JP2850852B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2850852B2
JP2850852B2 JP8137160A JP13716096A JP2850852B2 JP 2850852 B2 JP2850852 B2 JP 2850852B2 JP 8137160 A JP8137160 A JP 8137160A JP 13716096 A JP13716096 A JP 13716096A JP 2850852 B2 JP2850852 B2 JP 2850852B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
drain region
gate electrode
diffusion region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8137160A
Other languages
Japanese (ja)
Other versions
JPH09321291A (en
Inventor
仁 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8137160A priority Critical patent/JP2850852B2/en
Publication of JPH09321291A publication Critical patent/JPH09321291A/en
Application granted granted Critical
Publication of JP2850852B2 publication Critical patent/JP2850852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置に関し、
特に高電圧で使用する高耐圧用横型MOSトランジスタ
に関する。
The present invention relates to a semiconductor device,
In particular, the present invention relates to a high voltage lateral MOS transistor used at a high voltage.

【0002】[0002]

【従来の技術】半導体装置を搭載する機器によっては電
源電圧が非常に高くなる場合がある。このために、この
ような機器に使用される半導体装置では優れた高耐圧特
性が要求されるようになる。そして、このような半導体
装置に用いられる高耐圧のトランジスタとしては、一般
に横型MOSトランジスタが使用される。
2. Description of the Related Art Depending on equipment on which a semiconductor device is mounted, the power supply voltage may be extremely high. For this reason, semiconductor devices used in such devices are required to have excellent high withstand voltage characteristics. As a high breakdown voltage transistor used in such a semiconductor device, a lateral MOS transistor is generally used.

【0003】従来の高耐圧で横型の絶縁ゲート電界効果
トランジスタ(以下、高耐圧横型MOSFETという)
について、図8と図9に基づいて説明する。図8は、米
国特許であるUSP4811075に記載されている高
耐圧横型MOSFETの断面図である。また、図9は、
USP5294824に記載されている高耐圧横型MO
SFETの平面図である。以下、前者を第1の従来例
と、後者を第2の従来例と記す。
[0003] A conventional high breakdown voltage, horizontal insulated gate field effect transistor (hereinafter referred to as a high breakdown voltage lateral MOSFET)
Will be described with reference to FIG. 8 and FIG. FIG. 8 is a cross-sectional view of a high-withstand-voltage lateral MOSFET described in US Pat. No. 4,811,075. Also, FIG.
High withstand voltage horizontal type MO described in US Pat. No. 5,294,824.
It is a top view of SFET. Hereinafter, the former is referred to as a first conventional example, and the latter is referred to as a second conventional example.

【0004】初めに第1の従来例を説明する。図8に示
すように、p型シリコン基板101にn- 延長ドレイン
領域102を備え、n- 延長ドレイン領域102の表面
にp型拡散層103と素子分離絶縁膜104、p型拡散
層103に接しないn+ ドレイン領域108を備え、p
型シリコン基板の表面にn+ ソース領域107、バック
ゲート電極となるp+ 拡散領域109を備え、p型シリ
コン基板101表面をチャネルとし、n- 延長ドレイン
領域102とn+ ソース領域107にまたがるゲート絶
縁膜105を介してゲート電極106を備えている。そ
して、層間絶縁膜110、ソース電極111およびドレ
イン電極112を備えている。
First, a first conventional example will be described. As shown in FIG. 8, a p-type silicon substrate 101 is provided with an n extended drain region 102, and a surface of the n extended drain region 102 is in contact with a p-type diffusion layer 103, an element isolation insulating film 104, and a p-type diffusion layer 103. N + drain region 108
N + source region 107 to the surface of the type silicon substrate provided with a p + diffusion region 109 serving as the back gate electrode, a p-type silicon substrate 101 as a channel, n - gate across the extended drain region 102 and n + source region 107 A gate electrode 106 is provided with an insulating film 105 interposed therebetween. Further, an interlayer insulating film 110, a source electrode 111 and a drain electrode 112 are provided.

【0005】この構造のMOS型トランジスタは、n-
延長ドレイン領域102の下側となるp型シリコン基板
101と上側となるp型拡散層103の両方向からn-
延長ドレイン領域102を空乏化できるため、p型拡散
層103が無い構造のMOS型トランジスタよりもn-
延長ドレイン領域102を低抵抗化することが可能であ
り、トランジスタ導通時(オン時)のドレイン・ソース
間のオン抵抗を低減できる。このような構造は、一般的
にダブルリサーフ(Duoble RESURF)構造
とよばれている。
[0005] MOS transistor of this structure, n -
N from both directions of the p-type silicon substrate 101 below the extended drain region 102 and the p-type diffusion layer 103 above it.
Since the extended drain region 102 can be depleted, n is lower than that of the MOS transistor having no p-type diffusion layer 103.
The resistance of the extended drain region 102 can be reduced, and the on-resistance between the drain and the source when the transistor is conductive (on) can be reduced. Such a structure is generally called a double RESURF (Duuble RESURF) structure.

【0006】次に、第2の従来例としたUSP5294
824で提案されている構造は、前記のUSP4811
075により考案されている構造の上側のp型拡散層1
03を縞状にしたものである。このような高耐圧横型M
OSFETの平面図を図9に示す。ここで、上記p型拡
散層103に相当するp型拡散層203に斜線が施され
ている。
[0006] Next, USP 5294 as a second conventional example.
The structure proposed in US Pat.
075, the upper p-type diffusion layer 1
03 is striped. Such a high withstand voltage horizontal type M
FIG. 9 is a plan view of the OSFET. Here, the p-type diffusion layer 203 corresponding to the p-type diffusion layer 103 is hatched.

【0007】図9に示すように、p型シリコン基板20
1上にn- 延長ドレイン領域202が形成され、この領
域内に縞状のp型拡散層203が形成されている。そし
て、ゲート電極206、n+ ソース領域207、n+
レイン領域208およびp+拡散領域209が形成され
ている。ここで、n- 延長ドレイン領域202の下側と
なるp型シリコン基板201と上側となるp型拡散層2
03の両方向からn-延長ドレイン領域202を空乏化
させる効果は第1の従来例と同じである。しかし、この
場合には、p型拡散層203が縞状に形成されているた
め、MOSトランジスタオン時でn- 延長ドレイン領域
202の電荷通過の断面積が第1の従来例の場合よりも
増加する。そして、トランジスタオン時のドレイン・ソ
ース間オン抵抗がさらに低減するようになる。
As shown in FIG. 9, a p-type silicon substrate 20
An n - extended drain region 202 is formed on 1, and a striped p-type diffusion layer 203 is formed in this region. Then, a gate electrode 206, an n + source region 207, an n + drain region 208, and a p + diffusion region 209 are formed. Here, p-type silicon substrate 201 below n extended drain region 202 and p-type diffusion layer 2 above
The effect of depleting the n extension drain region 202 from both directions is the same as that of the first conventional example. However, in this case, since the p-type diffusion layer 203 is formed in a stripe shape, the cross-sectional area of the charge passage of the n -extended drain region 202 when the MOS transistor is turned on is larger than that in the first conventional example. I do. Then, the on-resistance between the drain and the source when the transistor is turned on is further reduced.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のダブルリサーフの高耐圧横型MOSFET構
造では、高電圧がn+ ドレイン領域に印加された場合、
- 延長ドレイン領域は上下方向からの空乏化される。
このため、n- 延長ドレイン領域の空乏化をさらに容易
にしようとすると、n- 延長ドレイン領域の不純物濃度
を低下させることが必要になる。
However, in such a conventional double RESURF high breakdown voltage lateral MOSFET structure, when a high voltage is applied to the n + drain region,
The n - extended drain region is depleted from above and below.
Thus, n - when you try to further facilitate the depletion of the extended drain region, n - it is necessary to lower the impurity concentration of the extended drain region.

【0009】しかし、n- 延長ドレイン領域の不純物濃
度を低下させると、この領域の抵抗が高くなる。そし
て、結局は高耐圧横型MOSFETのドレイン抵抗が高
くなりこのトランジスタの駆動能力が低下する。このた
めに、トランジスタのオン抵抗を低減することに限界が
生じる。
However, when the impurity concentration of the n - extended drain region is reduced, the resistance of this region increases. Eventually, the drain resistance of the high-withstand-voltage lateral MOSFET increases, and the driving capability of this transistor decreases. For this reason, there is a limit in reducing the on-resistance of the transistor.

【0010】あるいは、高耐圧横型MOSFETを搭載
する機器によっては、高耐圧横型MOSFETに大電流
動作を必要とする場合がある。この場合には、従来の技
術では上記の理由からドレイン領域の低抵抗化には限界
があり、高耐圧横型MOSFETの大電流動作で問題が
あった。
Alternatively, depending on the device on which the high breakdown voltage lateral MOSFET is mounted, a high current operation may be required for the high breakdown voltage lateral MOSFET. In this case, in the conventional technique, there is a limit in reducing the resistance of the drain region for the above-described reason, and there has been a problem in the large-current operation of the high breakdown voltage lateral MOSFET.

【0011】本発明の目的は、高耐圧横型MOSFET
の延長ドレイン領域の空乏化をさらに容易にし、その駆
動能力を高めることにある。そして上記の問題点を解決
しようとするものである。
An object of the present invention is to provide a high breakdown voltage lateral MOSFET.
The depletion of the extended drain region is further facilitated and its driving capability is enhanced. It is intended to solve the above problems.

【0012】[0012]

【課題を解決するための手段】このために、本発明の半
導体装置では、一導電型の半導体基板上の一領域に形成
された逆導電型で高濃度不純物を含むソース領域と、前
記半導体基板主面のゲート絶縁膜を介して形成されたゲ
ート電極と、前記ゲート電極を挟み前記ソース領域に対
向して形成された逆導電型で低濃度不純物を含有する第
1の拡散領域とを有し、前記第1の拡散領域の表面部に
逆導電型で高濃度不純物を含むドレイン領域が形成さ
れ、前記ゲート電極と前記ドレイン領域との間であり前
記第1の拡散領域の表面部に一導電型で低濃度不純物を
含む第2の拡散領域が形成され、前記ゲート電極と前記
ドレイン領域との間であり前記第1の拡散領域の表面か
ら所定の深さに溝が形成され、前記溝の側壁に一導電型
の不純物を含む第3の拡散領域が形成されている。
According to the present invention, there is provided a semiconductor device according to the present invention, comprising: a source region containing a high-concentration impurity of the opposite conductivity type formed in one region on a semiconductor substrate of one conductivity type; A gate electrode formed via a gate insulating film on the main surface, and a first diffusion region containing a low-concentration impurity of a reverse conductivity type formed opposite to the source region with the gate electrode interposed therebetween. A drain region containing a high-concentration impurity of the opposite conductivity type is formed on the surface of the first diffusion region, and one conductive region is provided between the gate electrode and the drain region and on the surface of the first diffusion region. A second diffusion region containing a low-concentration impurity in a mold is formed; a groove is formed between the gate electrode and the drain region at a predetermined depth from the surface of the first diffusion region; Third side wall containing one conductivity type impurity Diffusion regions are formed.

【0013】ここで、前記溝の深さは、前記第1の拡散
領域の深さより浅くなるように設定されている。
Here, the depth of the groove is set to be smaller than the depth of the first diffusion region.

