JP2001179280A - Method and apparatus for treating wastewater - Google Patents
Method and apparatus for treating wastewaterInfo
- Publication number
- JP2001179280A JP2001179280A JP36610299A JP36610299A JP2001179280A JP 2001179280 A JP2001179280 A JP 2001179280A JP 36610299 A JP36610299 A JP 36610299A JP 36610299 A JP36610299 A JP 36610299A JP 2001179280 A JP2001179280 A JP 2001179280A
- Authority
- JP
- Japan
- Prior art keywords
- microorganism
- immobilized carrier
- tank
- reaction
- carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、廃水の処理方法及
び装置に関し、特に、反応槽の少なくとも一部に微生物
固定化担体を使用する廃水の処理方法及び処理装置に関
する。The present invention relates to a method and an apparatus for treating wastewater, and more particularly to a method and an apparatus for treating wastewater using a microorganism-immobilized carrier in at least a part of a reaction tank.
【0002】[0002]
【従来の技術】廃水から有機物等の汚濁物質を除去する
方法として、生物学的処理技術が広く用いられており、
活性汚泥法は代表的な例である。この活性汚泥法によ
り、主にBOD(生物化学的酸素要求量)及びSS(懸
濁性浮遊物質)を除去処理することができる。2. Description of the Related Art As a method for removing pollutants such as organic substances from wastewater, biological treatment techniques are widely used.
The activated sludge method is a typical example. By this activated sludge method, it is possible to mainly remove BOD (biochemical oxygen demand) and SS (suspendable suspended solids).
【0003】さらに近年においては、閉鎖性水域の富栄
養化を防止するために、BOD、SSの除去のみなら
ず、窒素、リンをも除去することのできる技術が用いら
れるに至っている。このような技術に属するものとし
て、活性汚泥法の変法である活性汚泥硝化液循環変法や
嫌気―無酸素―好気活性汚泥法などがある。[0003] In recent years, in order to prevent eutrophication in closed water areas, a technique capable of removing not only BOD and SS but also nitrogen and phosphorus has been used. Examples of such technologies include a modified activated sludge nitrification liquid circulation method, which is a modification of the activated sludge method, and an anaerobic-anoxic-aerobic activated sludge method.
【0004】ここで、活性汚泥硝化液循環変法を用いた
従来の廃水処理装置の一例を図3に示す。この廃水処理
装置は、上流側から順に配置される最初沈殿池2、主に
硝酸性窒素または亜硝酸性窒素を窒素ガスにまで還元す
る反応(脱窒反応)を行う無酸素槽3、主に廃水中の窒
素化合物を硝酸性窒素または亜硝酸性窒素にまで酸化す
る反応(硝化反応)を行う好気槽4及び最終沈殿池7に
より構成される。最初沈殿池2では、廃水1の中に含ま
れる比較的大きくて重い固形物の除去を行う。次に廃水
は無酸素槽3及び好気槽4へ導入され、窒素は脱窒反応
及び硝化反応を受け、最終的には窒素ガスの形で大気中
に放散され廃水中より除去される。硝化反応による処理
を受けた後の好気槽4からの流出液の少なくとも一部
は、硝化循環液6として無酸素槽3へ循環返送される。
また、最終沈殿池7で得られた沈殿汚泥の一部は、返送
汚泥8として無酸素槽3へ導入される。BOD等として
測定される廃水中の有機物は無酸素槽3及び好気槽4の
双方において除去され、SSは最初沈殿池2及び最終沈
殿池7で除去される。[0004] Fig. 3 shows an example of a conventional wastewater treatment apparatus using a modified activated sludge nitrification liquid circulation method. The wastewater treatment apparatus includes an initial sedimentation basin 2 arranged in order from the upstream side, an oxygen-free tank 3 for performing a reaction for mainly reducing nitrate nitrogen or nitrite nitrogen to nitrogen gas (denitrification reaction), It is composed of an aerobic tank 4 and a final sedimentation tank 7 for performing a reaction (nitrification reaction) for oxidizing nitrogen compounds in wastewater to nitrate nitrogen or nitrite nitrogen. In the first settling basin 2, relatively large and heavy solids contained in the wastewater 1 are removed. Next, the waste water is introduced into the anoxic tank 3 and the aerobic tank 4, and nitrogen undergoes a denitrification reaction and a nitrification reaction, and is finally released into the atmosphere in the form of nitrogen gas and removed from the waste water. At least a portion of the effluent from the aerobic tank 4 after being subjected to the nitrification reaction is circulated and returned to the anoxic tank 3 as a nitrification circulating liquid 6.
Part of the settling sludge obtained in the final settling tank 7 is introduced into the oxygen-free tank 3 as returned sludge 8. Organic matter in the wastewater measured as BOD or the like is removed in both the anoxic tank 3 and the aerobic tank 4, and SS is first removed in the sedimentation basin 2 and the final sedimentation basin 7.
【0005】次に嫌気―無酸素―好気活性汚泥法あるい
はA2O法と呼ばれる従来の廃水処理装置の一例を図4
に示す。この廃水処理装置は、上流側から順に配置され
る最初沈殿池2、主に活性汚泥が細胞内のリン酸イオン
を廃水中に放出する生物学的リン放出反応を行う嫌気槽
10、主に活性汚泥が廃水中のリン酸イオンを細胞内に
摂取する生物学的リン摂取反応及び脱窒反応を行う無酸
素槽3、主に活性汚泥が廃水中のリン酸イオンを細胞内
に摂取する生物学的リン摂取反応及び硝化反応を行わし
める好気槽4及び最終沈殿池7により構成される。硝化
処理を受けた後の好気槽4からの流出液の少なくとも一
部は、硝化循環液6として無酸素槽3へ循環返送され
る。また、最終沈殿池7で得られた沈殿汚泥の一部は、
返送汚泥8として嫌気槽10へ導入される。無酸素工程
及び好気工程での活性汚泥のリン摂取量は嫌気工程での
リン放出量よりも大であり、このリン摂取量とリン放出
量との差が廃水からのリン除去量に相当する。このよう
に図4に示した嫌気―無酸素―好気活性汚泥法装置は、
生物学的な脱リン反応と脱窒素反応とを行わせ、廃水中
のBOD及びSSと共に、リンと窒素とを除去処理する
ものである。Next, an example of a conventional wastewater treatment apparatus called an anaerobic-anoxic-aerobic activated sludge method or an A2O method is shown in FIG.
Shown in This wastewater treatment apparatus comprises an initial sedimentation basin 2 arranged in order from the upstream side, an anaerobic tank 10 for mainly performing a biological phosphorus release reaction in which activated sludge releases intracellular phosphate ions into wastewater, Anoxic tank 3 in which sludge ingests phosphate ions in wastewater into cells and performs an oxygen uptake reaction and denitrification reaction, in which activated sludge mainly ingests phosphate ions in wastewater into cells It consists of an aerobic tank 4 and a final sedimentation basin 7 for performing a typical phosphorus intake reaction and a nitrification reaction. At least a part of the effluent from the aerobic tank 4 after being subjected to the nitrification treatment is circulated and returned to the anoxic tank 3 as a nitrification circulating liquid 6. In addition, part of the settling sludge obtained in the final settling tank 7 is:
It is introduced into the anaerobic tank 10 as returned sludge 8. The activated sludge phosphorus intake in the anoxic and aerobic processes is greater than the phosphorus release in the anaerobic process, and the difference between the phosphorus intake and the phosphorus release corresponds to the amount of phosphorus removed from the wastewater. . Thus, the anaerobic-anoxic-aerobic activated sludge method apparatus shown in FIG.
A biological dephosphorization reaction and a denitrification reaction are performed to remove phosphorus and nitrogen together with BOD and SS in wastewater.
【0006】また、図4には示していないが、例えば、
反応槽の流入部あるいは流出部に、アルミニウム塩もし
くは鉄塩などの凝集剤を添加することにより、生物学的
脱リン処理法と物理化学的脱リン処理法とを併用した装
置も用いられている。また、図3に示した活性汚泥硝化
液循環変法による生物学的硝化脱窒装置において、この
物理化学的脱リン処理法を併用する方法も知られてい
る。Although not shown in FIG. 4, for example,
An apparatus using both a biological dephosphorization method and a physicochemical dephosphorization method by adding a coagulant such as an aluminum salt or an iron salt to an inflow portion or an outflow portion of a reaction tank is also used. . Further, in a biological nitrification denitrification apparatus using the modified activated sludge nitrification liquid circulation method shown in FIG. 3, a method in which this physicochemical dephosphorization treatment method is used in combination is also known.
【0007】また、図3及び図4に示した廃水処理装置
において、浮遊生物(活性汚泥)のみを利用して硝化脱
窒反応を起こさせる方法も知られている。この場合、用
いられる硝化細菌はBOD除去細菌や脱窒細菌に比べて
増殖速度が小さいため、一つの活性汚泥系の中でBOD
除去細菌や脱窒細菌と同様の濃度及び活性を維持するた
めには、その活性汚泥系の汚泥令(汚泥の滞留時間)を
大きくする必要がある。そのために、反応槽内には硝化
細菌を含む多量の活性汚泥を保持する必要があり、反応
槽を大きくする必要がある。なお、通常のBOD及びS
S除去のための活性汚泥処理系における汚泥令が2〜5
日程度であるのに対し、硝化処理を行うためには8〜1
2日程度の汚泥令を確保する必要がある。このため、B
OD及びSS除去に用いられる標準的な活性汚泥法設備
での反応槽(曝気槽)滞留時間が6〜8時間であるのに
対し、浮遊生物のみを用いる活性汚泥硝化液循環変法に
おいては16〜22時間程度の反応槽滞留時間が必要と
なる。In the wastewater treatment apparatus shown in FIGS. 3 and 4, there is also known a method of causing a nitrification denitrification reaction using only floating organisms (activated sludge). In this case, the nitrifying bacteria used have a lower growth rate than the BOD-removing bacteria or the denitrifying bacteria.
In order to maintain the same concentration and activity as those of the removed bacteria and the denitrified bacteria, it is necessary to increase the sludge age (retention time of sludge) of the activated sludge system. Therefore, it is necessary to hold a large amount of activated sludge containing nitrifying bacteria in the reaction tank, and it is necessary to enlarge the reaction tank. Note that ordinary BOD and S
2-5 sludge regulations in the activated sludge treatment system for removing S
About 8 days to perform nitrification treatment
It is necessary to secure a sludge law for about two days. Therefore, B
The reaction tank (aeration tank) residence time in the standard activated sludge process equipment used for OD and SS removal is 6 to 8 hours, whereas the activated sludge nitrification liquid circulation method using only suspended organisms has a residence time of 16 to 8 hours. A reaction tank residence time of about 22 hours is required.
【0008】大中都市を中心に、既に設置されている下
水処理設備の大半は標準活性汚泥法によるものであり、
BOD及びSSの除去を目的としたものである。このよ
うな設備に対して、浮遊生物のみを利用して窒素除去処
理機能あるいはさらにリン除去処理機能を付加しようと
した場合、既存の標準活性汚泥法設備の反応槽容量を変
えることなく下水を処理しようとすれば処理水量を低減
させることが必要となり、処理水量を維持して処理しよ
うとすれば反応槽設備の増設が必要となる。Most of the sewage treatment facilities already installed, mainly in large and medium cities, are based on the standard activated sludge method.
The purpose is to remove BOD and SS. If an attempt is made to add a nitrogen removal treatment function or a phosphorus removal treatment function using only suspended organisms to such equipment, the sewage is treated without changing the reaction tank capacity of the existing standard activated sludge method equipment. If it is attempted to reduce the amount of treated water, it is necessary to increase the amount of the reaction water if the treatment is to be performed while maintaining the amount of treated water.
【0009】しかしながら、現状の下水処理において処
理水量を削減し、一部の下水を未処理のまま放流するこ
とはできないため、反応槽設備の増設を検討する必要が
ある。しかし、大中都市において反応槽の倍増あるいは
それ以上の増設を可能とする敷地を得ることは極めて困
難であり、またこのような方策をとるには多くの建設費
等が必要になる。However, in the current sewage treatment, it is not possible to reduce the amount of treated water and to discharge some of the sewage untreated, so that it is necessary to consider adding a reactor equipment. However, it is extremely difficult to obtain a site in a large or middle city where the number of reactors can be doubled or increased, and such measures require a lot of construction costs.
【0010】これに対し、処理速度の向上や反応槽のコ
ンパクト化を目的に反応槽の少なくとも一部に微生物固
定化担体を内在させ、この固定化微生物に硝化反応を担
わせることにより、6〜8時間程度の滞留時間の反応槽
を用いて、BOD及びSS除去処理と、硝化脱窒処理
と、場合によってはさらに生物学的リン除去処理を行う
という技術が近年実用化されるに至っている。On the other hand, for the purpose of improving the processing speed and reducing the size of the reaction tank, a microorganism-immobilized carrier is provided in at least a part of the reaction tank, and the immobilized microorganisms are responsible for the nitrification reaction. In recent years, a technique of performing a BOD and SS removal treatment, a nitrification denitrification treatment, and in some cases, a biological phosphorus removal treatment using a reaction tank having a residence time of about 8 hours has been put to practical use.
【0011】このような技術を用いた廃水処理装置の一
例を図5に示す。この廃水処理装置は、活性汚泥硝化液
循環変法において、微生物固定化担体を利用して硝化反
応を促進するものである。図5に示した技術が図3の例
と異なる点は、好気槽4が微生物固定化担体11を内在
させたものである点と、無酸素槽3と好気槽4とを阻流
壁21を介して一体化すると共に、好気槽4から微生物
固定化担体11が流出することを防止するために、好気
槽4の流出端部に担体分離用スクリーン12を設置し前
記阻流壁21に担体分離用スクリーン13が設けてある
点である。従ってこの装置では、無酸素槽3と好気槽4
は、阻流壁21と担体分離用スクリーン13を介して連
通しており、無酸素槽3内の水位と好気槽4内の水位は
等しくなる。FIG. 5 shows an example of a wastewater treatment apparatus using such a technique. This wastewater treatment apparatus promotes a nitrification reaction using a microorganism-immobilized carrier in a modified activated sludge nitrification liquid circulation method. The difference between the technique shown in FIG. 5 and the example of FIG. 3 is that the aerobic tank 4 has the microorganism-immobilized carrier 11 therein, and that the anoxic tank 3 and the aerobic tank 4 have a blocking wall. In order to prevent the microorganism-immobilized carrier 11 from flowing out of the aerobic tank 4 and to integrate the carrier through the aerobic tank 4, a carrier separating screen 12 is installed at the outflow end of the aerobic tank 4. 21 is provided with a carrier separation screen 13. Therefore, in this apparatus, the oxygen-free tank 3 and the aerobic tank 4
Is in communication with the baffle wall 21 via the carrier separation screen 13, so that the water level in the anoxic tank 3 and the water level in the aerobic tank 4 are equal.
【0012】また、図5における無酸素槽−好気槽と同
様の構造を図4における嫌気―無酸素−好気法設備へ適
用して、硝化処理等の高速化と反応槽のコンパクト化を
はかることも行われている。この場合、好気槽4に微生
物固定化担体11を内在させ、好気槽4から該担体11
が流出することを防止するために、好気槽4流出端部に
担体分離用スクリーン12が、無酸素槽−好気槽間の阻
流壁に担体分離用スクリーン13がそれぞれ設置され
る。なお、嫌気槽10と無酸素槽3の両方に微生物固定
化担体を内在させて固定化微生物を利用する方法もある
が、費用対効果の点からは、微生物固定化担体は好気槽
4のみへ内在させることが好ましい。The same structure as the anaerobic tank-aerobic tank shown in FIG. 5 is applied to the anaerobic-anoxic-aerobic equipment shown in FIG. 4 to increase the speed of nitrification treatment and reduce the size of the reaction tank. Measuring is also being done. In this case, the microorganism-immobilized carrier 11 is internally provided in the aerobic tank 4, and the carrier 11 is removed from the aerobic tank 4.
A carrier separation screen 12 is provided at the outflow end of the aerobic tank 4 and a carrier separation screen 13 is provided at the baffle wall between the anoxic tank and the aerobic tank. In addition, there is a method in which a microorganism-immobilized carrier is contained in both the anaerobic tank 10 and the anoxic tank 3 to use the immobilized microorganisms. However, from the viewpoint of cost effectiveness, the microorganism-immobilized carrier is only the aerobic tank 4. It is preferable to make it internal.
【0013】図5における微生物固定化担体11に関
し、微生物固定化の方法として、結合固定化法及び包括
固定化法が知られており、微生物固定化担体の材質とし
て、ポリプロピレン、ポリエチレン、ポリエチレングリ
コールなど多くのものが用いられている。しかしなが
ら、経済性という観点からは、安価かつ耐磨耗性で長期
間使用可能な材料が好ましく、ポリプロピレンやポリエ
チレンが好ましいと見られている。Regarding the microorganism-immobilized carrier 11 in FIG. 5, a binding immobilization method and a comprehensive immobilization method are known as methods for immobilizing microorganisms, and the material of the microorganism-immobilized carrier is polypropylene, polyethylene, polyethylene glycol, or the like. Many are used. However, from the viewpoint of economy, a material which is inexpensive, wear-resistant and can be used for a long period of time is preferable, and polypropylene and polyethylene are considered to be preferable.
【0014】微生物固定化担体の形状としては、球形、
立方形、円柱形、中空円筒形など、様々なものが用いら
れているが、微生物固定化担体に付着、固定化された微
生物の有効な厚みは0.1mm程度であり、つまり微生物固
定化担体の表面のみが有効に機能することと、微生物固
定化担体の表面から0.1mmより深い部分は微生物の作用
に関係しないだけでなく、反応槽内の水を排除し反応槽
有効容積を低減する方向に作用するため、微生物固定化
担体としては比表面積(表面積/真の体積)の大きな形
状のものが好ましく、このため中空円筒形状のものが好
ましいと見られている。The shape of the microorganism-immobilized carrier may be spherical,
Various things such as cubic, cylindrical, hollow cylindrical, etc. are used, but the effective thickness of the microorganisms attached to and immobilized on the microorganism-immobilized carrier is about 0.1 mm, Only the surface functions effectively, and the part deeper than 0.1 mm from the surface of the microorganism-immobilized carrier not only has no effect on the action of microorganisms, but also eliminates water in the reaction tank and reduces the effective volume of the reaction tank. In order to act, the microorganism-immobilized carrier preferably has a large specific surface area (surface area / true volume), and thus a hollow cylindrical shape is considered to be preferable.
【0015】なお、この微生物固定化担体の寸法は特に
制限は無いが、最短径が例えば20mm以上といった大型の
微生物固定化担体を用いた場合には、微生物固定化担体
の流出を防止するための担体分離用スクリーン12及び
13の目開きを大きくすることができるため、スクリー
ン12及び13の目詰まりを生じる恐れは少ない。しか
し、微生物固定化担体の比表面積が小さくなるため、反
応槽内で必要とする微生物固定化担体表面積の総量を確
保するためには、反応槽に内在させる微生物固定化担体
の量が多くなる。微生物固定化担体に要するコストは、
その重量にぼぼ比例(微生物固定化担体の材質と形状が
一定の場合には容量にもほぼ比例)するため、大型の微
生物固定化担体を用いた場合は、微生物固定化担体に要
するコストが大となり、経済性の面で問題となる。一
方、最短径が例えば1mm以下といった小型の微生物固定
化担体を用いた場合には、比表面積が大きいので反応槽
に内在させる微生物固定化担体の量は少なくて済むた
め、微生物固定化担体に要するコストは低減する。しか
し、スクリーン12及び13の目開きを小さくすること
が必要となり、スクリーン12及び13の目詰まりを生
じる恐れが大きくなる。このため、通常は最短径3〜5mm
程度の微生物固定化担体が用いられる。The size of the microorganism-immobilized carrier is not particularly limited. However, when a large-sized microorganism-immobilized carrier having a minimum diameter of, for example, 20 mm or more is used, it is necessary to prevent the microorganism-immobilized carrier from flowing out. Since the openings of the carrier separation screens 12 and 13 can be increased, the screens 12 and 13 are less likely to be clogged. However, since the specific surface area of the microorganism-immobilized carrier becomes small, the amount of the microorganism-immobilized carrier contained in the reaction tank increases in order to secure the total amount of the surface area of the microorganism-immobilized carrier required in the reaction vessel. The cost required for the microorganism-immobilized carrier is
Since the weight is almost proportional to the weight (substantially proportional to the capacity if the material and shape of the microorganism-immobilized carrier are constant), the cost required for the microorganism-immobilized carrier is large when a large microorganism-immobilized carrier is used. This is a problem in terms of economy. On the other hand, when using a small microorganism-immobilized carrier having a minimum diameter of, for example, 1 mm or less, the amount of the microorganism-immobilized carrier to be contained in the reaction vessel is small because the specific surface area is large, and thus the microorganism-immobilized carrier is required. Costs are reduced. However, it is necessary to reduce the openings of the screens 12 and 13, and the possibility that the screens 12 and 13 are clogged increases. For this reason, usually the shortest diameter is 3 to 5 mm
A certain amount of a microorganism-immobilized carrier is used.
【0016】図5に示した好気槽流出端部のスクリーン
12及び好気槽流入端部のスクリーン13は、上述した
ように微生物固定化担体の流出を防止するものであるた
め、その目開きは微生物固定化担体の最短径より小さく
する必要がある。The screen 12 at the outflow end of the aerobic tank and the screen 13 at the inflow end of the aerobic tank shown in FIG. 5 prevent the outflow of the microorganism-immobilized carrier as described above. Needs to be smaller than the shortest diameter of the microorganism-immobilized carrier.
【0017】微生物固定化担体を内在しないの嫌気槽と
微生物固定化担体を内在する好気槽とを連通させた構造
の装置において、好気槽から微生物固定化担体が流出す
ることを防止するために、担体分離用スクリーンを嫌気
槽及び好気槽の連通部と好気槽の排水口にそれぞれ設け
る技術は、例えば特開平2―184396号公報に開示
されている。In an apparatus having a structure in which an anaerobic tank without a microorganism-immobilized carrier and an aerobic tank with a microorganism-immobilized carrier communicate with each other, in order to prevent the microorganism-immobilized carrier from flowing out of the aerobic tank. A technique of providing a carrier separation screen at the communicating portion between the anaerobic tank and the aerobic tank and the drainage port of the aerobic tank is disclosed in, for example, Japanese Patent Application Laid-Open No. 2-184396.
【0018】また、標準活性汚泥法設備における反応槽
(曝気槽)の形状に関して、「下水道施設計画・設計指
針と解説」(日本下水道協会、1994年版)によれ
ば、阻流壁を設けることとされている。この阻流壁は、
短絡を防止し、槽内の均質化を目的として設けるもので
ある。阻流壁を設けた標準活性汚泥法設備における反応
槽(曝気槽)の構造の一例を図6に示す。図6の例にお
ける阻流壁21は上部開口22と下部開口23を有し、
反応槽の前段部と後段部において汚泥混合液は流通可能
となっている。[0018] Further, regarding the shape of the reaction tank (aeration tank) in the standard activated sludge process equipment, according to "Sewerage facility planning / design guideline and commentary" (Japan Sewerage Association, 1994 version), it is necessary to provide a baffle wall. Have been. This barrier is
It is provided for the purpose of preventing short circuit and homogenizing in the tank. FIG. 6 shows an example of the structure of a reaction tank (aeration tank) in a standard activated sludge method facility provided with a baffle wall. The baffle wall 21 in the example of FIG. 6 has an upper opening 22 and a lower opening 23,
The sludge mixture can be circulated in the front part and the rear part of the reaction tank.
【0019】[0019]
【発明が解決しようとする課題】図5における、微生物
固定化担体11を内在した好気槽4の流出端部のスクリ
ーン12は、微生物固定化担体11が好気槽4より流出
してその下流側の反応槽部分あるいは最終沈殿池へ流れ
込むことを防止するためのものであり、このスクリーン
12は好気槽4内の微生物固定化担体11の濃度を保持
すると共に、微生物固定化担体に固定化・保持された汚
泥の汚泥令を長く保つという機能を果たす。また、微生
物固定化担体11を内在した好気槽4の流入端部のスク
リーン13は、微生物固定化担体11が好気槽4より逆
流してその上流側の反応槽部分へと流れ込むことを防止
するために設置するものである。例えば、微生物固定化
担体11を内在した反応槽とその上流側の反応槽が、図
6に示したような、汚泥混合液及び微生物固定化担体1
1の流通可能な阻流壁によって区切られている場合、微
生物固定化担体11を内在した反応槽での曝気等によっ
て逆流が生じ、阻流壁の前後の反応槽で逆流混合が生じ
る。この場合、特に微生物固定化担体を内在する好気槽
4の前段の反応槽が微生物固定化担体を内在するのもの
ではなく、攪拌翼によって槽内の汚泥液の混合を行って
いる嫌気反応槽あるいは無酸素槽等の場合には、逆流し
て流れ込んだ微生物固定化担体が攪拌翼と衝突して破損
し、微生物固定化担体の損失を生じる恐れがある。ま
た、微生物固定化担体を内在する好気槽4の前段の反応
槽が微生物固定化担体を内在するのものではなく、弱い
曝気によって槽内の汚泥液の混合を行っている微好気槽
等の場合、逆流して流れ込んだ微生物固定化担体が微生
物固定化担体を内在していなかった前段の反応槽内に沈
積し、微生物固定化担体を内在する好気槽の微生物固定
化担体濃度が低下し、処理能力への悪影響を招く恐れが
ある。In FIG. 5, the screen 12 at the outflow end of the aerobic tank 4 in which the microorganism-immobilized carrier 11 is provided is located downstream of the aerobic tank 4 after the microorganism-immobilized carrier 11 flows out of the aerobic tank 4. This screen 12 keeps the concentration of the microorganism-immobilized carrier 11 in the aerobic tank 4 and immobilizes the microorganism-immobilized carrier on the microorganism-immobilized carrier. -Performs the function of keeping the sludge order of the retained sludge for a long time. Further, the screen 13 at the inflow end of the aerobic tank 4 in which the microorganism-immobilized carrier 11 is provided prevents the microorganism-immobilized carrier 11 from flowing backward from the aerobic tank 4 and flowing into the upstream reaction tank. It is installed in order to do. For example, as shown in FIG. 6, a reaction tank containing the microorganism-immobilized carrier 11 and a reaction vessel upstream of the reaction tank are composed of a sludge mixed solution and the microorganism-immobilized carrier 1.
In the case of being separated by one flowable baffle wall, backflow occurs due to aeration in a reaction vessel having the microorganism-immobilized carrier 11 therein, and backflow mixing occurs in the reaction vessel before and after the baffle wall. In this case, in particular, the anaerobic reaction tank in which the sludge liquid in the tank is mixed by the stirring blade is not the reaction tank preceding the aerobic tank 4 containing the microorganism-immobilized carrier but the microorganism-immobilized carrier. Alternatively, in the case of an oxygen-free tank or the like, there is a possibility that the microorganism-immobilized carrier that has flowed backward may collide with the stirring blade and be damaged, causing loss of the microorganism-immobilized carrier. In addition, the reaction tank upstream of the aerobic tank 4 containing the microorganism-immobilized carrier is not one in which the microorganism-immobilized carrier is contained, but a microaerobic tank in which the sludge liquid in the tank is mixed by weak aeration. In the case of, the microorganism-immobilized carrier that has flowed backwards is deposited in the reaction vessel in the former stage where the microorganism-immobilized carrier was not contained, and the concentration of the microorganism-immobilized carrier in the aerobic tank containing the microorganism-immobilized carrier decreases. However, there is a risk that the processing capacity will be adversely affected.
【0020】微生物固定化担体11を内在した好気槽4
の流入端部のスクリーン13は、かかる事態を防止する
ために配設されるもので、好気槽4内の微生物固定化担
体11の濃度を保持すると共に、微生物固定化担体に固
定化され保持されている汚泥の汚泥令を長く保つ効果を
有する。An aerobic tank 4 containing a microorganism-immobilized carrier 11 therein.
The screen 13 at the inflow end is provided to prevent such a situation. The screen 13 maintains the concentration of the microorganism-immobilized carrier 11 in the aerobic tank 4 and is immobilized on the microorganism-immobilized carrier. It has the effect of keeping the sludge age of the sludge for a long time.
【0021】しかし、このようなスクリーンを流入側及
び流出側に複数配設する場合、スクリーンの設備費が比
較的高価であるため経済的に不利になるという問題を生
ずると共に、スクリーンは一般的に目詰まりの危険性を
有しているためスクリーンの数が多くなるとスクリーン
の目詰まりによる流通不全の問題を生じる危険性も増す
ことになる。However, when a plurality of such screens are provided on the inflow side and the outflow side, there is a problem that the equipment cost of the screen is relatively high, which is economically disadvantageous, and the screen is generally used. Since there is a risk of clogging, when the number of screens is increased, the risk of causing a problem of distribution failure due to clogging of the screen is also increased.
【0022】本発明は以上の問題点を解決するためにな
されたもので、担体分離用スクリーンの配設個所を減ら
し、スクリーン設備費の低減を図ると共に、スクリーン
の目詰まりによる流通不全の危険性を低減させることが
でき、さらに、微生物固定化担体を内在する反応槽の微
生物固定化担体濃度を保持し、かつ微生物固定化担体上
の汚泥の汚泥令を長く保つことを可能とすることによ
り、窒素除去処理等の廃水処理を行う上で良好で安定し
た処理を行うことができる廃水の処理方法及び処理装置
を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is possible to reduce the number of screens for separating carriers, reduce the cost of screen equipment, and reduce the risk of flow failure due to clogging of the screen. Can be reduced, and furthermore, by maintaining the concentration of the microorganism-immobilized carrier in the reaction vessel containing the microorganism-immobilized carrier, and by allowing the sludge age of the sludge on the microorganism-immobilized carrier to be kept longer, It is an object of the present invention to provide a wastewater treatment method and a wastewater treatment method capable of performing good and stable treatment in performing wastewater treatment such as nitrogen removal treatment.
【0023】[0023]
【課題を解決するための手段】上記の課題は次の発明に
より解決される。第1の発明は、廃水の生物学的処理を
行うための反応槽として微生物固定化担体を内在する反
応槽と、該反応槽の上流側に微生物固定化担体を内在し
ない反応槽とを備えた廃水処理装置を用いた廃水処理方
法において、前記微生物固定化担体を内在する反応槽と
前記微生物固定化担体を内在しない反応槽とを隣接させ
て両反応槽を水密壁で仕切り、前記微生物固定化担体を
内在しない反応槽の水位w1と前記微生物固定化担体を
内在する反応槽の水位w2にw1>w2の水位差を設け、
前記微生物固定化担体を内在しない反応槽内の汚泥混合
液を前記水密壁を越流させることにより前記微生物固定
化担体を内在する反応槽に移送することを特徴とする廃
水処理方法である。The above object is achieved by the following invention. The first invention includes a reaction vessel having a microorganism-immobilized carrier therein as a reaction vessel for performing biological treatment of wastewater, and a reaction vessel having no microorganism-immobilized carrier upstream of the reaction vessel. In the wastewater treatment method using a wastewater treatment apparatus, the reaction vessel containing the microorganism-immobilized carrier and the reaction vessel not containing the microorganism-immobilized carrier are adjacent to each other, and both reaction vessels are separated by a watertight wall, and the microorganism immobilization is performed. Providing a water level difference of w 1 > w 2 between the water level w 1 of the reaction vessel without the carrier and the water level w 2 of the reaction vessel with the microorganism-immobilized carrier,
A wastewater treatment method comprising transferring a mixed liquid of sludge in a reaction vessel without the microorganism-immobilized carrier to a reaction vessel having the microorganism-immobilized carrier therein by flowing over the watertight wall.
【0024】第2の発明は、廃水の生物学的処理を行う
ための反応槽として、微生物固定化担体を内在する反応
槽と、該反応槽の上流側に微生物固定化担体を内在しな
い反応槽とを備えた廃水処理装置において、前記微生物
固定化担体を内在する反応槽と前記微生物固定化担体を
内在しない反応槽を水密壁を介して隣接して設けると共
に、前記水密壁により前記微生物固定化担体を内在しな
い反応槽の水位w1と前記微生物固定化担体を内在する
反応槽の水位w2にw1>w2の高低差が生じ、前記微生
物固定化担体を内在しない反応槽内の汚泥混合液が水密
壁を越流して前記微生物固定化担体を内在する反応槽に
移送されるように構成したことを特徴とする廃水の処理
装置である。According to a second aspect of the present invention, as a reaction tank for performing biological treatment of wastewater, a reaction tank having a microorganism-immobilized carrier therein, and a reaction tank having no microorganism-immobilized carrier upstream of the reaction tank are provided. In the wastewater treatment apparatus provided with, a reaction vessel containing the microorganism-immobilized carrier and a reaction vessel not containing the microorganism-immobilized carrier are provided adjacent to each other via a watertight wall, and the microorganisms are immobilized by the watertight wall. the water level w 2 of the reactor the underlying water level w 1 of the reaction vessel without inherent carrier the microbe immobilizing carrier w 1> height difference w 2 occurs, the sludge in the reactor is not inherent the microbe-immobilized carrier An apparatus for treating wastewater, characterized in that the mixed liquid flows over a watertight wall and is transferred to a reaction tank having the microorganism-immobilized carrier therein.
【0025】第3の発明は、微生物固定化担体を内在す
る反応槽の汚泥混合液流出部に、該汚泥混合液と該微生
物固定化担体とを分離するためのスクリーンを配設する
ことを特徴とする第2の発明に記載の廃水の処理装置で
ある。A third aspect of the present invention is characterized in that a screen for separating the sludge mixture and the microorganism-immobilized carrier is provided at the sludge-mixed solution outflow portion of the reaction tank containing the microorganism-immobilized carrier. The wastewater treatment apparatus according to the second invention.
【0026】第4の発明は、微生物固定化担体を内在し
ない反応槽と微生物固定化担体を内在する反応槽との水
位差が1cm以上20cm以下となるように水密壁を設
けたことを特徴とする第2ないし第3の発明に記載の廃
水の処理装置である。The fourth invention is characterized in that a watertight wall is provided so that the water level difference between a reaction vessel without a microorganism-immobilized carrier and a reaction vessel with a microorganism-immobilized carrier is 1 cm or more and 20 cm or less. A wastewater treatment apparatus according to the second or third invention.
【0027】[0027]
【発明の実施の形態】図1は、本発明に係る廃水処理装
置の一実施形態を示すもので、活性汚泥硝化液循環変法
における好気槽を微生物固定化担体内在型としたものの
例である。この廃水の処理装置は、上流側から順に配置
された最初沈殿池2、微生物固定化担体を内在しない無
酸素槽3、微生物固定化担体を内在する好気槽4及び最
終沈殿池7から構成される。前記無酸素槽3では攪拌翼
あるいはポンプ様の構造の水中攪拌機による撹拌のみが
行われ、前記好気槽4では曝気装置5により酸素供給が
行われると共に、曝気に伴って生じる水流により撹拌が
行われる。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of a wastewater treatment apparatus according to the present invention, in which an aerobic tank in a modified activated sludge nitrification liquid circulation method is of a type in which a microorganism-immobilized carrier is incorporated. is there. This wastewater treatment apparatus is composed of a first sedimentation basin 2 arranged in order from the upstream side, an anoxic tank 3 having no microorganism-immobilized carrier, an aerobic tank 4 having a microorganism-immobilized carrier, and a final sedimentation basin 7. You. In the oxygen-free tank 3, only stirring is performed by a stirring blade or an underwater stirrer having a pump-like structure. In the aerobic tank 4, oxygen is supplied by an aeration device 5, and stirring is performed by a water flow generated by aeration. Will be
【0028】微生物固定化担体が内在しない無酸素槽3
と微生物固定化担体を内在する好気槽4との仕切り部分
を水密壁24とし、前記無酸素槽3と前記好気槽4との
間に担体流出防止用スクリーンを配さないものである。
さらに、図1で好気槽4の流出部の水密壁25の高さを
適切に定めることにより無酸素槽3の水位31と好気槽
4の水位41とに高低差(水位31>水位41)を設け
たものである。Oxygen-free tank 3 having no microorganism-immobilized carrier inside
The partition between the and the aerobic tank 4 containing the microorganism-immobilized carrier is a watertight wall 24, and no carrier outflow prevention screen is provided between the anoxic tank 3 and the aerobic tank 4.
Furthermore, in FIG. 1, the height difference between the water level 31 of the anoxic tank 3 and the water level 41 of the aerobic tank 4 is determined by appropriately setting the height of the watertight wall 25 at the outlet of the aerobic tank 4 (water level 31> water level 41). ).
【0029】廃水1は、最初沈殿池2で比重差による固
液分離を経て、無酸素槽3及び好気槽4から成る反応槽
へ順次通水される。好気槽流出液の一部は硝化循環液6
として無酸素槽3へ循環返送される。最終沈殿池7へ流
入する好気槽流出液は、最終沈殿池7で処理水9と活性
汚泥とに分離される。最終沈殿池7で分離、濃縮された
活性汚泥の少なくも一部は返送汚泥8として無酸素槽3
へ送られ、残部は、いわゆる余剰汚泥として系外へ引き
抜かれ、最初沈殿池沈殿物と共に、処理される。The waste water 1 is first passed through a sedimentation basin 2 through a solid-liquid separation based on a specific gravity difference, and then to a reaction tank composed of an oxygen-free tank 3 and an aerobic tank 4. Part of the aerobic tank effluent is nitrification circulating fluid 6
And is circulated back to the anoxic tank 3. The aerobic tank effluent flowing into the final sedimentation basin 7 is separated into treated water 9 and activated sludge in the final sedimentation basin 7. At least a part of the activated sludge separated and concentrated in the final sedimentation tank 7 is returned to the oxygen-free tank 3 as sludge 8.
The remaining part is drawn out of the system as so-called excess sludge, and is first treated together with the sedimentation tank sediment.
【0030】最初沈殿池2からの廃水は、硝化循環液6
と、返送汚泥8と共に無酸素槽3へ流入し、無酸素槽3
で処理される。無酸素槽3での処理を終えた汚泥混合液
は水密壁24を越流して、微生物固定化担体11を内在
する好気槽4へ流入し、好気槽4内で処理を受ける。好
気槽4では、微生物固定化担体11に固定化された微生
物(汚泥)と浮遊汚泥(活性汚泥)ならびに廃水が曝気
装置を通じて吹き込まれる空気によって攪拌混合され、
廃水中の汚濁物質が好気的に処理される。The wastewater from the first sedimentation basin 2 contains the nitrification circulating liquid 6
Flows into the oxygen-free tank 3 together with the returned sludge 8,
Is processed. After the treatment in the anoxic tank 3, the sludge mixture flows over the watertight wall 24, flows into the aerobic tank 4 in which the microorganism-immobilized carrier 11 is provided, and is treated in the aerobic tank 4. In the aerobic tank 4, the microorganisms (sludge) immobilized on the microorganism immobilization carrier 11, the suspended sludge (activated sludge), and the wastewater are stirred and mixed by the air blown through the aeration device,
Pollutants in wastewater are treated aerobically.
【0031】ここで、無酸素槽3においては、活性汚泥
が、廃水1中の溶解性成分の主体である有機物を酸化す
る際に、硝酸性窒素または亜硝酸性窒素中の酸素を利用
する原理を用いて、廃水1、返送汚泥8及び硝化循環液
6に含まれる硝酸性窒素または亜硝酸性窒素を窒素ガス
にまで還元(脱窒反応)し、脱窒処理する。Here, in the anoxic tank 3, when activated sludge oxidizes organic substances, which are the main components of soluble components in the wastewater 1, the principle of utilizing oxygen in nitrate nitrogen or nitrite nitrogen. , Nitrate nitrogen or nitrite nitrogen contained in the wastewater 1, the return sludge 8 and the nitrification circulating liquid 6 is reduced to nitrogen gas (denitrification reaction), and denitrification treatment is performed.
【0032】また、好気槽4においては、活性汚泥の作
用により排水中の窒素化合物を硝酸性窒素または亜硝酸
性窒素にまで酸化(硝化反応)すると共に、有機物の酸
化分解除去を行う。なお好気槽4では、内在する微生物
固定化担体11に固定化された微生物の代謝作用の利用
により硝化反応を促進し、反応槽のコンパクト化と硝化
反応の安定化がはかられている。In the aerobic tank 4, the activated sludge oxidizes nitrogen compounds in the wastewater to nitrate nitrogen or nitrite nitrogen (nitrification reaction) and oxidatively decomposes and removes organic substances. In the aerobic tank 4, the nitrification reaction is promoted by utilizing the metabolic action of the microorganisms immobilized on the inherent microorganism immobilization carrier 11, thereby achieving a compact reaction tank and stabilizing the nitrification reaction.
【0033】また、前記好気槽4の流出部には、この微
生物固定化担体11が好気槽4より流出することを防止
するために、微生物固定化担体分離用スクリーン12
(担体流出防止用スクリーン12)が設けられている。
なお、この担体流出防止用スクリーン12の目開きは、
好気槽4に内在している微生物固定化担体の最短径より
1〜3mm程度小さいものが好ましい。例えば、内在し
ている微生物固定化担体の最短径が3〜5mm程度の場
合は、担体流出防止用スクリーン12の目開きは1.5
〜3mm程度とすることが好ましい。担体流出防止用ス
クリーン12の目開きが微生物固定化担体の最短径に比
べて過度に小さい場合には、担体流出防止用スクリーン
12の目詰まりの恐れが大きくなる。また、微生物固定
化担体の最短径と担体流出防止用スクリーン12の目開
きとの差が小さい場合には、微生物固定化担体のわずか
な変形や磨耗によって微生物固定化担体が担体流出防止
用スクリーン12を通過して流失する恐れがある。In order to prevent the microorganism-immobilized carrier 11 from flowing out of the aerobic tank 4, a screen 12 for separating the microorganism-immobilized carrier is provided at the outlet of the aerobic tank 4.
(Carrier outflow prevention screen 12) is provided.
The openings of the carrier outflow prevention screen 12 are as follows:
It is preferable that the carrier is about 1 to 3 mm smaller than the shortest diameter of the microorganism-immobilized carrier in the aerobic tank 4. For example, when the shortest diameter of the intrinsic microorganism-immobilized carrier is about 3 to 5 mm, the aperture of the carrier outflow prevention screen 12 is 1.5
It is preferably about 3 mm. If the aperture of the carrier outflow prevention screen 12 is excessively small compared to the shortest diameter of the microorganism-immobilized carrier, the carrier outflow prevention screen 12 is likely to be clogged. Further, when the difference between the shortest diameter of the microorganism-immobilized carrier and the aperture of the carrier outflow prevention screen 12 is small, the microorganism-immobilized carrier is moved by the slight deformation or wear of the microorganism-immobilized carrier. And may be washed away.
【0034】図2は、本発明に係る廃水処理装置の他の
実施形態を示すもので、嫌気―無酸素―好気活性汚泥法
において好気槽を微生物固定化担体内在型としたものの
例である。この廃水の処理装置は、上流側から順に配置
される最初沈殿池2、微生物固定化担体を内在しない嫌
気槽10、微生物固定化担体を内在しない酸素槽3、微
生物固定化担体を内在する好気槽4及び最終沈殿池7か
ら構成される。FIG. 2 shows another embodiment of the wastewater treatment apparatus according to the present invention, which is an example in which an aerobic tank is provided with a microorganism-immobilized carrier in the anaerobic-anoxic-aerobic activated sludge method. is there. This wastewater treatment apparatus includes an initial sedimentation tank 2, an anaerobic tank 10 without a microorganism-immobilized carrier, an oxygen tank 3 without a microorganism-immobilized carrier, and an aerobic cell with a microorganism-immobilized carrier, which are arranged in order from the upstream side. It comprises a tank 4 and a final sedimentation basin 7.
【0035】図2において、微生物固定化担体を内在し
ない嫌気槽10と微生物固定化担体を内在しない無酸素
槽3との仕切り部分は、例えば図6に示したような、開
口部分22,23を有する阻流壁21としてもよく、こ
の場合嫌気槽10の水位51と無酸素槽3の水位31は
同じとなる。なお、微生物固定化担体を内在しない無酸
素槽3と微生物固定化担体を内在する好気槽4との仕切
り部分は、図1の場合と同様に水密壁24であり、担体
流出防止用スクリーンを有さず、無酸素槽3の水位31
と好気槽4の水位41には高低差(水位31>水位4
1)が設けられている。In FIG. 2, the partition between the anaerobic tank 10 without the microorganism-immobilized carrier and the anoxic tank 3 without the microorganism-immobilized carrier is provided with openings 22 and 23 as shown in FIG. In this case, the water level 51 of the anaerobic tank 10 and the water level 31 of the anoxic tank 3 are the same. The partition between the oxygen-free tank 3 without the microorganism-immobilized carrier and the aerobic tank 4 with the microorganism-immobilized carrier is a watertight wall 24 as in the case of FIG. Without, water level 31 of anoxic tank 3
And the water level 41 of the aerobic tank 4 has a height difference (water level 31> water level 4
1) is provided.
【0036】なお、図2において微生物固定化担体を内
在しない嫌気槽10と微生物固定化担体を内在しない無
酸素槽3との仕切り部分を水密壁とし、嫌気槽10の水
位51と無酸素槽3の水位31とに高低差(水位51>
水位41)を設けて、嫌気槽10から無酸素槽3へ越流
させる構成とすることも可能である。In FIG. 2, the partition between the anaerobic tank 10 without the microorganism-immobilized carrier and the anaerobic tank 3 without the microorganism-immobilized carrier is a watertight wall, and the water level 51 of the anaerobic tank 10 and the anaerobic tank 3 Height difference with water level 31 (water level 51>
It is also possible to provide a water level 41) so that the water flows from the anaerobic tank 10 to the anoxic tank 3.
【0037】本発明に係る装置は、図1及び図2に示し
たように、前段(上流側)の微生物固定化担体を内在し
ない無酸素槽3と後段(下流側)の微生物固定化担体を
内在する好気槽4との仕切り部分を水密壁とし、この水
密壁の両側に水位差を設けて、前記無酸素槽3から前記
好気槽4へ越流させる構成である。このように反応槽間
の仕切りを水密壁とし、前後の反応槽の水位に差をつけ
て、前段の反応槽から後段の反応槽へと汚泥混合液を越
流させることは、押し出し流れを確保すると共に、反応
槽間の短絡を防止し、反応効率の向上と安定化を図る上
で効果的である。また、前記好気槽4において曝気によ
る攪拌混合により乱流が生じても、前記無酸素槽3から
流出する汚泥混合液が定常的に前記好気槽4へ越流して
いるため、前記好気槽4の汚泥混合液が、その前段の無
酸素槽3へ逆流入することを防止することができる。こ
れにより、前記好気槽4内の微生物固定化担体11の濃
度を一定に保持することができ、微生物固定化担体11
上の汚泥の汚泥令を長く保つことができる。さらに、前
記無酸素槽3と前記好気槽4との間の仕切り部分に担体
流出防止用スクリーンを設置することが不要になる。こ
れにより、前記好気槽4の周辺に設置される担体流出防
止用スクリーンの数を減らすことができ、設備費の低減
が図れ、かつ担体流出防止用スクリーンの目詰まりによ
る流通不全の危険性の低減が図れる。As shown in FIG. 1 and FIG. 2, the apparatus according to the present invention comprises an anoxic tank 3 in which no upstream (upstream) microorganism-immobilized carrier is provided and a downstream (downstream) microorganism-immobilized carrier. The partition between the internal aerobic tank 4 and the aerobic tank 4 is a watertight wall, and a water level difference is provided on both sides of the watertight wall so that the water flows from the anoxic tank 3 to the aerobic tank 4. In this way, the partition between the reaction tanks is made a watertight wall, and the difference in the water level of the front and rear reaction tanks, and the sludge mixed solution is allowed to overflow from the previous reaction tank to the subsequent reaction tank, to ensure the extrusion flow In addition, it is effective in preventing a short circuit between the reaction tanks and improving and stabilizing the reaction efficiency. Further, even if turbulence occurs due to agitation and mixing by aeration in the aerobic tank 4, the sludge mixture flowing out of the anoxic tank 3 constantly flows into the aerobic tank 4. It is possible to prevent the sludge mixture in the tank 4 from flowing back into the oxygen-free tank 3 at the preceding stage. Thereby, the concentration of the microorganism-immobilized carrier 11 in the aerobic tank 4 can be kept constant, and the microorganism-immobilized carrier 11 can be maintained.
The sludge age of the above sludge can be kept long. Further, it is not necessary to install a carrier outflow prevention screen at a partition between the anoxic tank 3 and the aerobic tank 4. As a result, the number of carrier outflow prevention screens installed around the aerobic tank 4 can be reduced, equipment costs can be reduced, and there is a risk of flow failure due to clogging of the carrier outflow prevention screen. Reduction can be achieved.
【0038】さらに、前記好気槽4の流出部には微生物
固定化担体の流出を防止できる担体流出防止用スクリー
ン12が配されており、微生物固定化担体の流出による
濃度低下を防止し、微生物固定化担体上の汚泥の汚泥令
を長く保つことができる。なお、前記好気槽4の流出部
に担体流出防止用スクリーンを設置する代わりに、微生
物固定化担体と汚泥混合液とを分離するために、例えば
比重差による分離手段等を用いることも可能である。Further, a screen 12 for preventing carrier outflow that can prevent the outflow of the microorganism-immobilized carrier is provided at the outflow portion of the aerobic tank 4 to prevent a concentration decrease due to the outflow of the microorganism-immobilized carrier. Sludge age of the sludge on the immobilization carrier can be kept long. Instead of installing a carrier outflow prevention screen at the outflow portion of the aerobic tank 4, it is also possible to use, for example, a separation means based on a specific gravity difference or the like in order to separate the microorganism-immobilized carrier and the sludge mixture. is there.
【0039】このように、微生物固定化担体を内在する
反応槽内の微生物固定化担体濃度を保持して、微生物固
定化担体上の汚泥の汚泥令を長く保つことは、廃水処
理、特に窒素の除去処理を含む廃水処理を行う際に、良
好で安定した処理能力を確保する上で効果的である。As described above, maintaining the concentration of the microorganism-immobilized carrier in the reaction vessel containing the microorganism-immobilized carrier and maintaining the sludge age of the sludge on the microorganism-immobilized carrier for a long time requires wastewater treatment, in particular, nitrogen treatment. When performing wastewater treatment including removal treatment, it is effective in securing good and stable treatment capacity.
【0040】前段の微生物固定化担体を内在しない無酸
素槽3の水位と、後段の微生物固定化担体を内在する好
気槽4の水位との差は、1cm以上20cm以下とする
ことが好ましい。水位差が1cm未満の場合には、後段
の微生物固定化担体を内在する反応槽で生じた乱流によ
り、微生物固定化担体が前段の微生物固定化担体を内在
しない反応槽へ移動する危険性があるからである。ま
た、水位差が20cmより大きい場合には、微生物固定
化担体が後段の微生物固定化担体を内在する反応槽から
前段の微生物固定化担体を内在しない反応槽へ逆流入す
る危険性は少ないが、処理場へ流下してきた廃水を処理
設備の位置までポンプアップするためのエネルギー消費
が大となるからである。また、後段の微生物固定化担体
を内在する反応槽の有効容積減少分が大となるため、そ
の減少分を補おうとした場合、反応槽設備の底面レベル
を同一とした場合には担体を内在する反応槽部分の占め
る面積(敷地)の増加が無視できなくなるからである。
水位差を1cm以上20cm以下とすることにより、微
生物固定化担体が逆流する恐れが少なく、かつポンプア
ップによるエネルギー消費もなるべく少なくすることが
できる。なお、水位差は2cm以上5cm以下とするこ
とがより好ましい。It is preferable that the difference between the water level of the oxygen-free tank 3 having no microorganism-immobilized carrier at the former stage and the water level of the aerobic tank 4 having the microorganism-immobilized carrier at the latter stage be 1 cm or more and 20 cm or less. When the water level difference is less than 1 cm, there is a risk that the microorganism-immobilized carrier may move to a reaction vessel that does not have the preceding microorganism-immobilized carrier due to turbulence generated in the reaction vessel having the latter-stage microorganism-immobilized carrier. Because there is. Further, when the water level difference is larger than 20 cm, there is little danger that the microorganism-immobilized carrier reversely flows from the reaction vessel in which the subsequent-stage microorganism-immobilized carrier is present to the reaction vessel in which the preceding-stage microorganism-immobilized carrier is not present, This is because energy consumption for pumping up wastewater flowing down to the treatment plant to the position of the treatment facility becomes large. In addition, since the effective volume reduction of the reaction tank in which the microorganism-immobilized carrier in the subsequent stage is large, the carrier is included when the bottom level of the reaction tank equipment is the same when trying to compensate for the reduction. This is because the increase in the area (site) occupied by the reaction tank cannot be ignored.
By setting the water level difference to 1 cm or more and 20 cm or less, there is little possibility that the microorganism-immobilized carrier flows backward, and the energy consumption by pumping up can be reduced as much as possible. Note that the water level difference is more preferably 2 cm or more and 5 cm or less.
【0041】上記のような範囲での水位差が反応槽の有
効容積に与える影響としては、例えば、都市下水処理設
備の場合、通常の反応槽の水深は5m程度であり、深層
型反応槽の水深は10m程度である。反応槽底面のレベ
ルを同一として、反応槽を水密壁で仕切り、後段の反応
槽の水位を5cm下げた場合、後段の反応槽の水深の低
減による反応槽有効容積の低減率は、通常の反応槽にお
いて1%程度、深層型反応槽において0.5%程度であ
るため、担体を内在する反応槽の有効容積減少分に相当
する処理能力の低下が槽全体の処理能力に与える影響を
無視できる程度に抑えることができる。このように水密
壁で仕切ることによって水位差を形成させた場合におい
ても、反応槽の有効容積に与える影響は小さい。The effect of the difference in water level in the above range on the effective volume of the reaction tank is as follows. For example, in the case of municipal sewage treatment equipment, the water depth of a normal reaction tank is about 5 m, The water depth is about 10m. When the level of the bottom of the reactor is the same and the reactor is partitioned by watertight walls and the water level of the latter reactor is lowered by 5 cm, the reduction rate of the effective volume of the reactor due to the reduction of the water depth of the latter reactor is the normal reaction. Since it is about 1% in the tank and about 0.5% in the deep-layer type reaction tank, it is possible to neglect the influence of the decrease in the processing capacity corresponding to the decrease in the effective volume of the reaction tank containing the carrier on the processing capacity of the entire tank. It can be suppressed to the extent. Even when a water level difference is formed by partitioning with a watertight wall, the effect on the effective volume of the reaction tank is small.
【0042】[0042]
【実施例】以下、本発明装置を用いた廃水処理の一実施
例を示す。本実施例は、図1に示す構成の装置を用い、
処理量11,800m3/日の実規模実験を行ったもの
である。なお本実施例においては、図1における微生物
固定化担体を内在しない無酸素槽3に相当する部分を約
2等分割して、その前段部を無酸素槽とし、水中攪拌機
を設置して無曝気で機械的に攪拌混合すると共に、その
後段部を微好気槽として弱い曝気を行いながら攪拌混合
を行った。この微生物固定化担体を内在しない微好気槽
とその後段の微生物固定化担体を内在する好気槽との仕
切り部は水密壁とし、水密壁両側の水位差を3〜4cm
として、微好気槽流出汚泥混合液を好気槽へ越流させ
た。この微好気槽の曝気風量は、表層部のDO(溶存酸
素)濃度が1mg/L程度となるようにコントロールし
た。好気槽(硝化槽)4はほぼ等容積の2槽でもって構
成させ、それぞれの小槽の有効容積に対し、微生物固定
化担体を、見掛けの体積比として12%(真の体積比と
して3%)内在させた。二つの好気槽小槽の仕切り部
は、好気槽流出部と同様なスクリーン壁構造とした。以
上の4小槽の有効容積はほぼ等しいものとした。好気槽
4においては、終端表層部のDOが5mg/リットル程
度となるように曝気した。好気槽4において使用した微
生物固定化担体は、内径3mm、外径4mm、長さ5m
mの中空円筒状であり、ポリプロピレンを主成分とする
ものである。硝化循環液6の流量を10,200m3/
日、返送汚泥8の流量を7,200m3/日として運転
し、反応槽全体の滞留時間は5.2時間とした。反応槽
の水深は9.6mとし、反応槽の流れ方向の片側には水
深の約半分の位置に曝気装置を設置し、また反応槽の流
れ方向の中央の位置に整流板を設置して曝気を行うこと
により、反応槽内に旋回流が生じる構造とした。好気槽
4流出端部における担体流出防止用スクリーンは目開き
が2.5mmのものを使用した。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the waste water treatment using the apparatus of the present invention will be described below. In the present embodiment, an apparatus having the configuration shown in FIG.
A full-scale experiment was performed with a throughput of 11,800 m 3 / day. In this embodiment, the portion corresponding to the oxygen-free tank 3 in which no microorganism-immobilized carrier in FIG. 1 is present is divided into approximately two equal parts, and the former part is made into an oxygen-free tank, and a submerged stirrer is installed to prevent aeration. And then mechanically agitated and mixed, and then agitated and mixed while performing weak aeration using the stage as a microaerobic tank. The partition between the microaerobic tank without the microorganism-immobilized carrier and the aerobic tank with the microorganism-immobilized carrier at the subsequent stage is a watertight wall, and the water level difference between both sides of the watertight wall is 3 to 4 cm.
As a result, the mixed liquid discharged from the microaerobic tank was allowed to flow into the aerobic tank. The amount of aeration air in the microaerobic tank was controlled so that the DO (dissolved oxygen) concentration in the surface layer became about 1 mg / L. The aerobic tank (nitrification tank) 4 is constituted by two tanks having almost the same volume, and the microorganism-immobilized carrier is used as an apparent volume ratio of 12% (3% as a true volume ratio) with respect to the effective volume of each small tank. %). The partition between the two aerobic tanks had the same screen wall structure as the aerobic tank outlet. The effective volumes of the above four small tanks were assumed to be substantially equal. In the aerobic tank 4, aeration was performed so that the DO of the terminal surface layer was about 5 mg / liter. The microorganism-immobilized carrier used in the aerobic tank 4 has an inner diameter of 3 mm, an outer diameter of 4 mm, and a length of 5 m.
m, having a hollow cylindrical shape and containing polypropylene as a main component. The flow rate of the nitrification circulating fluid 6 is set to 10,200 m 3 /
On the day, the operation was performed with the return sludge 8 at a flow rate of 7,200 m 3 / day, and the residence time of the entire reaction tank was 5.2 hours. The water depth of the reaction tank is 9.6 m, and an aeration device is installed at one half of the water depth on one side in the flow direction of the reaction tank. By performing the above, a swirling flow is generated in the reaction tank. As the screen for preventing carrier outflow at the outflow end of the aerobic tank 4, a screen having an aperture of 2.5 mm was used.
【0043】都市下水処理場における最初沈殿池流出水
を本実施例の一連の反応槽により、連続処理するという
実験を3年間に亘って実施した。その結果、好気槽4よ
り微生物固定化担体が流出して微生物固定化担体濃度の
低下を生じるという現象は見られなかった。すなわち、
微生物固定化担体を内在しない微好気槽と微生物固定化
担体を内在する好気槽との間を水密壁で仕切り、汚泥混
合液を前者の槽より後者の槽へ越流させるという本発明
に係る構造とすることにより、微生物固定化担体濃度を
保持すると共に微生物固定化担体に固定化された汚泥の
汚泥令を長く保つことができ、BOD、SSならびに窒
素の良好な除去処理成績を安定的に得ることができた。An experiment was conducted over a three-year period in which the effluent of the first sedimentation basin in the municipal sewage treatment plant was continuously treated by the series of reactors in this example. As a result, no phenomenon was observed in which the microorganism-immobilized carrier flowed out of the aerobic tank 4 to lower the concentration of the microorganism-immobilized carrier. That is,
In the present invention, a watertight wall separates a microaerobic tank without a microorganism-immobilized carrier and an aerobic tank with a microorganism-immobilized carrier, and allows a sludge mixture to flow from the former tank to the latter tank. By adopting such a structure, the concentration of the microorganism-immobilized carrier can be maintained, and the sludge age of the sludge immobilized on the microorganism-immobilized carrier can be maintained for a long time. I was able to get to.
【0044】[0044]
【発明の効果】以上のように、前段(上流側)の微生物
固定化担体を内在しない反応槽(無酸素槽)と、後段
(下流側)の微生物固定化担体を内在する反応槽(好気
槽)との仕切り部分を水密壁とし、この水密壁の両側に
水位差を設けて、前記微生物固定化担体を内在しない反
応槽から前記微生物固定化担体を内在する反応槽へ越流
させる構成とすることにより、前記微生物固定化担体を
内在する反応槽内の微生物固定化担体の濃度を一定に保
持することができ、微生物固定化担体上の汚泥の汚泥令
を長く保つことができる。また、微生物固定化担体を内
在する反応槽内の微生物固定化担体の濃度を一定に保持
して、微生物固定化担体上の汚泥の汚泥令を長く保つこ
とは、廃水処理、特に窒素の除去処理を含む廃水処理を
行う際に、良好で安定した処理能力を確保する上で効果
的である。As described above, the reaction tank (oxygen-free tank) without the former (upstream) microorganism-immobilized carrier and the reaction vessel (aerobic tank) with the latter (downstream) microorganism-immobilized carrier are present. (Water tank) as a watertight wall, and a water level difference is provided on both sides of the watertight wall to allow the microorganism-immobilized carrier to overflow from the reaction vessel without the microorganism-immobilized carrier to the reaction vessel having the microorganism-immobilized carrier. By doing so, the concentration of the microorganism-immobilized carrier in the reaction vessel containing the microorganism-immobilized carrier can be kept constant, and the sludge age of the sludge on the microorganism-immobilized carrier can be kept long. In addition, maintaining the concentration of the microorganism-immobilized carrier in the reaction vessel containing the microorganism-immobilized carrier at a constant level and maintaining the sludge age of the sludge on the microorganism-immobilized carrier for a long time is a wastewater treatment, particularly a nitrogen removal treatment. It is effective in ensuring good and stable treatment capacity when performing wastewater treatment containing.
【0045】さらに、前記微生物固定化担体を内在しな
い反応槽と前記微生物固定化担体を内在する反応槽との
間の仕切り部分に担体流出防止用スクリーンを設置する
ことが不要になる。これにより、前記微生物固定化担体
を内在する反応槽の周辺に設置される担体流出防止用ス
クリーンの数を減らすことができ、設備費の低減が図
れ、かつ担体流出防止用スクリーンの目詰まりによる流
通不全の危険性の低減が図れる。Further, it is not necessary to install a screen for preventing carrier outflow in a partition between the reaction tank having no microorganism-immobilized carrier and the reaction vessel having the microorganism-immobilized carrier. This makes it possible to reduce the number of carrier outflow prevention screens installed around the reaction vessel in which the microorganism-immobilized carrier is present, thereby reducing equipment costs and distributing the carrier outflow prevention screen due to clogging. The risk of failure can be reduced.
【0046】また、前記微生物固定化担体を内在する反
応槽の流出部には微生物固定化担体の流出を防止できる
担体流出防止用スクリーンが配されており、微生物固定
化担体の流出による濃度低下を防止し、微生物固定化担
体上の汚泥の汚泥令を長く保つことができ、廃水処理、
特に窒素の除去処理を含む廃水処理を行う際に、良好で
安定した処理能力がさらに効果的に確保される。Further, a screen for preventing carrier outflow which can prevent the outflow of the microorganism-immobilized carrier is provided at the outflow portion of the reaction vessel in which the microorganism-immobilized carrier is provided. Can prevent and maintain the sludge age of the sludge on the microorganism-immobilized carrier for a long time,
Particularly, when performing wastewater treatment including nitrogen removal treatment, good and stable treatment capacity is more effectively secured.
【0047】また、前記微生物固定化担体を内在しない
反応槽の水位と、前記微生物固定化担体を内在する反応
槽の水位との差を、1cm以上20cm以下とすること
により、微生物固定化担体の逆流出を効果的に防止で
き、かつポンプアップによるエネルギー消費もなるべく
少なくすることができ、前記微生物固定化担体を内在す
る反応槽の有効容積減少分に相当する処理能力の低下が
槽全体の処理能力に与える影響を無視できる程度に抑え
ることができる。Further, by setting the difference between the water level of the reaction vessel not containing the microorganism-immobilized carrier and the water level of the reaction vessel containing the microorganism-immobilized carrier to 1 cm or more and 20 cm or less, Reverse outflow can be effectively prevented, and energy consumption due to pump-up can be reduced as much as possible. The effect on the ability can be suppressed to a negligible level.
【0048】なお、既存の活性汚泥処理設備を改造し
て、反応槽の一部が微生物固定化担体を内在する反応槽
となるようにする場合において、既存の活性汚泥曝気槽
の仕切り部分が水密壁で、汚泥混合液を前段の反応槽か
ら後段の反応槽へ落下させて移送するような構造となっ
ている場合、少なくとも、前段の微生物固定化担体を内
在しない反応槽と後段の微生物固定化担体を内在する反
応槽との仕切り部分には改造の手を加える必要が無い。In the case where the existing activated sludge treatment equipment is modified so that a part of the reaction tank becomes a reaction tank having a microorganism-immobilized carrier therein, the partition of the existing activated sludge aeration tank is watertight. If the wall has a structure in which the sludge mixture is dropped and transferred from the preceding reaction tank to the latter reaction tank, at least the reaction tank without the former microorganism-immobilizing carrier and the latter microorganism immobilization It is not necessary to modify the part of the partition with the reaction tank in which the carrier is present.
【図1】本発明に係る廃水処理装置の一実施形態を示す
図である。FIG. 1 is a diagram showing one embodiment of a wastewater treatment device according to the present invention.
【図2】本発明に係る廃水処理装置の他の実施形態を示
す図である。FIG. 2 is a diagram showing another embodiment of the wastewater treatment apparatus according to the present invention.
【図3】活性汚泥硝化液循環変法を用いた従来の廃水処
理装置の一例を示す図である。FIG. 3 is a diagram showing an example of a conventional wastewater treatment apparatus using a modified activated sludge nitrification liquid circulation method.
【図4】嫌気―無酸素―好気活性汚泥法を用いた従来の
廃水処理装置の一例を示す図である。FIG. 4 is a diagram showing an example of a conventional wastewater treatment apparatus using an anaerobic-anoxic-aerobic activated sludge method.
【図5】反応槽の一部に微生物固定化担体を内在し固定
化微生物により硝化反応を行う従来の廃水処理装置の一
例を示す図である。FIG. 5 is a diagram showing an example of a conventional wastewater treatment apparatus in which a microorganism-immobilized carrier is present in a part of a reaction tank and a nitrification reaction is performed by the immobilized microorganism.
【図6】従来の阻流壁を設けた標準活性汚泥法設備にお
ける反応槽(曝気槽)の構造の一例を示す図である。FIG. 6 is a diagram showing an example of a structure of a reaction tank (aeration tank) in a conventional activated sludge method facility provided with a conventional baffle wall.
1 廃水 2 最初沈殿池 3 無酸素槽(脱窒槽) 4 好気槽(硝化槽) 5 曝気装置 6 硝化循環液 7 最終沈殿池 8 返送汚泥 9 処理水 10 嫌気槽 11 微生物固定化担体 12,13 担体分離用スクリーン(担体流出防止用ス
クリーン) 21 阻流壁 22 上部開口 23 下部開口 24 水密壁 25 反応槽流出部水密壁 31 無酸素槽水位 41 好気槽水位 51 嫌気槽水位DESCRIPTION OF SYMBOLS 1 Wastewater 2 First sedimentation tank 3 Anoxic tank (denitrification tank) 4 Aerobic tank (nitrification tank) 5 Aeration device 6 Nitrification circulating fluid 7 Final sedimentation tank 8 Returned sludge 9 Treated water 10 Anaerobic tank 11 Microorganism fixed carrier 12,13 Screen for carrier separation (screen for preventing carrier outflow) 21 Baffle wall 22 Upper opening 23 Lower opening 24 Watertight wall 25 Watertight wall of reactor outflow part 31 Oxygen tank water level 41 Aerobic tank water level 51 Anaerobic tank water level
───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮田 純 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 馬場 圭 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 遠藤 伸一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4D003 AA14 AB02 BA02 CA02 CA03 CA08 DA19 EA14 EA30 FA02 4D040 BB05 BB42 BB57 BB65 BB82 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Jun Miyata 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan Inside the Kokan Kogyo Co., Ltd. (72) Inventor Kei Kei Bamba 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Sun (72) Inventor Shinichi Endo 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan F-term (reference) 4D003 AA14 AB02 BA02 CA02 CA03 CA08 DA19 EA14 EA30 FA02 4D040 BB05 BB42 BB57 BB65 BB82
Claims (4)
として微生物固定化担体を内在する反応槽と、該反応槽
の上流側に微生物固定化担体を内在しない反応槽とを備
えた廃水処理装置を用いた廃水処理方法において、前記
微生物固定化担体を内在する反応槽と前記微生物固定化
担体を内在しない反応槽とを隣接させて両反応槽を水密
壁で仕切り、前記微生物固定化担体を内在しない反応槽
の水位w1と前記微生物固定化担体を内在する反応槽の
水位w2にw1>w2の水位差を設け、前記微生物固定化
担体を内在しない反応槽内の汚泥混合液を前記水密壁を
越流させることにより前記微生物固定化担体を内在する
反応槽に移送することを特徴とする廃水処理方法。Claims: 1. A wastewater comprising a reaction tank having a microorganism-immobilized carrier therein as a reaction tank for performing biological treatment of wastewater, and a reaction tank having no microorganism-immobilized carrier upstream of the reaction tank. In the wastewater treatment method using a treatment apparatus, the reaction vessel containing the microorganism-immobilized carrier and the reaction vessel not containing the microorganism-immobilized carrier are adjacent to each other, and both reaction vessels are separated by a watertight wall, and the microorganism-immobilized carrier is The water level w 1 of the reaction vessel not containing the microorganism and the water level w 2 of the reaction vessel containing the microorganism-immobilized carrier are provided with a water level difference of w 1 > w 2 to mix the sludge in the reaction vessel not containing the microorganism-immobilized carrier. A wastewater treatment method, wherein the liquid is transferred to an internal reaction tank by flowing the liquid over the watertight wall.
として、微生物固定化担体を内在する反応槽と、該反応
槽の上流側に微生物固定化担体を内在しない反応槽とを
備えた廃水処理装置において、前記微生物固定化担体を
内在する反応槽と前記微生物固定化担体を内在しない反
応槽を水密壁を介して隣接して設けると共に、前記水密
壁により前記微生物固定化担体を内在しない反応槽の水
位w1と前記微生物固定化担体を内在する反応槽の水位
w2にw1>w2の高低差が生じ、前記微生物固定化担体
を内在しない反応槽内の汚泥混合液が水密壁を越流して
前記微生物固定化担体を内在する反応槽に移送されるよ
うに構成したことを特徴とする廃水の処理装置。2. A reaction tank for performing biological treatment of wastewater, comprising a reaction tank having a microorganism-immobilized carrier therein, and a reaction tank having no microorganism-immobilized carrier upstream of the reaction tank. In the wastewater treatment apparatus, a reaction vessel containing the microorganism-immobilized carrier and a reaction vessel containing no microorganism-immobilized carrier are provided adjacent to each other via a watertight wall, and the microorganism-immobilized carrier is not contained by the watertight wall. The height difference of w 1 > w 2 occurs between the water level w 1 of the reaction vessel and the water level w 2 of the reaction vessel containing the microorganism-immobilized carrier, and the sludge mixture liquid in the reaction vessel not containing the microorganism-immobilized carrier is watertight. An apparatus for treating wastewater, wherein the apparatus is configured to transfer the microorganism-immobilized carrier to a reaction tank in which the microorganism-immobilized carrier flows over a wall.
泥混合液流出部に、該汚泥混合液と該微生物固定化担体
とを分離するためのスクリーンを配設することを特徴と
する請求項2に記載の廃水の処理装置。3. A screen for separating the sludge mixture and the microorganism-immobilized carrier is provided at the sludge-mixed solution outflow portion of the reaction vessel containing the microorganism-immobilized carrier. 3. The wastewater treatment apparatus according to 2.
微生物固定化担体を内在する反応槽との水位差が1cm
以上20cm以下となるように水密壁を設けたことを特
徴とする請求項2ないし請求項3に記載の廃水の処理装
置。4. The difference in water level between a reaction vessel without a microorganism-immobilized carrier and a reaction vessel with a microorganism-immobilized carrier is 1 cm.
4. The wastewater treatment apparatus according to claim 2, wherein a watertight wall is provided so as to be at least 20 cm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36610299A JP2001179280A (en) | 1999-12-24 | 1999-12-24 | Method and apparatus for treating wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36610299A JP2001179280A (en) | 1999-12-24 | 1999-12-24 | Method and apparatus for treating wastewater |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001179280A true JP2001179280A (en) | 2001-07-03 |
Family
ID=18485936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36610299A Pending JP2001179280A (en) | 1999-12-24 | 1999-12-24 | Method and apparatus for treating wastewater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001179280A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007289891A (en) * | 2006-04-26 | 2007-11-08 | Sumitomo Heavy Industries Environment Co Ltd | Wastewater treatment apparatus and wastewater treatment method |
JP2010023036A (en) * | 2009-10-30 | 2010-02-04 | Nishihara Environment Technology Inc | Sewage treatment apparatus |
JP2013236996A (en) * | 2012-05-14 | 2013-11-28 | Hitachi Ltd | Water treatment process |
CN103449659A (en) * | 2013-07-23 | 2013-12-18 | 宁波清天地环境工程有限公司 | Novel partial nitrification-denitrification biological nitrogen removal device |
JP2014172032A (en) * | 2013-03-13 | 2014-09-22 | Toshiba Corp | Method and apparatus for recovering phosphorus from phosphorus-containing waste water |
JP2016153118A (en) * | 2015-02-16 | 2016-08-25 | 栗田工業株式会社 | Biological treatment tank, method for operating the tank, and method for treating organic waste water |
WO2016132881A1 (en) * | 2015-02-16 | 2016-08-25 | 栗田工業株式会社 | Biological treatment tank, method for operating same and method for treating organic wastewater |
-
1999
- 1999-12-24 JP JP36610299A patent/JP2001179280A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007289891A (en) * | 2006-04-26 | 2007-11-08 | Sumitomo Heavy Industries Environment Co Ltd | Wastewater treatment apparatus and wastewater treatment method |
JP2010023036A (en) * | 2009-10-30 | 2010-02-04 | Nishihara Environment Technology Inc | Sewage treatment apparatus |
JP2013236996A (en) * | 2012-05-14 | 2013-11-28 | Hitachi Ltd | Water treatment process |
JP2014172032A (en) * | 2013-03-13 | 2014-09-22 | Toshiba Corp | Method and apparatus for recovering phosphorus from phosphorus-containing waste water |
CN103449659A (en) * | 2013-07-23 | 2013-12-18 | 宁波清天地环境工程有限公司 | Novel partial nitrification-denitrification biological nitrogen removal device |
JP2016153118A (en) * | 2015-02-16 | 2016-08-25 | 栗田工業株式会社 | Biological treatment tank, method for operating the tank, and method for treating organic waste water |
WO2016132881A1 (en) * | 2015-02-16 | 2016-08-25 | 栗田工業株式会社 | Biological treatment tank, method for operating same and method for treating organic wastewater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6592762B2 (en) | Process for treating BOD-containing wastewater | |
CA1333301C (en) | Activated sludge wastewater treatment process | |
AU2015256436B2 (en) | Method and system for treating wastewater in an integrated fixed film activated sludge sequencing batch reactor | |
KR100273913B1 (en) | Apparatus and method of biological wastewater treatment | |
CN103582615A (en) | Composite microorganism reactor, and apparatus and method for water treatment using same | |
KR101010053B1 (en) | Apparatus for treating wastewater | |
KR100422211B1 (en) | Management Unit and Method of Foul and Waste Water | |
CN110386725A (en) | A kind of sewage based on MBBR and Magneto separate imitates processing system and method entirely | |
CN108191062A (en) | A kind of pharmacy waste water biochemical processing method based on MBBR techniques | |
CA2583752C (en) | Integrated multi-zone wastewater treatment system and method | |
CN110386723A (en) | A kind of sewage autotrophy processing system and method based on MBBR and Magneto separate | |
JP4409532B2 (en) | Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method | |
JP2001179280A (en) | Method and apparatus for treating wastewater | |
JP2007237158A (en) | Process for biological purification of waste water with simultaneous decomposition of organic and nitrogen-containing compounds | |
JP3136902B2 (en) | Wastewater treatment method | |
CN106745740A (en) | A kind of modified form compound efficient water body processing method and system for denitrogenation dephosphorizing | |
US20130098815A1 (en) | Sewage treatment apparatus | |
KR100402304B1 (en) | Biological wastewater treatment system and methods using internal recycling | |
JPH1110193A (en) | Method and apparatus for shared carrier nitrification denitrification reaction | |
KR20010078443A (en) | Biological Nutrient Removal Process using a Submerged Moving Media Intermittent Aeration Reactor | |
JPH07185589A (en) | Waste water treatment method for removal of nitrogen and device therefor | |
JP4261700B2 (en) | Wastewater treatment equipment | |
JPH1157778A (en) | Waste water treating device and treatment | |
JP4464035B2 (en) | Treatment method of sludge return water | |
JPS60183096A (en) | Treatment of waste water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040323 |