JP2977845B2 - Migration resistant copper alloy for terminals and connectors with excellent spring characteristics, strength and conductivity - Google Patents

Migration resistant copper alloy for terminals and connectors with excellent spring characteristics, strength and conductivity

Info

Publication number
JP2977845B2
JP2977845B2 JP2019719A JP1971990A JP2977845B2 JP 2977845 B2 JP2977845 B2 JP 2977845B2 JP 2019719 A JP2019719 A JP 2019719A JP 1971990 A JP1971990 A JP 1971990A JP 2977845 B2 JP2977845 B2 JP 2977845B2
Authority
JP
Japan
Prior art keywords
conductivity
strength
connectors
terminals
migration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2019719A
Other languages
Japanese (ja)
Other versions
JPH03226536A (en
Inventor
元久 宮藤
功 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2019719A priority Critical patent/JP2977845B2/en
Priority to EP19910400200 priority patent/EP0440548A3/en
Publication of JPH03226536A publication Critical patent/JPH03226536A/en
Application granted granted Critical
Publication of JP2977845B2 publication Critical patent/JP2977845B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ばね特性、強度及び導電性に優れた耐マイ
グレーション性端子・コネクタ用銅合金に関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to a migration-resistant copper alloy for terminals and connectors having excellent spring properties, strength and conductivity.

[従来の技術] 端子・コネクターには各種のものが存在し、例えば第
4図に示すものがあげられる。
[Prior Art] There are various types of terminals and connectors, for example, those shown in FIG.

近年、電気電子機器の軽薄短小化のニーズに伴い、使
用される部品も小型化されるにいたっている。部品の小
型化に対応して、端子・コネクタの電極間ピッチは近接
化し、電極数は増加し、さらに電流容量も大きくなって
きている。
2. Description of the Related Art In recent years, with the need for lighter, thinner, and smaller electric and electronic devices, components used have been reduced in size. In response to miniaturization of components, the pitch between electrodes of terminals and connectors has become closer, the number of electrodes has increased, and the current capacity has also increased.

ところで、従来、端子・コネクタ用材料としては、黄
銅あるいはりん青銅系合金が使用されている。
Conventionally, brass or phosphor bronze alloys have been used as terminal / connector materials.

しかし、端子・コネクタ用材料としての黄銅あるいは
りん青銅系合金は次のような問題を有している。
However, brass or a phosphor bronze alloy as a terminal / connector material has the following problems.

すなわち、導電率が、黄銅では28%IACS、りん青銅系
合金は22%IACSと低く、耐熱性に劣っている。
That is, the electrical conductivity is as low as 28% IACS for brass and 22% IACS for phosphor bronze alloys, and is inferior in heat resistance.

また、使用中に接合部の嵌合力が低下し、端子、コネ
クタとしての機能が発揮できなくなってしまう。かかる
嵌合力の低下は、通電電流量の増加により発生するジュ
ール熱も多大なものとなるためと考えられる。
In addition, the fitting force of the joint decreases during use, and the function as a terminal or a connector cannot be exhibited. It is considered that such a decrease in the fitting force is due to a large amount of Joule heat generated by an increase in the amount of current supplied.

さらに、りん青銅系合金については、耐マイグレーシ
ョンに劣るという問題も有している。ここで、マイグレ
ーションとは次のような現象である。電極間に結露等が
起こるとCuがイオン化し、このイオン化したCuが電極間
のクーロンフォースにより陰極に析出し、電析と同じよ
うに陰極から樹枝状に金属結晶が成長し、陽極まで達し
電極間を短絡する現象である。かかる現象は、結露、乾
燥の繰り返しによって生ずる。従来、マイグレーション
はAgについて生じていたが、前述した電極間の近接化等
に伴ない、りん青銅系合金についても生ずることがわか
っている。
Further, the phosphor bronze alloy has a problem that it is inferior in migration resistance. Here, the migration is the following phenomenon. When dew condensation or the like occurs between the electrodes, Cu is ionized, and the ionized Cu is deposited on the cathode by Coulomb force between the electrodes, and a metal crystal grows in a dendritic manner from the cathode in the same manner as electrodeposition, and reaches the anode. This is the phenomenon of short-circuiting between them. Such a phenomenon is caused by repeated condensation and drying. Conventionally, migration has occurred with Ag, but it has been found that the migration also occurs with a phosphor bronze-based alloy along with the above-described approach between the electrodes.

また、黄銅は、耐マイグレーションは優れているが、
耐応力腐食割れ性に劣るという問題を有している。
Also, brass has excellent migration resistance,
There is a problem that the resistance to stress corrosion cracking is poor.

従って、従来、導電性、強度、ばね限界値、嵌合力お
よび耐マイグレーション性に優れ、さらに耐食性、特に
耐応力腐食割れ性にも優れ、端子・コネクタの小型化、
高密度化と使用環境の悪化に伴う電流容量の増大問題に
対応し得るような材料は存在しなかった。
Therefore, conventionally, excellent conductivity, strength, spring limit value, fitting force and migration resistance, and also excellent corrosion resistance, especially stress corrosion cracking resistance, miniaturization of terminals and connectors,
There has been no material that can cope with the problem of an increase in current capacity due to the densification and deterioration of the use environment.

[発明が解決しようとする課題] 本発明は、導電性、強度、ばね限界値、嵌合力および
耐マイグレーション性に優れ、さらに耐食性、特に耐応
力腐食割れ性にも優れた端子・コネクタ用銅合金を提供
することを目的とする。
[Problems to be Solved by the Invention] The present invention provides a copper alloy for terminals and connectors that is excellent in conductivity, strength, spring limit value, fitting force and migration resistance, and is also excellent in corrosion resistance, especially stress corrosion cracking resistance. The purpose is to provide.

[課題を解決するための手段] 本発明のばね特性、強度及び導電性に優れた耐マイグ
レーション性端子・コネクタ用銅合金は、Ni:0.4〜4.0w
t%、Si:0.1〜1.0wt%、Zn:1.0〜5.0wt%(但し、1.0wt
%は除く)、Mg:0.1〜0.5wt%(但し、0.1wt%は除
く)、Sn:0.1〜0.5wt%とCr,Ti,Zrのいずれか1種以上
を0.001〜0.01wt%(但し、0.01wt%は除く)残部がCu
と不可避不純物からなる強度と導電性に優れることを特
徴とする。
[Means for Solving the Problems] The copper alloy for a migration-resistant terminal / connector having excellent spring properties, strength and conductivity according to the present invention is Ni: 0.4 to 4.0 watts.
t%, Si: 0.1 to 1.0 wt%, Zn: 1.0 to 5.0 wt% (However, 1.0 wt%
%: Excluding Mg: 0.1 to 0.5 wt% (excluding 0.1 wt%), Sn: 0.1 to 0.5 wt% and at least one of Cr, Ti, Zr and 0.001 to 0.01 wt% (however, Except 0.01wt%) balance is Cu
And excellent in strength and conductivity made of unavoidable impurities.

[作用] 本発明の作用を成分限定理由を述べることにより明ら
かにする。
[Action] The action of the present invention will be clarified by describing the reasons for limiting the components.

(Ni) Niは、Siと共に添加して強度を向上させる元素であ
り、含有量が0.4wt%未満では、Siが0.1〜1.0wt%含有
されていても強度の向上は期待できず、また4.0wt%を
越えて含有されると加工性が悪くなり、さらに強度の向
上は少ない。よって、Ni含有量は0.4〜4.0wt%とする。
(Ni) Ni is an element that is added together with Si to improve the strength. If the content is less than 0.4 wt%, the strength cannot be expected to be improved even if the Si content is 0.1 to 1.0 wt%. If it is contained in excess of wt%, the processability will deteriorate and the improvement in strength will be small. Therefore, the Ni content is set to 0.4 to 4.0 wt%.

(Si) Siは、Niと共に化合物を形成して強度を向上させる元
素であり含有量が0.1wt%未満では、Niが0.4〜4.0wt%
含有されていても強度の向上は期待でき、また1.0wt%
を越えて含有されると加工性と導電率が低下する。よっ
てSi含有量は0.1〜1.0wt%とする。
(Si) Si is an element that forms a compound with Ni to improve the strength, and when the content is less than 0.1 wt%, the Ni content is 0.4 to 4.0 wt%.
Even if it is contained, improvement in strength can be expected, and 1.0 wt%
If it is contained in excess of, the workability and the electrical conductivity will decrease. Therefore, the Si content is set to 0.1 to 1.0 wt%.