【0014】あるいは、本発明の半導体装置では、一導
電型の半導体基体上に形成された逆導電型のエピタキシ
ャル層と、前記エピタキシャル層に形成されたバックゲ
ート領域と、前記バックゲート領域内に形成された逆導
電型で高濃度不純物を含むソース領域と、前記バックゲ
ート領域の表面上にゲート絶縁膜を介して形成されたゲ
ート電極と、前記ゲート電極を挟み前記ソース領域に対
向して形成された逆導電型で高濃度不純物を含むドレイ
ン領域とを有し、前記ゲート電極と前記ドレイン領域と
の間であり前記エピタキシャル層の表面部に一導電型で
低濃度不純物を含む第2の拡散領域が形成され、前記ゲ
ート電極と前記ドレイン領域との間であり前記エピタキ
シャル層の表面から所定の深さに溝が形成され、前記溝
の側壁に一導電型の不純物を含む第3の拡散領域が形成
されている。
Alternatively, in the semiconductor device according to the present invention, a reverse conductivity type epitaxial layer formed on a semiconductor substrate of one conductivity type, a back gate region formed in the epitaxial layer, and a back gate region formed in the back gate region. A source region containing a high-concentration impurity of the opposite conductivity type, a gate electrode formed on a surface of the back gate region via a gate insulating film, and formed facing the source region with the gate electrode interposed therebetween. A second diffusion region containing a low-concentration impurity of one conductivity type between the gate electrode and the drain region and having a surface portion of the epitaxial layer between the gate electrode and the drain region. Is formed, a groove is formed between the gate electrode and the drain region and at a predetermined depth from the surface of the epitaxial layer, and a one conductivity type is formed on a side wall of the groove. Third diffusion region containing an impurity is formed.

【0015】ここで、前記溝の深さは、前記エピタキシ
ャル層の膜厚より浅くなるように設定されている。
Here, the depth of the groove is set to be smaller than the thickness of the epitaxial layer.

【0016】また、前記溝内には一導電型の不純物を含
有する絶縁材料が充填される。
The trench is filled with an insulating material containing one conductivity type impurity.

【0017】そして、前記高耐圧の絶縁ゲート電界効果
トランジスタの動作において、前記ソース領域、半導体
基板、第2の拡散領域および第3の拡散領域が接地電位
に固定され前記ドレイン領域に電源電圧が印加されてい
る。
In the operation of the high breakdown voltage insulated gate field effect transistor, the source region, the semiconductor substrate, the second diffusion region and the third diffusion region are fixed to a ground potential, and a power supply voltage is applied to the drain region. Have been.

【0018】そして、前記高耐圧の絶縁ゲート電界効果
トランジスタの動作において、前記第1の拡散領域が全
て空乏化されている。
In the operation of the high-breakdown-voltage insulated gate field effect transistor, the first diffusion region is completely depleted.

【0019】[0019]

【発明の実施の形態】次に本発明について図面を参照し
て説明する。図1、図2および図3は本発明の第1の実
施の形態を説明するためのものである。ここで、図1は
本発明の高耐圧横型MOSFETの平面図であり、図2
は、図1に記すA−Bで切断した断面図であり、図3は
C−Dでの断面図である。この場合の構造の特徴は、n
- 延長ドレイン領域内にトレンチと、その周囲の側壁p
型拡散層と、n- 延長ドレイン領域表面にp型拡散層と
が形成されることである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1, FIG. 2, and FIG. 3 are for explaining the first embodiment of the present invention. Here, FIG. 1 is a plan view of the high breakdown voltage lateral MOSFET of the present invention, and FIG.
Is a cross-sectional view taken along the line AB shown in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line CD. The feature of the structure in this case is that n
- a trench in the extended drain region, the side wall of the surrounding p
Forming a p-type diffusion layer on the surface of the n - extended drain region.

【0020】図1に示すように、p型シリコン基板1上
にn- 延長ドレイン領域2が形成され、この領域内に複
数のトレンチ3が形成されている。このトレンチ3内に
は埋込BPSGが埋設され、その周りには側壁p型拡散
層5が形成されている。また、n- 延長ドレイン領域2
内にはp型拡散層6が形成されている。そして、従来の
技術と同様に、ゲート絶縁膜8、ゲート電極9、n+
ース領域10、n+ ドレイン領域11およびp+ 拡散領
域12等が形成されている。
As shown in FIG. 1, an n - extended drain region 2 is formed on a p-type silicon substrate 1, and a plurality of trenches 3 are formed in this region. A buried BPSG is buried in the trench 3, and a side wall p-type diffusion layer 5 is formed around the buried BPSG. Also, the n - extended drain region 2
A p-type diffusion layer 6 is formed therein. Then, similarly to the conventional technique, a gate insulating film 8, a gate electrode 9, an n + source region 10, an n + drain region 11, a p + diffusion region 12, and the like are formed.

【0021】図2および図3に示す高耐圧横型MOSF
ETは次のようにして製造される。すなわち、抵抗率が
50Ωcm程度のp型シリコン基板1表面を950℃の
熱酸化により、450nmのシリコン酸化膜を形成し、
フォトリソグラフィー技術とイオン注入技術とで選択的
に、p型シリコン基板1の表面からリンをドーズ量3×
1013/cm2 、エネルギー150kevでイオン注入
する。そして、1200℃の熱処理により第1の拡散領
域である約6μmの深さのn- 延長ドレイン領域2を形
成する。
High-voltage lateral MOSF shown in FIGS. 2 and 3
ET is manufactured as follows. That is, a 450 nm silicon oxide film is formed on the surface of the p-type silicon substrate 1 having a resistivity of about 50 Ωcm by thermal oxidation at 950 ° C.
Phosphorus is selectively applied from the surface of the p-type silicon substrate 1 to a dose of 3 × by photolithography and ion implantation.
Ion implantation is performed at 10 13 / cm 2 and energy of 150 keV. Then, n - extended drain region 2 having a depth of about 6 μm as a first diffusion region is formed by heat treatment at 1200 ° C.

【0022】次に、CVD酸化膜を300nmの厚さに
化学気相成長(CVD)させ、フォトリソグラフィー技
術とドライエッチグ技術とによりCVD酸化膜を選択的
に異方性エッチングする。そして、上記のCVD酸化膜
をマスクとしてp型シリコン基板1を約5μmの深さに
異方性エッチングし、図2に示すようにトレンチ3をn
- 延長ドレイン領域2に形成する。
Next, the CVD oxide film is made to have a thickness of 300 nm by chemical vapor deposition (CVD), and the CVD oxide film is selectively anisotropically etched by a photolithography technique and a dry etching technique. Then, using the CVD oxide film as a mask, the p-type silicon substrate 1 is anisotropically etched to a depth of about 5 μm, and the trench 3 is formed as shown in FIG.
- forming the extended drain region 2.

【0023】次に、BPSG(ボロンガラスとリンガラ
スを含むシリコン酸化膜)を650nmの厚さにCVD
法で成長させ、950℃で30分程度の熱処理でリフロ
ーした後、全面をエッチバックする。これにより、トレ
ンチ3の内部を埋込BPSG4で充填する。そして、埋
込BPSG4からのボロン拡散により、n- 延長ドレイ
ン領域2内のトレンチ3の周囲には第3の拡散領域であ
る側壁p型拡散層5を形成する。
Next, BPSG (silicon oxide film containing boron glass and phosphorus glass) is CVD-formed to a thickness of 650 nm.
After regrowth by a heat treatment at 950 ° C. for about 30 minutes, the entire surface is etched back. Thereby, the inside of the trench 3 is filled with the buried BPSG 4. Then, a sidewall p-type diffusion layer 5 as a third diffusion region is formed around the trench 3 in the n extension drain region 2 by boron diffusion from the buried BPSG 4.

【0024】次に、図2および図3に示すように、フォ
トリソグラフィー技術とイオン注入技術とによりp型シ
リコン基板1の表面から選択的にボロンをドーズ量2×
1012/cm2 、エネルギー100kevでイオン注入
する。これにより、n- 延長ドレイン領域2表面に第2
の拡散領域であるp型拡散層6を形成する。
Next, as shown in FIGS. 2 and 3, boron is selectively implanted from the surface of the p-type silicon substrate 1 at a dose of 2.times. By photolithography and ion implantation techniques.
Ion implantation is performed at 10 12 / cm 2 and energy of 100 keV. As a result, the second surface of the n - extended drain region 2 is
A p-type diffusion layer 6 is formed as a diffusion region.

【0025】次に、シリコン酸化膜を600nmの厚さ
に減圧CVD法で堆積させ、フォトリソグラフィー技術
とドライエッチング技術とにより、このシリコン酸化膜
を選択的にウェットエッチングし部分的に厚い素子分離
絶縁膜7を形成する。
Next, a silicon oxide film is deposited to a thickness of 600 nm by a low pressure CVD method, and the silicon oxide film is selectively wet-etched by photolithography and dry etching to partially thicken the element isolation insulation. A film 7 is formed.

【0026】次に、H2 −O2 雰囲気、950℃温度で
5分程度の熱酸化をして膜厚が約50nmのゲート絶縁
膜8を形成する。そして、ポリシリコン膜を600nm
の厚さにCVD法で堆積し、フォトリソグラフィー技術
とドライエッチング技術とによりこのポリシリコン膜を
選択的に異方性エッチングし、ゲート電極9を形成す
る。
Next, a gate insulating film 8 having a thickness of about 50 nm is formed by performing thermal oxidation at a temperature of 950 ° C. in an H 2 —O 2 atmosphere for about 5 minutes. Then, the polysilicon film is 600 nm
Then, the polysilicon film is selectively anisotropically etched by a photolithography technique and a dry etching technique to form a gate electrode 9.

【0027】次に、フォトリソグラフィー技術とドライ
エッチング技術とにより、選択的にヒ素をドーズ量5×
1015/cm2 、エネルギー70kevでイオン注入
し、n+ ソース領域10とn+ ドレイン領域11を形成
する。
Next, arsenic is selectively doped at a dose of 5 × by photolithography and dry etching.
Ion implantation is performed at 10 15 / cm 2 at an energy of 70 keV to form an n + source region 10 and an n + drain region 11.

【0028】次に、フォトリソグラフィー技術とイオン
注入技術とで選択的にボロンをドーズ量5×1015/c
2 、エネルギー50kevでイオン注入し、p+ 拡散
領域12を形成する。次に、BPSGを1000nmの
厚さにCVD成長させ、850℃で30分程度の熱処理
でリフローした後、フォトリソグラフィー技術とドライ
エッチング技術とにより選択的に異方性エッチングを行
い、層間絶縁膜13とソース・ドレイン用のコンタクト
ホールを形成する。
Next, boron is selectively doped by photolithography and ion implantation at a dose of 5 × 10 15 / c.
Ions are implanted at m 2 and energy of 50 keV to form ap + diffusion region 12. Next, BPSG is grown to a thickness of 1000 nm by CVD and reflowed by a heat treatment at 850 ° C. for about 30 minutes, and then selectively anisotropically etched by photolithography and dry etching to form an interlayer insulating film 13. And source / drain contact holes.

【0029】次に、アルミ金属膜を1μm程度の厚さに
蒸着法またはスパッタ法で堆積し、ドライエッチング技
術によりこのアルミ金属膜を異方性エッチングして、ソ
ース電極14およびドレイン電極15を形成する。この
ようにして本発明の高耐圧横型MOSFETが形成され
る。
Next, an aluminum metal film is deposited to a thickness of about 1 μm by a vapor deposition method or a sputtering method, and this aluminum metal film is anisotropically etched by a dry etching technique to form a source electrode 14 and a drain electrode 15. I do. Thus, the high breakdown voltage lateral MOSFET of the present invention is formed.

【0030】このような高耐圧横型MOSFETの構造
では、ドレイン電圧の緩和領域すなわち電界緩和領域と
なるn- 延長ドレイン領域2に、p型シリコン基板1と
p型拡散層6とのpn接合と、トレンチ3周囲の側壁p
型拡散層5とのpn接合が形成される。このため、p型
シリコン基板および上側のp型拡散層からのpn接合で
は空乏化できなかったn- 延長ドレイン領域が空乏化さ
れ、n- 延長ドレイン領域の全域が容易に空乏化できる
ようになる。そして、n- 延長ドレイン領域を従来より
低抵抗にしても、ドレイン・ソース間に生じた電圧を緩
和できる距離まで空乏層を伸ばすことが可能である。そ
の効果を模式的に表したものが図4である。
In the structure of such a high-withstand-voltage lateral MOSFET, a pn junction between the p-type silicon substrate 1 and the p-type diffusion layer 6 is formed in the n extension drain region 2 serving as a drain voltage relaxation region, ie, an electric field relaxation region. Side wall p around trench 3
A pn junction with the mold diffusion layer 5 is formed. Therefore, the n extended drain region that could not be depleted by the pn junction from the p-type silicon substrate and the upper p-type diffusion layer is depleted, and the entire n extended drain region can be easily depleted. . Even if the resistance of the n - extended drain region is made lower than that of the conventional case, the depletion layer can be extended to a distance where the voltage generated between the drain and the source can be reduced. FIG. 4 schematically shows the effect.

【0031】図4(a)は本発明の場合を示し、図4
(b)は先述した第2の従来例の場合を示す。ここで、
不純物の濃度は同一とし、ドレイン電圧は一定としてい
る。
FIG. 4A shows the case of the present invention.
(B) shows the case of the second conventional example described above. here,
The impurity concentration is the same and the drain voltage is constant.

【0032】本発明の場合には、図4(a)に示すよう
に、n- 延長ドレイン領域2に形成される空乏層は、p
型シリコン基板1の方向からとp型拡散層6の方向から
とで形成される。そして、さらに、埋込BPSG4の周
りの複数の側壁p型拡散層5間でもn- 延長ドレイン領
域2の空乏化がなされる。これに対し、第2の従来例の
場合には、図4(b)に示すように、n- 延長ドレイン
領域202に形成される空乏層は、p型シリコン基板2
01の方向からとp型拡散層203の方向からとで形成
されるのみである。ここで、斜線で示した領域は全て空
乏化された領域として示している。
In the case of the present invention, as shown in FIG. 4A, the depletion layer formed in n
It is formed from the direction of the silicon substrate 1 and from the direction of the p-type diffusion layer 6. Further, the depletion of the n extension drain region 2 is also performed between the plurality of side wall p-type diffusion layers 5 around the buried BPSG 4. On the other hand, in the case of the second conventional example, as shown in FIG. 4B, the depletion layer formed in the n extension drain region 202 is formed on the p-type silicon substrate 2.
No. 01 and the direction of the p-type diffusion layer 203 only. Here, all the shaded regions are shown as depleted regions.

【0033】これらの結果、本発明の場合には、n-
長ドレイン領域における抵抗を第2の従来例の場合より
さらに低減することができるため、高耐圧横型MOSF
ETオン時のドレイン・ソース間オン抵抗を低減するこ
とが可能となる。
As a result, in the case of the present invention, the resistance in the n - extended drain region can be further reduced as compared with the case of the second conventional example, so that the high breakdown voltage lateral MOSF
It is possible to reduce the on-resistance between the drain and the source when the ET is on.

【0034】次に、本発明の第2の実施の形態を図5、
図6および図7に基づいて説明する。ここで、図5は本
発明の高耐圧横型MOSFETの平面図であり、図6
は、図5に記すE−Fで切断した断面図であり、図7は
G−Hでの断面図である。
Next, a second embodiment of the present invention will be described with reference to FIG.
A description will be given based on FIG. 6 and FIG. Here, FIG. 5 is a plan view of the high breakdown voltage lateral MOSFET of the present invention, and FIG.
Is a cross-sectional view taken along the line EF shown in FIG. 5, and FIG. 7 is a cross-sectional view taken along the line GH.

【0035】本発明の第1の実施の形態では、電界緩和
領域となるn- 延長ドレイン領域2はイオン注入と高温
熱処理によるp型シリコン基板1への不純物拡散により
形成されている、しかし、第2の実施の形態では電界緩
和領域はエピタキシャル成長により形成された低濃度不
純物層に設けられている。
In the first embodiment of the present invention, the n - extended drain region 2 serving as the electric field relaxation region is formed by ion implantation and impurity diffusion into the p-type silicon substrate 1 by high-temperature heat treatment. In the second embodiment, the electric field relaxation region is provided in a low-concentration impurity layer formed by epitaxial growth.

【0036】また、第1の実施の形態ではMOSトラン
ジスタのチャネル領域となるのはp型シリコン基板1の
表面であるのに対し、この第2の実施の形態ではp+
ックゲート領域という不純物拡散層の表面がチャネル領
域となる。
In the first embodiment, the channel region of the MOS transistor is the surface of the p-type silicon substrate 1, whereas in the second embodiment, the impurity diffusion called the p + back gate region is performed. The surface of the layer becomes the channel region.

【0037】以下、詳細に説明する。図5、図6および
図7に示すように、p型シリコン基体21上にn- エピ
タキシャル層22が形成され、この領域内に複数のトレ
ンチ23が形成されている。このトレンチ23内には埋
込BPSG24が埋設され、その周りには側壁p型拡散
層25が形成されている。また、n- エピタキシャル層
22表面にはp型拡散層26が形成されている。そし
て、その表面がチャネルとなるp+ バックゲート領域3
0が形成されている。その他は従来の技術と同様に、素
子分離絶縁膜27、ゲート絶縁膜28、ゲート電極2
9、n+ ソース領域31、n+ ドレイン領域32、層間
絶縁膜33、ソース電極34およびドレイン電極35が
形成され、これらでもって本発明の高耐圧横型MOSF
ETが構成される。
The details will be described below. As shown in FIGS. 5, 6 and 7, n - epitaxial layer 22 is formed on p-type silicon substrate 21, and a plurality of trenches 23 are formed in this region. A buried BPSG 24 is buried in the trench 23, and a side wall p-type diffusion layer 25 is formed therearound. A p-type diffusion layer 26 is formed on the surface of n epitaxial layer 22. Then, the p + back gate region 3 whose surface becomes a channel
0 is formed. In other respects, the element isolation insulating film 27, the gate insulating film 28, the gate electrode 2
9, an n + source region 31, an n + drain region 32, an interlayer insulating film 33, a source electrode 34, and a drain electrode 35 are formed.
ET is configured.

【0038】この場合には、n- エピタキシャル層22
は、p型シリコン基体21と、素子上部のp型拡散層2
6とのpn接合に加え、n- エピタキシャル層22内の
トレンチ23周囲の側壁p型拡散層25とのpn接合が
ある。このため、第1の実施の形態の効果と同様にn-
エピタキシャル層22の全域が容易に空乏化できるよう
になる。そして、n- エピタキシャル層を従来より低い
抵抗率としても、ドレイン・ソース間に生じた電圧を緩
和できる距離まで空乏層を伸ばすことが可能となる。こ
の結果、n- エピタキシャル層22における抵抗を低減
することができるため、第1の実施の形態と同様に高耐
圧横型MOSFETのオン時のドレイン・ソース間抵抗
を低減することが可能となる。
In this case, n epitaxial layer 22
Are a p-type silicon substrate 21 and a p-type diffusion layer 2
6 and a pn junction with the sidewall p-type diffusion layer 25 around the trench 23 in the n epitaxial layer 22. Therefore, similarly to the effect of the first embodiment, n
The entire area of the epitaxial layer 22 can be easily depleted. Then, even if the n epitaxial layer has a lower resistivity than the conventional one, the depletion layer can be extended to a distance where the voltage generated between the drain and the source can be relaxed. As a result, since the resistance in the n epitaxial layer 22 can be reduced, it is possible to reduce the drain-source resistance when the high breakdown voltage lateral MOSFET is turned on, as in the first embodiment.

【0039】[0039]

【発明の効果】本発明の高耐圧横型MOSFETの構造
は、n- 延長ドレイン領域は、p型シリコン基板と、素
子上部のp型拡散層とのpn接合に加え、n- 延長ドレ
イン領域内のトレンチ周囲の側壁p型拡散層とのpn接
合を有している。
Structure of a high breakdown voltage lateral MOSFET of the present invention exhibits, n - extended drain region, a p-type silicon substrate, in addition to the pn junction between the p-type diffusion layer of the element upper, n - extended drain region It has a pn junction with the sidewall p-type diffusion layer around the trench.

【0040】このためp型シリコン基板および上側のp
型拡散層からだけでは空乏化できなかったn- 延長ドレ
イン領域が空乏化でき、n- 延長ドレイン領域の全域が
容易に空乏化されるようになる。そして、n- 延長ドレ
イン領域を従来より低い抵抗率としても、ドレイン・ソ
ース間に生じた電圧を緩和できる距離まで空乏層を伸ば
すことが可能となる。このために、n- 延長ドレイン領
域における抵抗を低減することができるようになり、高
耐圧横型MOSFETオン時のドレイン・ソース間抵抗
すなわちオン抵抗を低減することが可能となる。
Therefore, the p-type silicon substrate and the upper p
The n extended drain region that could not be depleted only from the type diffusion layer can be depleted, and the entire n extended drain region can be easily depleted. Then, even if the n - extended drain region has a lower resistivity than the conventional one, the depletion layer can be extended to a distance where the voltage generated between the drain and the source can be relaxed. For this reason, the resistance in the n -extended drain region can be reduced, and the drain-source resistance when the high breakdown voltage lateral MOSFET is on, that is, the on-resistance can be reduced.

【0041】このような効果は、n- 延長ドレイン領域
の代りにn- エピタキシャル層が形成される場合も同様
となる。
[0041] Such effects, n - instead of the extended drain region n - is also the same when the epitaxial layer is formed.

【0042】また、高耐圧横型MOSFETの電流駆動
能力が大幅に向上するようになるため、高耐圧で大電流
の高耐圧横型MOSFETが形成できるようになる。
Further, since the current driving capability of the high-withstand-voltage lateral MOSFET is greatly improved, a high-withstand-voltage, large-current, high-withstand-voltage lateral MOSFET can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の高耐圧横型MOS
FETの平面図である。
FIG. 1 shows a high-withstand-voltage lateral MOS according to a first embodiment of the present invention.
It is a top view of FET.

【図2】上記高耐圧横型MOSFETの断面図である。FIG. 2 is a cross-sectional view of the high breakdown voltage lateral MOSFET.

【図3】上記高耐圧横型MOSFETの断面図である。FIG. 3 is a sectional view of the high breakdown voltage lateral MOSFET.

【図4】本発明の効果を説明するための模式断面図であ
る。
FIG. 4 is a schematic sectional view for explaining the effect of the present invention.

【図5】本発明の第2の実施の形態の高耐圧横型MOS
FETの平面図である。
FIG. 5 shows a high breakdown voltage lateral MOS according to a second embodiment of the present invention.
It is a top view of FET.

【図6】本発明の第2の実施の形態の高耐圧横型MOS
FETの断面図である。
FIG. 6 shows a high breakdown voltage lateral MOS according to a second embodiment of the present invention.
It is sectional drawing of FET.

【図7】本発明の第2の実施の形態の高耐圧横型MOS
FETの断面図である。
FIG. 7 shows a high breakdown voltage lateral MOS according to a second embodiment of the present invention.
It is sectional drawing of FET.

【図8】第1の従来例を説明するための高耐圧横型MO
SFETの断面図である。
FIG. 8 shows a high withstand voltage horizontal type MO for explaining a first conventional example.
It is sectional drawing of SFET.

【図9】第2の従来例を説明するための高耐圧横型MO
SFETの平面図である。
FIG. 9 is a high breakdown voltage horizontal MO for explaining a second conventional example.
It is a top view of SFET.

【符号の説明】[Explanation of symbols]

1,101,201 p型シリコン基板 2,102,202 n- 延長ドレイン領域 3,23 トレンチ 4,24 埋込BPSG 5,25 側壁p型拡散層 6,26,103,203 p型拡散層 7,27,104 素子分離絶縁膜 8,28,105 ゲート絶縁膜 9,29,106,206 ゲート電極 10,31,107,207 n+ ソース領域 11,32,108,208 n+ ドレイン領域 12,109,209 p+ 拡散領域 13,33,110 層間絶縁膜 14,34,111 ソース電極 15,35,112 ドレイン電極 21 p型シリコン基体 22 n- エピタキシャル層 30 p+ バックゲート領域1,101,201 p-type silicon substrate 2,102,202 n - extended drain region 3,23 trench 4,24 buried BPSG 5,25 sidewall p-type diffusion layer 6,26,103,203 p-type diffusion layer 7, 27,104 device isolation insulating film 8,28,105 gate insulating film 9,29,106,206 gate electrode 10,31,107,207 n + source region 11,32,108,208 n + drain region 12,109, 209 p + diffusion region 13, 33, 110 interlayer insulating film 14, 34, 111 source electrode 15, 35, 112 drain electrode 21 p-type silicon substrate 22 n epitaxial layer 30 p + back gate region

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一導電型の半導体基板上の一領域に形成
された逆導電型で高濃度不純物を含むソース領域と、前
記半導体基板主面のゲート絶縁膜を介して形成されたゲ
ート電極と、前記ゲート電極を挟み前記ソース領域に対
向して形成された逆導電型で低濃度不純物を含有する第
1の拡散領域とを有し、前記第1の拡散領域の表面部に
逆導電型で高濃度不純物を含むドレイン領域が形成さ
れ、前記ゲート電極と前記ドレイン領域との間であり前
記第1の拡散領域の表面部に一導電型で低濃度不純物を
含む第2の拡散領域が形成され、前記ゲート電極と前記
ドレイン領域との間であり前記第1の拡散領域の表面か
ら所定の深さに溝が形成され、前記溝の側壁に一導電型
の不純物を含む第3の拡散領域が形成されていることを
特徴とする半導体装置。
A source region containing a high-concentration impurity of opposite conductivity type formed in one region on a semiconductor substrate of one conductivity type; a gate electrode formed via a gate insulating film on a main surface of the semiconductor substrate; A first diffusion region containing a low-concentration impurity of a reverse conductivity type formed opposite to the source region with the gate electrode interposed therebetween, and a surface of the first diffusion region has a reverse conductivity type. A drain region containing a high-concentration impurity is formed, and a second diffusion region containing a one-conductivity-type low-concentration impurity is formed between the gate electrode and the drain region and on a surface of the first diffusion region. A groove is formed between the gate electrode and the drain region at a predetermined depth from the surface of the first diffusion region, and a third diffusion region containing one conductivity type impurity is formed on a side wall of the groove. Semiconductor device characterized by being formed .
【請求項2】 前記溝の深さが、前記第1の拡散領域の
深さより浅くなるように設定されていることを特徴とす
る請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein a depth of said groove is set to be smaller than a depth of said first diffusion region.
【請求項3】 一導電型の半導体基板上に形成された逆
導電型のエピタキシャル層と、前記エピタキシャル層に
形成されたバックゲート領域と、前記バックゲート領域
内に形成された逆導電型で高濃度不純物を含むソース領
域と、前記バックゲート領域の表面上にゲート絶縁膜を
介して形成されたゲート電極と、前記ゲート電極を挟み
前記ソース領域に対向して形成された逆導電型で高濃度
不純物を含むドレイン領域とを有し、前記ゲート電極と
前記ドレイン領域との間であり前記エピタキシャル層の
表面部に一導電型で低濃度不純物を含む第2の拡散領域
が形成され、前記ゲート電極と前記ドレイン領域との間
であり前記エピタキシャル層の表面から所定の深さに溝
が形成され、前記溝の側壁に一導電型の不純物を含む第
3の拡散領域が形成されていることを特徴とする半導体
装置。
3. An epitaxial layer of a reverse conductivity type formed on a semiconductor substrate of one conductivity type, a back gate region formed in said epitaxial layer, and a high conductivity type of a reverse conductivity type formed in said back gate region. A source region containing a high-concentration impurity, a gate electrode formed on the surface of the back gate region via a gate insulating film, and a high-concentration reverse conductivity type formed opposite to the source region with the gate electrode interposed therebetween. A drain region containing an impurity, and a second diffusion region containing a low-concentration impurity of one conductivity type is formed between the gate electrode and the drain region and on a surface portion of the epitaxial layer; A groove is formed at a predetermined depth from the surface of the epitaxial layer between the gate electrode and the drain region, and a third diffusion region containing an impurity of one conductivity type is formed on a side wall of the groove. A semiconductor device characterized by being performed.
【請求項4】 前記溝の深さが、前記エピタキシャル層
の膜厚より浅くなるように設定されていることを特徴と
する請求項3記載の半導体装置。
4. The semiconductor device according to claim 3, wherein a depth of said groove is set to be smaller than a thickness of said epitaxial layer.
【請求項5】 前記溝内に一導電型の不純物を含有する
絶縁材料が充填されていることを特徴とする請求項1か
ら請求項4記載のうちの1つの請求項に記載の半導体装
置。
5. The semiconductor device according to claim 1, wherein said trench is filled with an insulating material containing an impurity of one conductivity type.
【請求項6】 前記高耐圧の絶縁ゲート電界効果トラン
ジスタの動作において、前記ソース領域、半導体基板、
第2の拡散領域および第3の拡散領域が接地電位に固定
され前記ドレイン領域に電源電圧が印加されていること
を特徴とする請求項1から請求項5記載のうちの1つの
請求項に記載の半導体装置。
6. In the operation of the high-breakdown-voltage insulated gate field effect transistor, the source region, the semiconductor substrate,
6. The device according to claim 1, wherein the second diffusion region and the third diffusion region are fixed to a ground potential, and a power supply voltage is applied to the drain region. 7. Semiconductor device.
【請求項7】 前記第1の拡散領域が全て空乏化されて
いることを特徴とする請求項6記載の半導体装置。
7. The semiconductor device according to claim 6, wherein said first diffusion region is entirely depleted.
JP8137160A 1996-05-30 1996-05-30 Semiconductor device Expired - Fee Related JP2850852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8137160A JP2850852B2 (en) 1996-05-30 1996-05-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8137160A JP2850852B2 (en) 1996-05-30 1996-05-30 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH09321291A JPH09321291A (en) 1997-12-12
JP2850852B2 true JP2850852B2 (en) 1999-01-27

Family

ID=15192230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8137160A Expired - Fee Related JP2850852B2 (en) 1996-05-30 1996-05-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2850852B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972842B2 (en) 2001-05-11 2012-07-11 富士電機株式会社 Semiconductor device
DE10221808B4 (en) 2001-05-18 2010-01-07 Fuji Electric Co., Ltd., Kawasaki Method for producing a lateral MOSFET
US6787872B2 (en) * 2001-06-26 2004-09-07 International Rectifier Corporation Lateral conduction superjunction semiconductor device
DE10258443A1 (en) 2001-12-18 2003-07-03 Fuji Electric Co Ltd Semiconductor device
JP4042530B2 (en) 2002-10-30 2008-02-06 富士電機デバイステクノロジー株式会社 Semiconductor device
JP4891288B2 (en) * 2008-05-07 2012-03-07 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device
US8822291B2 (en) * 2012-01-17 2014-09-02 Globalfoundries Singapore Pte. Ltd. High voltage device
US8853022B2 (en) 2012-01-17 2014-10-07 Globalfoundries Singapore Pte. Ltd. High voltage device
JP6448258B2 (en) 2014-08-27 2019-01-09 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
CN106571388B (en) * 2015-10-08 2018-10-12 无锡华润上华科技有限公司 Transverse diffusion metal oxide semiconductor field effect pipe with RESURF structures
JP6707439B2 (en) * 2016-11-21 2020-06-10 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
CN112531026B (en) * 2019-09-17 2022-06-21 无锡华润上华科技有限公司 Lateral diffusion metal oxide semiconductor device and manufacturing method thereof
CN112993021B (en) * 2019-12-18 2023-07-07 东南大学 Lateral double-diffusion metal oxide semiconductor field effect transistor

Also Published As

Publication number Publication date
JPH09321291A (en) 1997-12-12

Similar Documents

Publication Publication Date Title
JP3395473B2 (en) Horizontal trench MISFET and manufacturing method thereof
EP1033759B1 (en) MOS-gated device having a buried gate and process for forming same
JP4088033B2 (en) Semiconductor device
KR101296984B1 (en) Charge balance field effect transistor
JP3641547B2 (en) Semiconductor device including lateral MOS element
US8058129B2 (en) Lateral double diffused MOS device and method for manufacturing the same
TWI441340B (en) Planar srfet using no additional masks and layout method
JP3954493B2 (en) A method of manufacturing a power MOSFET using a power MOSFET and a self-aligned body injection process.
JP3742400B2 (en) Semiconductor device and manufacturing method thereof
US8174066B2 (en) Semiconductor device and method of manufacturing semiconductor device
US8253194B2 (en) Structures for reducing dopant out-diffusion from implant regions in power devices
EP3651202B1 (en) Semiconductor device with superjunction and oxygen inserted si-layers
CN101421832A (en) The self-aligned contact structure of trench device
JPH0897411A (en) Lateral trench mos fet having high withstanding voltage and its manufacture
JP3915180B2 (en) Trench type MOS semiconductor device and manufacturing method thereof
KR100883795B1 (en) Symmetric trench mosfet device and method of making same
JP2850852B2 (en) Semiconductor device
JPH09213939A (en) Semiconductor device
JP2005101334A (en) Semiconductor device and its manufacturing method
JP3642768B2 (en) Horizontal high voltage semiconductor device
JP2941823B2 (en) Semiconductor device and manufacturing method thereof
JPH1197689A (en) Semiconductor device
JPH1197685A (en) Vertical field-effect transistor and manufacture thereof
JPH03205832A (en) Insulated-gate semiconductor device and manufacture thereof
KR100300189B1 (en) Horizontal type silicon on insulator bipolar mode field effect transistor and method for forming the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees