JP2984579B2 - Biological reaction tank - Google Patents

Biological reaction tank

Info

Publication number
JP2984579B2
JP2984579B2 JP13418995A JP13418995A JP2984579B2 JP 2984579 B2 JP2984579 B2 JP 2984579B2 JP 13418995 A JP13418995 A JP 13418995A JP 13418995 A JP13418995 A JP 13418995A JP 2984579 B2 JP2984579 B2 JP 2984579B2
Authority
JP
Japan
Prior art keywords
tank
sewage
biological reaction
oxygen
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13418995A
Other languages
Japanese (ja)
Other versions
JPH08323388A (en
Inventor
幸弘 二星
芳希 牧村
賢二 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13418995A priority Critical patent/JP2984579B2/en
Publication of JPH08323388A publication Critical patent/JPH08323388A/en
Application granted granted Critical
Publication of JP2984579B2 publication Critical patent/JP2984579B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、微生物を用いて下水、
排水等の汚水を浄化処理する生物反応槽の改善に係り、
特に長期にわたり安定的に汚水を浄化処理することがで
き、しかもイニシャルコスト、メインテナンスコストの
低減を可能ならしめるようにした生物反応槽に関する。
BACKGROUND OF THE INVENTION The present invention relates to sewage,
In connection with the improvement of biological reaction tanks that purify wastewater such as wastewater,
In particular, the present invention relates to a biological reaction tank capable of stably purifying sewage for a long period of time and reducing initial costs and maintenance costs.

【0002】[0002]

【従来の技術】下水、排水等の汚水中の燐除去に用いら
れる嫌気−好気活性汚泥法は、標準活性汚泥法の一変形
で、これはBOD(生物化学的酸素要求量)、燐の同時
除去、およびバルキング(糸状性細菌の増殖で活性汚泥
が膨脹して沈降しにくくなる現象)の防止に有効とされ
ているプロセスである。以下、この嫌気−好気活性汚泥
法で汚水処理を行う生物反応槽の模式的構成説明図の図
8(a),(b)を参照しながら説明すると、図示しな
い最初沈澱池で一次処理されて流出する汚水9は、先ず
第1槽である嫌気槽2と、第2槽である好気槽4とを備
えた生物反応槽1の前記嫌気槽2に流入する。この嫌気
槽2では槽内の汚水中への酸素溶解を極力抑制し、酸素
が殆ど溶解していない嫌気状態に汚水を保持しながら汚
水中の活性汚泥から燐を放出させる。嫌気槽2で処理さ
れた活性汚泥を含む処理水は好気槽4に流入する。ここ
において処理水中への酸素溶解が促進され、好気状態を
維持させながら嫌気槽2で放出した量以上の燐を活性汚
泥に吸収させると共に、最終沈澱池8に流入させる。最
終沈澱池8において、水と燐を含む活性汚泥とに分離さ
れ、処理水10として排出されると共に、活性汚泥の一
部は嫌気槽2に送られる一方、残りの活性汚泥は余剰汚
泥として後工程に送られて処理される。
BACKGROUND OF THE INVENTION The anaerobic-aerobic activated sludge method used for removing phosphorus in sewage such as sewage and wastewater is a variation of the standard activated sludge method, which is a method of BOD (biochemical oxygen demand) and phosphorus. It is a process that is effective for simultaneous removal and prevention of bulking (a phenomenon in which activated sludge expands due to the growth of filamentous bacteria and hardly sediments). Hereinafter, a description will be given with reference to FIGS. 8A and 8B of a schematic configuration explanatory view of a biological reaction tank for performing sewage treatment by the anaerobic-aerobic activated sludge method. The sewage 9 flowing out first flows into the anaerobic tank 2 of the biological reaction tank 1 including the anaerobic tank 2 as the first tank and the aerobic tank 4 as the second tank. In the anaerobic tank 2, the dissolution of oxygen into the sewage in the tank is suppressed as much as possible, and phosphorus is released from the activated sludge in the sewage while maintaining the sewage in an anaerobic state where oxygen is hardly dissolved. The treated water containing the activated sludge treated in the anaerobic tank 2 flows into the aerobic tank 4. Here, the dissolution of oxygen into the treated water is promoted, and while maintaining the aerobic state, the activated sludge absorbs more phosphorus than the amount released in the anaerobic tank 2 and flows into the final sedimentation basin 8. In the final sedimentation basin 8, water and phosphorus-containing activated sludge are separated and discharged as treated water 10, and a part of the activated sludge is sent to the anaerobic tank 2, while the remaining activated sludge is converted into excess sludge. It is sent to the process and processed.

【0003】ところで、燐を効果的に除去するには、嫌
気槽2を嫌気状態で維持し、活性汚泥から燐を十分に放
出させることが重要であるが、それには嫌気槽2内の汚
水を攪拌するのが有効である。嫌気状態を保持しながら
の汚水の攪拌には、機械式攪拌装置5により攪拌し、あ
るいは微細気泡散気装置6から汚水中に気泡を放出して
攪拌している。この場合、汚水中への酸素の溶解を抑制
するために、空気送気量を活性汚泥が沈降しない最低量
に絞るようにしている。
In order to effectively remove phosphorus, it is important to maintain the anaerobic tank 2 in an anaerobic state and to sufficiently release phosphorus from the activated sludge. It is effective to stir. To stir the sewage while maintaining the anaerobic state, the sewage is stirred by a mechanical stirrer 5, or bubbles are released from the fine bubble diffusing device 6 into the sewage to stir. In this case, in order to suppress the dissolution of oxygen into the sewage, the amount of air supplied is reduced to a minimum amount at which activated sludge does not settle.

【0004】汚水中の窒素の除去に用いられる循環式硝
化脱窒法は、上記と同様に、標準活性汚泥法の一変形
で、BOD、窒素の同時除去に有効とされるプロセスで
ある。以下、この循環式硝化脱窒法で汚水処理を行う生
物反応槽の模式的構成説明図の図9(a),(b)を参
照しながら説明すると、図示しない最初沈澱池で一次処
理されて流出する下水や排水等の汚水9は、先ず第1槽
である無酸素槽3と、第2槽である好気槽4とからなる
生物反応槽1の前記無酸素槽3に流入する。汚水中のア
ンモニア性窒素である窒素分は酸素溶解が促進され、好
気状態が維持されている好気槽4で酸化により硝化、つ
まり硝酸性窒素にされる。好気槽4からの流出水の60
〜80%が無酸素槽3に返送される。そして、この無酸
素槽3では、処理水中への酸素溶解を極力抑制して、硝
酸性窒素が溶解しているものの分子状酸素がほとんど溶
解していない無酸素状態で保持しながら硝酸性窒素を還
元して脱窒、つまり窒素ガスにして大気中に放出させ
る。
[0004] The recirculation-type nitrification and denitrification method used for removing nitrogen from wastewater is a modification of the standard activated sludge method and is a process that is effective for simultaneous removal of BOD and nitrogen, as described above. Hereinafter, a description will be given with reference to FIGS. 9 (a) and 9 (b) of a schematic configuration diagram of a biological reaction tank for performing sewage treatment by this circulation type nitrification and denitrification method. The sewage 9 such as sewage and drainage flows into the anoxic tank 3 of the biological reaction tank 1 including the anoxic tank 3 as the first tank and the aerobic tank 4 as the second tank. The nitrogen content, which is the ammonia nitrogen in the sewage, is promoted to dissolve in oxygen, and is nitrified by oxidation in the aerobic tank 4 in which the aerobic state is maintained, that is, converted into nitrate nitrogen. 60 of effluent from aerobic tank 4
8080% is returned to the anoxic tank 3. In the oxygen-free tank 3, the dissolution of oxygen in the treated water is suppressed as much as possible, and the nitrate nitrogen is dissolved while the nitrate nitrogen is dissolved but the molecular oxygen is hardly dissolved. It is reduced and denitrified, that is, converted into nitrogen gas and released into the atmosphere.

【0005】窒素を効果的に除去するには、無酸素槽3
を無酸素状態で維持し、硝酸性窒素を十分に放出させる
ことが重要であり、それには無酸素槽3内の汚水を攪拌
するのが有効である。そこで、上記嫌気−好気活性汚泥
法による汚水処理の場合と同様に、無酸素状態を保持し
ながら機械式攪拌装置5で、あるいは微細気泡散気装置
6で汚水を攪拌し、汚水中への酸素の溶解を抑制するた
めに、空気送気量を活性汚泥が沈降しない最低量に絞る
ようにしている。
In order to effectively remove nitrogen, an oxygen-free tank 3
It is important to maintain the oxygen free state and to sufficiently release the nitrate nitrogen, and it is effective to stir the wastewater in the anoxic tank 3 for this purpose. Therefore, similarly to the case of the sewage treatment by the anaerobic-aerobic activated sludge method, the sewage is stirred by the mechanical stirrer 5 or the fine bubble diffuser 6 while maintaining the oxygen-free state, and the sewage is discharged into the sewage. In order to suppress the dissolution of oxygen, the amount of air supplied is reduced to the minimum amount at which activated sludge does not settle.

【0006】汚水処理については上記以外に、例えば特
開平5−317880号公報に示されているものがあ
る。この汚水処理は、生物反応槽を好気槽だけとし、こ
の好気槽内の汚水中の溶存酸素濃度が0.5mg/リッ
トル以下の好気状態に維持されるように散気管から酸素
を供給して、硝化と脱窒を同時に行わせることにより汚
水を浄化処理するものである。
[0006] In addition to the above, there is a sewage treatment disclosed in, for example, JP-A-5-317880. In this sewage treatment, the biological reaction tank is only an aerobic tank, and oxygen is supplied from an air diffuser so that the dissolved oxygen concentration in the sewage in the aerobic tank is maintained at an aerobic state of 0.5 mg / liter or less. Then, sewage is purified by simultaneously performing nitrification and denitrification.

【0007】[0007]

【発明が解決しようとする課題】嫌気−好気活性汚泥
法、循環式硝化脱窒法に用いる生物反応槽の嫌気槽や無
酸素槽に用いられている機械式攪拌装置や微細気泡散気
装置ではそれぞれ下記に説明するような解決すべき課題
がある。即ち、前者の機械式攪拌装置では、イニシャル
コストが高くつき、またメインテナンスが困難であるの
に加えて、オーバーホール頻度も多いためランニングコ
ストが嵩む。また、後者の微細気泡散気装置では、汚水
への酸素の溶解性が良好となり、嫌気状態や無酸素状態
の安定維持が困難になる。勿論、微細気泡散気装置によ
り酸素の溶解量を抑制するために間欠曝気法を採用して
いる場合もある。
The mechanical stirrer and fine bubble diffuser used in the anaerobic tank and the oxygen-free tank of the biological reaction tank used for the anaerobic-aerobic activated sludge method and the circulating nitrification and denitrification method. Each has problems to be solved as described below. That is, in the former mechanical stirrer, the initial cost is high, the maintenance is difficult, and the overhaul frequency is high, so that the running cost increases. Further, in the latter fine bubble diffusing device, the solubility of oxygen in sewage becomes good, and it becomes difficult to stably maintain an anaerobic state or an anoxic state. Of course, an intermittent aeration method may be adopted in order to suppress the amount of dissolved oxygen by the fine bubble diffusing device.

【0008】微細気泡散気装置の気孔が目詰まりする恐
れがあり、維持管理が困難である。無酸素槽に機械式攪
拌装置を用いれば、好気槽に微生物を固定化した担体を
投入できても、無酸素槽には担体(攪拌羽根により破壊
される)を投入することができず、ランニングコストや
取扱いの困難さの割りに汚水処理効率の向上が期待でき
ない。一方、無酸素槽に微細気泡散気装置を用いれば、
嫌気槽や無酸素槽並びに好気槽に担体を投入することが
できるが、無酸素槽の無酸素状態あるいは嫌気状態の安
定維持が困難なために、安定的な汚水処理の継続が困難
である。つまり、無酸素槽の嫌気状態あるいは無酸素状
態の安定維持が容易で、しかも安価で、取扱いが容易で
あることが好ましい。
[0008] The pores of the fine bubble diffuser may be clogged, and maintenance is difficult. If a mechanical stirrer is used for the anoxic tank, even if the carrier in which the microorganisms are immobilized can be put in the aerobic tank, the carrier (which is destroyed by the stirring blade) cannot be put in the anoxic tank, Improvement of sewage treatment efficiency cannot be expected in spite of running cost and difficulty of handling. On the other hand, if a fine bubble diffuser is used in the oxygen-free tank,
Carriers can be put into anaerobic tanks, anoxic tanks and aerobic tanks, but it is difficult to maintain stable anaerobic or anaerobic conditions in the anoxic tanks, making it difficult to continue stable sewage treatment. . That is, it is preferable that the anaerobic state or the anaerobic state of the anoxic tank can be easily maintained stably, and it is inexpensive and easy to handle.

【0009】また、特開平5−317880号公報に示
されている生物反応槽では、有機酸発酵槽を設けなけれ
ばならず、また硝化に適した生物反応槽末端の溶存酸素
濃度は、高度処理施設設計マニュアル(案)〔(財)日
本下水道協会〕によれば、約1.5mg/リットルとな
っており、溶存酸素濃度が0.5mg/リットル以下で
は硝化効率が低下する恐れがある。
Further, in the biological reaction tank disclosed in Japanese Patent Application Laid-Open No. 5-317880, an organic acid fermentation tank must be provided, and the concentration of dissolved oxygen at the end of the biological reaction tank suitable for nitrification is high. According to the facility design manual (draft) [Japan Sewage Works Association], it is about 1.5 mg / liter, and if the dissolved oxygen concentration is 0.5 mg / liter or less, the nitrification efficiency may decrease.

【0010】従って、本発明は上記実情に鑑み、安定稼
働の継続を可能ならしめ、しかも安価で、取扱いが容易
な生物反応槽を提供するにある。
[0010] Accordingly, the present invention has been made in view of the above-mentioned circumstances, and provides an inexpensive and easy-to-handle biological reaction tank which enables stable operation to be continued.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明の請求項1に係る生物反応槽が採用した主た
る手段は、下水、排水等の汚水を、嫌気状態または無酸
素状態で攪拌しながら処理する第1槽と、該第1槽から
流入した処理水を微細気泡散気装置からの微細気泡の放
出により攪拌しながら所定量の酸素を溶存させた状態で
処理する第2槽とからなる生物反応槽において、前記第
1槽中の汚水を攪拌する攪拌装置が、第1槽の底部に設
けられ、100〜1000mmピッチで2〜8mmの径
の複数の気孔を有する粗大気泡散気装置であることを特
徴とする。
Means for Solving the Problems In order to solve the above problems, the main means employed in the biological reaction tank according to the first aspect of the present invention is that sewage such as sewage and drainage is treated in an anaerobic or anoxic state. A first tank for treating while stirring, and a second tank for treating treated water flowing from the first tank in a state where a predetermined amount of oxygen is dissolved while stirring by discharging fine bubbles from a fine bubble diffuser. And a stirrer for stirring sewage in the first tank is provided at the bottom of the first tank and has a plurality of pores having a diameter of 2 to 8 mm at a pitch of 100 to 1000 mm. It is a pneumatic device.

【0012】本発明の請求項2に係る生物反応槽が採用
した主たる手段は、下水、排水等の汚水を、嫌気状態で
攪拌しながら処理する第1槽および無酸素状態で攪拌し
ながら処理する第2槽と、該第2槽から流入した処理水
を微細気泡散気装置からの微細気泡の放出により攪拌し
ながら所定量の酸素を残存させた状態で処理する第3槽
とからなる生物反応槽において、前記第1槽および第2
槽中の汚水を攪拌する攪拌装置が、第1槽と第2槽のう
ちの少なくとも1つの槽の底部に設けられ、100〜1
000mmピッチで2〜8mmの径の複数の気孔を有す
る粗大気泡散気装置であることを特徴とする。
The main means employed by the biological reaction tank according to the second aspect of the present invention is a first tank for treating sewage such as sewage and drainage while stirring in an anaerobic state, and a processing while stirring in an oxygen-free state. Biological reaction comprising a second tank and a third tank for treating the treated water flowing from the second tank in a state in which a predetermined amount of oxygen remains while stirring by the release of fine bubbles from the fine bubble diffuser. In the tank, the first tank and the second tank
A stirrer for stirring sewage in the tank is provided at the bottom of at least one of the first and second tanks,
It is a coarse bubble diffuser having a plurality of pores having a diameter of 2 to 8 mm at a pitch of 000 mm.

【0013】本発明の請求項3に係る生物反応槽が採用
した主たる手段は、特許請求項1に記載の生物反応槽に
おいて、微生物を付着させて固定化した結合型担体また
は高分子物質に微生物を包括して固定化した包括型担体
を、第1槽と第2槽のうちの少なくとも1つの槽に投入
したことを特徴とする。
The main means employed by the biological reaction tank according to claim 3 of the present invention is the biological reaction tank according to claim 1, wherein the microorganism is attached to a fixed carrier or a polymer substance to which microorganisms are adhered and immobilized. Wherein the incorporation-type carrier that has been immobilized by enclosing is introduced into at least one of the first tank and the second tank.

【0014】本発明の請求項4に係る生物反応槽が採用
した主たる手段は、特許請求項2に記載の生物反応槽に
おいて、微生物を付着させて固定化した結合型担体また
は高分子物質に微生物を包括して固定化した包括型担体
を、第2槽と第3槽のうちの少なくとも一つの槽に投入
したことを特徴とする。
The main means adopted by the biological reaction tank according to claim 4 of the present invention is the biological reaction tank according to claim 2, wherein the microorganism is attached to the immobilized carrier or polymer substance to which the microorganism is adhered and immobilized. Wherein the entrapment-type carrier entrapping and immobilizing is loaded into at least one of the second tank and the third tank.

【0015】[0015]

【作用】本発明の請求項1に係る生物反応槽によれば、
粗大気泡散気装置の2〜8mmの径の複数の気孔から放
出される粗大気泡の上昇によって第1槽中の汚水が攪拌
されるが、粗大気泡であるため気泡中の酸素が汚水に溶
解しにくいので、汚水中の溶存酸素量を少なくすること
ができる。そして、従来の微細気泡散気装置のように間
欠曝気方式にする必要がないので、粗大気泡散気装置の
気孔が目詰まりを起こすようなことがなく、また従来の
機械式攪拌装置のように、可動部がないので頻繁にメイ
ンテナンスを行う必要がない。
According to the biological reactor according to claim 1 of the present invention,
The sewage in the first tank is agitated by the rise of coarse bubbles released from a plurality of pores having a diameter of 2 to 8 mm of the coarse bubble diffuser, but since the bubbles are coarse bubbles, oxygen in the bubbles dissolves in the sewage. It is difficult to reduce the amount of dissolved oxygen in the sewage. And since it is not necessary to use an intermittent aeration method as in the conventional fine bubble diffusing device, the pores of the coarse bubble diffusing device do not become clogged, and unlike the conventional mechanical stirring device. Since there are no moving parts, there is no need to frequently perform maintenance.

【0016】本発明の請求項2に係る生物反応槽によれ
ば、粗大気泡散気装置の2〜8mmの径の複数の気孔か
ら放出される粗大気泡の上昇によって第1槽と第2槽中
の汚水のそれぞれが攪拌されるが、粗大気泡であるため
気泡中の酸素が汚水に溶解しにくいので、汚水中の溶存
酸素量を少なくすることができる。そして、従来の微細
気泡散気装置のように間欠曝気方式にする必要がないの
で、粗大気泡散気装置の気孔が目詰まりを起こすことが
なく、また従来の機械式攪拌装置のように、可動部がな
いので頻繁にメインテナンスを行う必要がない。
According to the biological reaction tank according to the second aspect of the present invention, the large bubbles released from the plurality of pores having a diameter of 2 to 8 mm of the large bubble diffuser increase the size of the first and second tanks. Each of the wastewater is agitated, but since the bubbles are coarse bubbles, oxygen in the bubbles is hardly dissolved in the wastewater, so that the amount of dissolved oxygen in the wastewater can be reduced. And since there is no need to use an intermittent aeration method as in the conventional fine bubble diffusing device, the pores of the coarse bubble diffusing device do not become clogged, and they can move like a conventional mechanical stirring device. There is no need for frequent maintenance because there are no departments.

【0017】本発明の請求項3に係る生物反応槽によれ
ば、粗大気泡散気装置が設けられている第1槽と第2槽
のうちの少なくとも1つの槽に、微生物を付着させて固
定化した結合型担体または高分子物質に微生物を包括し
て固定した包括型担体を投入しても、2〜8mmの径の
複数の気孔から放出される粗大気泡の上昇で汚水が攪拌
され、これら担体が破損されることがないので、これら
結合型担体に付着し固定化されている微生物または包括
型担体に包括されて固定化されている微生物の働きで、
槽中の汚水を高能率で浄化処理することができる。
According to the biological reaction tank of the third aspect of the present invention, microorganisms are adhered and fixed to at least one of the first tank and the second tank provided with the coarse bubble diffuser. Even if the incorporation of the incorporation-type carrier in which the microorganisms are includ- ed and immobilized in the combined-type carrier or the polymerized substance, the sewage is agitated by the rise of coarse bubbles released from the plurality of pores having a diameter of 2 to 8 mm. Because the carrier is not damaged, by the action of microorganisms that are immobilized by being attached to and immobilized on these binding-type carriers,
Wastewater in the tank can be purified with high efficiency.

【0018】本発明の請求項4に係る生物反応槽によれ
ば、粗大気泡散気装置が設けられている第2槽と第3槽
のうちの少なくとも1つの槽に、粗大気泡散気装置の2
〜8mmの径の複数の気孔から放出される粗大気泡の上
昇による汚水の攪拌であるため、第2槽と第3槽のうち
の少なくとも1つの槽に、微生物を付着させて固定化し
た結合型担体または高分子物質に微生物を包括して固定
した包括型担体を投入しても、2〜8mmの径の複数の
気孔から放出される粗大気泡の上昇で汚水が攪拌され、
これら担体が破損されることがないので、これら結合型
担体に付着し固定化されている微生物または包括型担体
に包括されて固定化されている微生物の働きで、槽中の
汚水を高能率で浄化処理することができる。
According to the biological reaction tank according to the fourth aspect of the present invention, at least one of the second tank and the third tank provided with the coarse bubble diffuser is provided with the coarse bubble diffuser. 2
Since the agitation of sewage is caused by the rise of coarse bubbles released from a plurality of pores having a diameter of 〜8 mm, a combined type in which microorganisms are adhered and fixed to at least one of the second and third tanks. Even if the incorporation type carrier in which microorganisms are encapsulated and immobilized on the carrier or the high-molecular substance is thrown in, the wastewater is agitated by the rise of coarse bubbles released from a plurality of pores having a diameter of 2 to 8 mm,
Since these carriers are not damaged, the microorganisms attached to and immobilized on these bonded carriers or the microorganisms entrapped and immobilized in the inclusive carrier can efficiently remove wastewater in the tank. Purification can be performed.

【0019】[0019]

【実施例】以下、本発明の請求項1に対応する実施例1
に係る生物反応槽を、その模式的構成説明図の図1
(a)と、図1(a)のA矢視図の図1(b)と、嫌気
槽中の汚水を粗大気泡で攪拌したときのDO濃度(溶存
酸素濃度)、ORP値(酸化還元電位)分布説明図の図
2(a)と、嫌気槽中の汚水を微細気泡で攪拌したとき
のDO濃度分布、ORP値分布説明図の図2(b)と、
粗大気泡を放出する気孔(ピッチ400mm)の径に対
するORP値の関係説明図の図3とを参照しながら、上
記従来例と同一のもの並びに同一機能を有するものを同
一符号を以て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be described.
FIG. 1 is a schematic structural explanatory view of a biological reaction tank according to
(A), FIG. 1 (b) in the view of arrow A in FIG. 1 (a), and DO concentration (dissolved oxygen concentration) and ORP value (oxidation-reduction potential) when sewage in an anaerobic tank is stirred with coarse bubbles. FIG. 2 (a) of the distribution explanatory diagram, and FIG. 2 (b) of the DO concentration distribution and the ORP value distribution explanatory diagram when the sewage in the anaerobic tank is agitated by fine bubbles.
The relationship between the diameter of pores (pitch: 400 mm) that emits coarse bubbles and the ORP value with respect to the diameter of the pores will be described with reference to FIG.

【0020】この実施例は、図1(a)から良く理解さ
れるように、嫌気−好気活性汚泥法により汚水を浄化処
理するものである。即ち、生物反応槽1は、図示しない
最初沈澱池から一次処理された汚水9が流入する第1槽
である嫌気槽2と、この嫌気槽2から処理水が流入する
第2槽である好気槽4とから構成されている。嫌気槽2
の底部の一方の隅には、図1(b)に示すように、塩化
ビニル管に複数の気孔5aを設けた2本の多孔管が並設
されてなる粗大気泡散気装置5が設けられている。前記
粗大気泡散気装置5の気孔5aの径は2〜8mmであ
り、かつ100〜1000mmの一定ピッチである。そ
して、空気供給管7からの粗大気泡散気装置5への空気
の送気により、複数の気孔5aから汚水中に粗大気泡が
放出され、粗大気泡の上昇による対流で汚水を攪拌し、
汚水中への酸素の溶解を抑制するように構成されてい
る。なお、この粗大気泡散気装置5は嫌気槽2の底部の
中央に配設されていても良い。
In this embodiment, as can be clearly understood from FIG. 1A, sewage is purified by an anaerobic-aerobic activated sludge method. That is, the biological reaction tank 1 is an anaerobic tank 2 which is a first tank into which sewage 9 primarily treated from a first settling tank (not shown) flows, and an aerobic tank which is a second tank into which treated water flows from the anaerobic tank 2. And a tank 4. Anaerobic tank 2
As shown in FIG. 1 (b), a large bubble diffusing device 5 is provided at one corner of the bottom portion of the bottom plate, in which two perforated pipes having a plurality of pores 5a provided in a vinyl chloride pipe are arranged in parallel. ing. The diameter of the pores 5a of the coarse bubble diffuser 5 is 2 to 8 mm, and has a constant pitch of 100 to 1000 mm. Then, by feeding air from the air supply pipe 7 to the coarse bubble diffusing device 5, coarse bubbles are released into the wastewater from the plurality of pores 5a, and the wastewater is stirred by convection due to the rise of the coarse bubbles,
It is configured to suppress the dissolution of oxygen in sewage. The coarse bubble diffusing device 5 may be disposed at the center of the bottom of the anaerobic tank 2.

【0021】一方、好気槽4では、嫌気槽2から流入し
た処理水中への酸素の溶解を促進させる。この場合、水
1リットル当たりの溶存酸素を1.5mg以上にする必
要があるので、この好気槽4の底部に、径が150〜4
00μmの多数の微細気孔を有する板状の複数の微細気
泡散気装置6を敷き詰め、空気供給管7から空気を送気
して微細気孔から微細気泡を処理水中に放出するとい
う、全面曝気方式で処理水を攪拌するように構成されて
いる。
On the other hand, in the aerobic tank 4, the dissolution of oxygen into the treated water flowing from the anaerobic tank 2 is promoted. In this case, the dissolved oxygen per liter of water needs to be 1.5 mg or more.
A plurality of plate-shaped fine bubble diffusers 6 having a large number of fine pores of 00 μm are spread, air is supplied from an air supply pipe 7, and fine bubbles are discharged from the fine pores into the treatment water. It is configured to agitate the treated water.

【0022】以下、上記構成になる生物反応槽1の作用
態様を説明すると、上記従来例に係る嫌気−好気活性汚
泥法と同様の作用により汚水中の燐が除去されるが、こ
の生物反応槽1による燐の除去による汚水の浄化処理で
は、粗大気泡散気装置5に送気する1槽当たりの空気量
を、汚水中の汚泥が沈降しない最低量とし、汚水を曝気
攪拌する。粗大気泡散気装置5への空気の送気量は、嫌
気槽2の深さや大きさで当然相違するが、例えば幅7.
5m、長さ11m、深さ4.5mの嫌気槽2の場合に
は、約0.7m3 /minである。
The mode of operation of the biological reaction tank 1 having the above configuration will be described below. Phosphorus in sewage is removed by the same operation as the anaerobic-aerobic activated sludge method according to the conventional example. In the sewage purification process by removing phosphorus in the tank 1, the amount of air per tank supplied to the coarse bubble diffuser 5 is set to the minimum amount in which the sludge in the sewage does not settle, and the sewage is aerated and stirred. The amount of air supplied to the coarse bubble diffuser 5 naturally depends on the depth and size of the anaerobic tank 2, but is, for example, 7.
In the case of the anaerobic tank 2 having a length of 5 m, a length of 11 m, and a depth of 4.5 m, the flow rate is about 0.7 m 3 / min.

【0023】このように、汚水中への酸素の溶解を抑制
しながら粗大気泡の放出により汚水を攪拌した場合のD
O濃度分布とORP値分布は図2(a)に示す通りであ
る。この場合の粗大気泡散気装置5の気孔5aの径は8
mmであり、また気孔5aのピッチは400mmであ
る。この図2(a)によれば、DO濃度は各測定ポイン
トにおいてDO濃度計検出限界以下の約0mg/リット
ルであり、またORP値については嫌気槽2の適性OR
P値領域である−300〜−200mVの範囲で維持さ
れている。
As described above, when the sewage is stirred by releasing coarse bubbles while suppressing the dissolution of oxygen in the sewage,
The O concentration distribution and the ORP value distribution are as shown in FIG. In this case, the diameter of the pore 5a of the coarse bubble diffuser 5 is 8
mm, and the pitch of the pores 5a is 400 mm. According to FIG. 2 (a), the DO concentration is about 0 mg / liter below the detection limit of the DO concentration meter at each measurement point, and the ORP value is the appropriate OR of the anaerobic tank 2.
It is maintained in the range of -300 to -200 mV, which is the P value range.

【0024】本実施例に係る粗大気泡散気装置5の優位
性を検証するため、嫌気槽2の底部の半面に、径が26
0μmの複数の気孔を有する散気装置を敷き詰めて微細
気泡により汚水を曝気攪拌して、DO濃度分布とORP
値分布とを調べ、本実施例が極めて優れていることを確
認した。その結果は、図2(b)に示す通りである。即
ち、図2(b)によれば、DO濃度は0mg/リットル
を維持できず、またORP値も嫌気槽2にとって好まし
いORP値領域から外れている。なお、散気板に送気し
た空気量は、上記実施例より少なく、約0.4m3 /m
inである。
In order to verify the superiority of the coarse bubble diffusing device 5 according to this embodiment, a diameter of 26 mm is provided on the bottom half surface of the anaerobic tank 2.
A diffuser having a plurality of pores of 0 μm is spread, and aeration and agitation of sewage are performed by fine bubbles to obtain a DO concentration distribution and an ORP.
By examining the value distribution, it was confirmed that this example was extremely excellent. The result is as shown in FIG. That is, according to FIG. 2B, the DO concentration cannot be maintained at 0 mg / liter, and the ORP value is out of the preferable ORP value region for the anaerobic tank 2. The amount of air sent to the diffuser plate is smaller than that in the above embodiment, and is about 0.4 m 3 / m
in.

【0025】次に、粗大気泡散気装置5の気孔5a(ピ
ッチは400mm)の好ましい径について、図3を参照
しながら説明する。この図3は、気孔5aの径の相違に
より嫌気槽2中の汚水のORP値がどのように変化する
かを調べることにより、気孔5aの好ましい径の範囲を
見出すことを狙いとして行ったものである。即ち、本図
によれば、嫌気槽2の適性ORP値領域である−200
mV以下を確保するためには2mm以上であることが好
ましい。一方、気孔5aの径がかなり大径であっても−
300mV以上を確保し得るという結果が示されている
が、気孔5aの径が大き過ぎると消費空気量が多くなり
過ぎるので、実用的には8mm以下が好ましい。また、
気孔5aのピッチについては、図示省略しているが、ピ
ッチが小さすぎると嫌気槽2中の汚水の嫌気状態の維持
が困難になり、逆にピッチが大き過ぎると攪拌能力が低
下して汚水の処理能力が低下するので、実用的には10
0〜1000mmの範囲にすると好ましい結果が得られ
る。
Next, a preferred diameter of the pores 5a (pitch: 400 mm) of the coarse bubble diffuser 5 will be described with reference to FIG. FIG. 3 is intended to find out a preferable range of the diameter of the pore 5a by examining how the ORP value of the sewage in the anaerobic tank 2 changes due to the difference in the diameter of the pore 5a. is there. That is, according to this figure, the suitable ORP value region of the anaerobic tank 2 is −200.
In order to secure mV or less, it is preferable to be 2 mm or more. On the other hand, even if the diameter of the pores 5a is considerably large,
Although the result that 300 mV or more can be secured is shown, if the diameter of the pores 5a is too large, the amount of consumed air becomes too large, so that 8 mm or less is practically preferable. Also,
Although the pitch of the pores 5a is not shown, if the pitch is too small, it becomes difficult to maintain the anaerobic state of the sewage in the anaerobic tank 2, and if the pitch is too large, the stirring ability is reduced and the sewage is reduced. Since the processing capacity decreases, practically 10
A preferable result is obtained when the thickness is in the range of 0 to 1000 mm.

【0026】そして、水質調査を行い、本実施例に係る
生物反応槽の汚水処理の有効性を検証した。その結果は
表1に示すとおりである。なお、水質の測定は、図示し
ない最初沈澱池からの流出水、嫌気槽2からの流出水、
最終沈澱池8からの流出水であり、また本表1には嫌気
槽2中の汚水を微細気泡散気装置からの微細気泡の放出
により攪拌した場合の水質データを併せて示している。
なお、本表1中のSSは浮遊物質を、S−BODは溶解
性BODを、S−T−Pは溶解性全燐をそれぞれ示して
いる。
A water quality survey was conducted to verify the effectiveness of the biological reaction tank according to the present embodiment for sewage treatment. The results are as shown in Table 1. In addition, the measurement of the water quality is based on the effluent from the first settling pond (not shown), the effluent from the anaerobic tank 2,
This is the effluent from the final sedimentation basin 8, and Table 1 also shows water quality data when the sewage in the anaerobic tank 2 is agitated by the release of fine bubbles from the fine bubble diffuser.
In Table 1, SS indicates suspended substances, S-BOD indicates soluble BOD, and STP indicates soluble total phosphorus.

【0027】[0027]

【表1】 [Table 1]

【0028】上記表1によれば、SS濃度、BOD濃
度、S−T−P濃度は粗大気泡による攪拌の方が微細気
泡による攪拌の場合よりも良好に除去されており、特に
S−T−P濃度からすると、嫌気槽2で活性汚泥がより
多くの燐を排出し、そして好気槽4でより多くの燐を摂
取していると判断される。
According to Table 1, the SS concentration, the BOD concentration, and the STP concentration were better removed by stirring with coarse bubbles than by stirring with fine bubbles. Based on the P concentration, it is determined that the activated sludge discharges more phosphorus in the anaerobic tank 2 and ingests more phosphorus in the aerobic tank 4.

【0029】このように、嫌気−好気活性汚泥法により
汚水を浄化処理する本実施例に係る生物反応槽1によれ
ば、粗大気泡散気装置5は塩化ビニル管に、径が2〜8
mmの気孔5aを100〜1000mmのピッチで設け
られているだけの構成であるから、従来の機械式攪拌装
置に比較してイニシャルコストが安価で、しかもオーバ
ーホールをする必要がないのでランニングコストも安価
になり、また従来の微細気泡散気装置のように、間欠曝
気方式にする必要がなく、粗大気泡散気装置5の気孔5
aが目詰まりを起こすようなことがないので、安定的な
汚水処理の継続が可能になる。
As described above, according to the biological reaction tank 1 according to the present embodiment for purifying sewage by the anaerobic-aerobic activated sludge method, the coarse bubble diffuser 5 has a diameter of 2 to 8 in a vinyl chloride pipe.
mm, so that the initial cost is lower than that of a conventional mechanical stirrer, and the running cost is lower because there is no need for overhaul. It is not necessary to use an intermittent aeration method unlike the conventional fine bubble diffusing device, and the pores 5 of the coarse bubble diffusing device 5 are not required.
Since a does not cause clogging, stable sewage treatment can be continued.

【0030】さらに、好気槽4では、微細気泡散気装置
からの微細気泡の放出により汚水を攪拌するので、汚水
に1.5mg/リットル以上の溶存酸素濃度を保有させ
ることができ、しかも特開平5−317880号公報に
示されている生物反応槽のように、有機酸発酵槽を設け
る必要がない。
Further, in the aerobic tank 4, since the sewage is stirred by discharging the fine bubbles from the fine bubble diffuser, the sewage can have a dissolved oxygen concentration of 1.5 mg / liter or more. There is no need to provide an organic acid fermentation tank as in the biological reaction tank disclosed in Japanese Unexamined Patent Publication No. Hei 5-317880.

【0031】次に、本発明の請求項1に対応する実施例
2に係る生物反応槽を、その模式的構成説明図の図4
(a)と、図4(a)のB矢視図の図4(b)と、無酸
素槽中の汚水を粗大気泡で攪拌したときのDO濃度、O
RP値分布説明図の図5(a)と、無酸素槽中の汚水を
微細気泡で攪拌したときのDO濃度分布、ORP値分布
説明図の図5(b)と、粗大気泡を放出する気孔(ピッ
チ400mm)の径に対するORP値の関係説明図の図
6とを参照しながら説明する。
Next, a biological reaction tank according to a second embodiment of the present invention will be described with reference to FIG.
(A), FIG. 4 (b) in the view of arrow B in FIG. 4 (a), and DO concentration and O when sewage in the anoxic tank was stirred with coarse bubbles.
FIG. 5 (a) of the RP value distribution diagram, FIG. 5 (b) of the ORP value distribution diagram when the sewage in the anoxic tank is agitated with fine bubbles, and pores releasing coarse bubbles. The relationship between the ORP value and the diameter of (pitch 400 mm) will be described with reference to FIG.

【0032】本実施例は、循環式硝化脱窒法を行う生物
反応槽の例であって、図4(a)と図4(b)とから良
く理解されるように、その主要構成は上記実施例1にお
ける嫌気槽2を第1槽である無酸素槽3に置換したもの
で、上記実施例1と相違するところは、好気槽4から無
酸素槽3に硝化液を循環させる硝化液循環路が付加され
ただけの構成になるものである。
This embodiment is an example of a biological reaction tank for performing a circulating nitrification denitrification method. As can be clearly understood from FIGS. 4 (a) and 4 (b), the main structure is as described above. The anaerobic tank 2 in Example 1 is replaced with an oxygen-free tank 3 as a first tank. The difference from Example 1 is that nitrification liquid is circulated from the aerobic tank 4 to the oxygen-free tank 3. This is a configuration in which a road is simply added.

【0033】従って、従来と同様に、図示しない最初沈
澱池からこの無酸素槽3に流入する汚水9中のアンモニ
ア性窒素は、好気槽4における酸素溶解の促進により、
好気状態を維持しながらアンモニア性窒素を酸化して硝
酸性窒素にする。そして、好気槽4からの流出水の60
〜80%は無酸素槽3に返送され、無酸素槽3では、汚
水中への酸素溶解を極力抑制して、硝酸性窒素が溶解し
ているものの分子状酸素がほとんど溶解していない無酸
素状態で保持して硝酸性窒素を還元して窒素ガスにして
大気中に放出させることにより脱窒する。
Therefore, as in the prior art, the ammonia nitrogen in the sewage 9 flowing into the anoxic tank 3 from the first settling basin (not shown) is promoted by promoting the oxygen dissolution in the aerobic tank 4.
The ammoniacal nitrogen is oxidized to nitrate nitrogen while maintaining the aerobic state. And 60 of the effluent from the aerobic tank 4
~ 80% is returned to the anaerobic tank 3 where the oxygen dissolution in the sewage is minimized and the nitric nitrogen is dissolved but the molecular oxygen is hardly dissolved Denitrification is performed by maintaining the state and reducing nitrate nitrogen to nitrogen gas and releasing it into the atmosphere.

【0034】このような脱窒による汚水処理において、
無酸素槽3では粗大気泡散気装置5の気孔5aから放出
される気泡で汚水が攪拌される一方、無酸素槽3から流
入した好気槽4中の処理水は、径が260μmの多数の
微細気孔を有する微細気孔散気装置6から放出される微
細気泡により攪拌され、好気槽4中の処理水の残存酸素
量は1.5mg/リットル以上に維持され続ける。な
お、空気供給管7,7から粗大気泡散気装置5と微細気
孔散気装置6との夫々に送気される空気量は、それぞれ
1槽当たり0.7m3 /min,0.4m3 /minで
ある。
In such wastewater treatment by denitrification,
In the anoxic tank 3, the sewage is stirred by the bubbles released from the pores 5 a of the coarse bubble diffuser 5, while the treated water in the aerobic tank 4 flowing from the anoxic tank 3 has a large number of 260 μm in diameter. Stirring is performed by the fine bubbles released from the fine pore diffuser 6 having the fine pores, and the residual oxygen amount of the treated water in the aerobic tank 4 is kept at 1.5 mg / liter or more. Incidentally, the amount of air insufflated in the s husband coarse bubble diffuser 5 from the air supply pipes 7 and microporous diffuser 6 per tank respectively 0.7m 3 /min,0.4m 3 / min.

【0035】無酸素槽3中の汚水への酸素の溶解を粗大
気泡で抑制しながら、汚水を攪拌する場合のDO濃度、
ORP値分布は図5(a)に示す通りである。本図によ
れば、DO濃度は、各測定ポイントにおいて、DO濃度
計検出限界以下の約0mg/リットルであり、またOR
P値については無酸素槽3の適性ORP値領域である−
300〜−200mVの範囲で維持されている。
The DO concentration when agitating the sewage while suppressing the dissolution of oxygen in the sewage in the anoxic tank 3 with coarse bubbles,
The ORP value distribution is as shown in FIG. According to this figure, the DO concentration at each measurement point is about 0 mg / liter below the detection limit of the DO concentration meter.
The P value is an appropriate ORP value region of the anoxic tank 3-
It is maintained in the range of 300 to -200 mV.

【0036】そして、本実施例に係る粗大気泡散気装置
5の優位性を検証するため、無酸素槽3の底部に、径が
260μmの散気板を敷き詰めて微細気泡の放出により
曝気攪拌し、DO濃度分布とORP値分布とを調べ、本
実施例が極めて優れていることを確認した。即ち、その
結果は図5(b)に示す通りであり、DO濃度は0mg
/リットルを維持することができず、またORP値も嫌
気槽2にとって好ましいORP値領域から外れている。
粗大気泡散気装置5の気孔5aの好ましい径は、上記実
施例1と同様に、図6に示す通り2〜8mmで、またピ
ッチは100〜1000mmである。これにより、−3
00〜−200mVの適性ORP値領域を維持すること
ができる。
Then, in order to verify the superiority of the coarse bubble diffuser 5 according to the present embodiment, a diffuser plate having a diameter of 260 μm is spread on the bottom of the oxygen-free tank 3 and aeration and stirring are performed by discharging fine bubbles. , DO concentration distribution and ORP value distribution were examined, and it was confirmed that this example was extremely excellent. That is, the results are as shown in FIG. 5 (b), and the DO concentration was 0 mg.
/ Liter cannot be maintained, and the ORP value is out of the preferable ORP value range for the anaerobic tank 2.
The preferred diameter of the pores 5a of the coarse bubble diffuser 5 is 2 to 8 mm as shown in FIG. 6 and the pitch is 100 to 1000 mm, as in the first embodiment. Thereby, -3
An appropriate ORP value range of 00 to -200 mV can be maintained.

【0037】次いで、水質調査を行い、本実施例の汚水
処理の有効性を検証した。その結果は表2に示すとおり
である。なお、測定は、図示しない最初沈澱池からの流
出水、最終沈澱池からの流出水であり、また本表2に
は、無酸素槽3中の汚水を微細気泡散気装置からの微細
気泡の放出により攪拌した場合の水質データを併せて示
している。
Next, a water quality survey was conducted to verify the effectiveness of the wastewater treatment of this embodiment. The results are as shown in Table 2. The measurements are the effluent from the first sedimentation basin (not shown) and the effluent from the last sedimentation basin. Water quality data when stirring by release is also shown.

【0038】[0038]

【表2】 [Table 2]

【0039】上記表2によれば、SS濃度、BOD濃
度、S−T−N(溶解性全窒素)濃度は粗大気泡による
攪拌の方が微細気泡による攪拌の場合よりも優れてお
り、特にS−T−N濃度からすると、より多くの窒素を
除去していると判断される。そして、この循環式硝化脱
窒法に用いた生物反応槽1の無酸素槽3に設けられてい
る粗大気泡散気装置5は、上記実施例1における粗大気
泡散気装置5と同構成であるから、全く同じ効果があ
る。
According to Table 2, the SS concentration, the BOD concentration, and the STN (soluble total nitrogen) concentration are better when stirring with coarse bubbles than when stirring with fine bubbles. Based on the -TN concentration, it is determined that more nitrogen has been removed. The coarse bubble diffusing device 5 provided in the oxygen-free tank 3 of the biological reaction tank 1 used for the circulating nitrification denitrification method has the same configuration as the coarse bubble diffusing device 5 in the first embodiment. Has exactly the same effect.

【0040】本発明の請求項2に対応する実施例3に係
る生物反応槽を、その模式的構成説明図の図7を参照し
ながら以下に説明する。即ち、この生物反応槽1は、嫌
気−好気活性汚泥法と循環式硝化脱窒法との組合せによ
り、燐と窒素とを同時除去して汚水を浄化処理するもの
(嫌気−無酸素−好気法)である。より詳しくは、この
生物反応槽1は、図示しない最初沈澱池から一次処理さ
れた汚水が流入する第1槽である嫌気槽2と、この嫌気
槽2から処理水が流入する第2槽である無酸素槽3と、
この無酸素槽3から処理水が流入する第3槽である好気
槽4とから構成されている。そして、好気槽4から無酸
素槽3には硝化液循環路が連通し、また最終沈澱池8か
ら嫌気槽2に汚泥の一部を返送する汚泥返送路が連通し
ている。
A biological reaction tank according to a third embodiment of the present invention will be described below with reference to FIG. That is, this biological reaction tank 1 purifies sewage by simultaneously removing phosphorus and nitrogen by a combination of an anaerobic-aerobic activated sludge method and a circulating nitrification denitrification method (anaerobic-anoxic-aerobic). Law). More specifically, the biological reaction tank 1 is an anaerobic tank 2 which is a first tank into which sewage water which has been subjected to primary treatment flows from a first settling basin (not shown), and a second tank into which treated water flows from the anaerobic tank 2. Anoxic tank 3,
An aerobic tank 4 as a third tank into which treated water flows from the anoxic tank 3. A nitrification liquid circulation path communicates from the aerobic tank 4 to the oxygen-free tank 3, and a sludge return path for returning a part of the sludge from the final sedimentation tank 8 to the anaerobic tank 2.

【0041】前記嫌気槽2と無酸素槽3との底部の一方
の隅には、図示省略しているが、実施例1や実施例2に
おける嫌気槽や無酸素槽の場合と同様に、塩化ビニル管
に複数の気孔を設けた2本の多孔管が並設されてなる粗
大気泡散気装置5,5が設けられている。気孔の径は2
〜8mmで、かつ100〜1000mmの一定ピッチで
ある。そして、空気供給管7からのこの粗大気泡散気装
置5への空気の送気により、複数の気孔から汚水中に気
泡が放出され、気泡の上昇による対流で汚水を攪拌し、
汚水中への酸素の溶解を抑制するように構成されてい
る。
At one corner of the bottom of the anaerobic tank 2 and the anaerobic tank 3, although not shown, as in the case of the anaerobic tank and the anaerobic tank in the first and second embodiments, chloride Coarse-bubble diffusers 5 and 5 are provided in which two perforated pipes each having a plurality of pores are provided in a vinyl pipe. The pore diameter is 2
88 mm and a constant pitch of 100 to 1000 mm. Then, by sending air from the air supply pipe 7 to the coarse bubble diffusing device 5, air bubbles are released into the sewage from the plurality of pores, and the sewage is stirred by convection due to the rise of the air bubbles.
It is configured to suppress the dissolution of oxygen in sewage.

【0042】この実施例に係る生物反応槽1の嫌気槽2
と無酸素槽3との底部に設けられている粗大気泡散気装
置5は、上記実施例1,2における粗大気泡散気装置5
と同構成であるから、本実施例は上記実施例1,2と同
効である。
Anaerobic tank 2 of biological reaction tank 1 according to this embodiment
The coarse bubble diffusing device 5 provided at the bottom of the and the oxygen-free tank 3 is the coarse bubble diffusing device 5 in the first and second embodiments.
This embodiment has the same configuration as that of the first and second embodiments.

【0043】本発明の請求項3に対応する実施例4に係
る生物反応槽を説明すると、この実施例は、図1または
図4に基づく実施例1または実施例2において説明した
生物反応槽1の嫌気槽2と無酸素槽3とに、多孔質物質
に特定の微生物を付着させて固定化した結合型担体また
は高分子物質に特定の微生物を包括して固定した包括型
担体を投入したものである。
A bioreactor according to Embodiment 4 corresponding to claim 3 of the present invention will be described. This embodiment is different from the bioreactor 1 described in Embodiment 1 or 2 based on FIG. 1 or FIG. Into the anaerobic tank 2 and the anoxic tank 3, a bonded type carrier in which specific microorganisms are adhered and immobilized on a porous substance or an inclusive type carrier in which specific microorganisms are encapsulated and immobilized on a polymer substance are charged. It is.

【0044】従来であれば、微細気泡散気装置を有する
好気槽4だけに結合型担体または包括型担体を投入する
ことができたが、機械式攪拌装置による攪拌であるため
に無酸素槽3中の汚水に投入することができなかった。
しかしながら、本実施例によれば、結合型担体または包
括型担体を投入しても、無酸素槽3中の汚水が粗大気泡
散気装置の2〜8mmの複数の気孔から放出される気泡
により攪拌され、結合型担体または包括型担体が破壊さ
れることがないので、これら結合型担体または包括型担
体に固定化されている微生物の働きにより、BODや窒
素の除去効率が向上し、汚水処理能力の向上に寄与する
ことができると共に、汚水処理能力の向上により、同じ
汚水処理能力の場合に生物反応槽を小型化することがで
きるので、生物反応槽のコスト低減に寄与することがで
きる。
Conventionally, the combined carrier or the inclusive carrier could be introduced only into the aerobic tank 4 having the fine bubble diffusing device. However, since the stirring was performed by the mechanical stirring device, the oxygen-free tank was used. 3 could not be put into the wastewater.
However, according to this embodiment, even when the combined carrier or the inclusive carrier is charged, the sewage in the oxygen-free tank 3 is agitated by the bubbles released from the plurality of pores of 2 to 8 mm of the coarse bubble diffuser. Since the bonded carrier or the inclusive carrier is not destroyed, the efficiency of BOD and nitrogen removal is improved by the action of microorganisms immobilized on the bound or inclusive carrier, and the wastewater treatment capacity is improved. And the improvement of the sewage treatment capacity can reduce the size of the biological reaction tank for the same sewage treatment capacity, thereby contributing to a reduction in the cost of the biological reaction tank.

【0045】本発明の請求項4に対応する実施例5に係
る生物反応槽を以下に説明すると、この実施例は、図7
に基づく実施例3において説明した生物反応槽1の嫌気
槽2と無酸素槽3とのそれぞれに、多孔質物質に特定の
微生物を付着させて固定化した結合型担体または高分子
物質に特定の微生物を包括して固定した包括型担体を投
入したものである。
Next, a biological reaction tank according to a fifth embodiment of the present invention will be described with reference to FIG.
In the biological reaction tank 1 and the anaerobic tank 2 of the biological reaction tank 1 described in Example 3 based on the above, a specific microorganism is attached to a porous substance and immobilized by attaching a specific microorganism to the porous substance. The incorporation of the incorporation-type carrier in which the microorganisms are encapsulated and immobilized.

【0046】従って、結合型担体または包括型担体を投
入しても破壊されることがないから、これら結合型担体
または包括型担体に固定化されている微生物の働きによ
り、上記実施例4と同様に、BODや窒素の除去効率が
向上し、汚水処理能力の向上に寄与することができると
共に、汚水処理能力の向上により、同じ汚水処理能力の
場合に生物反応槽を小型化することができるので、生物
反応槽のコスト低減に寄与することができる。
Therefore, even if the bound carrier or the inclusive carrier is introduced, the carrier is not destroyed, and the microorganisms immobilized on the bound carrier or the inclusive carrier act in the same manner as in Example 4 above. In addition, the efficiency of removing BOD and nitrogen is improved, which can contribute to the improvement of sewage treatment capacity, and the improvement of sewage treatment capacity can reduce the size of the biological reaction tank for the same sewage treatment capacity. This can contribute to cost reduction of the biological reaction tank.

【0047】[0047]

【発明の効果】以上詳述したように、本発明の請求項1
乃至4に係る生物反応槽によれば、粗大気泡散気装置5
は筒状部材に、100〜1000mmのピッチで、径が
2〜8mmの気孔を設けただけの構成であるから、従来
の機械式攪拌装置に比較してイニシャルコストが安価
で、可動部がなくオーバーホールをする必要がないので
ランニングコストも安価になる。また、従来の微細気泡
散気装置のように、間欠曝気方式にする必要がなく、粗
大気泡散気装置の気孔が目詰まりを起こすようなことが
ないので、安定的な汚水処理の継続が可能になり、生物
反応槽の経済性並びに信頼性の向上に大いに寄与するこ
とができる。さらに、本発明の請求項3または4に係る
生物反応槽によれば、従来汚水を無酸素状態で処理する
第1槽または第1槽と第2槽とには破壊される恐れがあ
るために投入することができなかった結合型担体または
包括型担体を投入することができるので、結合型担体ま
たは包括型担体に固定されている微生物の働きにより汚
水処理能力が一層向上するという多大な効果がある。
As described in detail above, claim 1 of the present invention
According to the biological reactor according to any one of (1) to (4), the coarse bubble diffuser 5
Has a configuration in which only a pore having a diameter of 2 to 8 mm is provided at a pitch of 100 to 1000 mm in the cylindrical member, so that the initial cost is lower than that of a conventional mechanical stirrer, and there is no movable part. Since there is no need to overhaul, running costs are also reduced. Also, unlike the conventional fine bubble diffuser, there is no need to use an intermittent aeration system, and the pores of the large bubble diffuser do not become clogged, so that stable sewage treatment can be continued. And can greatly contribute to the improvement of the economic efficiency and reliability of the biological reaction tank. Furthermore, according to the biological reaction tank according to claim 3 or 4 of the present invention, the first tank or the first and second tanks that conventionally treat sewage in an oxygen-free state may be destroyed. Since the bound carrier or the inclusive carrier which could not be introduced can be introduced, a great effect that the sewage treatment capacity is further improved by the action of the microorganisms fixed to the bound carrier or the inclusive carrier is obtained. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)は本発明の実施例1に係る生物反応
槽の模式的構成説明図であり、図1(b)は図1(a)
のA矢視図である。
FIG. 1 (a) is a schematic configuration explanatory view of a biological reaction tank according to Embodiment 1 of the present invention, and FIG. 1 (b) is FIG. 1 (a).
FIG.

【図2】図2(a)は嫌気槽中の汚水を粗大気泡で攪拌
したときのDO濃度、ORP値分布説明図であり、図2
(b)は嫌気槽中の汚水を微細気泡で攪拌したときのD
O濃度分布、ORP値分布説明図である。
FIG. 2A is an explanatory diagram of a DO concentration and an ORP value distribution when sewage in an anaerobic tank is stirred by coarse bubbles.
(B) shows the D when the wastewater in the anaerobic tank was stirred with fine bubbles.
It is an O density distribution and an ORP value distribution explanatory view.

【図3】粗大気泡を放出する気孔(ピッチ400mm)
の径に対するORP値の関係説明図である。
Fig. 3 Pores releasing coarse bubbles (pitch: 400 mm)
FIG. 6 is an explanatory diagram showing a relationship between an ORP value and a diameter of a circle.

【図4】図4(a)は本発明の実施例2に係る生物反応
槽の模式的構成説明図であり、図4(b)は図4(a)
のB矢視図である。
FIG. 4 (a) is a schematic structural explanatory view of a biological reaction tank according to Example 2 of the present invention, and FIG. 4 (b) is FIG. 4 (a).
FIG.

【図5】図5(a)は無酸素槽中の汚水を粗大気泡で攪
拌したときのDO濃度、ORP値分布説明図であり、図
5(b)は無酸素槽中の汚水を微細気泡で攪拌したとき
のDO濃度分布、ORP値分布説明図である。
FIG. 5 (a) is an explanatory view of a DO concentration and an ORP value distribution when sewage in an anoxic tank is agitated by coarse bubbles, and FIG. FIG. 4 is an explanatory diagram of a DO concentration distribution and an ORP value distribution when agitating is performed.

【図6】粗大気泡を放出する気孔(ピッチ400mm)
の径に対するORP値の関係説明図である。
FIG. 6 shows pores that emit coarse bubbles (pitch: 400 mm)
FIG. 6 is an explanatory diagram showing a relationship between an ORP value and a diameter of a circle.

【図7】本発明の実施例3に係る生物反応槽の模式的構
成説明図である。
FIG. 7 is a schematic structural explanatory view of a biological reaction tank according to Example 3 of the present invention.

【図8】図8(a),(b)は従来例に係り、嫌気−好
気活性汚泥法によって汚水処理を行う生物反応槽の模式
的構成説明図である。
FIGS. 8 (a) and 8 (b) are schematic illustrations of a biological reaction tank for performing sewage treatment by an anaerobic-aerobic activated sludge method according to a conventional example.

【図9】図9(a),(b)は従来例に係り、循環式硝
化脱窒法により汚水処理を行う生物反応槽の模式的構成
説明図である。
FIGS. 9 (a) and 9 (b) are schematic illustrations of a biological reactor for performing sewage treatment by a circulating nitrification denitrification method according to a conventional example.

【符号の説明】[Explanation of symbols]

1…生物反応槽 2…嫌気槽 3…無酸素槽 4…好気槽 5…粗大気泡散気装置 6…微細気泡散気板 7…空気供給管 8…最終沈澱池 DESCRIPTION OF SYMBOLS 1 ... Biological reaction tank 2 ... Anaerobic tank 3 ... Anoxic tank 4 ... Aerobic tank 5 ... Large bubble diffuser 6 ... Fine bubble diffuser 7 ... Air supply pipe 8 ... Final sedimentation basin

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−328688(JP,A) 特開 平8−197088(JP,A) 特開 昭61−222595(JP,A) 特開 平5−277486(JP,A) 特開 平7−124582(JP,A) (58)調査した分野(Int.Cl.6,DB名) C02F 3/28 - 3/34 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-7-328688 (JP, A) JP-A-8-1970088 (JP, A) JP-A-61-222595 (JP, A) JP-A-5-222 277486 (JP, A) JP-A-7-124582 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C02F 3/28-3/34

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下水、排水等の汚水を、嫌気状態または
無酸素状態で攪拌しながら処理する第1槽と、該第1槽
から流入した処理水を微細気泡散気装置からの微細気泡
の放出により攪拌しながら所定量の酸素を溶存させた状
態で処理する第2槽とからなる生物反応槽において、前
記第1槽中の汚水を攪拌する攪拌装置が、第1槽の底部
に設けられ、100〜1000mmピッチで2〜8mm
の径の複数の気孔を有する粗大気泡散気装置であること
を特徴とする生物反応槽。
1. A first tank for treating sewage such as sewage and drainage while stirring it in an anaerobic state or an oxygen-free state, and treating the treated water flowing from the first tank with fine bubbles from a fine bubble diffuser. In a biological reaction tank comprising a second tank for treating in a state in which a predetermined amount of oxygen is dissolved while stirring by release, a stirrer for stirring sewage in the first tank is provided at the bottom of the first tank. , 2-8mm at 100-1000mm pitch
A biological reaction tank, which is a coarse bubble diffuser having a plurality of pores having different diameters.
【請求項2】 下水、排水等の汚水を、嫌気状態で攪拌
しながら処理する第1槽および無酸素状態で攪拌しなが
ら処理する第2槽と、該第2槽から流入した処理水を微
細気泡散気装置からの微細気泡の放出により攪拌しなが
ら所定量の酸素を残存させた状態で処理する第3槽とか
らなる生物反応槽において、前記第1槽および第2槽中
の汚水を攪拌する攪拌装置が、第1槽と第2槽のうちの
少なくとも1つの槽の底部に設けられ、100〜100
0mmピッチで2〜8mmの径の複数の気孔を有する粗
大気泡散気装置であることを特徴とする生物反応槽。
2. A first tank for treating sewage such as sewage and drainage while being stirred in an anaerobic state, a second tank for treating while stirring in an oxygen-free state, and finely treating water flowing from the second tank. In a biological reaction tank consisting of a third tank for treating with a predetermined amount of oxygen remaining while stirring by the release of fine bubbles from the bubble diffuser, the wastewater in the first tank and the second tank is stirred. A stirring device is provided at the bottom of at least one of the first tank and the second tank;
A biological reaction tank, which is a coarse bubble diffuser having a plurality of pores having a diameter of 2 to 8 mm at a pitch of 0 mm.
【請求項3】 微生物を付着させて固定化した結合型担
体または高分子物質に微生物を包括して固定化した包括
型担体を、第1槽と第2槽のうちの少なくとも1つの槽
に投入したことを特徴とする特許請求項1に記載の生物
反応槽。
3. A combined carrier in which microorganisms are adhered and immobilized, or an inclusive carrier in which microorganisms are encapsulated and immobilized in a polymer substance are charged into at least one of the first and second vessels. The biological reaction tank according to claim 1, wherein
【請求項4】 微生物を付着させて固定化した結合型担
体または高分子物質に微生物を包括して固定化した包括
型担体を、第2槽と第3槽のうちの少なくとも一つの槽
に投入したことを特徴とする特許請求項2に記載の生物
反応槽。
4. A combined carrier to which microorganisms are adhered and immobilized or an inclusive carrier in which microorganisms are entrapped and immobilized in a polymer substance are charged into at least one of the second and third vessels. The biological reaction tank according to claim 2, wherein the reaction is performed.
JP13418995A 1995-05-31 1995-05-31 Biological reaction tank Expired - Lifetime JP2984579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13418995A JP2984579B2 (en) 1995-05-31 1995-05-31 Biological reaction tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13418995A JP2984579B2 (en) 1995-05-31 1995-05-31 Biological reaction tank

Publications (2)

Publication Number Publication Date
JPH08323388A JPH08323388A (en) 1996-12-10
JP2984579B2 true JP2984579B2 (en) 1999-11-29

Family

ID=15122522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13418995A Expired - Lifetime JP2984579B2 (en) 1995-05-31 1995-05-31 Biological reaction tank

Country Status (1)

Country Link
JP (1) JP2984579B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4132771B2 (en) * 2001-10-12 2008-08-13 株式会社神鋼環境ソリューション Biological reaction tank and stirring method thereof
JP2013027810A (en) * 2011-07-28 2013-02-07 Kubota Corp Method for operation of aerobic and anaerobic reaction tank, and water treatment equipment

Also Published As

Publication number Publication date
JPH08323388A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
JP2005279447A (en) Water treatment method and apparatus
JPH07241568A (en) Method and device for purifying water using physical and chemical sludge for denitrification
JP5597002B2 (en) Waste water treatment apparatus and waste water treatment method
JP3136902B2 (en) Wastewater treatment method
JPS60187396A (en) Apparatus for biologically removing nitrogen in waste water
JP3451849B2 (en) Wastewater treatment method and apparatus
JPH067789A (en) Bacteria immobilized carrier and biologically nitrogen removing apparatus using the carrier
JP3474476B2 (en) Sewage treatment method
JP2984579B2 (en) Biological reaction tank
JP2001009498A (en) Treatment of waste water and treating device therefor
JP2748041B2 (en) Uniform mixing method of aeration tank in activated sludge treatment
JP5095882B2 (en) Waste nitric acid treatment method
JPH1034185A (en) Drainage treatment method
JP3136900B2 (en) Wastewater treatment method
JP3907867B2 (en) Wastewater treatment system
KR100353004B1 (en) Biological Nutrient Removal Method using a Submerged Moving Media Intermittent Aeration Reactor and System
JP4006750B2 (en) Immobilized microorganism carrier and environmental purification method using the same
JP2013103185A (en) Wastewater treatment apparatus
JP2001179280A (en) Method and apparatus for treating wastewater
JP2000325988A (en) Waste water treatment system having sludge concentrating means
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JP3019127B2 (en) Nitrogen removal equipment
JPH1157778A (en) Waste water treating device and treatment
JP3136901B2 (en) Wastewater treatment method
JPH1094796A (en) Treatment of waste water and device therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990907

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term