(Zn) 電子機器材料のはんだおよび錫の濡れ性、密着性は必
須特性となる。Znは、はんだおよびSnめっき層の剥離の
抑制および耐マイグレーション性を向上させるための必
須元素である。
(Zn) The wettability and adhesion of solder and tin of electronic equipment materials are essential properties. Zn is an essential element for suppressing the separation of the solder and the Sn plating layer and improving the migration resistance.

Znは、電圧が印加された電気・電子部品の電極間に水
の侵入や結露等が生じた場合、電気化学的な順位差によ
りCuのマイグレーション形成を抑え漏洩電流を抑制す
る。1.0wt%以下では黄銅と同等の特性が得られず、5.0
wt%を越えて含有された場合は耐マイグレーション性は
向上するが、導電率が低くなるとか、応力腐食割れ性を
起し易くなる等好ましくない。よって、Zn含有量は1.0
〜5.0wt%(1.0wt%含まず)とする。
When water intrusion or dew condensation occurs between electrodes of an electric / electronic component to which a voltage is applied, Zn suppresses migration formation of Cu due to a difference in electrochemical order and suppresses leakage current. If the content is less than 1.0 wt%, the same properties as brass cannot be obtained.
When the content is more than wt%, migration resistance is improved, but it is not preferable because conductivity becomes low or stress corrosion cracking easily occurs. Therefore, the Zn content is 1.0
To 5.0 wt% (not including 1.0 wt%).

(Mg) Mgは、熱間加工性および強度特にばね限界値を向上さ
せるための必須元素であり、0.05wt%以上含有される
と、造魂時に原料より混入してくる低融点のSと反応
し、高融点のMgSを形成し、さらに固定し、熱間加工性
を向上させる効果を有し、さらにばね限界値を向上する
効果が生ずる。0.5wt%を越えて含有されてもばね限界
値の向上は平衡に達し、かえって溶解・鋳造時の湯流れ
性および鋳造性が劣化する。ただ、本願においては、0.
1〜0.5wt%(但し、0.1wt%は除く)を権利として請求
する。
(Mg) Mg is an essential element for improving the hot workability and strength, especially the spring limit value. When contained in an amount of 0.05 wt% or more, it reacts with low melting point S that is mixed in from the raw material during soul formation. Then, MgS having a high melting point is formed, further fixed, has an effect of improving hot workability, and has an effect of further improving a spring limit value. Even if the content exceeds 0.5 wt%, the improvement of the spring limit value reaches an equilibrium, and on the contrary, the melt flowability and the castability at the time of melting and casting are deteriorated. However, in the present application, 0.
Claim 1-0.5wt% (excluding 0.1wt%) as a right.

(Sn) Snは、Cu中に固溶することによって、強度とばね限界
値を向上させる元素であり、含有量が0.1wt%未満では
強度とばね限界値の向上が期待できず、また0.5wt%を
越えて含有されると導電率が低下する。よってSn含有量
は0.1wt%〜0.5wt%とする。
(Sn) Sn is an element that improves the strength and the spring limit value by forming a solid solution in Cu. If the content is less than 0.1 wt%, the strength and the spring limit value cannot be expected to be improved. %, The electrical conductivity decreases. Therefore, the Sn content is 0.1 wt% to 0.5 wt%.

(Cr,Ti,Zr) Cr,Ti,Zrは、鋳塊の粒界を強化し、熱間加工性を向上
する。0.001wt%未満ではその効果は少なく、また0.01w
t%を越えて含有されると容湯が酸化し易くなり、健全
な鋳塊が得られなくなる。よってCr、Ti、Zrのいずれか
1種以上を0.001〜0.01wt%(0.01wt%含まず)とす
る。
(Cr, Ti, Zr) Cr, Ti, Zr strengthens the grain boundaries of the ingot and improves hot workability. Less than 0.001wt% has little effect, and 0.01w
If the content exceeds t%, the bath becomes oxidized easily, and a sound ingot cannot be obtained. Therefore, the content of at least one of Cr, Ti, and Zr is set to 0.001 to 0.01 wt% (not including 0.01 wt%).

(製造法例) 次に製造法例について説明する。(Example of Manufacturing Method) Next, an example of a manufacturing method will be described.

本発明合金を通常の半連続鋳造法により鋳塊を造塊
し、900〜970℃の温度で、熱間加工する。熱間加工終了
後は650℃以上の温度から焼入れる。この時の冷却速度
は15℃/秒以上で冷却する。温度が600℃未満では冷却
速度を15℃/秒以上としても、また650℃以上の温度で
も冷却温度が15℃/秒未満では、いずれもNiおよびSiが
固溶できず、析出硬化処理以前に析出を始め、その析出
物が凝縮粗大化し、強度への寄与が低減する。よって、
焼入温度は600℃以上とし、冷却温度は15℃/秒以上と
する。次いで30%以上の冷間加工を行い析出硬化処理を
行う。析出効果はNi2Siの析出量が最も多くなる温度、
すなわち導電率も高くなる温度が500℃であり、400℃未
満の温度ではNi2Siの化合物の析出量が少ない。よっ
て、焼鈍温度は400℃〜550℃とし、焼鈍時間は5分未満
では完全な析出が起らず、また、4時間を越えることは
経済的に無駄である。よって焼鈍時間は5分〜4時間と
する。
The alloy of the present invention is formed into an ingot by a usual semi-continuous casting method, and hot-worked at a temperature of 900 to 970 ° C. After hot working, quench at a temperature of 650 ° C or higher. At this time, the cooling rate is 15 ° C./second or more. If the cooling rate is 15 ° C / sec or higher when the temperature is lower than 600 ° C, and if the cooling temperature is lower than 15 ° C / sec even when the temperature is 650 ° C or higher, neither Ni nor Si can form a solid solution. Precipitation begins, the precipitates condense and coarsen, and the contribution to strength is reduced. Therefore,
The quenching temperature is 600 ° C or higher, and the cooling temperature is 15 ° C / second or higher. Next, a precipitation hardening treatment is performed by performing cold working of 30% or more. The precipitation effect is the temperature at which the amount of Ni 2 Si deposited is greatest,
That is, the temperature at which the conductivity also increases is 500 ° C., and at a temperature lower than 400 ° C., the amount of the Ni 2 Si compound precipitated is small. Therefore, if the annealing temperature is 400 ° C. to 550 ° C. and the annealing time is less than 5 minutes, complete precipitation does not occur, and if it exceeds 4 hours, it is economically useless. Therefore, the annealing time is set to 5 minutes to 4 hours.

[実施例] 本発明に係る強度と導電性に優れる耐マイグレーショ
ン性端子・コネクタ用銅合金の実施例を説明する。
EXAMPLES Examples of the migration-resistant copper alloy for terminals and connectors having excellent strength and conductivity according to the present invention will be described.

第1表に示す化学成分の合金を抵抗加熱型電気炉で大
気中にて、木炭被覆下で溶解し、厚さ50mm、幅80mm、長
さ180mmの鋳塊を溶製した。
The alloys having the chemical components shown in Table 1 were melted in a resistance heating type electric furnace in the atmosphere under a charcoal coating to produce an ingot having a thickness of 50 mm, a width of 80 mm and a length of 180 mm.

次いで、各々の鋳塊の表裏面を約2mm面削した後、950
℃に加熱、厚さ15mmまで熱間圧延して700℃に再加熱
し、水中に投入して急冷した。この時の冷却速度は30℃
/秒であった。
Then, after about 2mm surface of the front and back of each ingot, 950
C., hot-rolled to a thickness of 15 mm, reheated to 700.degree. C., poured into water and quenched. The cooling rate at this time is 30 ° C
/ Sec.

次に表面の酸化物を機械的に除去後、厚さ1.2mmまで
冷間圧延し、525℃の温度で3時間の析出硬化焼鈍を行
い、厚さ0.36mmまで冷間圧延して、再び、475℃の温度
で3時間析出硬化焼鈍後所定の仕上げ圧延を行った。
Next, after mechanically removing the oxides on the surface, cold rolling was performed to a thickness of 1.2 mm, precipitation hardening annealing was performed at a temperature of 525 ° C. for 3 hours, and cold rolling was performed to a thickness of 0.36 mm. After precipitation hardening annealing at a temperature of 475 ° C. for 3 hours, predetermined finish rolling was performed.

次に、ばね限界値および伸びの向上を目的とし、400
℃の温度で低温焼鈍をした。
Next, with the aim of improving the spring limit and elongation,
Low temperature annealing was performed at a temperature of ° C.

以上のようにして作製した試料を、引張試験、応力緩
和率、ばね特性、導電率および耐熱性の測定に供した。
The sample prepared as described above was subjected to a tensile test, a stress relaxation rate, a spring property, a conductivity, and a measurement of heat resistance.

引張試験、ばね限界値、応力緩和率および導電率の試
験片は長手方向を圧延方向とした。
In the tensile test, the spring limit value, the stress relaxation rate, and the test piece of conductivity, the longitudinal direction was set to the rolling direction.

引張試験は2ton万能試験機でJIS13号B試験片にて行
った。またばね限界値はJISH3130に基づいて試験を行っ
た。
The tensile test was performed on a JIS No. 13 B test piece using a 2 ton universal tester. The spring limit was tested based on JISH3130.

導電率はJISH0505に基づいて測定した。 The conductivity was measured based on JISH0505.

耐マイグレーション性の試験は厚さ0.64mm、幅3.0m
m、長さ80mmの第1図に示す試験片を2枚1組とし、直
流電圧14Vを印加して、第2図に示すように、(水道水
中に5分間浸漬)→(10分間乾燥)の乾湿繰り返し試験
を50サイクルに至るまで行った。その間の最大漏洩電流
値を高感度レコーダーで測定した。
0.64mm thick and 3.0m wide for migration resistance test
m, a set of two test pieces shown in FIG. 1 having a length of 80 mm, and applying a DC voltage of 14 V, as shown in FIG. 2, (immerse in tap water for 5 minutes) → (dry for 10 minutes) Was repeated up to 50 cycles. The maximum leakage current value during that time was measured with a high-sensitivity recorder.

応力緩和率は、第3図に示すよう片持梁式にて耐力の
8割の応力を付加し150℃で500hr保持後の変形量(曲げ
ぐせ)を測定した。
As shown in FIG. 3, the stress relaxation rate was measured by measuring the amount of deformation (bending) after applying a stress of 80% of the proof stress by using a cantilever method and holding at 150 ° C. for 500 hours.

応力緩和率は次式より算出したものである。 The stress relaxation rate was calculated from the following equation.

I0=応力付加時の変位 I1=500hr経過後に応力除去後の変位 I=応力付加前の初期位置 応力緩和率(%)=I1/I0×100 以上の各試験における本発明の合金と比較合金の測定
結果を第2表に示す。
I 0 = displacement during stress application I 1 = displacement after stress removal after 500 hours I = initial position before stress application Stress relaxation rate (%) = I 1 / I 0 × 100 Alloy of the present invention in each of the above tests Table 2 shows the measurement results of the and comparative alloys.

第2表からも明らかなように、本発明合金は比較合金
であるNo.14の黄銅あるいはNo.15のりん青銅よりも導電
率および耐熱性に優れ、りん青銅並の強度とばね限界値
を有する。また耐マイグレーション性は黄銅並に優れて
いる。
As is clear from Table 2, the alloy of the present invention has better electrical conductivity and heat resistance than the comparative alloy No. 14 brass or No. 15 phosphor bronze, and has the same strength and spring limit as phosphor bronze. Have. In addition, migration resistance is as excellent as brass.

[発明の効果] 以上、説明したように、本発明に係る強度と導電性に
優れる耐マイグレーション性端子・コネクタ用銅合金は
ばね限界値、導電率、耐熱性および耐マイグレーション
性に優れる等の面で端子・コネクタの小型化に対応で
き、電流容量の増大に対して接合部の嵌合力の低下によ
る端子の機能の劣化が少なくなる。
[Effects of the Invention] As described above, the migration-resistant terminal / connector copper alloy having excellent strength and conductivity according to the present invention has advantages such as excellent spring limit value, conductivity, heat resistance, and migration resistance. Accordingly, it is possible to cope with the miniaturization of the terminal and the connector, and the deterioration of the function of the terminal due to the decrease in the fitting force of the joint portion with the increase in the current capacity is reduced.

電子機器の使用環境の悪化から、湿気の結露あるいは
水分の侵入によって起るCuのマイグレーション現象を抑
制することにより、電極間ピッチを小さくしても短絡す
るという不具合いがなくなる。
By suppressing the migration phenomenon of Cu caused by the dew condensation of moisture or the invasion of moisture due to the deterioration of the usage environment of the electronic device, the problem of short-circuiting even if the pitch between the electrodes is reduced is eliminated.

したがって、本発明合金は端子・コネクタに適したば
ね限界値に優れ、導電性と応力緩和特性および耐マイグ
レーション性を兼備えた合金であり、電子・電気機器業
界への貢献度は多大なものである。
Therefore, the alloy of the present invention is an alloy having excellent spring limit values suitable for terminals and connectors, and having both conductivity, stress relaxation properties and migration resistance, and has a great contribution to the electronic and electric equipment industries. .

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は耐マイグレーション性の試験方法を
示す概念図である。第3図は、応力緩和率の測定方法を
示す概念図である。第4図は、端子・コネクターの例を
示す断面図及び斜視図である。
1 and 2 are conceptual diagrams showing a method for testing migration resistance. FIG. 3 is a conceptual diagram showing a method of measuring a stress relaxation rate. FIG. 4 is a sectional view and a perspective view showing an example of a terminal / connector.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22C 9/00 - 9/10 H01B 1/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) C22C 9/00-9/10 H01B 1/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Ni:0.4〜4.0wt%、Si:0.1〜1.0wt%、Zn:
1.0〜5.0wt%(但し、1.0wt%は除く)、Mg:0.1〜0.5wt
%(但し、0.1wt%は除く)、Sn:0.1〜0.5wt%とCr,Ti,
Zrのいずれか1種以上を0.001〜0.01wt%(但し、0.01w
t%は除く)残部がCuと不可避不純物からなる強度と導
電性に優れることを特徴とする耐マイグレーション性端
子・コネクタ用銅合金。
(1) Ni: 0.4 to 4.0 wt%, Si: 0.1 to 1.0 wt%, Zn:
1.0 to 5.0 wt% (excluding 1.0 wt%), Mg: 0.1 to 0.5 wt%
% (Excluding 0.1 wt%), Sn: 0.1-0.5 wt% and Cr, Ti,
0.001 to 0.01 wt% of any one or more of Zr (however, 0.01 w
(excluding t%) A copper alloy for migration-resistant terminals and connectors characterized by having excellent strength and conductivity, with the balance being Cu and unavoidable impurities.
JP2019719A 1990-01-30 1990-01-30 Migration resistant copper alloy for terminals and connectors with excellent spring characteristics, strength and conductivity Expired - Fee Related JP2977845B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019719A JP2977845B2 (en) 1990-01-30 1990-01-30 Migration resistant copper alloy for terminals and connectors with excellent spring characteristics, strength and conductivity
EP19910400200 EP0440548A3 (en) 1990-01-30 1991-01-29 Migration-resistant copper alloy for terminal and connector uses having excellent spring characteristics, strength and conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019719A JP2977845B2 (en) 1990-01-30 1990-01-30 Migration resistant copper alloy for terminals and connectors with excellent spring characteristics, strength and conductivity

Publications (2)

Publication Number Publication Date
JPH03226536A JPH03226536A (en) 1991-10-07
JP2977845B2 true JP2977845B2 (en) 1999-11-15

Family

ID=12007112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019719A Expired - Fee Related JP2977845B2 (en) 1990-01-30 1990-01-30 Migration resistant copper alloy for terminals and connectors with excellent spring characteristics, strength and conductivity

Country Status (2)

Country Link
EP (1) EP0440548A3 (en)
JP (1) JP2977845B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8361255B2 (en) 2005-09-02 2013-01-29 Hitachi Cable, Ltd. Copper alloy material and method of making same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2780584B2 (en) * 1992-11-13 1998-07-30 三菱伸銅株式会社 Cu alloy for electrical and electronic parts with excellent hot workability and punching workability
DE59407128D1 (en) * 1993-12-22 1998-11-26 Maier & Cie C Low voltage distribution board
DE19751841A1 (en) * 1997-11-22 1999-05-27 Stolberger Metallwerke Gmbh Electrically conductive metal tape and connectors made of it
DE10025106A1 (en) * 2000-05-20 2001-11-22 Stolberger Metallwerke Gmbh Electrically conductive metal tape and connectors from it
JP3520034B2 (en) * 2000-07-25 2004-04-19 古河電気工業株式会社 Copper alloy materials for electronic and electrical equipment parts
US7090732B2 (en) 2000-12-15 2006-08-15 The Furukawa Electric, Co., Ltd. High-mechanical strength copper alloy
JP3520046B2 (en) * 2000-12-15 2004-04-19 古河電気工業株式会社 High strength copper alloy
FR2840460B1 (en) * 2002-05-29 2004-08-27 Gobin Daude TERMINAL SCREWS
JP5342315B2 (en) * 2009-04-24 2013-11-13 パナソニック株式会社 Electric connection terminal device for signal and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1085654A (en) * 1976-01-19 1980-09-16 Ronald N. Caron Electrical contact
US4656003A (en) * 1984-10-20 1987-04-07 Kabushiki Kaisha Kobe Seiko Sho Copper alloy and production of the same
JPS62199741A (en) * 1986-02-25 1987-09-03 Kobe Steel Ltd Copper alloy for terminal and connector having superior migration resistance
JPS648237A (en) * 1987-06-29 1989-01-12 Mitsubishi Electric Corp Copper alloy for terminal and connector
JPH01172539A (en) * 1987-12-26 1989-07-07 Mitsubishi Electric Corp Copper alloy for electronic equipment
JPH01242740A (en) * 1988-03-23 1989-09-27 Mitsubishi Electric Corp Copper alloy for electronic equipment
JPH0776397B2 (en) * 1989-07-25 1995-08-16 三菱伸銅株式会社 Cu alloy electrical equipment connector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8361255B2 (en) 2005-09-02 2013-01-29 Hitachi Cable, Ltd. Copper alloy material and method of making same

Also Published As

Publication number Publication date
EP0440548A3 (en) 1993-12-08
EP0440548A2 (en) 1991-08-07
JPH03226536A (en) 1991-10-07

Similar Documents

Publication Publication Date Title
JP4516154B1 (en) Cu-Mg-P copper alloy strip and method for producing the same
JP4563508B1 (en) Cu-Mg-P-based copper alloy strip and method for producing the same
JP4068626B2 (en) Cu-Ni-Si-Co-Cr-based copper alloy for electronic materials and method for producing the same
KR100336173B1 (en) Copper alloy sheet for electronic parts
JP5054160B2 (en) Cu-Mg-P-based copper alloy strip and method for producing the same
JP4830048B1 (en) Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and method for producing the same
JPH0776397B2 (en) Cu alloy electrical equipment connector
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP2977845B2 (en) Migration resistant copper alloy for terminals and connectors with excellent spring characteristics, strength and conductivity
EP0222406B1 (en) Copper alloy excellent in migration resistance
JP4813814B2 (en) Cu-Ni-Si based copper alloy and method for producing the same
US20030196736A1 (en) Copper alloy with excellent stress relaxation resistance property and production method therefor
JP4154100B2 (en) Copper alloy for electronic materials having excellent surface characteristics and method for producing the same
JPH0673474A (en) Copper alloy excellent in strength, electric conductivity and migration resistance
JP2514234B2 (en) Copper alloy for terminals and connectors with excellent strength and conductivity
JP2000129377A (en) Copper-base alloy for terminal
JPH0472898B2 (en)
JPH04236736A (en) Copper-base alloy for terminal and terminal using the same
US4732732A (en) Migration resistant phosphor bronze alloy
JP2977839B2 (en) Highly conductive copper alloy for electrical and electronic components with excellent migration resistance
JPH06336632A (en) High strength copper alloy for electric conduction
JP2839927B2 (en) Method for producing copper alloy excellent in strength, conductivity and migration resistance
JP2514234C (en)
JP3049149B2 (en) High strength and high conductivity copper alloy with excellent migration resistance and method for producing the same
JPH0310035A (en) Copper alloy for electrical and electron ic parts

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees