液も使用することができるようになり、濃縮
蓄熱液の貯蔵量を減らすことができ、結果として蓄熱液
貯槽7を小型化することができる。
【0054】以上説明した蒸気の発生、およびこの蒸気
の吸収について、図4から図6を用いて具体的に説明す
る。
【0055】図4は、蓄熱液として一般的に用いられる
LiBr水溶液と水の水蒸気圧特性を示したもので、横
軸に温度、縦軸に水蒸気圧力(以下蒸気圧と記す)、パ
ラメータとしてLiBr水溶液の濃度を取っている。
【0056】ここで、説明を簡略化するため、蒸発器6
2および吸収器61の伝熱管内の出口温度を目的の温度
にするには、これらの伝熱管内出口温度と伝熱管外温度
との差は、いずれの場合でも3℃必要であるとする。し
たがって、蒸発器62の伝熱管内の出口温度を10℃す
るためには、図5に示すように、伝熱管外温度、つまり
凝縮水の沸点を7℃にし、蒸発器62の伝熱管内の出口
温度を7℃するためには、図6に示すように、伝熱管外
温度、つまり凝縮水の沸点を4℃にする必要がある。ま
た、吸収器61の伝熱管内の出口温度を37℃とする
と、伝熱管外温度、つまり、濃縮蓄熱液の温度は40℃
となる。
【0057】室内空調器10からの12℃の冷水を、本
実施例のように、10℃まで冷却する場合は、凝縮水の
沸点を7℃以下に維持するため、図4に示すように、伝
熱管外圧力を7.5mmHg以下にしなければならな
い。この圧力下で伝熱管外温度が40℃のときに、濃縮
蓄熱液が蒸発しないためには、その濃度が56.5%以
上であればよい。
【0058】一方、室内空調器10からの12℃の冷水
を一度に7℃まで冷却する場合は、凝縮水の沸点を4℃
以下に維持するため、伝熱管外圧力を6.0mmHg以
下にしなければならない。この際、この圧力下で伝熱管
外温度が40℃のときに、濃縮蓄熱液が蒸発しないため
には、その濃度が58.5%以上である必要がある。
【0059】したがって、室内空調器10に対して7℃
の冷水を供給する場合、本実施例では、濃度差蓄熱装置
からは10℃の冷水を供給すれば良いので、比較的低濃
度の濃縮蓄熱液でも用いることができる。
【0060】次に、暖房および給湯動作について図7を
用いて説明する。なお、図7は、第1図に示した蓄熱型
空調設備のうち暖房および給湯動作に関係するもののみ
に番号を付している。
【0061】圧縮機1で圧縮されて高温高圧となったR
−22ガスは、四方切り替え弁1000により、その流
れが蓄熱、冷房時と異なる方向に変更され、配管系19
0、弁1040、配管系180を経て、第1の熱交換器
4に導入される。第1の熱交換器4では、この高温高圧
のR−22ガスと伝熱管41内を流れる循環水とが熱交
換する。循環水は、ここで昇温されて、配管系310、
弁1070、配管系300、ポンプ13、配管系290
を経て濃度差蓄熱装置の希釈用容器6に導入される。一
方、R−22ガスは液化して、配管系170、弁103
0、配管系160を経て、膨張弁3に至り、ここで断熱
膨張した後、第2の熱交換器2で、空気から熱を奪って
ガス化し、配管系140、弁1020、弁1010、配
管系110、四方切り替え弁1000を経て、再び圧縮
機1へ導入される。
【0062】昇温されて希釈用容器6に導入された循環
水は、蒸発器62の伝熱管内を通る際に、凝縮液散布器
64から蒸発器62の伝熱管外に散布される凝縮水と熱
交換して降温する。循環水は、その後、配管系280を
通って、再び第1の熱交換器4に送られる。一方、散布
された凝縮水は、加熱されて蒸発し、吸収器61へと移
動する。この際、凝縮液は、循環水により加熱されてい
るので、希釈容器6内の圧力を比較的高圧状態にしてお
いても、蒸発する。そのため、冷房動作のときと同様の
理由により、比較的低濃度の濃縮蓄熱液を使用できるよ
うになる。
【0063】吸収器61の伝熱管内には、温水が、室内
空調器10から、配管系350、弁1090、弁117
0、配管系260、弁1060、ポンプ12、配管系2
31を経て、導入される。また、吸収器61の伝熱管外
には、濃縮蓄熱液が濃縮蓄熱液散布器63から散布され
る。なお、この濃縮蓄熱液は、蓄熱液貯槽7から、配管
系360、ポンプ15、配管系380、熱回収器11、
配管系440等を経て、濃縮蓄熱液散布器63に送られ
ている。散布された濃縮蓄熱液は、蒸発器62で発生し
