JP2941823B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof

Info

Publication number
JP2941823B2
JP2941823B2 JP63298386A JP29838688A JP2941823B2 JP 2941823 B2 JP2941823 B2 JP 2941823B2 JP 63298386 A JP63298386 A JP 63298386A JP 29838688 A JP29838688 A JP 29838688A JP 2941823 B2 JP2941823 B2 JP 2941823B2
Authority
JP
Japan
Prior art keywords
region
groove
opening
insulating film
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63298386A
Other languages
Japanese (ja)
Other versions
JPH02144971A (en
Inventor
功 吉田
正敏 森川
得男 久礼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63298386A priority Critical patent/JP2941823B2/en
Publication of JPH02144971A publication Critical patent/JPH02144971A/en
Application granted granted Critical
Publication of JP2941823B2 publication Critical patent/JP2941823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法に係り、特にいわゆ
る縦型の絶縁ゲート型(以下MISと略す)電界効果トラ
ンジスタ(以下FETと略す)を有する半導体装置の製造
方法に関する。
The present invention relates to a method for manufacturing a semiconductor device, and particularly to a so-called vertical insulated gate (hereinafter abbreviated as MIS) field effect transistor (hereinafter abbreviated as FET). The present invention relates to a method for manufacturing a semiconductor device having the same.

〔従来の技術〕[Conventional technology]

従来、チャネルの電流が基板に対し縦に流れるいわゆ
る縦型のMISFETについては、特開昭58−3287及びアイ・
イー・デー・エム、テクニカル ダイジェスト、第674
頁〜第677頁(1987)(IDEM,Technical Digest pp.674
〜677(1987))に論じられている。前者に記載のMISFE
Tの断面図を第7図に示す。高濃度半導体基板1上にn
型ドレイン領域2、p型ベース領域3、n型ソース領域
4が順次形成され、上記n型ソース領域4からn型ドレ
イン領域2に達するように形成された溝中にゲート絶縁
膜5を介してゲート電極6が埋め込まれている。7はソ
ース電極、8はドレイン電極、9はシリコン酸化膜であ
る。このMISFETは、チャネルの電流が縦に流れるため、
単位セル当りの電流密度が増大し、オン抵抗が減少して
いる。また、ソース領域がプレーナー型より小さく形成
されているので、ソースをエミッタとし、ドレイン領域
2とベース領域3とで構成される寄生バイポーラトラン
ジスタの動作が低く抑えられ、L負荷ラッチング耐量や
熱的破壊強度が向上した。
Conventionally, a so-called vertical MISFET in which a channel current flows vertically to a substrate is disclosed in Japanese Patent Application Laid-Open No. 58-3287 and
EDM, Technical Digest, No. 674
Pp. 677 (1987) (IDEM, Technical Digest pp.674)
677 (1987)). MISFE described in the former
FIG. 7 shows a sectional view of T. N on the high concentration semiconductor substrate 1
A drain region 2, a p-type base region 3, and an n-type source region 4 are sequentially formed, and a gate insulating film 5 is interposed in a groove formed from the n-type source region 4 to the n-type drain region 2. The gate electrode 6 is buried. 7 is a source electrode, 8 is a drain electrode, and 9 is a silicon oxide film. In this MISFET, the channel current flows vertically,
The current density per unit cell increases, and the on-resistance decreases. In addition, since the source region is formed smaller than the planar type, the operation of the parasitic bipolar transistor including the source as the emitter and the drain region 2 and the base region 3 is suppressed, and the L load latching resistance and thermal breakdown are suppressed. Strength improved.

また、上述の従来技術の他に、特開昭63−224260号公
報に開示されている如き縦型のMOSFETが知られている。
しかし、そのMOSFETの場合、ソース電極の段切れが問題
となる。
In addition to the above-mentioned prior art, a vertical MOSFET as disclosed in JP-A-63-224260 is also known.
However, in the case of the MOSFET, disconnection of the source electrode becomes a problem.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術は、素子の信頼性について十分な配慮が
なされておらず、L負荷ラッチング耐量がなお不十分で
あるという問題があった。
The prior art described above has a problem that sufficient consideration is not given to the reliability of the device, and the L load latching resistance is still insufficient.

本発明の目的は、L負荷ラッチング耐量の向上した信
頼性に優れた半導体装置の製造方法を提供することにあ
る。
An object of the present invention is to provide a method for manufacturing a semiconductor device having improved L load latching resistance and excellent reliability.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明の半導体装置の製
造方法は、第1導電型の半導体基板主面に、第1導電型
であって、上記半導体基板の不純物濃度よりも低濃度の
半導体層が形成された半導体本体を準備する工程、上記
半導体層内に第2導電型の不純物を導入してチャネル領
域となる第1の領域を設ける工程、第1の領域主面上に
絶縁膜を形成する工程、この絶縁膜に第1開孔部を設
け、該第1開孔部を通して第1の領域に第2導電型の不
純物を導入して、底部が第1の領域の底部より深く、上
記半導体層内に位置した第2の領域を設ける工程、上記
絶縁膜に第2開孔部を設け、第2開孔部を通して第1の
領域に第1導電型の不純物を導入して、第2開孔部から
第1の領域に伸びる第3の領域を設ける工程、第2開孔
部内の第1の領域をエッチングし、第2の領域の底部よ
り浅く、第1の領域の底部より深い溝を形成する工程及
び溝内にゲート絶縁膜を介してゲート電極を設ける工程
を含むようにしたものである。
In order to achieve the above object, a method of manufacturing a semiconductor device according to the present invention is directed to a method of manufacturing a semiconductor device, wherein a semiconductor layer of a first conductivity type having a lower concentration than an impurity concentration of the semiconductor substrate is provided on a main surface of a semiconductor substrate of the first conductivity type. Preparing a semiconductor body on which is formed, forming a first region serving as a channel region by introducing an impurity of a second conductivity type into the semiconductor layer, and forming an insulating film on a main surface of the first region Providing a first opening in the insulating film, introducing a second conductivity type impurity into the first region through the first opening, and making the bottom deeper than the bottom of the first region. Providing a second region located in the semiconductor layer, providing a second opening in the insulating film, introducing a first conductivity type impurity into the first region through the second opening, Providing a third region extending from the opening to the first region, and etching the first region in the second opening. And quenching, shallower than the bottom of the second region, in which to include the step of providing a gate electrode through a gate insulating film in step and the groove forming a deep trench from the bottom of the first region.

〔作用〕[Action]

本発明は、前記第2の領域(後に説明する第1図の高
濃度ベース領域13)から下方に空乏層が延び、ブレーク
ダウンが発生する。そのためL負荷ラッチング耐量は向
上する。
In the present invention, a depletion layer extends downward from the second region (the high-concentration base region 13 in FIG. 1 described later), and a breakdown occurs. Therefore, the L load withstand capability is improved.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第
1図は縦型パワーMOSFETの主要セル部の断面構造図であ
る。抵抗率が0.01Ω・cmのn形高濃度半導体基板1の上
に抵抗率が0.8Ω・cm、厚さが10μmのn形エピタキシ
ャル層からなるドレイン領域2、その上にシート抵抗が
500Ω/□、深さが1.0μmのp形ベース領域3が形成さ
れている。この領域は前記第1の領域に相当するが以下
ベース領域という。この領域の一部はp形の高濃度ベー
ス領域13が存在し、その深さは1.5μmである、表面か
らドレイン領域2に達する溝中には、厚さ50nmのゲート
酸化膜5が周囲に設けられ、その中に多結晶シリコンの
ゲート電極6が設けられている。溝の外側上部には、溝
に接してシート抵抗が500Ω/□、深さが0.5μmのn形
高濃度ソース領域4が設けられている。7はAlのソース
電極、8はTi−Ni−Agのドレイン電極そして9はシリコ
ン酸化膜である。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a sectional structural view of a main cell portion of a vertical power MOSFET. A drain region 2 composed of an n-type epitaxial layer having a resistivity of 0.8 Ω · cm and a thickness of 10 μm is formed on an n-type high-concentration semiconductor substrate 1 having a resistivity of 0.01 Ω · cm.
A p-type base region 3 having a resistance of 500 Ω / □ and a depth of 1.0 μm is formed. This region corresponds to the first region, but is hereinafter referred to as a base region. A part of this region has a p-type high-concentration base region 13 having a depth of 1.5 μm. In a groove reaching the drain region 2 from the surface, a gate oxide film 5 having a thickness of 50 nm is formed around the trench. A polycrystalline silicon gate electrode 6 is provided therein. An n-type high-concentration source region 4 having a sheet resistance of 500Ω / □ and a depth of 0.5 μm is provided in contact with the groove at the upper portion outside the groove. 7 is an Al source electrode, 8 is a Ti-Ni-Ag drain electrode, and 9 is a silicon oxide film.

第2図はこの縦型パワーMOSFETの製造プロセスを示す
主要部の断面構造図である。(a)n+高濃度半導体基板
1の上にn形エピタキシャル層を成長させp型ベース領
域3を1.0μmの深さに形成する。(b)厚さ0.2μmの
シリコン窒化膜10を所望のパターンに形成し、その上に
ホトレジスト103を所望のパターンに形成する。高エネ
ルギーイオン打ち込みによりBを1×1015cm打ち込み、
ホトレジスト膜103を除去後熱処理によりBを拡散し高
濃度ベース領域13を1.45μmの深さ迄形成する。従って
この状態では(b)に示した断面構造からホトレジスト
膜103が除かれた構造となっている。(c)上記シリコ
ン窒化膜10の上にホトレジスト膜104を形成し、所望の
形状とする。開口部に1×1016/cmの砒素をイオン打ち
込みし、熱処理により、0.5μmの深さにしてソース領
域4を形成する。(d)しかる後、SiCl4ガスのドライ
エッチングにより、深さ1.1μmのU字形溝11を形成す
る。このときシリコン窒化膜の削れ量は約0.1μmであ
る。(e)そして厚さ50nmのシリコン酸化膜をゲート絶
縁膜5としてCVD法により被着する。(f)ゲート電極
6となる多結晶シリコンを溝幅の2分の1以上の膜厚で
被着して溝を充填した後、SF6ガスのドライエッチング
により全面エッチングして溝内のみに図のごとく多結晶
シリコンを残存させる。なお多結晶シリコンは燐を5×
1020/cm3の濃度にドープして低抵抗にしておく。燐や砒
素を多結晶シリコン被着時に添加しておいてもよい。
(g)熱酸化によってシリコン酸化膜9を図のごとく形
成し、シリコン窒化膜10を除去する。(h)取り出し電
極として、ソース電極7及びドレイン電極8を形成す
る。
FIG. 2 is a sectional structural view of a main part showing a manufacturing process of the vertical power MOSFET. (A) An n-type epitaxial layer is grown on an n + high-concentration semiconductor substrate 1 to form a p-type base region 3 at a depth of 1.0 μm. (B) A silicon nitride film 10 having a thickness of 0.2 μm is formed in a desired pattern, and a photoresist 103 is formed thereon in a desired pattern. B was implanted at 1 × 10 15 cm by high energy ion implantation,
After removing the photoresist film 103, B is diffused by heat treatment to form a high concentration base region 13 to a depth of 1.45 μm. Therefore, in this state, the photoresist film 103 is removed from the cross-sectional structure shown in FIG. (C) A photoresist film 104 is formed on the silicon nitride film 10 to have a desired shape. Arsenic of 1 × 10 16 / cm is ion-implanted into the opening, and the source region 4 is formed to a depth of 0.5 μm by heat treatment. (D) Thereafter, a 1.1 μm deep U-shaped groove 11 is formed by dry etching of SiCl 4 gas. At this time, the shaved amount of the silicon nitride film is about 0.1 μm. (E) Then, a silicon oxide film having a thickness of 50 nm is deposited as a gate insulating film 5 by a CVD method. (F) Polycrystalline silicon to be the gate electrode 6 is applied with a film thickness of at least half the groove width to fill the groove, and then the entire surface is etched by dry etching with SF 6 gas so that only the inside of the groove is formed. The polycrystalline silicon is left as described above. For polycrystalline silicon, phosphorus is 5 ×
It is doped to a concentration of 10 20 / cm 3 to keep low resistance. Phosphorus or arsenic may be added during polycrystalline silicon deposition.
(G) A silicon oxide film 9 is formed by thermal oxidation as shown in the figure, and the silicon nitride film 10 is removed. (H) A source electrode 7 and a drain electrode 8 are formed as extraction electrodes.

本実施例の構造は、ソース領域4がゲート電極6を有
するU字形溝形成によって自己整合的に小さく形成され
ていることである。これにより、ソース領域4の断面形
状における幅すなわち横方向の長さは、深さすなわち縦
方向の長さより短く形成できるので、ソースをエミッタ
としベース領域3とドレイン領域2とで構成される寄生
バイポーラトランジスタ動作が低く抑えられる。また高
濃度ベース領域13が深部迄導入されているので、ドレイ
ン・ベース間のブレークダウンはこの領域の底部発生す
る。その結果ドレイン耐圧は65Vに低下したがL負荷ラ
ッチングは向上した。
The structure of the present embodiment is that the source region 4 is formed small in a self-aligned manner by forming a U-shaped groove having the gate electrode 6. Thus, the width of the cross-sectional shape of the source region 4, that is, the length in the horizontal direction can be formed shorter than the depth, that is, the length in the vertical direction. Therefore, a parasitic bipolar transistor composed of the base region 3 and the drain region 2 using the source as the emitter. Transistor operation can be kept low. Also, since the high concentration base region 13 is introduced to a deep portion, breakdown between the drain and the base occurs at the bottom of this region. As a result, the drain withstand voltage was reduced to 65 V, but the L load latching was improved.

本実施例によれば、3.5mm□チップのパワーMOSFETに
おいてドレイン耐圧が60V、オン抵抗が10mΩ、L負荷ラ
ッチング耐量が100μH、50Vに対して35Aでも破壊しな
かった。
According to this example, the power MOSFET of the 3.5 mm square chip did not break down even at a drain withstand voltage of 60 V, an on-resistance of 10 mΩ, an L load latching resistance of 100 μH, and 35 A at 50 V.

次に本発明の他の実施例を第3図を用いて説明する。
第3図(a)はパワーMOSFETの主要部の平面図、第3図
(b)は同図(a)のA−A′断面図である。全面にソ
ース電極に接続されたソース領域4及びベース領域3の
平面形状はそれぞれ円環形状である。ここで一セルのゲ
ート絶縁膜5の直径は3μmである。またソース領域4
の幅はゲート電極6を有するU字形溝部分によって自己
整合されて一様の大きさになっているので、全面ソース
電極7に接続されたベース領域3の大きさにも一定に確
保される。この結果ベース抵抗は小さく抑えられ、寄生
バイポーラトランジスタ動作も発生しにくい。
Next, another embodiment of the present invention will be described with reference to FIG.
FIG. 3 (a) is a plan view of a main part of the power MOSFET, and FIG. 3 (b) is a sectional view taken along the line AA 'of FIG. 3 (a). The planar shape of each of the source region 4 and the base region 3 connected to the source electrode over the entire surface is an annular shape. Here, the diameter of the gate insulating film 5 of one cell is 3 μm. Source region 4
Is self-aligned by the U-shaped groove portion having the gate electrode 6 and has a uniform size, so that the size of the base region 3 connected to the entire source electrode 7 is also kept constant. As a result, the base resistance is kept small, and the operation of the parasitic bipolar transistor hardly occurs.

次に本発明の他の実施例を第4図を用いて説明する。
図はパワーMOSFETの主要部の平面図であり、ソース領域
4の平面形状が円環の一部の形状をしている。ゲート絶
縁膜として厚さ60nmの酸化タンタル膜と厚さ20nmのシリ
コ酸化膜の複合膜を用いた。その結果単位面積当りのゲ
ート幅つまり実装密度が約2倍向上し、またゲート面積
が増加したにもかかわらず、歩留まりの低下はみられな
かった。
Next, another embodiment of the present invention will be described with reference to FIG.
The figure is a plan view of a main part of the power MOSFET, and the planar shape of the source region 4 is a part of an annular shape. A composite film of a tantalum oxide film having a thickness of 60 nm and a silicon oxide film having a thickness of 20 nm was used as a gate insulating film. As a result, the gate width per unit area, that is, the mounting density was improved about twice, and the yield did not decrease even though the gate area increased.

次に本発明の他の実施例を第5図を用いて説明する。
図はパワーMOSFETの主要部の断面図であり、ベース領域
3にライフタイムキラー12が導入されている。このライ
フタイムキラー12は1×1015/cm2のプロトンのイオン打
ち込みによって形成された。この結果、寄生バイポーラ
トランジスタ動作の発生がさらに低く抑えられ、またド
レイン・ベース間のダイオードの逆回復時間も約1桁低
減できた。
Next, another embodiment of the present invention will be described with reference to FIG.
The figure is a cross-sectional view of a main part of the power MOSFET, and a lifetime killer 12 is introduced in the base region 3. This lifetime killer 12 was formed by ion implantation of 1 × 10 15 / cm 2 protons. As a result, the occurrence of the parasitic bipolar transistor operation was further suppressed, and the reverse recovery time of the diode between the drain and the base was reduced by about one digit.

次に本発明の他の実施例を第6図を用いて説明する。
第6図(a)はパワーMOSFET、ドライバMOSFETからなる
回路図、第6図(b)はその集積回路の断面図である。
p形半導体基板14上にn形高濃度領域15をドレインとす
るパワーMOSFET及びドライバMOSFETが形成され、アイソ
レーション17もU字形溝構造を利用して形成されてい
る。この結果、パワーMOSFETのドライブが容易になると
共に、実装密度は従来の構造の約2倍向上し、かつ破壊
耐量も低下することはなかった。
Next, another embodiment of the present invention will be described with reference to FIG.
FIG. 6A is a circuit diagram including a power MOSFET and a driver MOSFET, and FIG. 6B is a cross-sectional view of the integrated circuit.
A power MOSFET and a driver MOSFET having an n-type high-concentration region 15 as a drain are formed on a p-type semiconductor substrate 14, and an isolation 17 is also formed using a U-shaped groove structure. As a result, the drive of the power MOSFET is facilitated, the mounting density is improved about twice that of the conventional structure, and the breakdown strength is not reduced.

以上の実施例ではnチャネルパワーMOSFETを例にとっ
て説明したが、pチャネル形でも同様な効果がある。ま
たゲート絶縁膜としてシリコン酸化膜及び酸化タンタル
膜を含む高誘電率複合膜を用いたが他の高誘電率複合
膜、例えば酸化チタン膜、オキシナイトライド膜、酸化
イットリウム膜を含む膜等でもよく、そしてゲート電極
として多結晶シリコンを用いたが、他の材料、例えば、
アルミニウム、タングステン、モリブデン、タングステ
ンシリサイド、モリブデンシリサイド、又はチタンシリ
サイドでも本発明の思想を逸脱しない限りにおいて変更
可能である。
Although the above embodiment has been described with reference to an n-channel power MOSFET as an example, a p-channel type has the same effect. Although a high dielectric constant composite film including a silicon oxide film and a tantalum oxide film was used as the gate insulating film, other high dielectric constant composite films, for example, a film including a titanium oxide film, an oxynitride film, and a yttrium oxide film may be used. , And polycrystalline silicon as the gate electrode, but other materials, for example,
Aluminum, tungsten, molybdenum, tungsten silicide, molybdenum silicide, or titanium silicide can be changed without departing from the spirit of the present invention.

〔発明の効果〕〔The invention's effect〕

本発明によれば、L負荷ラッチング耐量の向上した信
頼性に優れた半導体装置の製造方法を提供することがで
きた。
According to the present invention, it is possible to provide a method of manufacturing a semiconductor device having improved L load latching resistance and excellent reliability.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の縦型パワーMOSFETの主要部
の縦断面図、第2図はその製造プロセスを示す主要部の
縦断面図、第3図は本発明の他の実施例の縦型パワーMO
SFETの主要部の平面図及び縦断面図、第4図は本発明の
他の実施例の縦型パワーMOSFETの主要部の平面図、第5
図は本発明の他の実施例の縦型パワーMOSFETの主要部の
縦断面図、第6図は本発明の他の実施例の回路図及びそ
の主要部の縦断面図、第7図は従来の縦型パワーMOSFET
の主要部の縦断面図である。 1……高濃度半導体基板 2……ドレイン領域、3……ベース領域 4……ソース領域、5……ゲート絶縁膜 6……ゲート電極、7……ソース電極 8……ドレイン電極、9……絶縁膜 10……シリコン窒化膜、11……溝 12……ライフタイムキラー 13……高濃度ベース領域 14……p形半導体基板 15……n形高濃度領域 16……ドレイン取り出し領域 17……アイソレーション 18……保護膜 103、104……ホトレジスト膜
1 is a longitudinal sectional view of a main part of a vertical power MOSFET according to one embodiment of the present invention, FIG. 2 is a longitudinal sectional view of a main part showing a manufacturing process thereof, and FIG. 3 is another embodiment of the present invention. Vertical power MO
FIG. 4 is a plan view and a longitudinal sectional view of a main part of an SFET. FIG. 4 is a plan view of a main part of a vertical power MOSFET according to another embodiment of the present invention.
FIG. 6 is a longitudinal sectional view of a main part of a vertical power MOSFET according to another embodiment of the present invention. FIG. 6 is a circuit diagram and a longitudinal sectional view of the main part of another embodiment of the present invention. Vertical power MOSFET
3 is a longitudinal sectional view of a main part of FIG. DESCRIPTION OF SYMBOLS 1 ... High-concentration semiconductor substrate 2 ... Drain region, 3 ... Base region 4 ... Source region, 5 ... Gate insulating film 6 ... Gate electrode, 7 ... Source electrode 8 ... Drain electrode, 9 ... Insulating film 10 Silicon nitride film 11 Groove 12 Lifetime killer 13 High-concentration base region 14 P-type semiconductor substrate 15 N-type high-concentration region 16 Drain extraction region 17 Isolation 18: Protective film 103, 104: Photoresist film

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−155768(JP,A) 実開 昭63−124762(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01L 29/78 ────────────────────────────────────────────────── (5) References JP-A-63-155768 (JP, A) JP-A-63-124762 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 29/78

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1導電型の半導体基板主面に、第1導電
型であって、上記半導体基板の不純物濃度よりも低濃度
の半導体層が形成された半導体本体を準備する工程、 上記半導体層内に第2導電型の不純物を導入してチャネ
ル領域となる第1の領域を設ける工程、 上記第1の領域主面上に絶縁膜を形成する工程、 上記絶縁膜に第1開孔部を設け、該第1開孔部を通して
上記第1の領域に第2導電型の不純物を導入して、底部
が上記第1の領域の底部より深く、上記半導体層内に位
置した第2の領域を設ける工程、 上記絶縁膜に第2開孔部を設け、該第2開孔部を通して
上記第1の領域に第1導電型の不純物を導入して、上記
第2開孔部から上記第1の領域に伸びる第3の領域を設
ける工程、 上記第2開孔部内の上記第1の領域をエッチングし、上
記第2の領域の底部より浅く、上記第1の領域の底部よ
り深い溝を形成する工程及び 上記溝内にゲート絶縁膜を介してゲート電極を設ける工
程を含むことを特徴とする半導体装置の製造方法。
A step of preparing a semiconductor body having a semiconductor layer of a first conductivity type formed on a main surface of a semiconductor substrate of the first conductivity type and having a lower concentration than an impurity concentration of the semiconductor substrate; A step of introducing a second conductivity type impurity into the layer to provide a first region serving as a channel region; a step of forming an insulating film on the main surface of the first region; a first opening in the insulating film A second conductivity type impurity is introduced into the first region through the first opening, and the second region is located in the semiconductor layer, the bottom being deeper than the bottom of the first region. Providing a second opening in the insulating film, introducing a first conductivity type impurity into the first region through the second opening, and removing the first conductive type impurity from the second opening. Providing a third region extending in the region of the above, etching the first region in the second opening portion Forming a groove shallower than the bottom of the second region and deeper than the bottom of the first region; and providing a gate electrode in the groove via a gate insulating film. Manufacturing method.
【請求項2】上記ゲート電極を設ける工程は、上記溝の
幅の2分の1以上の膜厚で多結晶シリコンを上記溝に充
填し、しかる後上記多結晶シリコンをエッチングして上
記溝のみに残存させる工程からなり、 上記ゲート電極を設ける工程に続いて、上記ゲート電極
表面に酸化膜を形成する工程と、該酸化膜上に上記第2
及び第3の領域に接続するソース電極を形成する工程を
備えたことを特徴とする請求項1記載の半導体装置の製
造方法。
2. The step of providing said gate electrode, said step of filling said groove with polycrystalline silicon having a thickness of at least half the width of said groove, and then etching said polycrystalline silicon to form only said groove A step of forming an oxide film on the surface of the gate electrode, a step of forming an oxide film on the surface of the gate electrode,
2. The method according to claim 1, further comprising the step of forming a source electrode connected to the third region.
JP63298386A 1988-11-28 1988-11-28 Semiconductor device and manufacturing method thereof Expired - Fee Related JP2941823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63298386A JP2941823B2 (en) 1988-11-28 1988-11-28 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63298386A JP2941823B2 (en) 1988-11-28 1988-11-28 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02144971A JPH02144971A (en) 1990-06-04
JP2941823B2 true JP2941823B2 (en) 1999-08-30

Family

ID=17859028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63298386A Expired - Fee Related JP2941823B2 (en) 1988-11-28 1988-11-28 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2941823B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2689606B2 (en) * 1989-05-24 1997-12-10 富士電機株式会社 Method for manufacturing insulated gate field effect transistor
JP2582724Y2 (en) * 1991-10-08 1998-10-08 株式会社明電舎 Insulated gate type semiconductor device
JP2837014B2 (en) * 1992-02-17 1998-12-14 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP4521643B2 (en) * 1997-05-07 2010-08-11 シリコニックス・インコーポレイテッド Fabrication of high density trench DMOS using sidewall spacers
US6351009B1 (en) 1999-03-01 2002-02-26 Fairchild Semiconductor Corporation MOS-gated device having a buried gate and process for forming same
JP4528460B2 (en) * 2000-06-30 2010-08-18 株式会社東芝 Semiconductor element
JP2002329727A (en) * 2001-04-27 2002-11-15 Toyota Motor Corp Vertical semiconductor device and circuit using it
JP5008046B2 (en) * 2005-06-14 2012-08-22 ローム株式会社 Semiconductor device
US8643071B2 (en) * 2012-06-14 2014-02-04 Alpha And Omega Semiconductor Incorporated Integrated snubber in a single poly MOSFET
JP6988175B2 (en) * 2017-06-09 2022-01-05 富士電機株式会社 Silicon Carbide Semiconductor Device and Method for Manufacturing Silicon Carbide Semiconductor Device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020559A (en) * 1983-07-15 1985-02-01 Hitachi Ltd Composite semiconductor device
JPS6180859A (en) * 1984-09-28 1986-04-24 Hitachi Ltd Power mosfet
JPS62298120A (en) * 1986-06-18 1987-12-25 Hitachi Ltd Semicionductor device and manufacture thereof
JPS63124762U (en) * 1987-02-04 1988-08-15

Also Published As

Publication number Publication date
JPH02144971A (en) 1990-06-04

Similar Documents

Publication Publication Date Title
JP2662217B2 (en) Vertical gate semiconductor device and method of manufacturing the same
US6992350B2 (en) High voltage power MOSFET having low on-resistance
EP1033759B1 (en) MOS-gated device having a buried gate and process for forming same
US5532179A (en) Method of making a field effect trench transistor having lightly doped epitaxial region on the surface portion thereof
JP3395473B2 (en) Horizontal trench MISFET and manufacturing method thereof
TWI270208B (en) High voltage power MOSFET having a voltage sustaining region that includes doped columns formed by trench etching and diffusion from regions of oppositely doped polysilicon
US6600194B2 (en) Field-effect semiconductor devices
US6777745B2 (en) Symmetric trench MOSFET device and method of making same
JP2002314080A (en) Semiconductor device and its manufacturing method
US6846706B2 (en) Power MOSFET with ultra-deep base and reduced on resistance
JP2002270840A (en) Power mosfet
JP2001077354A (en) Vertical insulating gate semiconductor device
JP2003518748A (en) Self-aligned silicon carbide LMOSFET
JP2941823B2 (en) Semiconductor device and manufacturing method thereof
JP2850852B2 (en) Semiconductor device
JP3409244B2 (en) Semiconductor device
JP3642768B2 (en) Horizontal high voltage semiconductor device
KR19990029884A (en) Semiconductor devices
JPH06318714A (en) High-breakdown voltage semiconductor element
JP3904725B2 (en) Semiconductor device and manufacturing method thereof
JPH11186402A (en) Semiconductor device and manufacture of semiconductor
JP2004193630A (en) High withstand voltage semiconductor element
JP3300238B2 (en) Semiconductor device and manufacturing method thereof
JP3924085B2 (en) Manufacturing method of vertical MOSFET
JPH09205212A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees