JP2972713B2 - Semiconductor integrated circuit manufacturing apparatus, semiconductor integrated circuit wiring method, and recording medium - Google Patents

Semiconductor integrated circuit manufacturing apparatus, semiconductor integrated circuit wiring method, and recording medium

Info

Publication number
JP2972713B2
JP2972713B2 JP10108453A JP10845398A JP2972713B2 JP 2972713 B2 JP2972713 B2 JP 2972713B2 JP 10108453 A JP10108453 A JP 10108453A JP 10845398 A JP10845398 A JP 10845398A JP 2972713 B2 JP2972713 B2 JP 2972713B2
Authority
JP
Japan
Prior art keywords
point
wiring
integrated circuit
semiconductor integrated
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10108453A
Other languages
Japanese (ja)
Other versions
JPH11297843A (en
Inventor
弘道 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENKI AISHII MAIKON SHISUTEMU KK
Original Assignee
NIPPON DENKI AISHII MAIKON SHISUTEMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENKI AISHII MAIKON SHISUTEMU KK filed Critical NIPPON DENKI AISHII MAIKON SHISUTEMU KK
Priority to JP10108453A priority Critical patent/JP2972713B2/en
Publication of JPH11297843A publication Critical patent/JPH11297843A/en
Application granted granted Critical
Publication of JP2972713B2 publication Critical patent/JP2972713B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体集積回路製
造装置および半導体集積回路の配線方法、並びに記録媒
体に関し、特に、ASIC(Application
Specificintegrated circui
t)を代表とする自動配置配線によってレイアウト処理
を行なう半導体集積回路の自動配線処理に用いて好適な
半導体集積回路製造装置および半導体集積回路の配線方
法、並びに記録媒体に関する。
The present invention relates to a semiconductor integrated circuit.
More specifically, the present invention relates to an ASIC (Application), a wiring method for a semiconductor integrated circuit, and a recording medium.
Speci? C integrated circuit
It is suitable for use in automatic wiring processing of a semiconductor integrated circuit that performs layout processing by automatic placement and wiring represented by t).
The present invention relates to a semiconductor integrated circuit manufacturing apparatus, a wiring method for a semiconductor integrated circuit, and a recording medium.

【0002】[0002]

【従来の技術】例えば、ASICを代表とする自動配置
配線によってレイアウト処理を行なう半導体集積回路の
自動配線処理においては、一般的に、配線アルミの配線
長がばらつくため、その配線負荷容量が半導体の伝播遅
延の特性に影響する。配線の長さは、回路のタイミング
設計に重要な要素であり、近年、微細加工が進み、半導
体の集積度が向上するにつれて配線アルミによる配線負
荷容量が半導体の伝播遅延の特性に対し支配的に影響す
るようになってきたため、クリティカルな信号伝播経路
においては、配線アルミの長さを制御することが要求さ
れている。
2. Description of the Related Art For example, in an automatic wiring process of a semiconductor integrated circuit in which a layout process is performed by automatic placement and routing represented by an ASIC, generally, the wiring length of wiring aluminum varies, so that the wiring load capacity of the semiconductor is reduced. Affects propagation delay characteristics. The length of wiring is an important factor in the timing design of circuits. In recent years, as fine processing has progressed and the degree of integration of semiconductors has improved, the wiring load capacitance due to wiring aluminum has a dominant influence on the propagation delay characteristics of semiconductors. Because of the influence, it is required to control the length of the wiring aluminum in a critical signal propagation path.

【0003】この要請に応えるために、例えば、特願平
3―173471に開示されているように、垂直及び水
平方向の配線格子が定義された配線層と、両格子の対角
線を結ぶ配線格子が定義された配線層を設けることによ
り、比較的容易に配線長の調整を可能にすることが提案
されている。
In order to meet this demand, for example, as disclosed in Japanese Patent Application No. 3-173471, a wiring layer in which vertical and horizontal wiring grids are defined and a wiring grid connecting diagonal lines of both grids are formed. It has been proposed that by providing a defined wiring layer, the wiring length can be adjusted relatively easily.

【0004】[0004]

【発明が解決しようとする課題】上記特願平3―173
471に開示された手法は、図4に示されているが、後
述する本発明の一実施の形態の配線例を示す図1の比較
から明らかなように、垂直及び水平方向の配線格子を設
けているため、配線格子の幾何学的な図形の制約によっ
て特定の位置関係に対する絶対的な等距離性を有してい
ない。
[Problems to be Solved by the Invention] The above-mentioned Japanese Patent Application No. 3-173.
Although the method disclosed in FIG. 471 is shown in FIG. 4, as will be apparent from a comparison of FIG. 1 showing a wiring example according to an embodiment of the present invention described later, vertical and horizontal wiring grids are provided. Therefore, there is no absolute equidistant property with respect to a specific positional relationship due to the restriction of the geometrical figure of the wiring grid.

【0005】このため、自動配線時における配線処理
で、例えばある1点から、少し離れた配線格子上の直線
上の2点へ配線を行う場合において、直線上の2点のう
ちの1つの点が、ある一点の垂直または水平座標と同じ
位置にあると、直線上の2点とある1点を結ぶ配線は、
最短距離で接続するとき、必ず異なる配線長で接続され
る課題があった。
[0005] For this reason, in the wiring processing at the time of automatic wiring, for example, when wiring is performed from a certain point to two points on a straight line on a wiring grid slightly apart from one point, one of the two points on the straight line is used. Is located at the same position as the vertical or horizontal coordinate of a point, the wiring connecting the two points on the straight line and the point is
When connecting at the shortest distance, there is a problem that connection is always made with a different wiring length.

【0006】その結果、それぞれの配線の長さが異なる
ことにより、各経路での配線負荷容量の大きさに差が生
じ、伝播遅延の特性を同一にすることができない課題が
あった。
As a result, since the lengths of the respective wirings are different, the magnitude of the wiring load capacitance in each path is different, and there is a problem that the characteristics of the propagation delay cannot be made the same.

【0007】さらには、選択できる配線経路の組み合わ
せが多いため、自動配線でのアルゴリズムが複雑になっ
てしまい、自動配線処理の処理時間が増大する課題があ
った。
Furthermore, since there are many combinations of wiring routes that can be selected, the algorithm for automatic wiring becomes complicated, and there is a problem that the processing time of the automatic wiring processing increases.

【0008】本発明はこのような状況に鑑みてなされた
ものであり、特定の条件下における位置関係であれば、
2点間を結ぶ最短距離での配線は必ず同じ配線長で接続
される配線格子と、その特定の条件を確認する処理を配
線処理フローとして設けた半導体集積回路の配線方法を
提供することができるようにするものである。
[0008] The present invention has been made in view of such circumstances, and if the positional relationship under specific conditions,
It is possible to provide a wiring method for a semiconductor integrated circuit in which a wiring at the shortest distance connecting two points is always connected with the same wiring length, and a processing for checking specific conditions is provided as a wiring processing flow. Is to do so.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の半導体
集積回路の配線方法は、互いに交叉する第1層配線およ
び第2層配線からなる配線格子を用いて配線を行う半導
体集積回路の配線方法であって、第1の点と各々最短距
離で配線する第2および第3の点の位置関係が、幾何学
的な形状に基づいた所定の制約を満足するように、第3
の点の位置を決定する位置決定ステップと、第1の点と
第2の点、第1の点と第3の点との間の各配線経路を決
定する配線経路決定ステップとを備え、位置決定ステッ
プにおいて、第3の点は、第1の点を頂点とし、第2の
点を通り、かつ第2の点を含む配線格子の対角を結ぶ2
つの直線と、第1の点を通る第1の配線と、第1の点を
通る第2の配線とにより構成される三角形の第1の点を
含まない辺のうち、第2の点を含む辺上に配置され、第
3の点の位置は、各配線経路の配線長が同一となるよう
に決定されることを特徴とする。請求項2に記載の半導
体集積回路製造装置は、互いに交叉する第1の配線およ
び第2の配線からなる配線格子を用いて配線を行う半導
体集積回路製造装置であって、第1の点と各々最短距離
で配線する第2および第3の点の位置関係が、幾何学的
な形状に基づいた所定の制約を満足するように、第3の
点の位置を決定する位置決定手段と、第1の点と第2の
点、第1の点と第3の点との間の各配線経路を決定する
経路決定手段とを備え、位置決定手段により、第3の点
は、第1の点を頂点とし、第2の点を通り、かつ第2の
点を含む配線格子の対角を結ぶ2つの直線と、第1の点
を通る第1の配線と、第1の点を通る第2の配線とによ
り構成される三角形の第1の点を含まない辺のうち、第
2の点を含む辺上に配置され、第3の点の位置は、各配
線経路の配線長が同一となるように決定されることを特
徴とする。請求項3に記載の記録媒体は、請求項1に記
載の半導体集積回路の配線方法を実行可能なプログラム
が記録されていることを特徴とする。本発明に係る半導
体集積回路製造装置および半導体集積回路の配線方法、
並びに記録媒体においては、第1の点と各々最短距離で
配線する第2および第3の点の位置関係が、幾何学的な
形状に基づいた所定の制約を満足するように、第3の点
の位置を決定し、第1の点と第2の点、第1の点と第3
の点との間の各配線経路を決定する。このとき、第3の
点は、第1の点を頂点とし、第2の点を通り、かつ第2
の点を含む配線格子の対角を結ぶ2つの直線と、第1の
点を通る第1の配線と、第1の点を通る第2の配線とに
より構成される三角形の第1の点を含まない辺のうち、
第2の点を含む辺上に配置され、第3の点の位置は、各
配線経路の配線長が同一となるように決定される。
According to a first aspect of the present invention, there is provided a wiring method for a semiconductor integrated circuit, wherein wiring is performed using a wiring grid including a first layer wiring and a second layer wiring which cross each other. The third point so that the positional relationship between the first point and the second and third points, each of which is wired at the shortest distance, satisfies a predetermined constraint based on the geometric shape.
And a wiring path determining step of determining each wiring path between the first point and the second point, and between the first point and the third point. In the determining step, the third point has the first point as the vertex, passes through the second point, and connects the diagonals of the wiring grid including the second point.
Includes a second point among sides of the triangle formed by the three straight lines, the first wiring passing through the first point, and the second wiring passing through the first point, excluding the first point. The third point is located on the side, and the position of the third point is determined so that the wiring length of each wiring path is the same. The semiconductor according to claim 2.
The semiconductor integrated circuit manufacturing apparatus includes a semiconductor device that performs wiring using a wiring grid including a first wiring and a second wiring that cross each other.
The apparatus for manufacturing a body integrated circuit, wherein a positional relationship between a first point and second and third points each wired at the shortest distance satisfies a predetermined constraint based on a geometric shape. Position determination means for determining the position of the third point, and path determination means for determining each wiring path between the first point and the second point and between the first point and the third point. By the determining means, the third point passes through the first point, the two straight lines passing through the second point, connecting the diagonal of the wiring grid including the second point, and the first point. Among the sides not including the first point of the triangle formed by the first wiring and the second wiring passing through the first point, the third point is arranged on the side including the second point. Is determined so that the wiring length of each wiring path is the same. According to a third aspect of the present invention, there is provided a recording medium on which a program capable of executing the wiring method for a semiconductor integrated circuit according to the first aspect is recorded. Semiconductor according to the present invention
Body integrated circuit manufacturing apparatus and semiconductor integrated circuit wiring method,
In the recording medium, the third point is set such that the positional relationship between the first point and the second and third points, each of which is wired at the shortest distance, satisfies a predetermined constraint based on the geometric shape. Are determined, and the first point and the second point, and the first point and the third point are determined.
Each wiring route between the points is determined. At this time, the third point has the first point as the vertex, passes through the second point, and
A first point of a triangle constituted by two straight lines connecting the diagonals of the wiring grid including the points (1), (2), a first line passing through the first point, and a second line passing through the first point. Of the sides not included,
The third point is located on the side including the second point, and the position of the third point is determined such that the wiring lengths of the respective wiring paths are the same.

【0010】[0010]

【発明の実施の形態】本発明による半導体集積回路の配
線方法における配線格子構造を図1に示す。従来の垂直
及び水平方向の配線格子が定義された配線層と、両格子
の対角線を結ぶ配線格子が定義された配線層が設けられ
た構成に対して、図1の本発明の半導体集積回路の配線
方法における配線格子構造の場合、斜線で形成された配
線格子が定義された配線層を設け、図3の自動配線処理
のフローチャートに示すように、接続する2点間の位置
関係が幾何学的な形状による制約を満たしていることを
確認して、最短距離の配線経路で自動配線処理を行うよ
うになされている。
FIG. 1 shows a wiring grid structure in a wiring method of a semiconductor integrated circuit according to the present invention. In contrast to the conventional configuration in which a wiring layer in which vertical and horizontal wiring grids are defined and a wiring layer in which a wiring grid connecting diagonals of both grids are provided, the semiconductor integrated circuit of the present invention shown in FIG. In the case of the wiring grid structure in the wiring method, a wiring layer in which a wiring grid formed by oblique lines is defined is provided, and as shown in the flowchart of the automatic wiring processing in FIG. The automatic routing process is performed on the shortest distance wiring route after confirming that the constraints due to various shapes are satisfied.

【0011】この配線格子構造と、図3のフローチャー
トで示される、接続する2点間の位置関係を確認し、最
短距離の配線経路で自動配線を行う処理は、起点を同じ
とする2組の2点間を、必ず同じ配線長で接続すること
になる。従って、自動配線処理における配線アルミの配
線長のばらつきを無くすことができ、配線負荷容量によ
る伝播遅延の特性が同一になるという効果が得られる。
The processing of confirming the positional relationship between the wiring grid structure and the two points to be connected, as shown in the flowchart of FIG. 3, and performing automatic wiring on the shortest wiring path is performed by two sets of the same starting point. Two points must be connected with the same wiring length. Accordingly, it is possible to eliminate the variation in the wiring length of the wiring aluminum in the automatic wiring processing, and to obtain the effect that the characteristics of the propagation delay due to the wiring load capacitance become the same.

【0012】図1は、配線格子の構造を示している。配
線格子は、斜線で構成された2つの配線層からなり、こ
の斜線は、第1の配線層1とそれと交差する斜線で定義
された第2の配線層2から構成される。
FIG. 1 shows the structure of a wiring grid. The wiring grid is composed of two wiring layers formed by diagonal lines, and the diagonal lines are formed by a first wiring layer 1 and a second wiring layer 2 defined by diagonal lines crossing the first wiring layer.

【0013】また、動作説明のための記号として、交点
P1、Pn、Pn+1、P2、P3、P2a、P3a、
直線L1、L1a、L2、L3、及び線分dL、dLa
が示されている。
Symbols for explaining the operation include intersections P1, Pn, Pn + 1, P2, P3, P2a, P3a,
Straight lines L1, L1a, L2, L3 and line segments dL, dLa
It is shown.

【0014】図2は、図1の動作に対応させた回路図が
示されている。この回路図は、3つのブロックB1、B
2、B3から構成され、配線L12と配線L13の長さ
が同じであることが特性として求められているものとす
る。
FIG. 2 is a circuit diagram corresponding to the operation of FIG. This circuit diagram shows three blocks B1, B
2 and B3, and it is assumed that the same length of the wiring L12 and the wiring L13 is required as a characteristic.

【0015】図3は、本発明の半導体集積回路の配線方
法を示すフローチャートである。本フローチャートは、
従来の自動配線処理に加え、本発明による幾何学的な図
形の制約に基づいて接続される2点間の位置関係を確認
し、必要に応じてブロックを再配置する処理を有する。
尚、図3の自動配置処理、ブロックの再配置処理、自動
配線処理は、当業者にとってよく知られており、また本
発明とは直接関係しないので、ここではその詳細な構成
および動作の説明は省略する。
FIG. 3 is a flowchart showing a method for wiring a semiconductor integrated circuit according to the present invention. This flowchart is
In addition to the conventional automatic wiring processing, the present invention has a processing of confirming a positional relationship between two connected points based on a constraint of a geometrical figure according to the present invention, and rearranging blocks as necessary.
It should be noted that the automatic arrangement processing, block rearrangement processing, and automatic wiring processing of FIG. 3 are well known to those skilled in the art and are not directly related to the present invention. Omitted.

【0016】以下、上記実施の形態の動作について説明
する。まず、幾何学的な図形の制約について、配線格子
の構造を示す図1の配線格子図を参照して説明する。
The operation of the above embodiment will be described below. First, restrictions on geometric figures will be described with reference to a wiring grid diagram of FIG. 1 showing a wiring grid structure.

【0017】まず、斜線1と斜線2からなる間隔dの配
線格子上の交点P1と、交点P1を含まない配線格子の
対角を結ぶ任意の直線L1と、交点P1を通過する配線
格子上の2本の直線L2及び直線L3を定義する。次
に、直線L1と直線L2の交点をP2とし、直線L1と
直線L3の交点をP3とする。そして、交点P2と交点
P3で区切られる直線L1上の線分を線分dLとする。
First, an intersection P1 on a wiring grid at an interval d consisting of oblique lines 1 and 2; an arbitrary straight line L1 connecting diagonals of the wiring grid not including the intersection P1; and a wiring grid passing through the intersection P1. Two straight lines L2 and L3 are defined. Next, the intersection of the straight line L1 and the straight line L2 is P2, and the intersection of the straight line L1 and the straight line L3 is P3. Then, a line segment on the straight line L1 separated by the intersection point P2 and the intersection point P3 is defined as a line segment dL.

【0018】ここで、配線格子上の交点P1から、交点
P2及び交点P3を含む直線L1上の線分dL上の配線
格子の任意の交点Pn、Pn+1への配線を考えると、
配線格子上の配線であり、且つ最短距離の配線を行った
場合、どの経路を辿っても、配線長は必ず8dになるこ
とがわかる。
Here, consider wiring from the intersection P1 on the wiring grid to any of the intersections Pn and Pn + 1 of the wiring grid on the line segment dL on the straight line L1 including the intersections P2 and P3.
It can be seen that when the wiring is on the wiring grid and the shortest distance wiring is performed, the wiring length is always 8d regardless of which route is followed.

【0019】次に、半導体回路と上記配線格子の対応
を、図1の配線格子図と図2の半導体回路図を用いて説
明する。図2に示すように、3つのブロックB1、B
2、B3と、ブロックB1の接続点N1、ブロックB2
の接続点N2、ブロックB3の接続点N3、および接続
点N1から接続点N2への配線L12、接続点N1から
接続点N3への配線L13で構成される回路において、
接続点N1が図1における交点P1の位置に配置され、
接続点N2が図1における交点Pnの位置に配置され、
接続点N3はそれに合わせて図1における交点Pn+1
の位置に配置されるものとする。このとき、上述したよ
うに、配線L12は、最短距離で配線すると配線長8d
で配線され、配線L13もまた最短距離で配線すると配
線長8dで配線されるため、配線L12の配線長と配線
L13の配線長が等しくなる(L12=L13)ような
配線が実現される。
Next, the correspondence between the semiconductor circuit and the wiring grid will be described with reference to the wiring grid diagram of FIG. 1 and the semiconductor circuit diagram of FIG. As shown in FIG. 2, three blocks B1, B
2, B3, connection point N1 of block B1, block B2
, A connection point N3 of the block B3, a wiring L12 from the connection point N1 to the connection point N2, and a wiring L13 from the connection point N1 to the connection point N3.
The connection point N1 is arranged at the position of the intersection P1 in FIG.
The connection point N2 is arranged at the position of the intersection Pn in FIG.
The connection point N3 corresponds to the intersection Pn + 1 in FIG.
Shall be arranged at the position of. At this time, as described above, when the wiring L12 is wired with the shortest distance, the wiring length 8d
If the wiring L13 is also wired at the shortest distance, it is wired with a wiring length of 8d, so that a wiring in which the wiring length of the wiring L12 and the wiring length of the wiring L13 are equal (L12 = L13) is realized.

【0020】最後に、上述した制約を取り入れた配線方
法について、図1の配線格子図と図2の回路図を交え
て、図3のフローチャートを参照して説明する。図3に
示すように、従来の自動配置処理が終了した後、図2の
ブロックB1の接続点N1である図1の交点P1と、図
2のブロックB2の接続点N2である図1の交点Pnの
位置を求める。交点Pnの位置が求まれば、交点Pnを
通過し、配線格子の対角を結ぶ2本の直線L1、L1a
が得られる。
Finally, a wiring method incorporating the above-described restrictions will be described with reference to the flowchart of FIG. 3 using the wiring grid diagram of FIG. 1 and the circuit diagram of FIG. As shown in FIG. 3, after the conventional automatic arrangement processing is completed, the intersection P1 of FIG. 1 which is the connection point N1 of the block B1 of FIG. 2 and the intersection of FIG. 1 which is the connection point N2 of the block B2 of FIG. Find the position of Pn. When the position of the intersection Pn is determined, two straight lines L1 and L1a passing through the intersection Pn and connecting the diagonals of the wiring grid are obtained.
Is obtained.

【0021】直線L1、及び直線L1aのそれぞれにお
いて、交点P2、P3、及び交点P2a、P3aの位置
を求め、交点P2と交点P3で区切られる線分dLと、
交点P2aと交点P3aで区切られる線分dLaを求め
る。その後、交点Pnが含まれる線分(図1では線分d
L)を求める。続いて、図2のブロックB3の接続点N
3である交点Pn+1の位置を求め、交点Pn+1が線
分dL上に存在するか否かをチェックする。その結果、
交点Pn+1が線分dL上に存在しないことが判明した
場合、図2のブロックB3を再度配置し直し、再び交点
Pn+1が線分dL上に存在するか否かをチェックしす
る。そして、この処理を、交点Pn+1が線分dL上に
くるまで繰り返す。
In each of the straight line L1 and the straight line L1a, the positions of the intersection points P2 and P3 and the intersection points P2a and P3a are obtained, and a line segment dL separated by the intersection point P2 and the intersection point P3;
A line segment dLa delimited by the intersection P2a and the intersection P3a is obtained. Thereafter, a line segment including the intersection Pn (the line segment d in FIG. 1)
L). Subsequently, the connection point N of the block B3 in FIG.
The position of the intersection Pn + 1, which is 3, is determined, and it is checked whether the intersection Pn + 1 exists on the line segment dL. as a result,
When it is determined that the intersection Pn + 1 does not exist on the line segment dL, the block B3 in FIG. 2 is rearranged again, and it is checked again whether the intersection Pn + 1 exists on the line segment dL. Then, this processing is repeated until the intersection Pn + 1 comes on the line segment dL.

【0022】交点Pn+1が線分dL上に存在するよう
に、交点P1、Pn、Pn+1が所定の位置関係に配置
されたら、交点P1と交点Pn間の配線格子上の最短経
路と、交点P1と交点Pn+1間の配線格子上の最短経
路をそれぞれ求め、それらの経路情報に基づいて、従来
の自動配線処理にて各交点間、即ち、交点P1と交点P
n、及び交点P1と交点Pn+1をそれぞれ配線する。
When the intersection points P1, Pn, and Pn + 1 are arranged in a predetermined positional relationship such that the intersection point Pn + 1 exists on the line segment dL, the shortest path on the wiring grid between the intersection point P1 and the intersection point Pn is determined. The shortest paths on the wiring grid between the intersections Pn + 1 are respectively obtained, and based on the route information, the intersections between the intersections, that is, the intersections P1 and P
n, and the intersection P1 and the intersection Pn + 1 are respectively wired.

【0023】このように、配線格子を斜線で形成された
配線層で構成し、接続する2点間の位置関係における幾
何学的な形状による制約を満足しているか否かを確認
し、最短距離となるように配線経路を接続することによ
り、起点を同じとする2組の2点間の接続に対して、そ
の配線長を必ず同じ長さとすることができる。従って、
自動配線処理における配線アルミの配線長のばらつきを
無くすことができる。これにより、配線負荷による伝播
遅延の特性が同一になるという効果を得ることができ
る。
As described above, the wiring grid is constituted by the wiring layers formed by diagonal lines, and it is confirmed whether or not the positional relationship between the two points to be connected satisfies the restriction by the geometrical shape. By connecting the wiring paths in such a manner, the wiring length can always be the same for two sets of two points having the same starting point. Therefore,
Variations in the wiring length of the wiring aluminum in automatic wiring processing can be eliminated. As a result, the effect that the characteristics of the propagation delay due to the wiring load become the same can be obtained.

【0024】また、最短距離で接続した配線経路は、全
てが同じ配線長になり、かつ配線経路の決定条件が、最
短距離の経路指定のみである。このため、配線経路を求
める処理も単純となり、自動配線処理のTAT(tur
n−around time)(納期)を短縮すること
ができる。
Further, all the wiring routes connected at the shortest distance have the same wiring length, and the condition for determining the wiring route is only the shortest distance route designation. For this reason, the processing for obtaining the wiring route is also simplified, and the TAT (tur
n-around time (delivery time) can be shortened.

【0025】なお、上記実施の形態においては、2組の
起点を同じとする2点間の接続の場合について説明した
が、3組以上の起点を同じとする2点間の接続の場合に
も本発明を適用することが可能である。
In the above-described embodiment, a description has been given of the case of a connection between two points where two sets of starting points are the same. However, a case of a connection between two points where the starting points of three or more sets are the same is also described. The present invention can be applied.

【0026】[0026]

【発明の効果】本発明に係る半導体集積回路製造装置
よび半導体集積回路の配線方法、並びに記録媒体によれ
ば、第1の点と各々最短距離で配線する第2および第3
の点の位置関係が、幾何学的な形状に基づいた所定の制
約を満足するように、第3の点の位置を決定し、第1の
点と第2の点、第1の点と第3の点との間の各配線経路
を決定する。このとき、第3の点は、第1の点を頂点と
し、第2の点を通り、かつ第2の点を含む配線格子の対
角を結ぶ2つの直線と、第1の点を通る第1の配線と、
第1の点を通る第2の配線とにより構成される三角形の
第1の点を含まない辺のうち、第2の点を含む辺上に配
置され、第3の点の位置は、各配線経路の配線長が同一
となるように決定されるようにしたので、2組の起点を
同じとする2点間の接続を、同一の配線長で行うことが
でき、各配線経路の配線負荷による伝播遅延の特性を同
一にすることができる。
According to the semiconductor integrated circuit manufacturing apparatus, the semiconductor integrated circuit wiring method, and the recording medium according to the present invention, the second and third wirings are wired at the shortest distance from the first point.
The position of the third point is determined such that the positional relationship between the points satisfies a predetermined constraint based on the geometric shape, and the first point and the second point, and the first point and the Each wiring route to the third point is determined. At this time, the third point has the first point as the vertex, passes through the second point, and connects two straight lines connecting the diagonals of the wiring grid including the second point, and the third point passing through the first point. 1 wiring,
Of the sides not including the first point of the triangle formed by the second wiring passing through the first point, the triangles are arranged on the side including the second point, and the position of the third point is determined by each wiring. Since the wiring lengths of the routes are determined so as to be the same, the connection between the two points having the same starting point can be performed with the same wiring length, and the wiring load of each wiring route depends on the wiring load. The characteristics of the propagation delay can be made the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体集積回路製造装置で用いる配線
格子の構造を示す図である。
FIG. 1 is a diagram showing a structure of a wiring grid used in a semiconductor integrated circuit manufacturing apparatus of the present invention.

【図2】図1に配線格子の接続に対応した回路を示す図
である。
FIG. 2 is a diagram showing a circuit corresponding to the connection of the wiring grid in FIG.

【図3】図1の配線処理を行う手順を示すフローチャー
トである。
FIG. 3 is a flowchart showing a procedure for performing the wiring processing of FIG. 1;

【図4】従来の配線格子の構造、及び配線経路を示す図
である。
FIG. 4 is a diagram showing a structure of a conventional wiring grid and wiring paths.

【符号の説明】[Explanation of symbols]

1,2 配線層 11,12 配線層 1, 2 wiring layers 11, 12 wiring layers

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 21/82 G06F 17/50 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 21/82 G06F 17/50

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 互いに交叉する第1層配線および第2層
配線からなる配線格子を用いて配線を行う半導体集積回
路の配線方法であって、 第1の点と各々最短距離で配線する第2および第3の点
の位置関係が、幾何学的な形状に基づいた所定の制約を
満足するように、前記第3の点の位置を決定する位置決
定ステップと、 前記第1の点と前記第2の点、前記第1の点と前記第3
の点との間の各配線経路を決定する配線経路決定ステッ
プとを備え、 前記位置決定ステップにおいて、前記第3の点は、前記
第1の点を頂点とし、前記第2の点を通り、かつ前記第
2の点を含む配線格子の対角を結ぶ2つの直線と、前記
第1の点を通る前記第1の配線と、前記第1の点を通る
前記第2の配線とにより構成される三角形の前記第1の
点を含まない辺のうち、前記第2の点を含む辺上に配置
され、前記第3の点の位置は、各配線経路の配線長が同
一となるように決定されることを特徴とする半導体集積
回路の配線方法。
1. A wiring method for a semiconductor integrated circuit, wherein wiring is performed by using a wiring grid composed of a first layer wiring and a second layer wiring crossing each other, wherein a second wiring is provided at a shortest distance from the first point. And a position determining step of determining the position of the third point so that the positional relationship between the third point and the third point satisfies a predetermined constraint based on a geometrical shape. Point 2, the first point and the third point.
A wiring path determining step of determining each wiring path between the second point and the third point, wherein the third point has the first point as a vertex, passes through the second point, And two straight lines connecting diagonals of a wiring grid including the second point, the first wiring passing through the first point, and the second wiring passing through the first point. Among the sides of the triangle not including the first point, the sides of the triangle including the second point are determined, and the position of the third point is determined so that the wiring length of each wiring path is the same. A wiring method for a semiconductor integrated circuit.
【請求項2】 互いに交叉する第1の配線および第2の
配線からなる配線格子を用いて配線を行う半導体集積回
路製造装置であって、 第1の点と各々最短距離で配線する第2および第3の点
の位置関係が、幾何学的な形状に基づいた所定の制約を
満足するように、前記第3の点の位置を決定する位置決
定手段と、 前記第1の点と前記第2の点、前記第1の点と前記第3
の点との間の各配線経路を決定する経路決定手段とを備
え、 前記位置決定手段により、前記第3の点は、前記第1の
点を頂点とし、前記第2の点を通り、かつ前記第2の点
を含む配線格子の対角を結ぶ2つの直線と、前記第1の
点を通る前記第1の配線と、前記第1の点を通る前記第
2の配線とにより構成される三角形の前記第1の点を含
まない辺のうち、前記第2の点を含む辺上に配置され、
前記第3の点の位置は、各配線経路の配線長が同一とな
るように決定されることを特徴とする半導体集積回路製
造装置
2. A semiconductor integrated circuit for performing wiring using a wiring grid composed of a first wiring and a second wiring crossing each other.
A road manufacturing apparatus , wherein the positional relationship between a first point and second and third points, each of which is wired with the shortest distance, satisfies a predetermined constraint based on a geometric shape. Position determining means for determining the position of the first point, the first point and the second point, and the first point and the third point.
Route determination means for determining each wiring route between the third point and the third point, the third point having the first point as a vertex, passing through the second point, and It is composed of two straight lines connecting diagonals of a wiring grid including the second point, the first wiring passing through the first point, and the second wiring passing through the first point. Of the sides of the triangle not including the first point, the triangles are arranged on the side including the second point,
The position of the third point is determined so that the wiring length of each wiring path is the same .
Manufacturing equipment .
【請求項3】 請求項1に記載の半導体集積回路の配線
方法を実行可能なプログラムが記録されている記録媒
体。
3. A recording medium on which a program capable of executing the wiring method for a semiconductor integrated circuit according to claim 1 is recorded.
JP10108453A 1998-04-06 1998-04-06 Semiconductor integrated circuit manufacturing apparatus, semiconductor integrated circuit wiring method, and recording medium Expired - Lifetime JP2972713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10108453A JP2972713B2 (en) 1998-04-06 1998-04-06 Semiconductor integrated circuit manufacturing apparatus, semiconductor integrated circuit wiring method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10108453A JP2972713B2 (en) 1998-04-06 1998-04-06 Semiconductor integrated circuit manufacturing apparatus, semiconductor integrated circuit wiring method, and recording medium

Publications (2)

Publication Number Publication Date
JPH11297843A JPH11297843A (en) 1999-10-29
JP2972713B2 true JP2972713B2 (en) 1999-11-08

Family

ID=14485170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10108453A Expired - Lifetime JP2972713B2 (en) 1998-04-06 1998-04-06 Semiconductor integrated circuit manufacturing apparatus, semiconductor integrated circuit wiring method, and recording medium

Country Status (1)

Country Link
JP (1) JP2972713B2 (en)

Also Published As

Publication number Publication date
JPH11297843A (en) 1999-10-29

Similar Documents

Publication Publication Date Title
JP3063828B2 (en) Automatic schematic wiring method for integrated circuits
US6966045B2 (en) Method and computer program product for estimating wire loads
JP4008629B2 (en) Semiconductor device, design method thereof, and computer-readable recording medium storing the design program
US20020170029A1 (en) Method and apparatus for accurate crosspoint allocation in vlsi area routing
JPH0750817B2 (en) Wiring interconnection structure
JP2001274254A (en) Automatic layout and wiring method for semiconductor integrated circuit
JPH0944550A (en) Wiring parasitic load calculating method
JP2001306640A (en) Method and device for automatic arrangement and wiring and semiconductor integrated circuit
JP2005115785A (en) Method for wiring semiconductor device, method for producing semiconductor device, and semiconductor device
JP3599017B2 (en) Adjustment method of clock propagation delay time
JP2972713B2 (en) Semiconductor integrated circuit manufacturing apparatus, semiconductor integrated circuit wiring method, and recording medium
JP3169883B2 (en) Semiconductor integrated circuit device and method of arranging functional cells thereof
JP2508227B2 (en) Method for determining general wiring route of semiconductor integrated circuit
JP3017131B2 (en) Layout method of semiconductor integrated circuit
JP2000057175A (en) Automatic wiring system of semi-conductor integrated circuit device
JP3184132B2 (en) Hierarchical layout design method
JP2990173B1 (en) Reference potential supply wiring method for semiconductor integrated circuit
JP5187217B2 (en) Semiconductor layout system, method, and program
JP5035003B2 (en) Wiring layout apparatus, wiring layout method, and wiring layout program
JPH05160375A (en) Automatic routing method
JP2980316B1 (en) Hierarchy layout method
JP3017169B2 (en) Semiconductor integrated circuit device and layout method thereof
JP2682219B2 (en) Wiring method for semiconductor integrated circuit
JP2007165489A (en) Semiconductor device and designing method therefor
JP2003158184A (en) Semiconductor integrated circuit and its layout design method