た蒸気を吸収して、熱を発し、吸収器61の伝熱管内の
温水を加熱する。加熱された温水は、配管系230、弁
1050、配管系270、弁1160、弁1080、配
管系340を経て、室内空調器10の伝熱管101に導
入される。
【0064】このように、圧縮式サイクルで得られた大
気温度レベルの熱源で、濃度差蓄熱装置を駆動し、さら
に高い温度の温水、具体的には80℃以上の温水を得る
ことができる。
【0065】また、温水は、弁1160、1170を切
り替える事により、配管系271、給湯熱交換器12の
伝熱管内、配管系272へ流れ、配管系273から給湯
熱交換器12の伝熱管外に導入される給湯用水を加熱し
て、配管系274から給湯できる。
【0066】以上、本実施例によれば、夜間に、圧縮式
ヒートポンプ装置および濃度差蓄熱装置を駆動して、濃
縮液を蒸発させて、凝縮液および濃縮蓄熱液を発生さ
せ、これを蓄えておけば、昼間は、凝縮液および濃縮液
を用いて、冷房および暖房を行うことができるので、昼
夜間の電力負荷を平準化させることができる。
【0067】また、蓄熱動作時において、高濃度の濃縮
蓄熱液を得ることができると共に、冷暖房動作時におい
ては、比較的低濃度の濃縮蓄熱液も使用することができ
るので、蓄熱液の貯蔵量を減らすことができ、蓄熱液貯
槽7の小型化、しいては、蓄熱型空調設備の小型化を図
ることができる。
【0068】さらに、本実施例によれば、濃度差蓄熱装
置の濃縮用容器5と希釈用容器7とをそれぞれ別体にし
ているため、蓄熱動作から冷房動作、または蓄熱動作か
ら暖房動作に移行する際、各動作ごとで温度レベルが異
なることに起因する各容器構成部材の顕熱変化のための
熱損失を削減でき、起動時間を短縮することができる。
なお、濃度差蓄熱装置の大きさは、蓄熱液貯槽7の大
きさに相当支配されているため、例え、濃度差蓄熱装置
の濃縮用容器5と希釈用容器7とをそれぞれ別体にし
て、それによって大型化しても、蓄熱液貯槽7の小型化
により、濃度差蓄熱装置の小型化、つまりは蓄熱型空調
設備の小型化を図ることができる。
【0069】
【発明の効果】以上、本発明によれば、取り扱いが可能
な蓄熱液の濃度範囲を広くすることができるので、蓄熱
液の貯蔵量を減らすことができ、蓄熱型空調設備の小型
化を図ることができる。
【0070】また、濃度差蓄熱装置の濃縮用容器および
希釈用容器をそれぞれ別体で設けたので、各動作ごとで
温度レベルが異なることに起因する各容器構成部材の顕
熱変化のための熱損失を削減でき、起動時間を短縮する
ことができる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る蓄熱型空調設備の全体
系統図である。
【図2】本発明の一実施例に係る蓄熱型空調設備の蓄熱
動作説明図である。
【図3】本発明の一実施例に係る蓄熱型空調設備の冷房
動作説明図である。
【図4】水およびLiBr水溶液の水蒸気圧特性を示す
グラフである。
【図5】
【図6】蒸発器および吸収器の温度条件を示す説明図で
ある。
【図7】本発明の一実施例に係る蓄熱型空調設備の暖房
および給湯動作説明図である。
【符号の説明】
1…圧縮機、2…第2の熱交換器、3…膨張弁、4…第
1の熱交換器、5…濃縮用容器、6…希釈用容器、7…
蓄熱液貯槽、8…凝縮液貯槽、9…冷水塔、10…室内
空調器、12…給湯熱交換器、51,62…蒸発器、5
2…凝縮器、53…蓄熱液散布器、55,65…濃縮蓄
熱液室、56,66…希釈液室、63…濃縮蓄熱液散布
器、64…希釈液散布器、1100,1120…3方
弁。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野田 利介 茨城県土浦市神立町603番地 株式会社 日立製作所 土浦工場内 (72)発明者 八星 文昭 兵庫県尼崎市若王寺三丁目11番20号 関 西電力株式会社総合技術研究所内 (72)発明者 水野 博國 兵庫県尼崎市若王寺三丁目11番20号 関 西電力株式会社総合技術研究所内 (56)参考文献 特開 昭63−41775(JP,A) 特開 平2−44155(JP,A) 特開 昭56−130568(JP,A) 実開 昭62−39178(JP,U) (58)調査した分野(Int.Cl.7,DB名) F24F 5/00 F25B 1/00 F25B 13/00 F25B 25/02 F28D 20/00

Claims (7)

    (57)【特許請求の範囲】
  1. 【請求項1】冷媒の断熱膨張により低温を得るヒートポ
    ンプ装置と、蓄熱液を蒸発させて得られる凝縮液および
    濃縮蓄熱液を用いて空調器に供給する媒体を少なくとも
    冷却する濃度差蓄熱装置とを備えている蓄熱型空調設備
    であって、 前記濃度差蓄熱装置には、前記凝縮液を低圧下で蒸発さ
    せて、前記空調器から送られてくる前記媒体から熱を奪
    い、該媒体を冷却させる蒸発器が設けられ、 前記ヒートポンプ装置には、前記蒸発器で冷却された前
    記媒体を前記冷媒と熱交換させてさらに冷却し、該媒体
    を前記空調器に供給する熱交換器が設けられていること
    を特徴とする蓄熱型空調設備。
  2. 【請求項2】冷媒を断熱圧縮して高温を得るヒートポン
    プ装置と、蓄熱液を蒸発させて得られる濃縮蓄熱液およ
    び凝縮液を用いて、少なくとも暖房および/または給湯
    を行う濃度差蓄熱装置とを備えている蓄熱型空調設備で
    あって、 前記濃度差蓄熱装置には、前記ヒートポンプ装置で昇温
    された冷媒から直接的または間接的に熱を奪って、前記
    凝縮液を蒸発させる蒸発器と、 蒸発した前記凝縮液に前記濃縮蓄熱液を散布する濃縮蓄
    熱液散布器と、 蒸発した前記凝縮液を吸収して発熱した濃縮蓄熱液を、
    空調器および/または給湯器を通る媒体と熱交換させ
    て、該媒体を加熱する吸収器とを備えていることを特徴
    とする蓄熱型空調設備。
  3. 【請求項3】冷媒の断熱圧縮より高温を得、断熱膨張に
    より低温を得るヒートポンプ装置と、蓄熱液を蒸発させ
    て得られる濃縮蓄熱液および凝縮液を用いて、暖房また
    は給湯および冷房を行う濃度差蓄熱装置とを備えている
    蓄熱型空調設備であって、 前記濃度差蓄熱装置には、冷房時に、前記凝縮液を低圧
    下で蒸発させて空調器から送られてくる媒体から熱を奪
    って、該媒体を冷却させ、暖房または給湯時に、前記ヒ
    ートポンプ装置で昇温された冷媒から直接的または間接
    的に熱を奪って、前記凝縮液を蒸発させる蒸発器と、 蒸発した前記凝縮液に前記濃縮蓄熱液を散布する濃縮蓄
    熱液散布器と、 暖房または給湯時において、蒸発した前記凝縮液を吸収
    して発熱した濃縮蓄熱液を、空調器または給湯器を通る
    媒体と熱交換させて、該媒体を加熱する吸収器とが設け
    られ、 前記ヒートポンプ装置には、冷房時において、前記蒸発
    器で冷却された前記媒体を前記冷媒と熱交換させてさら
    に冷却し、該媒体を前記空調器に供給する熱交換器が設
    けられていることを特徴とする蓄熱型空調設備。
  4. 【請求項4】冷媒を圧縮する圧縮器と、該冷媒を熱交換
    させる第1の熱交換器および第2の熱交換器と、該冷媒
    を断熱膨張させる膨張器とを有するヒートポンプ装置、
    並びに蓄熱液を蒸発させて得られる凝縮液と濃縮蓄熱液
    と用いて空調器に供給する媒体を少なくとも冷却する濃
    度差蓄熱装置とを備えている蓄熱型空調設備であって、 前記濃度差蓄熱装置には、前記凝縮液が蓄えられる凝縮
    液室と前記濃縮蓄熱液が蓄えられる濃縮蓄熱液室とを有
    し、これらの室が互いに連通している容器と、 前記凝縮液室内に前記凝縮液を散布する凝縮液散布器
    と、 前記凝縮液室内の熱と熱交換を行う凝縮液室熱交換器
    と、 前記濃縮蓄熱液室内に前記濃縮蓄熱液を散布する濃縮蓄
    熱液散布器と、 前記濃縮蓄熱液室内の熱と熱交換を行う濃縮液室熱交換
    器とが設けられ、 前記ヒートポンプ装置には、前記圧縮機で圧縮された冷
    媒を、前記第2の熱交換器、前記膨張器、前記第1の熱
    交換器、前記圧縮器の順に循環させる冷房時冷媒循環ラ
    インと、 前記空調器を通る媒体を、前記凝縮液室熱交換器、前記
    第1の熱交換器、前記空調器の順に循環させる冷房時媒
    体ラインとが設けられていることを特徴とする蓄熱型空
    調設備。
  5. 【請求項5】冷媒を圧縮する圧縮器と、該冷媒を熱交換
    させる第1の熱交換器および第2の熱交換器と、該冷媒
    を断熱膨張させる膨張器とを有するヒートポンプ装置、
    並びに蓄熱液を蒸発させて得られる凝縮液と濃縮蓄熱液
    と用いて空調器に供給する媒体を冷却および加熱する濃
    度差蓄熱装置とを備えている蓄熱型空調設備であって、 前記濃度差蓄熱装置には、前記蓄熱液を蒸発させて濃縮
    する濃縮用容器と、前記凝縮液を前記濃縮蓄熱液に吸収
    させて、該濃縮蓄熱液を希釈する希釈用容器とが、それ
    ぞれ別体で設けられ、 前記濃縮用容器および前記希釈用容器は、それぞれ、互
    いに連通し前記凝縮液が蓄えられる凝縮液室と前記濃縮
    蓄熱液が蓄えられる濃縮蓄熱液室と有し、 前記濃縮用容器には、前記濃縮蓄熱液室内に前記蓄熱液
    を散布する蓄熱液散布器と、前記濃縮蓄熱液室内の熱と
    熱交換を行う濃縮蓄熱液室熱交換器と、前記凝縮液室内
    の熱と熱交換を行う凝縮液室熱交換器とが設けられ、 前記希釈用容器には、前記凝縮液室内に凝縮液を散布す
    る凝縮液散布器と、前記凝縮液室内の熱と熱交換を行な
    う凝縮室熱交換器と、前記濃縮蓄熱液室内に前記濃縮蓄
    熱液を散布する濃縮蓄熱液散布器と、前記濃縮蓄熱液室
    内の熱と熱交換を行なう濃縮蓄熱液室熱交換器とが設け
    られ、 前記ヒートポンプ装置には、前記圧縮機で圧縮された冷
    媒を、前記濃縮用容器の濃縮蓄熱液室熱交換器、前記第
    2の熱交換器、前記膨張器、前記濃縮用容器の凝縮液室
    熱交換器、前記圧縮器の順に循環させる蓄熱時冷媒循環
    ラインと、 前記圧縮機で圧縮された冷媒を、前記第2の熱交換器、
    前記膨張器、前記第1の熱交換器、前記圧縮器の順に循
    環させる冷房時冷媒循環ラインと、 前記空調器を通る媒体を、前記希釈用容器の前記凝縮液
    室熱交換器、前記第1の熱交換器、前記空調器の順に循
    環させる冷房時媒体ラインと、 前記圧縮機で圧縮された冷媒を、前記第1の熱交換器、
    前記膨張器、前記第2の熱交換器、前記圧縮器の順で循
    環させる暖房時冷媒循環ラインと、 前記第1の熱交換器内を通る熱媒体を、該第1の熱交換
    器と前記希釈用容器の前記凝縮液室熱交換器との間で循
    環させる暖房時熱媒体循環ラインと、 前記空調器および/または給湯器を通る媒体を、該空調
    器および/または該給湯器と前記希釈用容器の前記濃縮
    蓄熱液室熱交換器との間で循環させる暖房時媒体循環ラ
    インとが設けられていることを特徴とする蓄熱型空調設
    備。
  6. 【請求項6】蓄熱液を蒸発させて得られる凝縮液および
    濃縮蓄熱液を用いて、少なくとも冷房を行う空調方法に
    おいて、 前記凝縮液を低圧下で蒸発させて、空調器を通った媒体
    から熱を奪い該媒体を冷却し、 冷却された前記媒体を、断熱膨張で冷却された冷媒を用
    いて、さらに冷却することを特徴とする空調方法。
  7. 【請求項7】蓄熱液を蒸発させて得られる凝縮液および
    濃縮蓄熱液を用いて、少なくとも暖房および/または給
    湯を行う空調方法において、 断熱圧縮で昇温された冷媒と前記凝縮液とを直接的また
    は間接的に熱交換させて、該凝縮液を蒸発させ、 蒸発した前記凝縮液を前記濃縮蓄熱液に吸収させて、該
    濃縮蓄熱液を発熱させ、 発熱した前記濃縮蓄熱液で空調器および/または給湯器
    を通る媒体を加熱することを特徴とする空調方法。
JP3020009A 1991-02-13 1991-02-13 蓄熱型空調設備および空調方法 Expired - Fee Related JP2996518B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3020009A JP2996518B2 (ja) 1991-02-13 1991-02-13 蓄熱型空調設備および空調方法
US07/834,781 US5285645A (en) 1991-02-13 1992-02-13 Regenerative type air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3020009A JP2996518B2 (ja) 1991-02-13 1991-02-13 蓄熱型空調設備および空調方法

Publications (2)

Publication Number Publication Date
JPH04260759A JPH04260759A (ja) 1992-09-16
JP2996518B2 true JP2996518B2 (ja) 2000-01-11

Family

ID=12015120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3020009A Expired - Fee Related JP2996518B2 (ja) 1991-02-13 1991-02-13 蓄熱型空調設備および空調方法

Country Status (2)

Country Link
US (1) US5285645A (ja)
JP (1) JP2996518B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472537A (zh) * 2009-10-16 2012-05-23 株式会社日立制作所 空气调节热水供给系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008003700B4 (de) * 2007-12-07 2019-10-10 Heinz-Dieter Hombücher Vorrichtung zur Steigerung der Heiz- und Kühlleistung einer Wärmepumpe in der Wärmerückgewinnung in Lüftungsgeräten
WO2014168785A1 (en) * 2013-04-11 2014-10-16 Carrier Corporation Combined vapor absorption and mechanical compression cycle design
CN103822395A (zh) * 2014-02-19 2014-05-28 双良节能系统股份有限公司 制取高温热水的直燃型溴化锂吸收式冷热水机组

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3675441A (en) * 1970-11-19 1972-07-11 Clark Equipment Co Two stage refrigeration plant having a plurality of first stage refrigeration systems
US3881323A (en) * 1973-05-24 1975-05-06 Ladd Res Ind Viscosity regulated cooling system
US4334412A (en) * 1979-11-15 1982-06-15 Robert Wildfeuer Cooling system
JPS588961A (ja) * 1981-07-10 1983-01-19 株式会社日立製作所 吸収式ヒ−トポンプ
US4375468A (en) * 1981-07-13 1983-03-01 Verex Laboratories, Inc. Constant order release aspirin composition and method of treating arthritis
US4380910A (en) * 1981-08-13 1983-04-26 Aztech International, Ltd. Multi-stage indirect-direct evaporative cooling process and apparatus
JPH0792295B2 (ja) * 1986-03-20 1995-10-09 株式会社日立製作所 蓄冷熱装置
US4819445A (en) * 1987-04-09 1989-04-11 Scherer John S Integrated cascade refrigeration system
JP2512095B2 (ja) * 1988-08-12 1996-07-03 株式会社日立製作所 冷熱発生方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472537A (zh) * 2009-10-16 2012-05-23 株式会社日立制作所 空气调节热水供给系统

Also Published As

Publication number Publication date
JPH04260759A (ja) 1992-09-16
US5285645A (en) 1994-02-15

Similar Documents

Publication Publication Date Title
KR101659949B1 (ko) Lgwp 냉매를 사용한 흡수식 냉각 사이클
EP1121565B1 (en) heat exchange refrigerant subcool and/or precool system and method
CN107014015B (zh) 热回收型蒸发冷凝式冷水机组
US6857285B2 (en) Building exhaust and air conditioner condensate (and/or other water source) evaporative refrigerant subcool/precool system and method therefor
US5297397A (en) Efficiency directed supplemental condensing for high ambient refrigeration operation
KR101616516B1 (ko) 흡수식 냉동기를 이용한 외기 냉방 시스템
JPS588961A (ja) 吸収式ヒ−トポンプ
KR101634345B1 (ko) 압축식 냉동기의 폐열을 이용한 흡수식 냉방장치
JP2996518B2 (ja) 蓄熱型空調設備および空調方法
US3316736A (en) Absorption refrigeration systems
JPH0244155A (ja) 濃度差蓄冷熱発生装置
CN201173639Y (zh) 制得低于主制冷剂冰点以下冷源的制冷装置
JP2580275B2 (ja) 吸収式冷凍機を用いた空気調和システム
US20080302121A1 (en) Air conditioning system
JPH06331231A (ja) 吸収式製氷蓄冷装置
JP3407659B2 (ja) 空調設備
JPS6040583B2 (ja) 空気調和機
JPH06323686A (ja) ヒートポンプ式濃度差蓄熱装置及びその運用方法
CN207247608U (zh) 一种组合式冷凝制冷系统及空调
JPH047495Y2 (ja)
JP2014119209A (ja) 吸収式冷凍装置および冷凍システム
JPS5816629Y2 (ja) 水−リチウム塩系吸収式冷暖房機
JPH06100402B2 (ja) 吸収冷凍機
JPH0712848Y2 (ja) 吸収冷凍機
JP2014119197A (ja) 冷凍システム

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees