JP2952761B2 - Marine fish breeding water quality management device and method - Google Patents

Marine fish breeding water quality management device and method

Info

Publication number
JP2952761B2
JP2952761B2 JP9028327A JP2832797A JP2952761B2 JP 2952761 B2 JP2952761 B2 JP 2952761B2 JP 9028327 A JP9028327 A JP 9028327A JP 2832797 A JP2832797 A JP 2832797A JP 2952761 B2 JP2952761 B2 JP 2952761B2
Authority
JP
Japan
Prior art keywords
seawater
breeding
chlorine
water quality
fish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9028327A
Other languages
Japanese (ja)
Other versions
JPH10210882A (en
Inventor
政男 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAMIMYATA GYOGYO KYODO KUMIAI
Original Assignee
KAMIMYATA GYOGYO KYODO KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAMIMYATA GYOGYO KYODO KUMIAI filed Critical KAMIMYATA GYOGYO KYODO KUMIAI
Priority to JP9028327A priority Critical patent/JP2952761B2/en
Publication of JPH10210882A publication Critical patent/JPH10210882A/en
Application granted granted Critical
Publication of JP2952761B2 publication Critical patent/JP2952761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は例えばヒラメのよう
な海水魚を飼育する飼育水の水質管理に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to water quality management for rearing marine fish such as flounder.

【0002】[0002]

【従来の技術】近年、海洋資源の育成の見地から、獲る
漁業から育てる漁業へと漁業自体が移行しつつある。海
水魚の飼育は、海面に生簀を浮かべてその内部で飼育す
る生簀養殖と、海水を水槽に引入れてその水槽内部で飼
育する陸上養殖とに大きく分かれ、この陸上養殖は更
に、給水の状態より、流水式,止水式,循環ろ過式の何
れかに分かれる。
2. Description of the Related Art In recent years, fisheries themselves have been shifting from catching fisheries to growing fisheries from the viewpoint of nurturing marine resources. The breeding of saltwater fish is largely divided into livestock culture, in which a fish cage is floated on the sea surface and raised inside, and land culture, in which seawater is drawn into a water tank and raised inside the water tank. , Flowing water type, still water type, circulating filtration type.

【0003】主に成魚を飼育する生簀養殖では、水質の
よい海域に生簀を設置すればよく、比較的容易な飼育方
法である。しかし、稚魚から飼育することのできる池中
養殖では、飼育水の水質管理は、困難を極める。魚種や
稚魚の成育程度によっては、各種の疾病を引き起こし易
いからである。次の表1は海水魚(特にヒラメ)の各種
疾病を引き起こすその原因微生物のリストである。
[0003] In a livestock culture that mainly breeds adult fish, a livestock can be installed in a sea area with good water quality, which is a relatively easy breeding method. However, it is extremely difficult to control the quality of breeding water in pond aquaculture that can be bred from fry. This is because various diseases are likely to occur depending on the fish species and the growth degree of the fry. The following Table 1 is a list of microorganisms that cause various diseases of marine fish (especially flounder).

【0004】[0004]

【表1】 [Table 1]

【0005】表1に示されるような疾病を防止するため
に、海水魚を飼育する多くの飼育水は、各種病原生物の
殺菌消毒を行っている。この殺菌消毒には、殺薬剤によ
るもの、オゾン(O3 )によるもの、塩素によるもの等
の種々のものが試みられているが、塩素によるものが最
も広く行われている。この塩素による飼育水の殺菌消毒
は、次亜塩素酸ナトリウムを所定量添加するか、海水を
電気分解して塩素を発生させる方法が採用されている。
[0005] In order to prevent the diseases shown in Table 1, many breeding waters for breeding seawater fish are sterilized and disinfected with various pathogenic organisms. Various disinfectants such as a disinfectant, ozone (O 3 ), and chlorine have been tried, but chlorine is the most widely used. For the sterilization and disinfection of breeding water with chlorine, a method of adding a predetermined amount of sodium hypochlorite or electrolyzing seawater to generate chlorine is adopted.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、塩素に
よる殺菌消毒は、濃度が不充分であると病原生物の殺菌
が不充分となり海水魚の疾病予防の効果が薄れる。また
逆に、濃度が高すぎると飼育されている海水魚自体が斃
死してしまうか、成長が著しく阻害される。更に、塩素
自体が経日や曝気の影響によって空気中に徐々に逸散し
てしまうため、特に止水養殖のように1週間以上も換水
を行わない飼育方法では殺菌消毒効果が消失してしまう
問題があった。
However, in the sterilization and disinfection using chlorine, if the concentration is insufficient, the sterilization of pathogenic organisms is insufficient and the effect of preventing the disease of marine fish is diminished. Conversely, if the concentration is too high, the bred marine fish itself will die or its growth will be significantly inhibited. Furthermore, since chlorine itself gradually dissipates into the air due to the effects of daylight and aeration, the bactericidal disinfecting effect is lost particularly in a breeding method that does not change water for more than one week, such as in static culture. There was a problem.

【0007】本発明は、海水魚の疾病を予防し、しか
も、海水魚の斃死を伴わない塩素による海水魚の飼育水
の水質を管理する方法及び装置を得ることを目的とす
る。
[0007] It is an object of the present invention to provide a method and an apparatus for preventing the disease of marine fish and controlling the quality of breeding water of marine fish by chlorine without causing death of the marine fish.

【0008】[0008]

【課題を解決するための手段】本請求項1に記載された
発明に係る海水魚飼育水質管理装置は、取水ポンプによ
り海水を飼育水槽に導入する主配管と、 主配管を流れる
海水の流量を検出する流量計と、 この主配管から分岐さ
れた分岐配管と、 この分岐配管に連通し、内部に正極と
負極とを備えた反応槽と、 この反応槽の正極と負極とに
直流電圧を印加する直流電源と、 この直流電圧が印加さ
れた海水を前記主配管に戻す戻り配管と、 前記流量計の
計測値に基づいて前記印加電圧を制御して、前記飼育水
槽に導入される海水の塩素濃度を0.043ppm以上
0.25ppm未満に制御する制御手段とを備えたもの
である。
According to the first aspect of the present invention, there is provided a seawater fish breeding water quality control device according to the present invention, comprising a water intake pump.
Main water for introducing seawater into breeding aquarium and flowing through the main water
A flow meter that detects the flow rate of seawater and a branch from this main pipe
Branch pipe, and a positive electrode
A reaction vessel equipped with a negative electrode, and a positive electrode and a negative electrode of the reaction vessel
A DC power supply for applying a DC voltage and the DC voltage
The a return pipe seawater back into the main pipe, the flow meter
By controlling the applied voltage based on the measured value, the breeding water
Chlorine concentration of seawater introduced into the tank is 0.043ppm or more
Control means for controlling the concentration to less than 0.25 ppm
It is.

【0009】本請求項2に記載された発明に係る海水魚
飼育水質管理装置は、請求項1の制御手段が、飼育水槽
に導入される海水の塩素濃度を0.043ppm以上
0.25ppm未満とする海水の流量と印加電圧との相
関関係を予め求めておき、この相関関係に基づいて印加
電圧を制御するものである。
According to a second aspect of the present invention, there is provided a seawater fish breeding water quality management device, wherein the control means of the first aspect comprises a breeding aquarium.
0.043ppm or more of chlorine concentration of seawater introduced into
Phase of seawater flow rate and applied voltage less than 0.25 ppm
Relationship is determined in advance, and applied based on this correlation.
It controls the voltage.

【0010】本請求項3に記載された発明に係る海水魚
飼育水質管理方法は、請求項1又は2に記載された海水
魚飼育水質管理装置を用いて、海水を飼育水槽に導入し
つつ、塩素滅菌を行う海水魚飼育水質管理方法であっ
て、 海水に直流電圧を印加して海水塩分から塩素を発生
させ、飼育水槽に導入される海水中の塩素濃度を0.0
43ppm以上0.25ppm未満に制御する方法であ
る。
[0010] According to the third aspect of the present invention, there is provided a method for managing the quality of breeding water of marine fish , wherein
Using the fish breeding water quality control device, introduce seawater into the breeding aquarium.
In addition, this is a method for controlling the quality of seawater fish breeding that performs chlorine sterilization.
Te, by applying a DC voltage to the seawater generate chlorine from sea water salinity
And the chlorine concentration in the seawater introduced into the breeding aquarium is reduced to 0.0
A method of controlling the concentration to not less than 43 ppm and less than 0.25 ppm.
You.

【0011】本請求項4に記載された発明に係る海水魚
飼育水質管理方法は、請求項3の飼育水槽に導入される
海水中の塩素濃度を0.057ppm以上0.23pp
m以下に制御する方法である。
[0011] The method for managing the quality of seawater fish breeding water according to the invention described in claim 4 is introduced into the breeding aquarium of claim 3.
Chlorine concentration in seawater is 0.057ppm or more and 0.23pp
m.

【0012】本発明における直流電圧は、印加電圧によ
って海水中に塩素を発生させればよいため、時間と共に
強さが変化しない直流電圧はもとより、脈流電流,準直
流電流をも含む。
The DC voltage in the present invention may be a pulsating current or a quasi-DC current, as well as a DC voltage whose strength does not change with time, since chlorine may be generated in seawater by an applied voltage.

【0013】[0013]

【発明の実施の形態】本発明においては、この飼育水槽
に導入される時点の海水中の塩素濃度を0.043pp
m以上0.25ppm未満に制御する。これは塩素濃度
が0.043ppm未満であれば、海水中の細菌数の除
去率が98%を下回り、飼育されている海水魚の疾病を
防止でき難く、また、0.25ppm以上となると、飼
育されている海水魚が塩素によって斃死することが本発
明によって明確になったからである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the chlorine concentration in seawater at the time of introduction into this breeding aquarium is 0.043 pp.
m and less than 0.25 ppm. This is because if the chlorine concentration is less than 0.043 ppm, the removal rate of bacteria in seawater is less than 98%, and it is difficult to prevent the disease of the bred marine fish, and if the chlorine concentration exceeds 0.25 ppm, it is bred. This is because it has been clarified by the present invention that a seawater fish that died due to chlorine.

【0014】更に、本発明では、海水に直流電圧を印加
して海水中の塩分から塩素を発生させている。これによ
り、例えば取水ポンプ等によって、取水口から飼育水槽
に至る過程で海水を塩素で殺菌消毒することができ、飼
育水槽に導入される時点では、海水中の病原性微生物の
殆どが死滅している飼育水を飼育水槽に導入することが
できる。また、取水口から飼育水槽に至る過程で塩素を
発生させるため、特別な攪拌手段を別途に設けずとも、
飼育水槽に導入される時点では、塩素は充分に均一に混
合されて、塩素の不均一による病原性微生物の生存や飼
育された海水魚の斃死もない。従って、本発明による方
法は、特に海水を飼育水槽に給水しながら排水を行う流
水式,循環ろ過式に好適である。
Further, in the present invention, a DC voltage is applied to seawater to generate chlorine from salt in seawater. Thereby, for example, by a water intake pump or the like, seawater can be sterilized and disinfected with chlorine in a process from the water intake to the breeding aquarium, and when introduced into the breeding aquarium, most of the pathogenic microorganisms in the seawater are killed. Existing breeding water can be introduced into the breeding aquarium. In addition, in order to generate chlorine in the process from the water intake to the breeding aquarium, even without special stirring means,
When introduced into the breeding aquarium, the chlorine is sufficiently homogeneously mixed and there is no survival of pathogenic microorganisms or death of the bred marine fish due to the non-uniform chlorine. Therefore, the method according to the present invention is particularly suitable for a flowing water type and a circulating filtration type in which seawater is drained while supplying water to a breeding aquarium.

【0015】塩素濃度については、好ましくは0.05
7ppm以上に制御すれば、海水中の一般細菌数の除去
率が99%を超え、飼育されている海水魚の疾病を更に
防止することができ、好ましくは0.23ppm以下に
制御すれば、斃死がない。更に好ましくは0.074p
pm以上に制御すれば、海水中の一般細菌数の除去率が
99.5%を超え、更に、0.186ppm以上であれ
ば除去率が100.00%となる。また、0.20以下
に制御すれば、海水魚の成長を阻害する(餌食いが悪く
なる)こともなく、海水魚に対する塩素の影響がなくな
る。
The chlorine concentration is preferably 0.05
If the concentration is controlled to 7 ppm or more, the removal rate of general bacteria in seawater exceeds 99%, and it is possible to further prevent the disease of the bred marine fish. If the concentration is controlled to 0.23 ppm or less, mortality is reduced. Absent. More preferably 0.074p
If it is controlled to pm or more, the removal rate of the number of general bacteria in seawater exceeds 99.5%, and if it is 0.186 ppm or more, the removal rate becomes 100.00%. Further, when the concentration is controlled to 0.20 or less, the growth of the marine fish is not inhibited (the prey becomes worse), and the effect of chlorine on the marine fish is eliminated.

【0016】本発明においては、前述の方法を実施する
具体的な装置として、取水ポンプにより海水を飼育水槽
に導入する主配管と,主配管を流れる海水の流量を検出
する流量計と,この主配管から分岐させれた分岐配管
と,この分岐配管に連通し、内部に正極と負極とを備え
た反応槽と,この反応槽の正極と負極とに直流電圧を印
加する直流電源と,この直流電圧が印加された海水を前
記主配管に戻す戻り配管と,前記流量計の計測値に基づ
いて前記印加電圧を制御して、前記飼育水槽に導入され
る海水の塩素濃度を0.043ppm以上0.25pp
m未満に制御する制御手段とを備えたものを開示する。
In the present invention, as a specific device for carrying out the above-described method, a main pipe for introducing seawater into a breeding aquarium by an intake pump, a flow meter for detecting the flow rate of seawater flowing through the main pipe, A branch pipe branched from the pipe, a reaction tank communicating with the branch pipe and having a positive electrode and a negative electrode therein, a DC power supply for applying a DC voltage to the positive electrode and the negative electrode of the reaction tank, A return pipe for returning the seawater to which the voltage has been applied to the main pipe, and controlling the applied voltage based on the measurement value of the flow meter so that the chlorine concentration of the seawater introduced into the breeding aquarium is 0.043 ppm or more and 0% or less. .25pp
and control means for controlling the distance to less than m.

【0017】[0017]

【実施例】【Example】

実施例A(海水魚飼育水質管理装置) 図1は本発明の海水魚飼育水質管理装置の一実施例の全
体構成を示す説明図であり、図2は図1の要部の構成を
示す説明図である。図1に示す通り、飼育水槽は直径8
mの円形の飼育水槽(1) で、上方を通気性のよいビニー
ルシートで山型に覆っている。一方、給水系の取水口
(2) は、きれいな沖合いに設置し、これをサイフォン式
の給水管(3) で一旦砂取り井戸(4) に貯水し、これを送
水ポンプ(5) で主配管(6) を介して飼育水槽(1) に引込
んでいる。
Example A (Saltwater Fish Breeding Water Quality Management Apparatus) FIG. 1 is an explanatory diagram showing an entire configuration of an embodiment of a seawater fish breeding water quality management apparatus of the present invention, and FIG. 2 is a description showing a configuration of a main part of FIG. FIG. As shown in FIG. 1, the breeding aquarium has a diameter of 8
A round breeding aquarium (1 m) with an upper part covered with a breathable vinyl sheet. On the other hand, the water intake of the water supply system
(2) is installed offshore clean, temporarily stored in a sand removal well (4) by a siphon water supply pipe (3), and bred through a main pipe (6) by a water supply pump (5). It is retracted into the aquarium (1).

【0018】図2に示す通り、図1に示した主配管(6)
の途中には、主配管(6) から分岐された分岐配管(7) が
あり、主配管(6) を流れる海水の一部を反応槽(8) に引
入れる。また、反応槽(8) には戻り配管(9) が配され、
主配管(6) の分岐配管(7) の下流位置で反応槽(8) 内部
の処理海水を主配管(6) に戻す。また、分岐配管(7)の
上流位置には主配管(6) 内部を流れる海水の流量を測定
する流量計(10)が設けられている。
As shown in FIG. 2, the main pipe (6) shown in FIG.
There is a branch pipe (7) that branches off from the main pipe (6), and a part of the seawater flowing through the main pipe (6) is drawn into the reaction tank (8). Also, a return pipe (9) is provided in the reaction tank (8),
The treated seawater inside the reaction tank (8) is returned to the main pipe (6) at a position downstream of the branch pipe (7) of the main pipe (6). A flow meter (10) for measuring the flow rate of seawater flowing inside the main pipe (6) is provided at an upstream position of the branch pipe (7).

【0019】透明プラスチック製の蓋を備えた反応槽
(8) にはカーボン製の正極(11)とチタン製の負極(12)と
が配されている。また、反応槽(8) 内部の液面位置によ
って作動信号を発する液面スイッチ(ポンプ動作電極)
(13)が配されており、この液面スイッチ(13)によって戻
り配管(9) の押込みポンプ(18)を動作させる。更に、反
応槽(8) の下部には反応槽(8) に析出する析出物引抜き
用の引抜き配管(14)と引抜きバルブ(15)とが配されてい
る。
Reaction tank equipped with a transparent plastic lid
In (8), a positive electrode (11) made of carbon and a negative electrode (12) made of titanium are arranged. Also, a liquid level switch (pump operating electrode) that issues an operation signal according to the liquid level inside the reaction tank
(13) is arranged, and the push pump (18) of the return pipe (9) is operated by the liquid level switch (13). Further, a drawing pipe (14) and a drawing valve (15) for drawing out the precipitates deposited in the reaction tank (8) are arranged below the reaction tank (8).

【0020】正極(11)及び負極(12)には制御装置(16)を
介して直流電源(17)が接続されている。正極(11)及び負
極(12)は分岐配管(6) から反応槽(8) 内部に引入れられ
た海水に直流電圧を印加して海水中の塩分から塩素を発
生させる。塩素が発生された反応槽(8) 内部の処理海水
は、戻り配管(9) 及び押込みポンプ(18)によって、主配
管(6) に戻される。
A DC power supply (17) is connected to the positive electrode (11) and the negative electrode (12) via a control device (16). The positive electrode (11) and the negative electrode (12) apply a DC voltage to the seawater drawn into the reaction vessel (8) from the branch pipe (6) to generate chlorine from salt in the seawater. The treated seawater in the reaction tank (8) in which chlorine has been generated is returned to the main pipe (6) by the return pipe (9) and the pushing pump (18).

【0021】この時、制御装置(16)は流量計(10)の計測
に従って、海水の流量に応じて直流電源(17)の印加電圧
を制御し、戻り配管(9) で塩素を含んだ海水が主配管
(6) 内部で均一に混ざり合った場合に、主配管内の海水
の流量が変動しても塩素濃度が一定の値となるようにす
る。尚、本実施例の正極(11)及び負極(12)への直流電源
の供給は、図3の回路図に示す通り、予め定められた塩
素濃度となるように求めた電圧に交流電源を変圧し、そ
の電圧を更に流量計(10)の信号をゲートの印加電圧とし
たpゲート逆阻止3端子サイリスタ(SCR)で整流し
た直流電源を用いることにより、流量に応じた直流電圧
が簡単な構成で印加することができる。
At this time, the control device (16) controls the applied voltage of the DC power supply (17) according to the flow rate of the seawater in accordance with the measurement of the flowmeter (10), and returns the chlorine-containing seawater through the return pipe (9). Is the main piping
(6) When mixed uniformly inside, keep the chlorine concentration at a constant value even if the flow rate of seawater in the main pipe fluctuates. The supply of the DC power to the positive electrode (11) and the negative electrode (12) in the present embodiment is performed by transforming the AC power into a voltage determined to have a predetermined chlorine concentration as shown in the circuit diagram of FIG. By using a DC power supply rectified by a p-gate reverse blocking three-terminal thyristor (SCR) using the signal of the flow meter (10) as a gate applied voltage, the DC voltage according to the flow rate can be simplified. Can be applied.

【0022】尚、分岐配管(7) に設けられた引入れ海水
調節バルブ(19)は、反応槽(8) へ引入れる海水の量を調
節するものであり、この引入れ海水調節バルブ(19)の調
節と、正極(11)及び負極(12)に印加される直流電圧の調
節により、戻り配管(9) で塩素を含んだ海水が主配管
(6) 内部で均一に混ざり合った場合に、一定の塩素濃度
を含んだ海水とする海水の流量と印加電圧との相関関係
を予め求めておき、この相関関係に基づいて印加電圧を
制御すればよい。
The inlet seawater control valve (19) provided in the branch pipe (7) controls the amount of seawater to be drawn into the reaction tank (8). ) And the DC voltage applied to the positive electrode (11) and the negative electrode (12), the seawater containing chlorine is returned to the main pipe by the return pipe (9).
(6) When the water is mixed uniformly inside, the correlation between the flow rate of seawater containing seawater containing a certain chlorine concentration and the applied voltage is determined in advance, and the applied voltage should be controlled based on this correlation. I just need.

【0023】実施例B(塩素濃度と海水魚斃死の関係
1) 図1〜図3に示した海水魚飼育水質管理装置で、海水に
直流電圧を印加して塩素殺菌消毒を行った海水(塩素濃
度0.3ppm)を得た。この海水の塩素濃度は、厚生
省が定めた海水プールの塩素濃度であり、海水中の細菌
の死滅する濃度である。この海水にヒラメを収容し、そ
の後無換水・無通気の状態で、経時的にえらの開閉回数
で呼吸数(回/分)を観察してヒラメに対する塩素の影
響を確認した。
Example B (Relationship 1 between Chlorine Concentration and Death of Seawater Fish) [0023] In the seawater fish breeding water quality control device shown in Figs. Concentration 0.3 ppm). The chlorine concentration of seawater is the chlorine concentration of the seawater pool specified by the Ministry of Health and Welfare, and is the concentration at which bacteria in seawater die. Flounder was stored in this seawater, and thereafter, the effect of chlorine on the flounder was confirmed by observing the respiration rate (times / minute) with the number of times the gills were opened and closed over time in a state of no water exchange and no ventilation.

【0024】使用した水槽は実容積2.1m3 (縦1.
5m,横2m,深さ1m,水深70cm)で、水槽の上部
に通気性の良好なビニールの覆いをした。供試魚はヒラ
メ2尾(長さ23/25cm、151/173g)を用い
た。水温は開始時、24時間後共に14℃、海水の塩素
濃度は開始時、24時間後とも殆ど変化はなかった(塩
素濃度0.3ppm)。結果を次の表2に示す。
The water tank used had an actual volume of 2.1 m 3 (length 1.
(5 m, width 2 m, depth 1 m, water depth 70 cm), and a water-permeable vinyl covering was placed on the upper part of the water tank. The test fish used were two flounders (length: 23/25 cm, 151/173 g). The water temperature was 14 ° C. both at the start and after 24 hours, and the chlorine concentration of the seawater hardly changed at the start and after 24 hours (chlorine concentration 0.3 ppm). The results are shown in Table 2 below.

【0025】[0025]

【表2】 [Table 2]

【0026】表2に示される通り、塩素処理海水に収容
後、呼吸数は時間を経過するごとに次第に高く推移し
た。その他の行動は、特に目立った変化はなく、静かに
着底していた。180分後も生存していたが、えらが細
かく痙攣していた。これは240分後も確認された。し
かし、300分後には2尾共に斃死していた。
As shown in Table 2, after being stored in chlorinated seawater, the respiratory rate gradually increased with time. Other actions were quietly subsided, with no noticeable changes. She was still alive 180 minutes later, but her gills were fine and cramped. This was confirmed after 240 minutes. However, after 300 minutes, both tails had died.

【0027】実施例C(塩素濃度と海水魚斃死の関係
2) 塩素濃度が0.3ppmでは、海水中の細菌だけでな
く、飼育される海水魚自体が斃死することが確認された
ので、更に塩素濃度を変化させて、同様にヒラメについ
て、斃死までの時間を求めた。結果を表3に示す。
Example C (Relationship 2 between Chlorine Concentration and Death of Seawater Fish) At a chlorine concentration of 0.3 ppm, it was confirmed that not only bacteria in seawater but also bred seawater fish themselves died. By changing the chlorine concentration, the time to death was determined for flounder in the same manner. Table 3 shows the results.

【0028】[0028]

【表3】 [Table 3]

【0029】表3に示す通り、飼育水の塩素濃度は0.
25ppm未満にする必要があることが確認された。し
かしながら、0.23ppmではヒラメの餌食いが悪
く、ヒラメの成長を阻害する可能性があた。そこで、更
に塩素濃度を下げてヒラメの行動を観察したところ、
0.20ppmに近付くに従ってまずまずの餌食いとな
り、この0.20ppm以下では、塩素の影響が全く見
られなかった。
As shown in Table 3, the chlorine concentration of the breeding water was 0.1%.
It was confirmed that the amount needed to be less than 25 ppm. However, at 0.23 ppm, the flounder did not eat well and could inhibit the growth of flounder. Then, when the behavior of flounder was observed by further lowering the chlorine concentration,
As it approached 0.20 ppm, it became a reasonable bait, and below 0.20 ppm, no effect of chlorine was observed.

【0030】実施例D(塩素濃度と残留一般細菌数の関
係) 図1〜図3に示した海水魚飼育水質管理装置で、印加す
る直流電圧の変化させて海水を塩素殺菌消毒を行った海
水を得た。その時の、印加前の原海水の一般細菌数と、
印加後の飼育水槽に導入する海水の塩素濃度と一般細菌
数とを調べ、塩素濃度と一般細菌の除去率を求めた。結
果を次の表4に示す。
Example D (Relationship Between Chlorine Concentration and Number of Residual General Bacteria) In the seawater fish breeding water quality control device shown in FIGS. 1 to 3, seawater was subjected to chlorine sterilization by changing the applied DC voltage. I got At that time, the general bacteria count of the raw seawater before application,
The chlorine concentration and the number of general bacteria of seawater introduced into the breeding aquarium after the application were examined, and the chlorine concentration and the removal rate of general bacteria were determined. The results are shown in Table 4 below.

【0031】[0031]

【表4】 [Table 4]

【0032】図4は表4の結果を示す線図である。縦軸
は除去率(%)、横軸は塩素濃度(ppm)を示す。図
4に示す通り、除去率98%を超える塩素濃度は0.0
429≒0.043ppmであり、除去率99%を超え
る塩素濃度は0.057ppmであることが示されてい
る。更に、除去率99.5%を超える塩素濃度は0.0
74ppmであることが示されている。尚、除去率10
0.00%の塩素濃度は0.186ppmであった。
FIG. 4 is a diagram showing the results of Table 4. The vertical axis indicates the removal rate (%), and the horizontal axis indicates the chlorine concentration (ppm). As shown in FIG. 4, the chlorine concentration exceeding the removal rate of 98% is 0.0%.
429 ≒ 0.043 ppm, indicating that the chlorine concentration exceeding 99% of the removal rate is 0.057 ppm. Further, the chlorine concentration exceeding the removal rate of 99.5% is 0.0%.
It is shown to be 74 ppm. In addition, removal rate 10
The 0.00% chlorine concentration was 0.186 ppm.

【0033】[0033]

【発明の効果】本発明は以上説明したとおり、海水魚の
疾病を予防し、しかも、海水魚の斃死を伴わない塩素に
よる海水魚の飼育水の水質を管理する方法及び装置を得
ることができるという効果がある。
As described above, the present invention has an effect that a method and an apparatus for controlling the quality of seawater fish breeding water by chlorine which does not cause death of the seawater fish and prevent the disease of the seawater fish can be obtained. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の海水魚飼育水質管理装置の一実施例の
全体構成を示す説明図である。
FIG. 1 is an explanatory diagram showing the overall configuration of an embodiment of a marine fish breeding water quality management device according to the present invention.

【図2】図1の要部の構成を示す説明図である。FIG. 2 is an explanatory diagram showing a configuration of a main part of FIG. 1;

【図3】図1の直流電源及び制御装置の具体的な単線回
路図である。
FIG. 3 is a specific single-wire circuit diagram of the DC power supply and control device of FIG. 1;

【図4】海水中の塩素濃度と一般細菌数の除去率との関
係を示す線図である。
FIG. 4 is a graph showing the relationship between the chlorine concentration in seawater and the removal rate of general bacteria.

【符号の説明】[Explanation of symbols]

(1) …飼育水槽、 (2) …取水口、 (3) …サイフォン式の給水管、 (4) …砂取り井戸、 (5) …送水ポンプ、 (6) …主配管、 (7) …分岐配管、 (8) …反応槽、 (9) …戻り配管、 (10)…流量計、 (11)…正極、 (12)…負極、 (13)…液面スイッチ(ポンプ動作電極)、 (14)…引抜き配管、 (15)…引抜きバルブ、 (16)…制御装置、 (17)…直流電源、 (18)…押込みポンプ、 (19)…引入れ海水調節バルブ (1) ... breeding aquarium, (2) ... water intake, (3) ... siphon type water supply pipe, (4) ... sand removal well, (5) ... water pump, (6) ... main pipe, (7) ... Branch piping, (8)… Reaction tank, (9)… Return piping, (10)… Flow meter, (11)… Positive electrode, (12)… Negative electrode, (13)… Liquid level switch (pump operating electrode), ( 14) Pull-out piping, (15) Pull-out valve, (16) Controller, (17) DC power supply, (18) Push-in pump, (19) ... Pull-in seawater control valve

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 取水ポンプにより海水を飼育水槽に導入
する主配管と、 主配管を流れる海水の流量を検出する流量計と、 この主配管から分岐された分岐配管と、 この分岐配管に連通し、内部に正極と負極とを備えた反
応槽と、 この反応槽の正極と負極とに直流電圧を印加する直流電
源と、 この直流電圧が印加された海水を前記主配管に戻す戻り
配管と、 前記流量計の計測値に基づいて前記印加電圧を制御し
て、前記飼育水槽に導入される海水の塩素濃度を0.0
43ppm以上0.25ppm未満に制御する制御手段
とを備えたことを特徴とする海水魚飼育水質管理装置。
(1) Seawater is introduced into a breeding aquarium by an intake pump.
Main pipe, a flow meter that detects the flow rate of seawater flowing through the main pipe, a branch pipe branched from the main pipe , and a counter pipe that communicates with the branch pipe and has a positive electrode and a negative electrode inside.
And応槽, direct current for applying a DC voltage to the positive electrode and the negative electrode of the reactor
Returning back a source, the sea water this DC voltage is applied to the main pipe
Pipe, and controls the applied voltage based on the measurement value of the flow meter.
The chlorine concentration of the seawater introduced into the breeding aquarium to 0.0
Control means for controlling at least 43 ppm and less than 0.25 ppm
A seawater fish breeding water quality management device comprising:
【請求項2】 前記制御手段が、飼育水槽に導入される
海水の塩素濃度を0.043ppm以上0.25ppm
未満とする海水の流量と印加電圧との相関関係を予め求
めておき、この相関関係に基づいて印加電圧を制御する
ことを特徴とする請求項2に記載の海水魚飼育水質管理
装置。
2. The control means is introduced into a breeding aquarium.
Chlorine concentration of seawater is 0.043ppm or more and 0.25ppm
The correlation between the flow rate of seawater and the applied voltage to be less than
In advance, the applied voltage is controlled based on this correlation.
The seawater fish breeding water quality management according to claim 2, characterized in that:
apparatus.
【請求項3】 請求項1又は2に記載された海水魚飼育
水質管理装置を用いて、海水を飼育水槽に導入しつつ、
塩素滅菌を行う海水魚飼育水質管理方法であって、 海水に直流電圧を印加して海水塩分から塩素を発生さ
せ、飼育水槽に導入される海水中の塩素濃度を0.04
3ppm以上0.25ppm未満に制御することを特徴
とする海水魚飼育水質管理方法。
3. The breeding of saltwater fish according to claim 1 or 2.
While introducing seawater into the breeding aquarium using the water quality management device,
This is a seawater fish breeding water quality control method that performs chlorine sterilization, in which a direct current voltage is applied to seawater to generate chlorine from seawater salinity.
To reduce the chlorine concentration in the seawater introduced into the breeding aquarium to 0.04.
Controlled at 3ppm or more and less than 0.25ppm
Seawater fish breeding water quality management method.
【請求項4】 前記飼育水槽に導入される海水中の塩素
濃度を0.057ppm以上0.23ppm以下に制御
することを特徴とする請求項3に記載の海水魚飼育水質
管理方法。
4. The chlorine in seawater introduced into the breeding aquarium.
Control the concentration between 0.057ppm and 0.23ppm
The seawater fish breeding water quality according to claim 3, characterized in that:
Management method.
JP9028327A 1997-01-29 1997-01-29 Marine fish breeding water quality management device and method Expired - Fee Related JP2952761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9028327A JP2952761B2 (en) 1997-01-29 1997-01-29 Marine fish breeding water quality management device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9028327A JP2952761B2 (en) 1997-01-29 1997-01-29 Marine fish breeding water quality management device and method

Publications (2)

Publication Number Publication Date
JPH10210882A JPH10210882A (en) 1998-08-11
JP2952761B2 true JP2952761B2 (en) 1999-09-27

Family

ID=12245526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9028327A Expired - Fee Related JP2952761B2 (en) 1997-01-29 1997-01-29 Marine fish breeding water quality management device and method

Country Status (1)

Country Link
JP (1) JP2952761B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482156B1 (en) * 2014-09-11 2015-01-15 (주) 지엠펌프 Sea water supplying appratus for fish farm

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482156B1 (en) * 2014-09-11 2015-01-15 (주) 지엠펌프 Sea water supplying appratus for fish farm

Also Published As

Publication number Publication date
JPH10210882A (en) 1998-08-11

Similar Documents

Publication Publication Date Title
AU2020103846A4 (en) Device and method for indoor domestication and cultivation of wild juvenile thunnus albacares
Veeralakshmi et al. An efficient and smart IoT based pisciculture for developing countries
TW201741978A (en) Eel aquaculture system using ICT
US20130220828A1 (en) Process and system for producing an anolyte fraction
JP5438194B2 (en) How to raise, store or transport tuna underage fish
JP5315160B2 (en) Tuna breeding, storage or transportation methods
JP6794044B2 (en) Seafood farming system and seafood farming method
JP2952761B2 (en) Marine fish breeding water quality management device and method
JP2004254574A (en) Culture equipment for fishes and shellfishes
JP3190126B2 (en) Aquaculture equipment
KR20120138265A (en) Sterilzation treatment apparatus for water of aquarium for living fish
JPH10191830A (en) Production of fish and shellfish by using spring water
JP3918133B2 (en) Water purification method and purification device
JP2002034385A (en) Overland culture method by circulating culture water and apparatus therefor
JPH0833441A (en) Method for improving hatching rate of fertilized egg of fishes and shellfishes
CN216492839U (en) Fry marking device
JP2013063036A (en) Method for raising aquatic animals, and method for removing nitrate-nitrogen
West Hazard analysis critical control point (HACCP) concept: application to bivalve shellfish purification systems
CN110199926A (en) A kind of method of the new prawn large-scale artificial breeding of knife volume
JP7427222B2 (en) Water purification equipment for aquatic life containment equipment
JP2007289117A (en) Method for preservation of marine fish and shellfish
JP2016015947A (en) Oyster husbandry method
KR200361743Y1 (en) Circulation and filtration farming apparatus equip with the pH control system
JP2004081018A (en) Method for raising sweetfish
EP4434331A1 (en) Cephalopod breeding method, protozoa prevention method, protozoa extermination method and cephalopod larva

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees