JP2967859B2 - Manufacturing method of composite powder - Google Patents

Manufacturing method of composite powder

Info

Publication number
JP2967859B2
JP2967859B2 JP26177894A JP26177894A JP2967859B2 JP 2967859 B2 JP2967859 B2 JP 2967859B2 JP 26177894 A JP26177894 A JP 26177894A JP 26177894 A JP26177894 A JP 26177894A JP 2967859 B2 JP2967859 B2 JP 2967859B2
Authority
JP
Japan
Prior art keywords
particles
composite powder
wall
classifier
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26177894A
Other languages
Japanese (ja)
Other versions
JPH08103647A (en
Inventor
光雄 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Iron Works Ltd
Original Assignee
Kurimoto Iron Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Iron Works Ltd filed Critical Kurimoto Iron Works Ltd
Priority to JP26177894A priority Critical patent/JP2967859B2/en
Publication of JPH08103647A publication Critical patent/JPH08103647A/en
Application granted granted Critical
Publication of JP2967859B2 publication Critical patent/JP2967859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)
  • Glanulating (AREA)
  • Combined Means For Separation Of Solids (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、有機、無機および金
属の粉体の機能を多機能化して工業原料、医薬材料、農
薬材料、化粧品、食品添加物などに使用する。多機能化
の一つの手法として粉体を複合化する複合粉体の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a multifunctional organic, inorganic and metal powder and is used for industrial raw materials, pharmaceutical materials, agricultural chemical materials, cosmetics and food additives. The present invention relates to a method for producing a composite powder in which a powder is composited as one method of multifunctionalization.

【0002】[0002]

【従来の技術】複合粉体の製造装置として、大別する
と、次に述べるような3つのものがある。 (1)核となる粉体とその外壁となる粉体とを一定の割
合に配合し、これを混合機に入れて予備混合した後、粉
砕機に投入し、連続的に取り出す方法である。混合機と
しては、Vブレンダーやボールミルやアトマイザなどが
ある。 (2)核となる粉体とその外壁となる粉体を一定の割合
で配合し、混合機あるいは粉砕機に投入し、長時間処理
した後、複合粉体を取り出すバッチ式方法である。例え
ば、特開昭61−64326号公報および特開昭61−
200845号公報参照。 (3)外壁となる粉体を気流式粉砕機などで予備粉砕し
て単一粒子の状態に分散後、核となる粉体とともに混合
機あるいは粉砕機に投入して連続的に取り出す方法であ
る。
2. Description of the Related Art There are three types of apparatus for producing composite powder, which are roughly described below. (1) This is a method in which a powder serving as a core and a powder serving as an outer wall thereof are blended in a fixed ratio, and the mixture is preliminarily mixed in a mixer, then charged into a pulverizer, and continuously taken out. Examples of the mixer include a V blender, a ball mill, an atomizer, and the like. (2) This is a batch method in which a core powder and an outer wall powder are blended in a fixed ratio, put into a mixer or a pulverizer, treated for a long time, and then a composite powder is taken out. For example, JP-A-61-64326 and JP-A-61-64326
See JP 2008845. (3) In this method, the powder to be the outer wall is preliminarily pulverized by an air-flow type pulverizer or the like, dispersed into single particles, and then put into a mixer or pulverizer together with the powder as a nucleus and continuously taken out. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記
(1),(3)のものは予備混合、予備粉砕が必要であ
る。混合機に入れれば時間とともに混合は良くなるが、
しかし混合機には、粉砕機のように、粒子を分散させる
充分な作用が無い。また、逆に粉砕機には混合作用が不
足する。したがって、2段処理をせざる終えない問題が
ある。特に、外壁となる粉体が沈殿法で製造されたサブ
ミクロン粉体の場合は、二次凝集しているため、容易に
分散しにくい。また、(2)の場合は、バッチ式である
ため、煩わしく、製品ロスも多くなる、また前記
(2),(3)の場合、粉砕機の発熱により有機物が溶
融する、などの問題がある。
However, the above (1) and (3) require preliminary mixing and preliminary grinding. If you put it in a mixer, mixing will improve over time,
However, a mixer does not have a sufficient effect of dispersing particles unlike a pulverizer. On the contrary, the mixing action is insufficient in the crusher. Therefore, there is a problem that the two-stage processing cannot be completed. In particular, when the powder to be the outer wall is a submicron powder produced by a precipitation method, it is difficult to disperse easily because of secondary aggregation. In the case of (2), since it is a batch type, it is troublesome and the product loss increases. In the cases of (2) and (3), there is a problem that the organic matter is melted by the heat generated by the pulverizer. .

【0004】この発明は、前記問題を改良するためにな
したものであり、予備混合や予備粉砕をなくし、ワンス
テップで処理することができ、また付着率および均一度
の高い複合粉体の製造方法を提供することを目的とする
ものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and eliminates pre-mixing and pre-crushing, can be processed in one step, and can produce a composite powder having a high adhesion and uniformity. It is intended to provide a method.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、この発明の複合粉体の製造方法は、平均粒径〜5
mmの核粒子と平均粒径0.1〜50μmの外壁粒子と
を、10:0.8以上の重量比率で分級機内蔵型気流式
粉砕機に供給して、該核粒子および外壁粒子を前記分級
機内蔵型気流式粉砕機に導入されるジェット気流により
粉砕・分散させ、前記粉砕されな核粒子の表面に破砕・
分散された外壁粒子を付着させた後、前記核粒子に外壁
粒子が付着した複合粉体を前記分級機により分級するよ
うにしたことである。
Means for Solving the Problems In order to achieve the above object, a method for producing a composite powder according to the present invention has an average particle diameter of 2 to 5 particles.
and mm core particles the outer wall particles children of average particle size 0.1~50μm the <br/>, 10: is supplied to the classifier built-jet-mill at least 0.8 weight ratio, the nucleic particles And the outer wall particles are pulverized and dispersed by a jet stream introduced into the classifier built-in type air flow type pulverizer, and crushed and dispersed on the surface of the non-pulverized core particles.
After adhering the dispersed outer wall particles, the composite powder having the outer wall particles adhered to the core particles is classified by the classifier.

【0006】[0006]

【作用】分級機内蔵型気流式粉砕機に供給された平均粒
径2〜5mmの核粒子および平均粒径0.1〜50μm
外壁粒子は、該分級機内蔵型気流式粉砕機に導入され
るジェット気流の速度エネルギーによって加速され、粉
砕、分散される。すなわち、前記核粒子は該核粒子同志
の激しい衝突、摩擦の繰り返しにより確実に粉砕され微
細化される。しかもこの際、強い静電気を帯びるととも
にメカノケミカルなエネルギーが付与される。一方、外
壁粒子も前記作用によって、確実に粉砕による微細化・
分散化されるとともに静電気を帯びる。このことによっ
て、強い静電気を負荷された核粒子の表面に、破砕・分
散された逆の静電気を持つ外壁粒子が付着し、複合粉体
となる。しかも、粉砕は粒子同志の激しい衝突、摩擦の
繰り返しによるので、粉砕機は発熱を起こすことがな
く、このことにより粒子が溶融することがない。前記静
電気現象は、粉砕が進むほど大きくなるものと考えら
れ、このため粉砕された核粒子の表面に粉砕・分散され
た外壁粒子がむらなく付着するものである。そして、前
記複合粉体は、気流式粉砕機に組込まれた分級機により
所定の分級点で分級され、排出される。
[Action] The average grain supplied to the air crusher with built-in classifier
Core particles having a diameter of 2 to 5 mm and an average particle size of 0.1 to 50 μm
The outer wall particles are accelerated by the velocity energy of the jet stream introduced into the classifier-incorporated air stream type mill, and are pulverized and dispersed. That is, the core particles violent collision of the nucleic particles each other, are miniaturized be reliably pulverized by repeated friction. In addition, at this time, strong static electricity is applied and mechanochemical energy is applied. On the other hand, the outer wall particles are also reliably pulverized and fined by the above-described action.
Dispersed and charged with static electricity. As a result, the crushed and dispersed outer wall particles having the opposite static electricity adhere to the surface of the core particles to which the strong static electricity is applied, and a composite powder is formed. Moreover, grinding violent collision of the particles each other, since by repeating the friction pulverizer without causing fever, never particles are melted by this. The electrostatic phenomenon is considered to increase as the pulverization proceeds, and thus the outer wall particles pulverized and dispersed uniformly adhere to the surface of the pulverized core particles. Then, the composite powder is classified at a predetermined classification point by a classifier incorporated in an air-flow type pulverizer and discharged.

【0007】ここで、核粒子とは、有機および無機の粉
体であり、平均粒径が〜5mmの大きさのものであ
る。この大きさにした理由は、当初から最終粒径のもの
を使用するのではなく、粉体を粉砕によって微細化さ
せ、この過程で確実にかつ強い電荷を帯びさせるためで
ある。また、外壁粒子とは、有機、無機および金属の粉
体であり、平均粒径0.01〜1μm程度のものであ
る。ただこの粒子は通常二次凝集して、二次凝集物の平
均粒径が0.1〜50μmの大きさのものである。な
お、外壁粒子の中にはもともと例えば窒化朋素のよう
に、平均粒径は1〜6μmの大きさのものもあり、これ
を粉砕によって微細化する必要がある。また、核粒子と
外壁粒子の配合割合は、核粒子の表面に外壁粒子を均
一、かつむらなく付着するために必要な量でよいが、機
能性の付与を確実にするために、重量比率で10:0.
8以上(最大で10:9)であることが望ましい。ま
た、複合化のメカニズムは明確ではないが、両粒子の付
着性を高めるため、逆の電荷を持つものが望ましく、特
に核粒子は粉砕に伴って強い電荷を帯びるものが好まし
い。一方、外壁粒子は核粒子と逆の電荷を持つもの、あ
るいは粉砕・分散に伴って、逆の電荷を生じるものが好
ましい。
The core particles are organic and inorganic powders having an average particle size of 2 to 5 mm. The reason for choosing this size is that instead of using the one with the final particle size from the beginning , the powder is pulverized
This is to ensure that a strong charge is provided during this process . The outer wall particles are organic, inorganic and metal powders having an average particle size of about 0.01 to 1 μm. However, these particles usually undergo secondary aggregation, and the secondary aggregates have an average particle size of 0.1 to 50 μm. Note that some of the outer wall particles originally have an average particle size of 1 to 6 μm, such as phosphor nitride, and it is necessary to make these finer by pulverization. In addition, the mixing ratio of the core particles and the outer wall particles may be an amount necessary for uniformly and uniformly attaching the outer wall particles to the surface of the core particles, but in order to ensure the functionality, the weight ratio may be used. 10: 0.
It is desirable that it be 8 or more (10: 9 at the maximum). Although the mechanism of the compounding is not clear, it is desirable that the particles have opposite charges in order to enhance the adhesion between the two particles, and it is particularly preferable that the core particles have a strong charge as they are crushed. On the other hand, it is preferable that the outer wall particles have a charge opposite to that of the core particles, or generate an opposite charge with pulverization and dispersion.

【0008】[0008]

【実施例】以下、この発明の実施例を図面を参照して説
明する。図1〜2において、1は分級機内蔵型気流式粉
砕機で、該粉砕機1は円筒状の粉砕室2と、粉砕室2の
下方位置かつ中心方向に向けて設けた複数個の圧縮流体
ノズル3と、圧縮流体の発生源(例えば、コンプレッ
サ)4と、粉砕室2内の上部に設けた分級ロータ6と該
分級ロータ6の駆動モータ7とからなる分級機5と、に
より構成される。8は集合ホッパで、該集合ホッパと粉
砕室2をロータリフィーダ9を介在させた供給管10に
より接続する。11は排出通路で、捕集機(例えば、バ
ッグフィルタ)12、排風機13に接続される。14は
製品ホッパである。15,16は核粒子のホッパおよび
外壁粒子のホッパで、核粒子および外壁粒子は各フィー
ダ17,18を介して集合ホッパ8に接続する。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2, reference numeral 1 denotes an airflow type pulverizer with a built-in classifier. The pulverizer 1 has a cylindrical pulverizing chamber 2 and a plurality of compressed fluids provided below the pulverizing chamber 2 and toward the center. It is composed of a nozzle 3, a source of compressed fluid (for example, a compressor) 4, and a classifier 5 including a classifying rotor 6 provided in an upper part of the crushing chamber 2 and a drive motor 7 for the classifying rotor 6. . Reference numeral 8 denotes a collecting hopper, which connects the collecting hopper and the crushing chamber 2 by a supply pipe 10 with a rotary feeder 9 interposed therebetween. Reference numeral 11 denotes a discharge passage, which is connected to a collector (for example, a bag filter) 12 and a blower 13. 14 is a product hopper. Numerals 15 and 16 denote core particle hoppers and outer wall particle hoppers. The core particles and the outer wall particles are connected to the collecting hopper 8 via feeders 17 and 18.

【0009】前記実施例において、核粒子ホッパ15及
び外壁粒子ホッパ16からそれぞれ核粒子および外壁粒
子をフィーダ17,18を介して所定割合で集合ホッパ
8に投入する。さらに集合ホッパ8内の両粒子をロータ
リバルブ、供給管10を経て粉砕室2内に投入する。粉
砕室2内に貯溜される両粒子は、その上面が図示のごと
く圧縮流体ノズル3の位置より上方となるように投入さ
れる。上記貯溜状態において、圧縮流体を圧縮流体発生
源4を経て圧縮流体ノズル3に供給する。圧縮流体ノズ
ル3に供給された圧縮流体は、粉砕室2中心方向に向い
たジェット気流となって粒子層中に噴出する。このジェ
ット気流により核粒子および外壁粒子は加速され、この
加速によって、核粒子および外壁粒子は相互に激しく衝
突と摩擦を繰り返して、核粒子は粉砕により微細化され
るとともに、外壁粒子も粉粉砕による微細化または分散
される。このとき、核粒子は前記のように激しい衝突と
摩擦によって、確実にかつ強い電荷を帯びることとな
り、この電荷を帯びた核粒子の表面に、粉砕・分散によ
り前記核粒子の電荷と逆の静電気を帯びた外壁粒子が付
着し、複合粉体となる。そして、この複合粉体は、気流
分級機5により所定の分級点で分級される。分級された
複合粉体は気流とともに排出通路11から捕集機12に
入り、ここで複合粉体と気流とに分離され、複合粉体は
製品としてホッパ14に貯められ、気流は排風機13を
経て大気に放出される。
In the above embodiment, the core particles and the outer wall particles are fed into the collecting hopper 8 from the core particle hopper 15 and the outer wall particle hopper 16 at predetermined ratios via feeders 17 and 18, respectively. Further, both particles in the collecting hopper 8 are put into the pulverizing chamber 2 via the rotary valve and the supply pipe 10. Both particles stored in the pulverizing chamber 2 are supplied such that their upper surfaces are higher than the position of the compressed fluid nozzle 3 as shown in the figure. In the above storage state, the compressed fluid is supplied to the compressed fluid nozzle 3 via the compressed fluid generation source 4. The compressed fluid supplied to the compressed fluid nozzle 3 is jetted into the particle layer as a jet stream directed toward the center of the grinding chamber 2. This jet stream accelerates the nuclear particles and the outer wall particles, and the acceleration causes the nuclear particles and the outer wall particles to collide with each other violently and friction with each other. Fine or dispersed. At this time, the core particles and friction violent collision as described above, it is possible to assume a reliable and strong charge, the surface of the core particles bearing a charge, to pulverization and dispersion
The outer wall particles charged with the opposite static electricity to the charge of the core particles adhere to form a composite powder. Then, the composite powder is classified by the airflow classifier 5 at a predetermined classification point. The classified composite powder enters the collector 12 through the discharge passage 11 together with the airflow, where it is separated into the composite powder and the airflow. The composite powder is stored as a product in the hopper 14, and the airflow passes through the air blower 13. Is released to the atmosphere.

【0010】次に、この発明の実施例によってさらに具
体的に説明する。 (実施例1)平均粒径2〜5mm(最大10mm以下)
の有機化合物(第2アミン)100重量部(以下、部と
いう)と平均粒径5〜10μm(最大1mm以下)の塩
化ビニール30部とを分級機内蔵型気流式粉砕機1に供
給し、ノズル圧力5.3 Kg/cm2Gの圧縮流体を圧
縮流体ノズル3から噴出して粉砕・分散させる。この粉
砕・分散により、短時間(約10秒)に有機化合物(第
2アミン)粒子の表面に塩ビ粒子が付着する。そして、
この複合化された粒子すなわち複合粉体を12,000
R/Mで連続回転する分級機5により所定の分級点で分
級するとともに排風機13、捕集機12により吸引回収
した。この結果、得られた複合粒子は、図2に示す電子
顕微鏡写真(倍率1万倍)からも明らかなように、核粒
子(第2アミン)の表面を外壁粒子(塩化ビニール)が
ほぼ完全に覆っていた。また、複合粉体の平均粒径は1
0μmであった。
Next, an embodiment of the present invention will be described more specifically. (Example 1) Average particle size 2 to 5 mm (up to 10 mm or less)
100 parts by weight (hereinafter referred to as "parts") of an organic compound (secondary amine) and 30 parts of vinyl chloride having an average particle size of 5 to 10 [mu] m (up to 1 mm or less) are supplied to a classifier built-in type air-flow crusher 1 A compressed fluid having a pressure of 5.3 Kg / cm 2 G is ejected from the compressed fluid nozzle 3 to be crushed and dispersed. By the pulverization and dispersion, the PVC particles adhere to the surfaces of the organic compound (secondary amine) particles in a short time (about 10 seconds). And
The composite particles, that is, the composite powder,
Classification was performed at a predetermined classification point by a classifier 5 that continuously rotates at R / M, and the air was collected by a blower 13 and a collector 12 by suction. As a result, as is clear from the electron micrograph (magnification: 10,000 times) shown in FIG. 2, the obtained composite particles are almost completely covered with outer wall particles (vinyl chloride) on the surface of the core particles (secondary amine). I was covering. The average particle size of the composite powder is 1
It was 0 μm.

【0011】(実施例2)平均粒径2〜5mm(最大1
0mm以下)の有機化合物(第2アミン)100部と平
均粒径1〜2μmのポリスチレン30部とを、分級機内
蔵型気流式粉砕機1に供給し、ノズル圧力5.3 Kg
/cm2Gの圧縮流体を圧縮流体ノズル3から噴出して
粉砕・分散させる。この粉砕・分散により、短時間(約
10秒)に有機化合物(第2アミン)粒子の表面にポリ
スチレン粒子が付着する。そして、この複合化された粒
子すなわち複合粉体を12,000R/Mで連続回転す
る分級機5により所定の分級点で分級するとともに排風
機13、捕集機12により吸引回収した。この結果、得
られた複合粒子は、図3に示す電子顕微鏡写真(倍率1
万倍)からも明らかなように、核粒子(第2アミン)の
表面を外壁粒子(ポリスチレン)がほぼ完全に覆ってい
た。また、複合粉体の平均粒径は10μmであった。
(Example 2) Average particle size 2 to 5 mm (maximum 1)
(0 mm or less) and 100 parts of an organic compound (secondary amine) and 30 parts of polystyrene having an average particle size of 1 to 2 μm are supplied to a classifier-incorporated air-flow pulverizer 1 and a nozzle pressure of 5.3 kg.
/ Cm 2 G of compressed fluid is ejected from the compressed fluid nozzle 3 to be crushed and dispersed. By this pulverization / dispersion, polystyrene particles adhere to the surface of the organic compound (secondary amine) particles in a short time (about 10 seconds). Then, the composited particles, that is, the composite powder, were classified at a predetermined classification point by a classifier 5 continuously rotating at 12,000 R / M, and were collected by suction by a blower 13 and a collector 12. As a result, the obtained composite particles were photographed by an electron microscope shown in FIG.
As is clear from (10,000 times), the surface of the core particles (secondary amine) was almost completely covered by the outer wall particles (polystyrene). The average particle size of the composite powder was 10 μm.

【0012】(実施例3)平均粒径2〜5mm(最大1
0mm以下)の有機化合物(第2アミン)100部と平
均粒径0.5〜0.8μmの酸化チタン40部とを、分
級機内蔵型気流式粉砕機1に供給し、ノズル圧力5.3
Kg/cm2Gの圧縮流体を圧縮流体ノズル3から噴出
して粉砕・分散させる。この粉砕・分散により、短時間
(約10秒)に有機化合物(第2アミン)粒子の表面に
酸化チタン粒子が付着する。そして、この複合化された
粒子すなわち複合粉体を12,000R/Mで連続回転
する分級機5により所定分級点で分級するとともに排風
機13、捕集機12により吸引回収した。この結果、得
られた複合粒子は、図4に示す電子顕微鏡写真(倍率1
万倍)からも明らかなように、核粒子(第2アミン)の
表面を外壁粒子(酸化チタン)がほぼ完全に覆ってい
た。また、複合粒子(製品)の平均粒径は10μmであ
った。
Example 3 Average particle size 2-5 mm (maximum 1)
(0 mm or less) and 100 parts of an organic compound (secondary amine) and 40 parts of titanium oxide having an average particle size of 0.5 to 0.8 μm are supplied to a classifier-incorporated air-flow type pulverizer 1 and a nozzle pressure of 5.3.
A compressed fluid of Kg / cm 2 G is ejected from the compressed fluid nozzle 3 to be crushed and dispersed. By this pulverization / dispersion, the titanium oxide particles adhere to the surface of the organic compound (secondary amine) particles in a short time (about 10 seconds). Then, the composited particles, that is, the composite powder, were classified at a predetermined classification point by a classifier 5 continuously rotating at 12,000 R / M, and were suction-collected by an exhauster 13 and a collector 12. As a result, the obtained composite particles were photographed by an electron microscope shown in FIG.
As is clear from (10,000 times), the outer wall particles (titanium oxide) almost completely covered the surface of the core particles (secondary amine). The average particle size of the composite particles (product) was 10 μm.

【0013】(実施例4)平均粒径2〜5mm(最大1
0mm以下)の有機化合物(ナイロン)100部と平均
粒径5〜6μmの窒化朋素25部とを、分級機内蔵型気
流式粉砕機1に供給し、ノズル圧力5.3 Kg/cm2
Gの圧縮流体を圧縮流体ノズル3から噴出して粉砕・分
散させる。この粉砕・分散により、短時間(約10秒)
に有機化合物(ナイロン)粒子の表面に窒化朋素粒子が
付着する。そして、この複合化された粒子すなわち複合
粉体を12,000R/Mで連続回転する分級機5によ
り所定分級点で分級するとともに排風機13、捕集機1
2により吸引回収した。この結果、得られた複合粒子
は、図5に示す電子顕微鏡写真(倍率1万倍)からも明
らかなように、核粒子(ナイロン)の表面を外壁粒子
(窒化朋素)がほぼ完全に覆っていた。また、複合粒子
(製品)の平均粒径は10μmであった。
(Example 4) Average particle size 2 to 5 mm (maximum 1)
(0 mm or less) and 25 parts of nitrogen nitride having an average particle size of 5 to 6 μm are supplied to an airflow pulverizer 1 with a built-in classifier, and the nozzle pressure is 5.3 kg / cm 2.
The compressed fluid of G is ejected from the compressed fluid nozzle 3 to be crushed and dispersed. A short time (about 10 seconds)
The phosphorous nitride particles adhere to the surface of the organic compound (nylon) particles. Then, the composited particles, that is, the composite powder, are classified at a predetermined classification point by a classifier 5 that continuously rotates at 12,000 R / M, and the air blower 13 and the collector 1
2 to collect by suction. As a result, as is clear from the electron micrograph (magnification: 10,000 times) shown in FIG. 5, the obtained composite particles almost completely covered the surface of the core particles (nylon) with the outer wall particles (phosphorus nitride). I was The average particle size of the composite particles (product) was 10 μm.

【0014】[0014]

【発明の効果】この発明は、以上のように構成したか
ら、次に述べるような効果を奏する。平均粒径〜5m
mの核粒子と平均粒径0.1〜50μmの外壁粒子
、10:0.8以上の重量比率で分級機内蔵型気流式
粉砕機に供給して、該核粒子および外壁粒子を前記分級
機内蔵型気流式粉砕機に導入されるジェット気流により
粉砕・分散させることにより、粉砕された核粒子の表面
に粉砕された外壁粒子がほぼ完全に付着し、均一に混合
した複合粉体となる。このため、多機能化された複合粉
体を容易に得ることができる。また、前記分級機により
所定の分級点で分級することにより、所定粒度の複合粉
体を連続的かつ短時間に製造することができ、生産性を
大幅に向上することができる。
As described above, the present invention has the following advantages. The average particle diameter of 2 ~5M
a core particle of m and the outer wall particles having an average particle diameter of 0.1~50μm
At a weight ratio of 10: 0.8 or more to a classifier-built-in type airflow pulverizer, and the core particles and outer wall particles are pulverized by a jet stream introduced into the classifier-built-in type airflow pulverizer. by dispersing, outer wall particles ground to the surface of the milled core particles are almost completely adhered, a uniformly mixed composite powder. Therefore, a multifunctionalized composite powder can be easily obtained. In addition, by classifying at a predetermined classification point by the classifier, a composite powder having a predetermined particle size can be produced continuously and in a short time, and productivity can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の複合粉体の製造方法に係る製造装置
の実施例を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a manufacturing apparatus according to a method for manufacturing a composite powder of the present invention.

【図2】この発明の複合粉体の製造方法の一実施態様に
より得られた電子顕微鏡写真(倍率1万倍)である。
FIG. 2 is an electron micrograph (magnification: 10,000) obtained by one embodiment of the method for producing a composite powder of the present invention.

【図3】この発明の複合粉体の製造方法の一実施態様に
より得られた電子顕微鏡写真(倍率1万倍)である。
FIG. 3 is an electron micrograph (magnification: 10,000 times) obtained by one embodiment of the method for producing a composite powder of the present invention.

【図4】この発明の複合粉体の製造方法の一実施態様に
より得られた電子顕微鏡写真(倍率1万倍)である。
FIG. 4 is an electron micrograph (magnification: 10,000 times) obtained by one embodiment of the method for producing a composite powder of the present invention.

【図5】この発明の複合粉体の製造方法の一実施態様に
より得られた電子顕微鏡写真(倍率1万倍)である。
FIG. 5 is an electron micrograph (magnification: 10,000 times) obtained by one embodiment of the method for producing a composite powder of the present invention.

【符号の説明】[Explanation of symbols]

1 分級機内蔵型気流式粉砕機 2 粉砕室 3 圧縮流体ノズル 4 圧縮流体の発生源 5 分級機 8 集合ホッパ 9 ロータリフィーダ 11 排出通路 12 捕集機 13 排風機 DESCRIPTION OF SYMBOLS 1 Air flow type pulverizer with a built-in classifier 2 Pulverizing chamber 3 Compressed fluid nozzle 4 Source of compressed fluid 5 Classifier 8 Collective hopper 9 Rotary feeder 11 Discharge passage 12 Collector 13 Exhaust air

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B01J 2/00 B01J 2/16 B02C 19/06 B07B 7/083 Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) B01J 2/00 B01J 2/16 B02C 19/06 B07B 7/083

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平均粒径〜5mmの核粒子と平均粒径
0.1〜50μmの外壁粒子とを、10:0.8以上の
重量比率で分級機内蔵型気流式粉砕機に供給して、該核
粒子および外壁粒子を前記分級機内蔵型気流式粉砕機に
導入されるジェット気流により粉砕・分散させ、前記粉
砕された核粒子の表面に破砕・分散された外壁粒子を付
着させた後、前記核粒子に外壁粒子が付着した複合粉体
を前記分級機により分級するようにしたことを特徴とす
る複合粉体の製造方法。
The method according to claim 1] core particles having an average particle diameter of 2 to 5 mm and the outer wall particles having an average particle diameter of 0.1 to 50 [mu] m, 10: supplying a classifier built-jet-mill at least 0.8 weight ratio Then, the core particles and the outer wall particles were pulverized and dispersed by a jet stream introduced into the classifier built-in air flow type pulverizer, and the crushed and dispersed outer wall particles were attached to the surface of the pulverized core particles. Thereafter, a composite powder having outer core particles attached to the core particles is classified by the classifier.
JP26177894A 1994-09-30 1994-09-30 Manufacturing method of composite powder Expired - Fee Related JP2967859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26177894A JP2967859B2 (en) 1994-09-30 1994-09-30 Manufacturing method of composite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26177894A JP2967859B2 (en) 1994-09-30 1994-09-30 Manufacturing method of composite powder

Publications (2)

Publication Number Publication Date
JPH08103647A JPH08103647A (en) 1996-04-23
JP2967859B2 true JP2967859B2 (en) 1999-10-25

Family

ID=17366575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26177894A Expired - Fee Related JP2967859B2 (en) 1994-09-30 1994-09-30 Manufacturing method of composite powder

Country Status (1)

Country Link
JP (1) JP2967859B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9902697D0 (en) * 1999-07-14 1999-07-14 Astra Ab Filter device
DE102004045895B4 (en) * 2004-09-22 2008-10-23 Pulsar Gmbh Micronizing Systems Process for the mechanical treatment of pigments and pharmaceutical agents
JP4993684B2 (en) * 2006-11-08 2012-08-08 日清エンジニアリング株式会社 Spray mill
JP5354569B2 (en) * 2008-09-05 2013-11-27 国立大学法人 千葉大学 Method for producing composite photocatalyst and composite photocatalyst produced thereby
JP5171802B2 (en) * 2009-12-22 2013-03-27 富士夫 堀 Granulator
CN117964525A (en) * 2020-08-27 2024-05-03 湖北舒邦药业有限公司 Pretreatment method of bulk drug and composition thereof

Also Published As

Publication number Publication date
JPH08103647A (en) 1996-04-23

Similar Documents

Publication Publication Date Title
JP3101416B2 (en) Collision type airflow pulverizer and method for producing toner for electrostatic image development
JP3578880B2 (en) Crusher
JP2967859B2 (en) Manufacturing method of composite powder
JP3447502B2 (en) Grinding method and equipment
JP2003275685A (en) Air current type grinding classifier
JPH05212307A (en) Air jet type grinder
JP3308802B2 (en) Toner manufacturing method and toner manufacturing system
JPH07185383A (en) Circulation type pulverizing and classifying machine
JPS63112627A (en) Production of toner powder
JPH0210787B2 (en)
JP2654989B2 (en) Powder grinding method
JPH01317555A (en) Air-blast crushed material classifying apparatus
CN218078278U (en) Automatic grinding system of superfine micropowder for electronic material
JP3093344B2 (en) Collision type air flow crusher and powder material crushing method
JP2805332B2 (en) Grinding method
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
KR0167010B1 (en) Method and apparatus for reducing fine grain particles by means of compressed fluid
JP3091281B2 (en) Collision type air crusher
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP2528348B2 (en) Airflow type crusher
JP2759500B2 (en) Collision type air crusher
JPH0653234B2 (en) Method for producing fine powder
JPH067695A (en) Method for crushing material in rotary type crusher
JP2704787B2 (en) Powder material grinding method
JPH0651130B2 (en) Collision type airflow crusher and crushing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080820

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090820

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees