JP5438194B2 - How to raise, store or transport tuna underage fish - Google Patents

How to raise, store or transport tuna underage fish Download PDF

Info

Publication number
JP5438194B2
JP5438194B2 JP2012223810A JP2012223810A JP5438194B2 JP 5438194 B2 JP5438194 B2 JP 5438194B2 JP 2012223810 A JP2012223810 A JP 2012223810A JP 2012223810 A JP2012223810 A JP 2012223810A JP 5438194 B2 JP5438194 B2 JP 5438194B2
Authority
JP
Japan
Prior art keywords
tuna
breeding
fish
psu
salinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012223810A
Other languages
Japanese (ja)
Other versions
JP2013005818A (en
Inventor
弘之 萩原
信彦 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University Educational Systems
Original Assignee
Tokai University Educational Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University Educational Systems filed Critical Tokai University Educational Systems
Priority to JP2012223810A priority Critical patent/JP5438194B2/en
Publication of JP2013005818A publication Critical patent/JP2013005818A/en
Application granted granted Critical
Publication of JP5438194B2 publication Critical patent/JP5438194B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Description

本発明は、マグロの未成魚の飼育、保管または輸送方法に関する。
The present invention relates to a method for breeding, storing or transporting tuna immature fish .

従来から、マグロ資源の保存および消費者へのマグロの安定供給の観点からマグロの養殖が行なわれている。一般に、マグロの養殖は、近海で捕獲した生後約13週目前後(体長が約200〜300mm)の天然幼魚(通称ヨコワ)を海面に設置した生簀内で市場に出荷可能な大きさにまで育てることにより行なわれている。また、近年においては、捕獲した天然幼魚を陸上に設置した生簀内で市場に出荷可能な大きさにまで育てる所謂陸上養殖も試みられている。   Conventionally, tuna farming has been carried out from the viewpoint of storage of tuna resources and stable supply of tuna to consumers. In general, tuna aquaculture is grown to a size that can be shipped to the market in a ginger installed on the surface of a natural juvenile (commonly known as Yokowa) about 13 weeks old (with a body length of about 200-300 mm) captured in the sea. Has been done. In recent years, so-called on-shore aquaculture has also been attempted in which captured natural juveniles are grown to a size that can be shipped to the market within a ginger installed on land.

陸上に設置した飼育槽内でマグロを飼育する場合、マグロの飼育に用いる飼育水には海から直接取水した天然海水や、淡水に天然海水に含まれる成分と同等の成分を混ぜ合わせて人工的に生成した人工海水が用いられている。この場合、飼育水の塩分は、マグロが外洋魚であることから一般には狭塩性の海水魚と考えられているため、生息する海域の天然海水と略同じ塩分、具体的には略34psuに調整されている。ここで狭塩性とは、魚が対応できる塩分環境の範囲が狭いことをいい、本来生息する塩分環境と略同じ塩分環境でなければ生存することが困難な性質をいう。なお、狭塩性に対して、対応できる塩分環境の範囲が広い魚の性質を広塩性といい、主に汽水域で生息する魚が該当する。   When tuna is raised in a breeding tank set up on land, artificial water is used for tuna breeding by mixing natural seawater taken directly from the sea or fresh water with ingredients equivalent to those contained in natural seawater. Artificial seawater generated in 1 is used. In this case, the salinity of the breeding water is generally considered to be a narrow-salt seawater fish since the tuna is an open-sea fish. It has been adjusted. Here, the narrow salinity means that the range of the salinity environment that can be handled by fish is narrow, and it means that it is difficult to survive unless it is substantially the same salinity environment as the inhabited salt environment. In addition, the nature of fish with a wide range of salinity environment that can be handled against narrow salinity is called broad saltiness, and fish that live mainly in brackish waters fall under this category.

しかしながら、陸上におけるマグロの飼育過程において、飼育水の塩分を常に34psu付近に維持することは、飼育水に天然海水を用いた場合であっても人工海水を用いた場合であっても経済的および労力的負担が大きいという問題がある。具体的には、飼育水に天然海水を用いた場合には、天然海水の取水および運搬に対する経済的および労力的負担が大きい。また、飼育水に人工海水を用いた場合には、人工海水の調製に必要な人工海水調製剤に対する経済的負担や人工海水の調整に対する労力的負担が大きい。さらには、マグロが遊泳する飼育水の塩分状態を常に監視して同塩分を略34psuに維持しなければならず、その経済的および労力的な負担が大きいという問題がある。尚、本願に係る先行技術は、文献公知に係るものでないため、記載すべき先行技術文献情報はない。   However, in the tuna breeding process on land, it is economical to maintain the salinity of the breeding water at around 34 psu regardless of whether natural seawater or artificial seawater is used for breeding water. There is a problem that the labor burden is large. Specifically, when natural seawater is used for breeding water, the economic and labor burden for intake and transportation of natural seawater is large. Moreover, when artificial seawater is used for breeding water, the economic burden with respect to the artificial seawater preparation agent required for preparation of artificial seawater, and the labor burden with respect to adjustment of artificial seawater are large. Furthermore, the salinity of the breeding water in which tuna swims must be constantly monitored to maintain the salinity at approximately 34 psu, which has a problem in that the economic and labor burden is large. In addition, since the prior art which concerns on this application is not related to literature public knowledge, there is no prior art literature information which should be described.

本発明は上記問題に対処するためなされたもので、その目的は、マグロの未成魚の飼育、保管または輸送において経済的および労力的負担を軽減することができるマグロの未成魚の飼育、保管または輸送方法を提供することにある。
The present invention has been made to address the above problems, and its object is rearing immature tuna, storage or economic and breeding immature tuna labor burden can be reduced in the transport, storage or transportation method Is to provide.

上記目的を達成するため、本発明の特徴は、マグロの未成魚を遊泳槽で飼育、保管または輸送する方法であって、遊泳槽内を塩分が15psu以上かつ30psu未満の飼育水で満たす工程と、遊泳槽にマグロの未成魚を導入する工程とを含遊泳槽にマグロの未成魚を導入する際、遊泳槽の水面を均一な照度にすることにある。 In order to achieve the above object, a feature of the present invention is a method for breeding, storing or transporting an adult tuna fish in a swimming tank, wherein the swimming tank is filled with breeding water having a salinity of 15 psu or more and less than 30 psu. , look including the step of introducing the tuna immature the swimming bath, when introducing the immature tuna swimming bath is to the water surface of swimming tank uniform illuminance.

この場合、前記マグロの未成魚の飼育、保管または輸送方法において、前記塩分が15psu以上かつ25psu以下の飼育水によってマグロの未成魚を飼育、保管または輸送することができる。   In this case, in the method for breeding, storing or transporting the tuna immature fish, the tuna immature fish can be bred, stored or transported by the breeding water having a salt content of 15 psu or more and 25 psu or less.

このように構成した本発明の特徴によれば、塩分が約15psu以上かつ30psu以下の飼育水によってマグロの未成魚を飼育、保管または輸送する。これにより、本発明者らによる実験および飼育観察によれば、生後約13週目前後(体長が約200〜300mm)の天然幼魚を生残率約50%以上で28週以上飼育することを確認した。すなわち、従来、狭塩性と考えられてきたマグロを、本来の生息域の塩分より最大で19psuも低いで塩分環境下で飼育可能なことを確認した。これにより、飼育水に天然海水を用いた場合には、天然海水の取水量(使用量)を減らすことができるため、取水および運搬に対する経済的および労力的負担を軽減することができる。また、飼育水に人工海水を用いた場合には、人工海水の調製に必要な人工海水調整剤の使用量を減らすことができるとともに人工海水における塩分の調製範囲が広くなるため、人工海水の調製に必要な人工海水調整剤に対する経済的負担や人工海水の調整に対する労力的負担を軽減することができる。さらには、マグロの未成魚が生存可能な塩分範囲が広がるため、マグロの未成魚が遊泳する飼育水の塩分状態の監視のための経済的および労力的な負担が軽減される。これらの結果、マグロの未成魚の飼育、保管または輸送において経済的および労力的負担を軽減することができる。   According to the characteristics of the present invention configured as described above, the tuna immature fish is reared, stored or transported by the rearing water having a salinity of about 15 psu or more and 30 psu or less. As a result, according to experiments and breeding observations by the present inventors, it was confirmed that natural juveniles of about 13 weeks after birth (with a body length of about 200 to 300 mm) were raised at a survival rate of about 50% or more for 28 weeks or more. did. That is, it was confirmed that tuna, which was conventionally considered to be narrow-salt, can be reared in a salt environment at a maximum of 19 psu lower than the salt content of the original habitat. Thereby, when natural seawater is used for breeding water, the amount of natural seawater intake (amount of use) can be reduced, thereby reducing the economic and labor burden on water intake and transportation. In addition, when artificial seawater is used for breeding water, the amount of artificial seawater conditioning agent necessary for the preparation of artificial seawater can be reduced and the range of salt content in artificial seawater is widened. It is possible to reduce the economic burden on the artificial seawater adjusting agent necessary for the production and the labor burden on the adjustment of the artificial seawater. In addition, the range of salinity in which the tuna immature fish can survive increases, thereby reducing the economic and labor burden of monitoring the salinity of the breeding water in which the tuna immature fish swim. As a result, economic and labor burdens can be reduced in the breeding, storage or transportation of tuna underage fish.

なお、前記した「生後約13週目前後」とは、捕獲した天然幼魚の体長、体重またはマグロの捕獲日と一般的に知られているマグロの産卵期とから推定したものである。これは、自然の海で捕獲したマグロの天然幼魚の正確なふ化した日は実際には不明なためである。また、人工海水調製剤とは、天然海水と同等の飼育水、具体的には、天然海水と同等の組成であって各成分の比率や濃度が天然海水と同等の飼育水を調整するために、天然海水に含まれる各種成分を人工的に調製した粉末状または液体状の物質である。   The above-mentioned “about 13 weeks after birth” is estimated from the captured natural juvenile's body length, weight or tuna capture date and generally known tuna spawning season. This is because the exact date of hatching of tuna natural larvae caught in the natural seas is actually unknown. In addition, artificial seawater preparations are for breeding water equivalent to natural seawater, specifically, for adjusting breeding water that has the same composition as natural seawater and the ratio and concentration of each component is equivalent to natural seawater. A powdery or liquid substance prepared by artificially preparing various components contained in natural seawater.

また、本発明は、前記マグロの未成魚の飼育、保管または輸送方法において、飼育水は、海水、淡水、塩分が約15psu以上の地下水または同塩分が約15psu以上の地下温泉水における各塩分を調整して構成することができる。これにより、マグロの未成魚の飼育における経済的および労力的負担を軽減することができる。また、前記マグロの未成魚の飼育、保管または輸送方法において、マグロの未成魚を20pus以下の塩分環境に移す場合には、飼育水の塩分を徐々に下げることができる。また、本発明は、前記マグロの未成魚の飼育、保管または輸送方法において、マグロの未成魚を25psu以上かつ30psu未満の塩分環境で飼育した後、塩分が15psu以上かつ25psu以下に調整した飼育水によってマグロの未成魚を飼育、保管または輸送することができる。これらによれば、より安全に低塩分環境にマグロを移行させることができる。また、本発明は、前記マグロの未成魚の飼育、保管または輸送方法において、塩分を17psu以上に調整した飼育水によってマグロの未成魚を飼育、保管または輸送することができる。また、本発明は、前記マグロの未成魚の飼育、保管または輸送方法において、塩分を20psu±3psuに調整した飼育水によってマグロの未成魚を飼育、保管または輸送することができる。これらによれば、飼育水に対する経済的および労力的な負担を軽減して効率的にマグロを飼育することができる。
Further, the present invention relates to the method for breeding, storing or transporting the tuna immature fish, wherein the breeding water is seawater, fresh water, ground water having a salinity of about 15 psu or more, or adjusting the salinity in the ground hot spring water having the salinity of about 15 psu or more. Can be configured. This can reduce the economic and labor burden in raising tuna underage fish. In addition, in the method for breeding, storing or transporting the tuna immature fish, when the tuna immature fish is transferred to a salt environment of 20 pus or less, the salinity of the breeding water can be gradually lowered. In addition, the present invention provides a method for breeding, storing or transporting a tuna immature fish, wherein the tuna immature fish is bred in a salinity environment of 25 psu or more and less than 30 psu, and the salinity is adjusted to 15 psu or more and 25 psu or less. bred immature tuna can be stored or transported. According to these, tuna can be transferred to a low salinity environment more safely. The present invention also breeding immature of the tuna, in storage or transportation method, breeding immature tuna by breeding water adjusted salinity than 17Psu, can be stored or transported. The present invention also breeding immature of the tuna, in storage or transportation method, breeding immature tuna by breeding water adjusted to salinity in 20psu ± 3psu, can be stored or transported. According to these, tuna can be bred efficiently while reducing the economic and labor burden on breeding water.

また、これらの場合、前記マグロの未成魚の飼育、保管または輸送方法において、塩分が約15psu以上の地下水または地下温泉水を飼育水として用いることができる。これによれば、マグロの未成魚の飼育、保管または輸送するための飼育水に、塩分が約15psu以上の地下水または地下温泉水を用いているため、塩分が約15psu以上の地下水または地下温泉水をそのままで、またはこれらの地下水または地下温泉水に淡水などを混合して塩分を約15psu以上の範囲まで低下させてマグロの未成魚の飼育水として用いることができる。これにより、より安価かつ容易に飼育水を用意することができ、マグロの未成魚の飼育、保管または輸送において経済的および労力的負担を軽減することができる。   In these cases, groundwater or underground hot spring water having a salinity of about 15 psu or more can be used as breeding water in the method for breeding, storing or transporting the tuna underage fish. According to this, groundwater or underground hot spring water with a salinity of about 15 psu or more is used for rearing, storage or transportation of tuna underage fish. The fresh water or the like can be mixed with the ground water or the underground hot spring water to reduce the salinity to a range of about 15 psu or more, and can be used as breeding water for tuna immature fish. Thereby, breeding water can be prepared more cheaply and easily, and economical and labor burdens can be reduced in breeding, storage or transportation of tuna underage fish.

また、本発明は、マグロの飼育、保管または輸送方法として実施できるばかりでなく、マグロを飼育、保管または輸送するための飼育水の発明としても実施できるものである。

The present invention can be implemented not only as a method for breeding, storing or transporting tuna , but also as an invention for breeding water for breeding, storing or transporting tuna.

本発明の一実施形態に係るマグロの飼育方法に用いられるマグロの飼育設備の主要部の構成を模式的に示すブロック図である。It is a block diagram which shows typically the structure of the principal part of the tuna breeding equipment used for the tuna breeding method which concerns on one Embodiment of this invention. (A)は第1年目における飼育週数に対する飼育水の塩分の変化を示した飼育実験結果グラフであり、(B)は同第1年目における飼育週数に対する生残率の変化を示した飼育実験結果グラフである。(A) is a breeding experiment result graph showing the change in salinity of breeding water with respect to the number of breeding weeks in the first year, and (B) shows the change in survival rate with respect to the number of breeding weeks in the first year. It is a rearing experiment result graph. (A)は第2年目における飼育週数に対する飼育水の塩分の変化を示した飼育実験結果グラフであり、(B)は同第2年目における飼育週数に対する生残率の変化を示した飼育実験結果グラフである。(A) is a breeding experiment result graph showing the change in salinity of breeding water with respect to the number of breeding weeks in the second year, and (B) shows the change in survival rate with respect to the number of breeding weeks in the second year. It is a rearing experiment result graph.

以下、本発明に係るマグロの飼育、保管または輸送方法およびマグロの飼育、保管または輸送のための飼育水の一実施形態について図面を参照しながら説明する。図1は、本発明に係るマグロの飼育方法によるマグロの飼育に用いる飼育設備の主要部の構成を模式的に示すブロック図である。なお、本明細書において参照する各図は、本発明の理解を容易にするために一部の構成要素を誇張して表わすなど模式的に表している。このため、各構成要素間の寸法や比率などは異なっていることがある。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of a tuna breeding, storage or transportation method and breeding water for tuna breeding, storage or transportation according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram schematically showing a configuration of a main part of a breeding facility used for tuna breeding by a tuna breeding method according to the present invention. Note that each drawing referred to in the present specification is schematically represented by exaggerating some of the components in order to facilitate understanding of the present invention. For this reason, the dimension, ratio, etc. between each component may differ.

このマグロの飼育設備は、遊泳槽10を備えている。遊泳槽10は、マグロを飼育するための水槽であり、シート材を上方が開放した有底円筒状に張って構成されている。本実施形態においては、遊泳槽10は、直径が5m、深さが1.5mに形成されているとともに、遊泳槽10内に約1mの深さで飼育水が満たされている。この遊泳槽10の中央部には円筒状の取水管11が起立した状態で設けられている。取水管11は、遊泳槽10内の飼育水を取水して遊泳槽10内の水位を一定に保つとともに取水した飼育水を排水ピット12に導くための管体である。したがって、遊泳槽10内におけるマグロが遊泳可能な領域は、遊泳槽10の内壁と取水管11との間のリング状の空間部分となる。   This tuna breeding facility includes a swimming tank 10. The swimming tank 10 is a water tank for raising tuna, and is configured by stretching a sheet material in a bottomed cylindrical shape with the upper part opened. In the present embodiment, the swimming tank 10 has a diameter of 5 m and a depth of 1.5 m, and the swimming tank 10 is filled with breeding water at a depth of about 1 m. A cylindrical intake pipe 11 is erected at the center of the swimming tank 10. The intake pipe 11 is a tube for taking the breeding water in the swimming tank 10 to keep the water level in the swimming tank 10 constant and guiding the taken breeding water to the drain pit 12. Therefore, a region where the tuna can swim in the swimming tank 10 is a ring-shaped space portion between the inner wall of the swimming tank 10 and the intake pipe 11.

排水ピット12は、遊泳槽10から導かれた飼育水の一部を排水管13に導くとともに、他の一部を汲水ポンプ14を介して圧力濾過装置15に導くために取水した飼育水を一時的に貯留する容器である。汲水ポンプ14は、排水ピット12に貯留された飼育水を汲み上げて圧力濾過装置15に給水するための送液ポンプである。圧力濾過装置15は、異物を濾し取る濾過材を収容する密閉された容器内に飼育水を導入して、飼育水の導入側と排出側との圧力差によって飼育水を濾過する装置である。この圧力濾過装置15には、UV殺菌装置16が接続されている。UV殺菌装置16は、飼育水にUV(紫外線)を照射することにより飼育水中に存在する微生物を殺して細菌の繁殖を防止するための装置である。このUV殺菌装置16には、生物濾過槽17が接続されている。   The drainage pit 12 guides a part of the breeding water led from the swimming tank 10 to the drainage pipe 13 and another part of the breeding water taken to guide the other part to the pressure filtration device 15 via the pumping pump 14. It is a container for temporary storage. The pumping water pump 14 is a liquid feeding pump for pumping the breeding water stored in the drainage pit 12 and supplying it to the pressure filtration device 15. The pressure filtration device 15 is a device that introduces breeding water into a sealed container containing a filtering material that filters out foreign substances, and filters the breeding water based on a pressure difference between the breeding water introduction side and the discharge side. A UV sterilizer 16 is connected to the pressure filtration device 15. The UV sterilization device 16 is a device for preventing the propagation of bacteria by killing microorganisms existing in the breeding water by irradiating the breeding water with UV (ultraviolet rays). A biological filtration tank 17 is connected to the UV sterilizer 16.

生物濾過槽17は、バクテリアを用いて飼育水中の有機物を分解して浄化した後、この浄化した飼育水を遊泳槽10に供給するための水槽である。この生物濾過槽17には、UV殺菌装置16の他に、給水管18および地下海水給水設備20がそれぞれ接続されている。給水管18は、淡水(真水)を生物濾過槽17に供給するための配管であり、同配管の上流側に手動バルブ18aを介して上水道に接続されている。地下海水給水設備20は、地中に打ち込んだ取水管21を介して地下に存在する海水を汲水ポンプ22によって汲み上げる設備群である。本実施形態においては、地下約20mまで打ち込んだ取水管21を介して地下に存在する海水、所謂地下海水を汲み上げる。なお、「地下海水」とは、一般的に明確な定義はないが、本実施形態においては、汽水または海水と同等な塩分を含む地下水のことである。   The biological filtration tank 17 is a water tank for supplying the purified breeding water to the swimming tank 10 after decomposing and purifying organic matter in the breeding water using bacteria. In addition to the UV sterilizer 16, a water supply pipe 18 and an underground seawater water supply facility 20 are connected to the biological filtration tank 17. The water supply pipe 18 is a pipe for supplying fresh water (fresh water) to the biological filtration tank 17, and is connected to the water supply via a manual valve 18a on the upstream side of the pipe. The underground seawater water supply facility 20 is a group of facilities that pumps seawater existing underground through a water intake pipe 21 driven into the ground by a pumping pump 22. In the present embodiment, seawater existing in the basement, so-called underground seawater, is pumped up through the intake pipe 21 driven to about 20 m underground. In addition, although there is generally no clear definition, "groundwater" is groundwater containing salt water equivalent to brackish water or seawater in this embodiment.

遊泳槽10の上方には、図示しない支持部材を介して4つの照明具19(3つのみ図示)がそれぞれ設けられている。照明具19は、遊泳槽10内を照らすための照明器具であり、広い範囲に均一な照度の光を照射することができる投光器で構成されるとともに、遊泳槽10の水面を略均等な照度で照らすために遊泳槽10の周方向に沿って略均等に配置されている。この場合、「略均一な照度」とは、人間の目視によって明部と暗部とが確認できない程度の均一さである。これらの照明具19は、図示しない照度制御装置にそれぞれ接続されている。照度制御装置は、作業者による設定値に応じて照明具19の照度を0lx(lx:ルクス)〜500lxまでの範囲で連続的に変化させることができる制御装置である。   Above the swimming tank 10, four lighting fixtures 19 (only three are shown) are provided via support members (not shown). The illuminator 19 is an illuminating device for illuminating the inside of the swimming tank 10, and is configured by a projector that can irradiate light with uniform illuminance over a wide range, and the water surface of the swimming tank 10 with substantially uniform illuminance. In order to illuminate, it is arranged substantially evenly along the circumferential direction of the swimming tank 10. In this case, the “substantially uniform illuminance” is such a degree of uniformity that a bright part and a dark part cannot be confirmed by human eyes. These illuminators 19 are connected to an illuminance control device (not shown). The illuminance control device is a control device that can continuously change the illuminance of the illuminator 19 within a range from 0 lx (lx: lux) to 500 lx in accordance with a set value by the operator.

また、この遊泳槽10には、遊泳槽10および生物濾過槽17内の各飼育水に酸素を供給するためのエアレーション設備(図示せず)などの魚類を飼育するために一般的に必要な他の設備を備えている。しかし、これらの各設備については、本発明に直接関わらないため、その説明は省略する。そして、このように構成された遊泳槽10や照明具19は、夜間における外部からの入射光(主として人為的な光)を遮断するとともに日中における自然光を採り入れることができる図示しない建屋内に設置されている。すなわち、本実施形態におけるマグロの飼育は、陸上に設置した遊泳槽10内で行なわれる。   In addition, the swimming tank 10 is generally necessary for raising fish such as aeration equipment (not shown) for supplying oxygen to the breeding water in the swimming tank 10 and the biological filtration tank 17. The facilities are equipped. However, since these facilities are not directly related to the present invention, description thereof is omitted. The swimming tank 10 and the illuminating device 19 configured in this way are installed in a building (not shown) that can block incident light from outside (mainly artificial light) at night and incorporate natural light during the day. Has been. That is, the tuna breeding in this embodiment is performed in the swimming tank 10 installed on land.

次に、このように構成されたマグロの飼育設備を用いてマグロを飼育する方法について説明する。まず、マグロを飼育する飼育者は、遊泳槽10内にマグロを投入する前に、遊泳槽10内を所定の塩分の飼育水で満たす。具体的には、飼育者は、汲水ポンプ22を作動させて地中から地下海水を汲み上げて生物濾過槽17に導入する。生物濾過槽17に導入された地下海水は、生物濾過槽17を満たした後、遊泳槽10に導入される。そして、飼育者は、汲水ポンプ14、圧力濾過装置15およびUV殺菌装置16などの作動をそれぞれ開始させて飼育水の循環を開始させるとともに、照明具19を点灯させて遊泳槽10の水面を略均一な照度で照らす。なお、この場合、地下海水は、一般に無菌であるため、生物濾過槽17を介さず直接遊泳槽10に導入する構成であってもよい。   Next, a method for raising tuna using the tuna breeding equipment configured as described above will be described. First, a breeder who raises tuna fills the swimming tank 10 with breeding water of a predetermined salt before putting the tuna into the swimming tank 10. Specifically, the breeder operates the pumping water pump 22 to pump up groundwater from the ground and introduces it into the biological filtration tank 17. The underground seawater introduced into the biological filtration tank 17 is introduced into the swimming tank 10 after filling the biological filtration tank 17. Then, the breeder starts the circulation of the breeding water by starting the operation of the pumping water pump 14, the pressure filtration device 15, and the UV sterilization device 16, and turns on the lighting device 19 to turn the water surface of the swimming tank 10 on. Illuminate with approximately uniform illumination. In this case, since the underground seawater is generally sterile, it may be configured to be directly introduced into the swimming tank 10 without using the biological filtration tank 17.

次に、飼育者は、遊泳槽10内の飼育水の調製作業を行う。具体的には、飼育者は、遊泳槽10内に導入された飼育水の塩分を測定した後、この測定結果に応じて飼育水の塩分を約25psu以上かつ30psu未満の範囲内に調整する。すなわち、遊泳槽10内に導入された飼育水の塩分が25psu未満であれば、飼育者は、人口海水を調製するための人工海水調製剤を遊泳槽10内に投入して飼育水の塩分を約25psu以上かつ30psu未満に上昇させる。また、遊泳槽10内に導入された飼育水の塩分が30psuを超えている場合には、飼育者は、手動バルブ18aを開いて淡水を遊泳槽10内に導入して飼育水の塩分を約25psu以上かつ30psu未満に低下させる。   Next, the breeder prepares the breeding water in the swimming tank 10. Specifically, after measuring the salinity of the breeding water introduced into the swimming tank 10, the breeder adjusts the salinity of the breeding water within a range of about 25 psu or more and less than 30 psu according to the measurement result. That is, if the salinity of the breeding water introduced into the swimming tank 10 is less than 25 psu, the breeder puts the artificial seawater preparation agent for preparing artificial seawater into the swimming tank 10 to obtain the salinity of the breeding water. Increase to about 25 psu or more and less than 30 psu. If the salinity of the breeding water introduced into the swimming tank 10 exceeds 30 psu, the breeder opens the manual valve 18a and introduces fresh water into the swimming tank 10 to reduce the salinity of the breeding water. Reduce to 25 psu or more and less than 30 psu.

なお、この場合、飼育水の塩分が30psuを超えていてもマグロを飼育することは当然可能である。したがって、遊泳槽10内に導入された飼育水の塩分が30psuを超えている場合には、敢えて塩分の調整はせず、そのままの塩分の飼育水を用いてもよい。但し、この場合、本実施形態においては、後述する工程にて、飼育水の塩分を低下させるため、高くても30psu程度に調整しておくことが望ましい。一方、地下から汲み上げられた地下海水の塩分が既に約25psu以上かつ30psu未満である場合には、飼育水の塩分を調整する必要はない。これにより、地下から取水した地下海水の塩分が約25psu以上かつ30psu未満の場合には、飼育水の塩分を調整するための経済的および労力的負担が軽減される。また、塩分を調整する範囲が約25psu以上かつ30psu未満と広いため、飼育水の塩分を調製するための経済的労力的負担が軽減される。   In this case, it is naturally possible to breed tuna even if the salinity of the breeding water exceeds 30 psu. Therefore, when the salinity of the breeding water introduced into the swimming tank 10 exceeds 30 psu, the salinity breeding water may be used as it is without adjusting the salinity. However, in this case, in the present embodiment, in order to reduce the salinity of the breeding water in the process described later, it is desirable to adjust it to about 30 psu at the highest. On the other hand, if the salinity of the groundwater pumped from the basement is already about 25 psu or more and less than 30 psu, it is not necessary to adjust the salinity of the breeding water. Thereby, when the salinity of the groundwater taken from underground is about 25 psu or more and less than 30 psu, the economical and labor burden for adjusting the salinity of the breeding water is reduced. In addition, since the range for adjusting the salinity is as wide as about 25 psu or more and less than 30 psu, the economical and labor burden for preparing the salinity of the breeding water is reduced.

次に、飼育者は、遊泳槽10内で飼育するマグロを用意する。この場合、本実施形態においては、飼育者は、生後約13週目前後(体長(尾叉長)が約200mm以上)以降であって生殖能力を備えるまでの間のマグロの未成魚(幼魚または若魚)を用意する。具体的には、飼育者は、近海で捕獲した生後約13週目前後の天然幼魚(通称ヨコワ)を遊泳槽10内に放す。この場合、飼育者は、海で捕獲したマグロの未成魚を一旦海面に設置した生簀で暫く飼育した後に遊泳槽10に移すようにするとよい。これにより、マグロの未成魚に与えるストレスを分散してその後の生残率の低下を抑制することが期待できる。なお、天然幼魚は、産卵日やふ化した日が正確には不明である。したがって、「生後約13週目前後」とは、前記したように、捕獲した天然幼魚の体長、体重またはマグロの捕獲日と一般的に知られているマグロの産卵期とから推定したものである。   Next, the breeder prepares tuna to be raised in the swimming tank 10. In this case, in this embodiment, the breeder is a tuna immature fish (larvae or larvae) after about 13 weeks after birth (the body length (tail fork length) is about 200 mm or more) and until it has fertility. Prepare young fish. Specifically, the breeder releases a natural juvenile (commonly known as Yokowa) about 13 weeks old, captured in the near sea, into the swimming tank 10. In this case, it is preferable that the breeder moves the immature fish of the tuna captured in the sea for a while with a ginger once set on the sea surface, and then moves it to the swimming tank 10. Thereby, it can be expected to disperse the stress applied to the tuna immature fish and suppress the subsequent decrease in the survival rate. In the case of natural larvae, the exact date of egg laying or hatching is unknown. Therefore, “about 13 weeks after birth” is, as described above, estimated from the body length, weight or tuna capture date of the captured natural juvenile and the generally known tuna spawning season. .

次に、飼育者は、1〜3日間程度を掛けてマグロを遊泳槽10内の環境に慣らした後、遊泳槽10内の飼育水の塩分を20psu±3psuの範囲に調整する。具体的には、飼育者は、手動バルブ18aを開いて生物濾過槽17に淡水を加えることにより遊泳槽10内の飼育水の塩分を20psu±3psuの範囲まで低下させる。この場合、飼育者は、約20時間で約5psuの割合で飼育水の塩分を低下させる。これにより、マグロへの負担を抑えながら飼育水の塩分を低下させることができる。また、飼育者は、飼育水の塩分を17psu未満に低下させた場合には、新たに地下海水や人工海水調製剤を加えて飼育水の塩分が20psu±3psuの範囲に納まるように調整する。これにより、遊泳槽10内の飼育水の塩分が20psu±3psuの範囲に調整される。そして、飼育者は、定期的(例えば、1日1回)に飼育水の塩分を測定して飼育水の塩分を20psu±3psuの範囲に調整しながらマグロを市場に出荷可能な大きさにまで育てる。   Next, the breeder adjusts the salinity of the breeding water in the swimming tank 10 to a range of 20 psu ± 3 psu after accustoming the tuna to the environment in the swimming tank 10 for about 1 to 3 days. Specifically, the breeder lowers the salinity of the breeding water in the swimming tank 10 to a range of 20 psu ± 3 psu by opening the manual valve 18 a and adding fresh water to the biological filtration tank 17. In this case, the breeder reduces the salinity of the breeding water at a rate of about 5 psu in about 20 hours. Thereby, the salinity of breeding water can be reduced, suppressing the burden to a tuna. Further, when the breeder lowers the salinity of the breeding water to less than 17 psu, the breeder adjusts the fresh water so that the salinity of the breeding water falls within a range of 20 psu ± 3 psu by adding a groundwater or artificial seawater preparation. Thereby, the salinity of the breeding water in the swimming tank 10 is adjusted to the range of 20 psu ± 3 psu. And the breeder measures the salinity of the breeding water regularly (for example, once a day) and adjusts the salinity of the breeding water to the range of 20 psu ± 3 psu to a size that allows the tuna to be shipped to the market. Raise.

(実験内容と実験結果)
次に、本発明者らが行なった実験とその結果について説明する。本発明者らは、天然海水より塩分が低い飼育水のマグロの生残率に与える影響を明らかにするため、遊泳槽10内の飼育水の塩分を低下させた際の生残率の変化を調べた。
(Experiment contents and results)
Next, the experiment conducted by the present inventors and the result will be described. In order to clarify the influence of breeding water on the survival rate of tuna whose salinity is lower than that of natural seawater, the present inventors examined the change in survival rate when the salinity of the breeding water in the swimming tank 10 was reduced. Examined.

具体的には、本発明者らは、天然海水より低い塩分の飼育水を満たした図1に示す遊泳槽10を4つ用意するとともに各遊泳槽10に略同数ずつのマグロ(生後約13週目前後)を投入して、少なくとも23週に亘って飼育する飼育実験を年1回の割合で合計2回行なった。この飼育実験においては、第1年目では飼育水の塩分が約24〜27psuの範囲でマグロを飼育し、第2年目では塩分が約17〜25psuの範囲でマグロを飼育した。これらの飼育実験の結果を図2(A),(B)および図3(A),(B)にそれぞれ示す。これらの各図において、(A)は飼育週数に対する飼育水の塩分変化を示しており、(B)は飼育週数に対する生残率の変化を示している。そして、各図中、丸印、三角印、四角印およびバツ印は、4つの各遊泳槽10を示している。また、飼育水の塩分は、1週間の平均塩分を小数点以下を四捨五入して示している。   Specifically, the present inventors prepared four swimming tanks 10 shown in FIG. 1 that were filled with lower salt water than natural seawater, and each swimming tank 10 had approximately the same number of tuna (about 13 weeks old). Feeding experiments were conducted twice a year in total at a rate of once a year. In this breeding experiment, tuna was bred in the range of about 24 to 27 psu of salinity in the first year, and tuna was bred in the range of about 17 to 25 psu in the second year. The results of these breeding experiments are shown in FIGS. 2 (A), (B) and FIGS. 3 (A), (B), respectively. In each of these figures, (A) shows the change in salinity of the breeding water with respect to the number of breeding weeks, and (B) shows the change in survival rate with respect to the number of breeding weeks. And in each figure, the circle mark, the triangle mark, the square mark, and the cross mark show each four swimming tanks 10. Moreover, the salinity of breeding water is shown by rounding off the average salinity for one week rounded off the decimal point.

第1年目の飼育実験においては、マグロの驚愕行動(マグロが急激な環境変化(主に光の急激な変化)に驚いて興奮状態となって狂乱的に遊泳するパニック現象)による遊泳槽10の内壁面への衝突や遊泳槽10からの飛び出しによって飼育開始から23週目までにおいて生残率が約20〜30%にまで低下した。しかし、この第1年目の飼育実験結果においては、図2(A),(B)に示すように、飼育水における塩分の変化と生残率の変化との間に相関関係は見出せなかった。すなわち、飼育水の塩分が25psu以下となった9〜10週目および14〜16週目においても、摂食量および生残率が急変することはなかった。一方、飼育水の塩分が27psuとなった4〜6週目および19〜12週目においても、摂食量および生残率が急変することはなかった。これらにより、マグロは、塩分環境にのみ着目すれば、少なくとも25psu以上の塩分環境であれば飼育が可能であると考えられる。   In the breeding experiment in the first year, the swimming tank 10 was a tuna startling action (a panic phenomenon in which the tuna was surprised by a sudden environmental change (mainly a sudden change in light) and became excited and furiously swimming). The survival rate decreased to about 20-30% from the start of breeding to the 23rd week due to the collision with the inner wall of the fish and the jump out of the swimming tank 10. However, in the results of the breeding experiment in the first year, as shown in FIGS. 2 (A) and (B), no correlation was found between the change in salinity and the change in survival rate in the breeding water. . That is, the amount of food intake and survival rate did not change abruptly even at the 9th to 10th weeks and the 14th to 16th weeks when the salinity of the breeding water was 25 psu or less. On the other hand, in the 4th to 6th weeks and the 19th to 12th weeks when the salinity of the breeding water became 27 psu, the amount of food intake and the survival rate did not change suddenly. From these, it is considered that tuna can be reared in a salinity environment of at least 25 psu if attention is paid only to the salinity environment.

第2年目の飼育実験においては、マグロの驚愕行動の招来を防止する対策を講じたことにより、マグロの驚愕行動の発生を抑えることで飼育開始から23週目までにおいて生残率を約50〜60%に維持することができた。そして、この第2年目の飼育実験結果においても、図3(A),(B)に示すように、飼育水における塩分の変化と生残率の変化との間に相関関係は見出せなかった。すなわち、飼育水の塩分が20psu以下となった9〜26週目においても、摂食量および生残率が急変することはなかった。特に、飼育水の塩分が約17psuとなった20〜21週目においても摂食量および生残率が急変することはなかった。これにより、マグロは、塩分環境にのみ着目すれば、少なくとも17psu以上の塩分環境であれば飼育が可能であると考えられる。   In the second year's breeding experiment, by taking measures to prevent the startling behavior of tuna, by suppressing the occurrence of startling behavior of tuna, the survival rate was reduced to about 50 from the start of breeding to the 23rd week. It could be maintained at ˜60%. And also in this 2nd year breeding experiment result, as shown to FIG. 3 (A) and (B), a correlation was not found between the change of the salinity in breeding water, and the change of survival rate. . That is, even in the 9th to 26th weeks when the salinity of the breeding water became 20 psu or less, the amount of food intake and the survival rate did not change suddenly. In particular, the amount of food intake and survival rate did not change suddenly even during the 20th to 21st weeks when the salinity of the breeding water was about 17 psu. Thereby, it is considered that tuna can be reared in a salt environment of at least 17 psu if attention is paid only to the salt environment.

さらに、この第2年目の飼育実験においては、本発明者らは、21週目において飼育水の塩分を一時的(約24時間)に約15psuにまで低下させてマグロの様子を観察した。しかし、この場合においても、マグロの摂食量や遊泳状態に変化は見られなかった。したがって、マグロは、塩分環境にのみ着目すれば、約15psuの塩分環境であっても飼育が可能でないかと考えられる。   Furthermore, in this second year breeding experiment, the present inventors observed the state of tuna by reducing the salinity of the breeding water to about 15 psu temporarily (about 24 hours) at the 21st week. However, even in this case, there was no change in tuna intake or swimming state. Therefore, it is considered that tuna can be reared even in a salt environment of about 15 psu, focusing only on the salt environment.

上記作動説明および実験結果からも理解できるように、上記実施形態によれば、塩分が20psu±3psuの飼育水によってマグロを飼育している。これにより、本発明者らによる実験および飼育観察によれば、生後約13週目前後(体長が約200〜300mm)の天然幼魚を生残率約50%以上で28週以上飼育することを確認した。すなわち、従来、狭塩性と考えられてきたマグロを、本来の生息域の塩分(約34psu)より最大で19psuも低いで塩分環境下で飼育可能なことを確認した。これにより、飼育水に天然海水を用いた場合には、天然海水の取水量(使用量)を減らすことができるため、取水および運搬に対する経済的および労力的負担を軽減することができる。また、飼育水に人工海水を用いた場合には、人工海水の調製に必要な人工海水調整剤の使用量を減らすことができるとともに人工海水における塩分の調製範囲が広くなるため、人工海水の調製に必要な人工海水調整剤に対する経済的負担や人工海水の調整に対する労力的負担を軽減することができる。さらには、マグロが生存可能な塩分範囲が広がるため、マグロが遊泳する飼育水の塩分状態の監視のための経済的および労力的な負担が軽減される。これらの結果、マグロの飼育、保管または輸送において経済的および労力的負担を軽減することができる。   As can be understood from the above operation explanation and experimental results, according to the above embodiment, the tuna is bred with breeding water having a salinity of 20 psu ± 3 psu. As a result, according to experiments and breeding observations by the present inventors, it was confirmed that natural juveniles of about 13 weeks after birth (with a body length of about 200 to 300 mm) were raised at a survival rate of about 50% or more for 28 weeks or more. did. That is, it was confirmed that tuna, which was conventionally considered to be narrow-salt, can be raised in a salt environment at a maximum of 19 psu lower than the salt content of the original habitat (about 34 psu). Thereby, when natural seawater is used for breeding water, the amount of natural seawater intake (amount of use) can be reduced, thereby reducing the economic and labor burden on water intake and transportation. In addition, when artificial seawater is used for breeding water, the amount of artificial seawater conditioning agent necessary for the preparation of artificial seawater can be reduced and the range of salt content in artificial seawater is widened. It is possible to reduce the economic burden on the artificial seawater adjusting agent necessary for the production and the labor burden on the adjustment of the artificial seawater. Furthermore, since the salinity range in which tuna can survive is expanded, the economic and labor burden for monitoring the salinity of breeding water in which tuna swims is reduced. As a result, economic and labor burdens can be reduced in the breeding, storage or transportation of tuna.

さらに、本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。   Furthermore, in carrying out the present invention, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the object of the present invention.

例えば、上記実施形態においては、飼育水の塩分を20psu±3psuに調整した。しかし、本発明者らによる飼育実験および飼育観察によれば、前記したように、15psuの塩分の飼育水であっても飼育が可能であると考えられる。したがって、飼育水の塩分は、約15psu以上かつ約30psu以下の範囲で適宜設定すれば、必ずしも上記実施形態に限定されるものではない。すなわち、飼育水の塩分は、飼育水の塩分の調製のための経済的負担および労力的負担を考慮して約15psu以上かつ約30psu以下の範囲で適宜設定すればよい。これによっても上記実施形態と同様の効果が期待できる。   For example, in the above embodiment, the salinity of the breeding water is adjusted to 20 psu ± 3 psu. However, according to the breeding experiments and breeding observations by the present inventors, it is considered that breeding is possible even with 15 psu of salt water as described above. Therefore, the salinity of the breeding water is not necessarily limited to the above embodiment as long as it is appropriately set within the range of about 15 psu or more and about 30 psu or less. That is, the salinity of the breeding water may be appropriately set in the range of about 15 psu or more and about 30 psu or less in consideration of the economic burden and labor burden for the preparation of the salinity of the breeding water. Also by this, the same effect as the above embodiment can be expected.

また、上記実施形態においては、地下海水を用いて飼育水を調製した。しかし、飼育水は、塩分が約15psu以上かつ約30psu以下の範囲で調整されていれば、必ずしも地下海水を用いて調製する必要はない。すなわち、天然海水に淡水を加えて飼育水を調製してもよいし、淡水に人工海水調製剤を加えて飼育水を調整してもよい。また、地下海水や人工海水に代えて、または加えて地下温泉水を用いることもできる。温泉とは、一般に摂氏25℃以上の地下水をいうが、温泉の中には塩分が汽水または海水と同程度のものが存在する。このため、塩分が汽水または海水と同程度の温泉水を用いることにより、マグロの飼育に適した塩分および温度の飼育水を用意に調製することができる。特に、天然海水の調達が困難な山間地でマグロの陸上養殖を行なう場合や、冬季に飼育水の加温が必要な場合などには、温泉水の利用は極めて有効である。これにより、マグロの飼育において経済的および労力的負担を軽減することができる。   Moreover, in the said embodiment, breeding water was prepared using underground seawater. However, breeding water does not necessarily have to be prepared using groundwater if the salinity is adjusted in the range of about 15 psu or more and about 30 psu or less. That is, breeding water may be prepared by adding fresh water to natural seawater, or an artificial seawater preparation may be added to fresh water. In addition, underground hot spring water can be used instead of or in addition to underground seawater or artificial seawater. Hot springs generally refer to groundwater at 25 ° C or higher, but some hot springs have a salinity comparable to brackish water or seawater. For this reason, by using hot spring water having a salinity comparable to that of brackish water or seawater, breeding water having a salt content and temperature suitable for tuna breeding can be prepared. The use of hot spring water is extremely effective especially when tuna is cultivated on land in mountainous areas where it is difficult to procure natural seawater, or when the breeding water needs to be heated in winter. Thereby, economical and labor burden can be reduced in the breeding of tuna.

また、上記実施形態においては、塩分が約25psu以上かつ30psu未満の範囲に調製された飼育水の塩分を20psu±3psuに低下させる際、約20時間で約5psuの割合で飼育水の塩分を低下させた。しかし、塩分を低下させる割合は、マグロの月齢や年齢または健康状態に応じて適宜決定されるものであり、上記実施形態に限定されるものではない。なお、本発明者らの飼育実験および飼育観察によれば、塩分が34psuの飼育水で飼育したマグロを直接塩分が25psuの飼育水に移してもマグロが弱ったり死んだりすることはなかった。また、マグロが遊泳する飼育水の塩分を34psuから20psuに24時間を掛けて低下させた場合においても、マグロが弱ったり死んだりすることはなかった。このため、塩分が25psu以上の場合には、マグロを互いに異なる塩分環境に直接移してもよいものと考えられる。一方、マグロを塩分が20psu以下の塩分環境に移す場合には、ある程度の時間を掛けて徐々に20psu以下の塩分環境に慣れさせるようにした方がより安全にマグロを移すことができると考えられる。   In the above embodiment, when reducing the salinity of the breeding water prepared in the range of about 25 psu or more and less than 30 psu to 20 psu ± 3 psu, the salinity of the breeding water is reduced at a rate of about 5 psu in about 20 hours. I let you. However, the rate of reducing the salt content is appropriately determined according to the tuna's age, age, or health condition, and is not limited to the above embodiment. According to the breeding experiments and breeding observations of the present inventors, the tuna was not weakened or died even when the tuna raised in the breeding water having a salinity of 34 psu was directly transferred to the breeding water having a salinity of 25 psu. Further, even when the salinity of the breeding water in which tuna swims was lowered from 34 psu to 20 psu over 24 hours, the tuna was not weakened or died. For this reason, when the salinity is 25 psu or more, it is considered that tuna may be directly transferred to different salinity environments. On the other hand, when tuna is transferred to a salinity environment having a salinity of 20 psu or less, it is considered that the tuna can be transferred more safely by gradually getting used to the salinity environment of 20 psu or less over a certain period of time. .

また、上記実施形態においては、遊泳槽10を自然光を採り入れ可能な建屋内に設置した。しかし、遊泳槽10は、屋外に設置されているものであっても良いことは当然である。また、マグロの飼育は、遊泳槽10内での飼育に限らず、塩分が約15psu以上かつ約30psu以下の範囲の海域での所謂海面養殖であってもよい。これらによっても、上記実施形態と同様の効果が期待できる。   Moreover, in the said embodiment, the swimming tank 10 was installed in the building which can take in natural light. However, it is a matter of course that the swimming tank 10 may be installed outdoors. Tuna breeding is not limited to breeding in the swimming tank 10, but may be so-called sea surface culture in a sea area where the salinity is about 15 psu or more and about 30 psu or less. Also by these, the same effect as the above-mentioned embodiment can be expected.

また、塩分が約15psu以上かつ約30psu以下の範囲の飼育水でマグロを飼育することは、マグロにとって浸透圧調節に係る体力的負担を軽減するものである。また、塩分が約15psu以上かつ約30psu以下の範囲の飼育水でマグロを飼育することは、天然海水と同等の塩分の飼育水中に存在する寄生虫の殺虫効果も期待できる。すなわち、塩分が約15psu以上かつ約30psu以下の範囲の飼育水でマグロを飼育する本発明は、マグロの体力回復方法または病気の治癒促進方法としても実施できるものである。   In addition, breeding tuna with breeding water having a salinity in the range of about 15 psu or more and about 30 psu or less reduces the physical burden of tuna for adjusting osmotic pressure. In addition, breeding tuna with breeding water having a salinity of about 15 psu or more and about 30 psu or less can also be expected to have an insecticidal effect on parasites existing in the breeding water having the same salinity as natural seawater. That is, the present invention in which tuna is bred with breeding water having a salinity of about 15 psu or more and about 30 psu or less can also be implemented as a tuna physical strength recovery method or a disease healing promotion method.

また、上記実施形態においては、本発明をマグロの飼育に適用した例について説明した。しかし、本発明は、マグロの保管や輸送時に適用できるものである。これによっても、上記実施形態と同様の効果が期待できる。   Moreover, in the said embodiment, the example which applied this invention to the breeding of a tuna was demonstrated. However, the present invention can be applied when tuna is stored or transported. Also by this, the same effect as the above-mentioned embodiment can be expected.

また、上記実施形態においては、マグロとしてクロマグロ(本マグロともいう)を対象とした。しかし、他の種類のマグロ、例えば、キハダマグロ、ミナミマグロ、メバチマグロなどのマグロ類に属する魚種に広く適用できるものと考える。   Moreover, in the said embodiment, the bluefin tuna (it is also called this tuna) was made into object as a tuna. However, it is considered that the present invention can be widely applied to other types of fish such as tuna such as yellowfin tuna, southern bluefin tuna, and bigeye tuna.

10…遊泳槽、11…取水管、12…排水ピット、13…排水管、14…汲水ポンプ、15…圧力濾過装置、16…UV殺菌装置、17…生物濾過槽、18…給水管、18a…手動バルブ、19…照明具、20…地下海水給水設備、21…取水管、22…汲水ポンプ。 DESCRIPTION OF SYMBOLS 10 ... Swimming tank, 11 ... Intake pipe, 12 ... Drainage pit, 13 ... Drainage pipe, 14 ... Fume pump, 15 ... Pressure filtration apparatus, 16 ... UV sterilization apparatus, 17 ... Biological filtration tank, 18 ... Water supply pipe, 18a ... manual valve, 19 ... lighting equipment, 20 ... underground seawater water supply equipment, 21 ... intake pipe, 22 ... scooping water pump.

Claims (8)

マグロの未成魚を遊泳槽で飼育、保管または輸送する方法であって、
前記遊泳槽内を塩分が15psu以上かつ30psu未満の飼育水で満たす工程と、
前記遊泳槽に前記マグロの未成魚を導入する工程とを含
前記遊泳槽に前記マグロの未成魚を導入する際、前記遊泳槽の水面を均一な照度にすることを特徴とするマグロの未成魚の飼育、保管または輸送方法。
A method for breeding, storing or transporting tuna underage fish in a swimming tank,
Filling the swimming tank with breeding water having a salinity of 15 psu or more and less than 30 psu;
Look including the step of introducing the immature of the tuna on the swimming bath,
A method for breeding, storing or transporting a tuna immature fish, characterized in that when the tuna immature fish is introduced into the swim tank, the water surface of the swim tank has a uniform illuminance .
請求項1に記載したマグロの未成魚の飼育、保管または輸送方法において、
前記遊泳槽を夜間における外部からの入射光を遮断するとともに日中における自然光を採り入れることができる建屋内に設置することを特徴とするマグロの未成魚の飼育、保管または輸送方法。
In the method for breeding, storing or transporting an immature fish of tuna according to claim 1,
A method for breeding, storing or transporting a tuna underage fish, characterized in that the swimming tank is installed in a building capable of blocking incident light from outside at night and taking in natural light during the daytime .
マグロの未成魚を遊泳槽で飼育、保管または輸送する方法であって、
夜間における外部からの入射光を遮断するとともに日中における自然光を採り入れることができる建屋内に設置した前記遊泳槽内を塩分が15psu以上かつ30psu未満の飼育水で満たす工程と、
前記遊泳槽に前記マグロの未成魚を導入する工程とを含むことを特徴とするマグロの未成魚の飼育、保管または輸送方法。
A method for breeding, storing or transporting tuna underage fish in a swimming tank,
Filling the inside of the swimming tank installed in a building capable of blocking incident light from outside at night and taking in natural light during the day with breeding water having a salinity of 15 psu or more and less than 30 psu;
A method for breeding, storing or transporting the tuna underage fish, comprising the step of introducing the underage tuna fish into the swimming tank .
請求項1ないし請求項3のうちのいずれか1つに記載したマグロの未成魚の飼育、保管または輸送方法において、
前記遊泳槽に前記マグロの未成魚を導入した後、前記遊泳槽の塩分環境を15psu以上かつ25psu以下に調整する工程とを含むことを特徴とするマグロの未成魚の飼育、保管または輸送方法。
In the method for breeding, storing or transporting an immature fish of tuna according to any one of claims 1 to 3,
A method for breeding, storing or transporting a tuna underage fish, comprising: introducing the underage tuna fish into the swimming tank and then adjusting a salinity environment of the swimming tank to 15 psu or more and 25 psu or less .
請求項1ないし請求項4のうちのいずれか1つに記載したマグロの未成魚の飼育、保管または輸送方法において、
前記遊泳槽に前記マグロの未成魚を導入する前に同遊泳槽内の塩分環境を25psu以上かつ30psu未満に調整する工程を含むことを特徴とするマグロの未成魚の飼育、保管または輸送方法。
In the method for breeding, storing or transporting a tuna underage fish according to any one of claims 1 to 4,
A method for breeding, storing, or transporting a tuna underage fish, comprising the step of adjusting a salt environment in the same swimming tank to 25 psu or more and less than 30 psu before introducing the underage tuna fish into the swimming tank .
請求項1ないし請求項5のうちのいずれか1つに記載したマグロの未成魚の飼育、保管または輸送方法において、
前記遊泳槽に前記マグロの未成魚を導入した後、前記飼育水の塩分を少なくとも17psu以上に調整することを特徴とするマグロの未成魚の飼育、保管または輸送方法。
In the method for breeding, storing or transporting a tuna underage fish according to any one of claims 1 to 5,
After introducing Immature of the tuna on the swimming bath, breeding immature tuna characterized that you adjust at least 17psu or salinity of the breeding water, storage or transportation method.
請求項1ないし請求項6のうちのいずれか1つに記載したマグロの未成魚の飼育、保管または輸送方法において、
前記遊泳槽に前記マグロの未成魚を導入した後、前記飼育水の塩分を20psu±3psuに調整することを特徴とするマグロの未成魚の飼育、保管または輸送方法。
In the method for breeding, storing or transporting a tuna underage fish according to any one of claims 1 to 6,
A method for breeding, storing or transporting a tuna underwater fish, wherein after introducing the underwater tuna fish into the swimming tank, the salinity of the rearing water is adjusted to 20 psu ± 3 psu .
請求項1ないし請求項7のうちのいずれか1つに記載したマグロの未成魚の飼育、保管または輸送方法において、
前記飼育水は、海水、淡水、塩分が約15psu以上の地下水または同塩分が約15psu以上の地下温泉水における各塩分を調整して構成されることを特徴とするマグロの未成魚の飼育、保管または輸送方法。
In the method for breeding, storing or transporting a tuna underage fish according to any one of claims 1 to 7,
The breeding water, sea water, fresh water, salinity of immature tuna about 15psu or groundwater or the salinity characterized Rukoto configured to adjust the respective salt at about 15psu more underground spring water breeding, storage, or Transport method.
JP2012223810A 2012-10-09 2012-10-09 How to raise, store or transport tuna underage fish Expired - Fee Related JP5438194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012223810A JP5438194B2 (en) 2012-10-09 2012-10-09 How to raise, store or transport tuna underage fish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012223810A JP5438194B2 (en) 2012-10-09 2012-10-09 How to raise, store or transport tuna underage fish

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009179742A Division JP5315160B2 (en) 2009-07-31 2009-07-31 Tuna breeding, storage or transportation methods

Publications (2)

Publication Number Publication Date
JP2013005818A JP2013005818A (en) 2013-01-10
JP5438194B2 true JP5438194B2 (en) 2014-03-12

Family

ID=47673736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012223810A Expired - Fee Related JP5438194B2 (en) 2012-10-09 2012-10-09 How to raise, store or transport tuna underage fish

Country Status (1)

Country Link
JP (1) JP5438194B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104585094B (en) * 2015-01-16 2017-07-25 苏州市水产研究所有限公司 A kind of artificial fecundation method of silver-colored silver xenocypris
CN105210970B (en) * 2015-10-08 2018-06-26 宁波大学 The fish culture apparatus that a kind of water salinity can be automatically controlled and be adjusted
CN112136750A (en) * 2020-10-10 2020-12-29 西南交通大学 Intelligent fish tank convenient for water replacement
CN114342856B (en) * 2021-12-18 2022-10-25 邳州市锋利农具制造有限公司 Fish tank device capable of supplying oxygen according to fish swimming degree and preventing tank jumping

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10191830A (en) * 1997-01-14 1998-07-28 Shinya Nakamura Production of fish and shellfish by using spring water
JP4081092B2 (en) * 2005-01-21 2008-04-23 学校法人近畿大学 Method for preventing abnormal behavior of tuna by controlling illuminance
JP2007215538A (en) * 2006-01-17 2007-08-30 Central Res Inst Of Electric Power Ind Method for culturing puffers and culture apparatus
JP5062550B2 (en) * 2006-12-05 2012-10-31 学校法人加計学園 Artificial breeding water
JP4142708B2 (en) * 2006-12-13 2008-09-03 Wha株式会社 Onshore aquaculture system
JP4976313B2 (en) * 2008-01-09 2012-07-18 西南自動車工業株式会社 How to raise fish
JP5253314B2 (en) * 2009-07-17 2013-07-31 Wha株式会社 Tuna breeding, storage or transportation methods

Also Published As

Publication number Publication date
JP2013005818A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
CN106069927B (en) A kind of domesticating method of wild Lhasa schizothoracin
Zacarías‐Soto et al. Spawning and larval development of the four‐sided sea cucumber, Isostichopus badionotus (Selenka 1867), under controlled conditions
US8770149B2 (en) System for breeding aquatic fauna
WO2016129703A1 (en) Method for cultivating oysters on land
JP2017148007A (en) Cultivation system of fish seedling
CN103250663B (en) Four-gill perch cement pit classification cultural method
JP5438194B2 (en) How to raise, store or transport tuna underage fish
KR20140115445A (en) METHOD FOR CULTUERING CATADROMOUS FISH(Anguilla marmorata) BY USING RECIRCULATING AQUACULTUER SYSTEM AND SEAWATER ACCLIMATION
Valenti et al. Hatchery systems and management
JP5315160B2 (en) Tuna breeding, storage or transportation methods
JP5062550B2 (en) Artificial breeding water
KR101744393B1 (en) Aquaculture method for seahorse fry
RU2605197C1 (en) Method to grow commercial fish species in closed water supply systems (versions)
Chen et al. Sea cucumber aquaculture in China
JP2010193902A (en) Water for artificial rearing
JP5253314B2 (en) Tuna breeding, storage or transportation methods
Perry et al. Expansion of the Soft Crab Fishery in Mississippi Using Cultured Blue Crabs.
WO2008069261A1 (en) Water for artificial breeding and aquaculture system using the same
Jobling Fish culture: the rearing environment
KR101302202B1 (en) Acclimation and method for rearing of living anchovy
Ingram et al. Murray cod aquaculture—current information and current status
WO2005044741A1 (en) Water treatment method and apparatus using fish
CN107347744A (en) A kind of Coilia ectenes in Yangtze River pond breeding method
Resley et al. Controlled maturation and spawning of captive black snook
James Breeding and farming of the silver pomfret Pampus argenteus: a technical manual

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121009

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121009

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20121106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131015

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131212

R150 Certificate of patent or registration of utility model

Ref document number: 5438194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees