JP2930392B2 - Improved collision mixing type mixing module - Google Patents

Improved collision mixing type mixing module

Info

Publication number
JP2930392B2
JP2930392B2 JP2210181A JP21018190A JP2930392B2 JP 2930392 B2 JP2930392 B2 JP 2930392B2 JP 2210181 A JP2210181 A JP 2210181A JP 21018190 A JP21018190 A JP 21018190A JP 2930392 B2 JP2930392 B2 JP 2930392B2
Authority
JP
Japan
Prior art keywords
liquid
mixing
gun
mixing chamber
discharged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2210181A
Other languages
Japanese (ja)
Other versions
JPH0493204A (en
Inventor
博英 坂口
和生 谷口
哲義 小倉
幸夫 増住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2210181A priority Critical patent/JP2930392B2/en
Publication of JPH0493204A publication Critical patent/JPH0493204A/en
Application granted granted Critical
Publication of JP2930392B2 publication Critical patent/JP2930392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/76Mixers with stream-impingement mixing head
    • B29B7/7663Mixers with stream-impingement mixing head the mixing head having an outlet tube with a reciprocating plunger, e.g. with the jets impinging in the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/76Mixers with stream-impingement mixing head
    • B29B7/7631Parts; Accessories
    • B29B7/7636Construction of the feed orifices, bores, ports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/76Mixers with stream-impingement mixing head
    • B29B7/7631Parts; Accessories
    • B29B7/7647Construction of the mixing conduit module or chamber part

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Nozzles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はウレタン、エポキシ、不飽和ポリエステル等
の2液混合硬化型樹脂のA液及びB液を吐出口より吐出
し、衝突混合方式で混合しスプレーないしは注入成形す
る際に使用する衝突混合型のミキシングモジュール(A
液及びB液の吐出口〔オリフィス〕と該2液を衝突混合
させるミキシングチャンバーを、一体成形した部品)に
関し、本改良により混合特性を改良し物性の安定化、及
びスプレー成形の場合はスプレー状況(パターン)の改
善を行うものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention discharges a liquid A and a liquid B of a two-liquid mixed-curable resin such as urethane, epoxy, and unsaturated polyester from a discharge port, and mixes them by a collision mixing method. A mixing module of the collision mixing type used for spraying or injection molding (A
This part improves the mixing characteristics and stabilizes the physical properties, and the spray condition in the case of spray molding. (Pattern).

なお、本明細書において、A液とは2液混合硬化型樹
脂の一方の液を示し、B液とは他の一方の液を示すもの
とする。
In the present specification, the liquid A indicates one liquid of the two-liquid mixed-curable resin, and the liquid B indicates the other liquid.

〔従来の技術〕 反応速度の速い2成分速硬化型材料を成形する場合、
通常は衝突混合方式が用いられている。これは反応が速
いため機械式混合及び静的(スタティック)混合ではミ
キシングチャンバーの洗浄を行う時間が十分とれないこ
とに起因する。衝突混合方式は混合液の噴出後ミキシン
グチャンバーの洗浄を機械式にロッドの出し入れで行っ
たり、溶剤又はエアーで行う方法により洗浄が短時間に
行える特徴を有する一方、2液の混合が不完全になり、
製品の物性にバラツキを生じる場合がある。これは本方
式による混合が主として衝突時の圧力や液の吐出角度の
調節による液の回転運動に依存しているため、液粘度が
高い材料の場合や衝突圧が低い時には2液の混合が十分
に行われず、製品の物性にバラツキ等が発生するものと
考えられる。またA液とB液の配合比が異なる場合、ミ
キシングチャンバー内に吐出される量が異なるため配合
比の差が大きくなる程混合効率が低下する。さらに注入
成形の場合はそれ程問題は生じ無いが、スプレー成形の
場合、スプレー状況(ミストの濃度分布、ミストの粒子
サイズ及びパターンの形状等)が重要であり、作業性及
び製品の表面状態に大きな影響を及ぼす。
[Prior art] When molding a two-component fast-curing material having a high reaction rate,
Usually, a collision mixing method is used. This is because mechanical mixing and static mixing do not have sufficient time for cleaning the mixing chamber due to the rapid reaction. The impingement mixing method has the characteristic that the mixing chamber can be cleaned by ejecting the mixed liquid after ejecting the liquid mixture, and the cleaning can be performed in a short time by using a method using a rod or a solvent or by using a solvent or air. Become
The physical properties of the product may vary. This is because the mixing by this method mainly depends on the rotational motion of the liquid by adjusting the pressure at collision and the discharge angle of the liquid, so when the material has a high liquid viscosity or when the collision pressure is low, mixing of the two liquids is sufficient. It is considered that the physical properties of the product do not vary. Further, when the mixing ratio of the liquid A and the liquid B is different, the amount discharged into the mixing chamber is different, so that the larger the difference in the mixing ratio, the lower the mixing efficiency. In the case of injection molding, there is not much problem. However, in the case of spray molding, the spray condition (mist concentration distribution, mist particle size, pattern shape, etc.) is important, and the workability and the surface condition of the product are large. affect.

従来のミキシングヘッドは、クリーニング方法により
分類することが出来る。溶剤洗浄方式の例として、米国
ビンクス社製#43Pガンである。このガンはA液及びB
液のオリフィスとして円形の穴を1個開けた別々の部品
を両側に180度の位置で取り付け、比較的大口径のミキ
シングチャンバー内に吐出し、衝突混合する方式であ
る。この方法の問題点は、穴の数がそれぞれ1個ずつし
か無いことに加え、液のオリフィスを別々の部品とした
ことにより、ミキシングチャンバーの径が太くなり混合
効率が低下する。このため主として溶剤を高率で含む低
粘度塗料用に使用される。
Conventional mixing heads can be classified according to the cleaning method. An example of the solvent cleaning method is a # 43P gun manufactured by Binks USA. This gun is liquid A and B
In this method, separate parts having one circular hole as liquid orifices are attached at both sides at 180 degrees, discharged into a relatively large-diameter mixing chamber, and subjected to collision mixing. The problem with this method is that the number of holes is only one, and the orifice for the liquid is a separate part, so that the diameter of the mixing chamber becomes large and the mixing efficiency decreases. Therefore, it is mainly used for low-viscosity paints containing a high proportion of solvents.

高粘度液では混合が十分行われないため、#43Pガン
では先端にスタティックミキサーを付け再度混合する必
要があるが、硬化時間の短い材料では洗浄時間が取れな
いため使用することが出来ない。
Mixing is not sufficient with high viscosity liquids, so it is necessary to attach a static mixer to the tip of the # 43P gun and mix again. However, materials with a short curing time cannot be used because cleaning time is not sufficient.

エアー洗浄方式の例としては、米国グラスクラフト社
製のプロブラーガンである。このガンは、ミキシングチ
ャンバーとノズルを一体構造としたモジュールとなって
おり両側にA液とB液用にそれぞれ1個のオリフィスを
有し、ミキシングチャンバーの穴の上部と下部から直線
的に吐出する構造となっている。このガンの問題点は前
記ビンクスガンと同様180度の位置にオリフィスが各1
個しか無いことに加え、液のオリフィスがミキシングチ
ャンバーの上部と下部にあるため、液は渦巻き状とな
り、そのままのノズル部を通り噴出されることになる。
このため噴出時にも液に回転が残り、スプレーを行う場
合はスプレー状況(パターン)が変形すると同時に濃度
分布に差が生じる。このことによりスプレー状況を適正
に保つためにはミキシングチャンバーを後退させる位置
を微妙に変化させる作業が必要である。
An example of the air cleaning method is a prober gun manufactured by Glasscraft of the United States. This gun is a module with a mixing chamber and a nozzle integrated with one orifice on each side for liquid A and liquid B, and discharges linearly from the upper and lower holes of the mixing chamber. It has a structure. The problem with this gun is that each orifice is at a 180 °
In addition to the single orifice, the liquid has orifices in the upper and lower portions of the mixing chamber, so that the liquid has a spiral shape and is ejected through the nozzle as it is.
Therefore, even when the liquid is ejected, the liquid remains rotated, and when spraying, the spray condition (pattern) is deformed and a difference occurs in the concentration distribution. In order to maintain the spray condition properly, it is necessary to slightly change the position where the mixing chamber is retracted.

機械式にロッドを出し入れする洗浄方式としては、米
国ガスマー社のDガン、GX−7ガン、及びRIM(反応射
出成形)で使用されている東邦機械、クラウスマッファ
イ社、キャノン社等の例がある。Dガンの場合は一体化
したミキシングチャンバーの両側に長方形の穴が各1個
ずつあり、2液がミキシングチャンバーの上部と下部に
直線的に吐出される構造となっており、ミキシングチャ
ンバー内に吐出された液は渦を巻きながら混合・噴出さ
れ、スプレー又は注入に利用されている。このガンの問
題点は穴の数がそれぞれ1個ずつであり、プロブラーガ
ンと同様の問題点を有する。すなわちスプレーパターン
に濃度差が生じ易く、スプレー作業を行う度にクリーニ
ングロッドの後退位置を変化させミキシングチャンバー
の長さの変更が必要である。
Examples of the cleaning method for mechanically moving the rod in and out include D-Gun, GX-7 Gun of Gasmer, and Toho Kikai, Klaus Muffie, and Canon, which are used in RIM (reaction injection molding). is there. In the case of the D gun, there is one rectangular hole on each side of the integrated mixing chamber, and the two liquids are discharged straight to the top and bottom of the mixing chamber, and are discharged into the mixing chamber. The liquid is mixed and ejected while swirling, and is used for spraying or pouring. The problem with this gun is that the number of holes is one each, and it has the same problem as the prober gun. That is, a density difference easily occurs in the spray pattern, and it is necessary to change the length of the mixing chamber by changing the retreat position of the cleaning rod every time the spraying operation is performed.

GX−7ガンの場合は、一体化したミキシングモジュー
ルの構造を持ち液の吐出位置は正確に決められ、2液の
吐出位置も前部及び後部となっているが、問題点は液の
吐出角度が平行でかつ噴出方向に直角となっている。こ
のため2液が直接衝突することが無く混合特性に問題が
生じるのが最大の欠点であり、使用する原料の粘度が上
昇するのに伴い混合性が非常に悪くなり、成形物の物性
が低下する傾向がある。
In the case of the GX-7 gun, the structure of the mixing module is integrated, the discharge position of the liquid is determined accurately, and the discharge position of the two liquids is also the front part and the rear part. Are parallel and perpendicular to the jetting direction. The biggest drawback is that the two liquids do not directly collide with each other, which causes a problem in the mixing characteristics. As the viscosity of the raw materials used increases, the mixing properties become very poor, and the physical properties of the molded product deteriorate. Tend to.

RIM成形に用いられているヘッドは、通常機械洗浄式
であり両側に各1個のオリフィスを持ったタイプで混合
特性を改良するためにモールド側に「アフターミキサ
ー」、「フィルムゲート」等の再混合補助装置を取り付
け使用されている。
The head used for RIM molding is usually a machine-cleaning type and has one orifice on each side. In order to improve the mixing characteristics, the mold side must be equipped with an after-mixer, film gate, etc. A mixing auxiliary device is used.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ウレタン、エポキシ、不飽和ポリエステル等の2液混
合硬化型樹脂のA液及びB液を吐出口より吐出し、衝突
混合方式でスプレーないしは注入成形するに際し、上記
の如く従来の混合方式には種々の欠点があるので、本発
明者らは材料の配合比への対応性が広く、又高粘度材料
でも使用出来、さらに衝突圧力が低い場合でも2液の混
合特性が良好で、硬化物の物性にバラツキが無く、かつ
スプレー成形時にはスプレー状況(ミストの濃度分布、
ミストの粒子サイズ及びパターンの形状等霧化の状態)
が良好なミキシングモジュールの構造設計を行う事を検
討した。
When the liquids A and B of the two-component mixed-curable resin such as urethane, epoxy, and unsaturated polyester are discharged from the discharge port and sprayed or injected by the collision mixing method, the conventional mixing method as described above has various types. Due to the drawbacks, the present inventors have wide compatibility with the compounding ratio of the materials, can use even high-viscosity materials, and have good mixing characteristics of the two liquids even when the collision pressure is low, and the physical properties of the cured product are poor. There is no variation, and the spray condition (mist concentration distribution,
Atomization state such as mist particle size and pattern shape)
Considered to design the structure of a good mixing module.

〔課題を解決するための手段〕[Means for solving the problem]

衝突混合方式で2液を混合する際、混合効率に影響を
及ぼす要因は(1)レイノルズ数(装置のサイズ/液の
動粘度/流体速度/液の密度で決定される無次元項)
(2)衝突する2液が吐出される距離(ミキシングチャ
ンバーの径)(3)2液の回転が主なものであると考え
られている。しかし材料(液粘度)及び吐出量が変更出
来ない場合は、混合効率を向上させることは大幅に制限
を受ける。衝突混合方式で混合特性を向上させる方法を
鋭意検討した結果、ミキシングモジュールを下記の設計
に変更することによって上記の欠点が大幅に改善される
ことが判明した。すなわち 原料のA液とB液を衝突させるミキシングチャンバー
部分が一体成形体のモジュールであり、 (1)A液とB液がそれぞれ2個以上の吐出口(オリフ
ィス)を有し、 (2)A液及びB液の吐出口の合計開口面積の比がA液
及びB液の配合比の±50%以内であり、 (3)A液及びB液の両方又はいずれか一方がミキシン
グチャンバーの中心に向け直線的に吐出され、更に、 (4)A液及びB液をミキシングチャンバー内に吐出す
る角度を2液が直接衝突する方向とした構造を有する衝
突混合型ミキシングモジュールとすることである。
When mixing two liquids by the collision mixing method, the factors affecting the mixing efficiency are (1) Reynolds number (dimensional dimension determined by the size of the apparatus / kinematic viscosity of the liquid / fluid velocity / density of the liquid)
(2) Distance at which the two colliding liquids are discharged (diameter of the mixing chamber) (3) It is considered that rotation of the two liquids is the main one. However, when the material (liquid viscosity) and the discharge amount cannot be changed, improving the mixing efficiency is greatly restricted. As a result of intensive studies on a method of improving the mixing characteristics by the collision mixing method, it was found that the above-mentioned drawbacks were greatly improved by changing the mixing module to the following design. That is, the mixing chamber portion where the raw material A and the liquid B collide is a module of an integrally formed body. (1) The liquid A and the liquid B each have two or more discharge ports (orifices); The ratio of the total opening area of the discharge ports of the solution A and the solution B is within ± 50% of the mixing ratio of the solution A and the solution B. (3) Both or one of the solution A and the solution B is located at the center of the mixing chamber. (4) A collision-mixing type mixing module having a structure in which the liquid A and the liquid B are discharged into the mixing chamber at a direction in which the two liquids directly collide with each other.

混合特性が向上した理由は下記の項目の複合効果であ
ると考えられる。(1)2液が直接衝突する可能性を上
げることで衝突のエネルギーが利用出来る。(2)小口
径の吐出口を2個以上とすることで吐出圧力の確保と共
に液を細分化し2液の接触機会を増加させる。(3)2
液が吐出され混合されるミキシングチャンバー部分を一
体構造とすることで吐出口の位置及び角度が厳密に決定
され常に一定の条件でミキシングが行われる。(4)ス
プレー成形の場合は、良好なスプレーパターンを確保す
るために、2液を直接衝突させたり、変側のみ回転させ
混合することにより液の回転運動を抑制することが可能
であり、ミキシングチャンバーのサイズを調節せずに常
に一定のスプレー状況を得ることが可能となった。
It is considered that the reason why the mixing characteristics were improved is a combined effect of the following items. (1) The collision energy can be used by increasing the possibility that the two liquids collide directly. (2) By providing two or more small-diameter discharge ports, the discharge pressure is ensured and the liquid is subdivided to increase the chance of contact between the two liquids. (3) 2
By making the mixing chamber portion into which the liquid is discharged and mixed into an integrated structure, the position and angle of the discharge port are strictly determined, and mixing is always performed under constant conditions. (4) In the case of spray molding, in order to secure a favorable spray pattern, it is possible to suppress the rotational movement of the liquid by directly colliding the two liquids or rotating and mixing only the deformed side. It has become possible to always obtain a constant spray condition without adjusting the size of the chamber.

本設計による構造をもつ衝突混合式攪拌装置は、スプ
レー・ヘッド、注型用のポアー・ヘッド及び注入用に先
端にノズルを接続さらにRIM用にも使用することが出来
る。クリーニング方式は、ロッドによる機械式洗浄、エ
アー洗浄及び溶剤洗浄のいずれの方法でも可能である。
但し液のシール性及びスプレーパターンのコントロール
の意味からロッドの出し入れによる機械式の設計は自由
度が高く最も適している。使用する液を循環式からワン
・ウェイ式に変えサイズを小型とした手持ちのガン形式
とすることも可能である。
The impingement mixing agitator having the structure according to this design can be used for the spray head, the casting head head, the nozzle at the tip for injection, and also for the RIM. The cleaning method may be any of mechanical cleaning using a rod, air cleaning, and solvent cleaning.
However, in view of the sealing property of the liquid and the control of the spray pattern, the mechanical design by taking the rod in and out is highly flexible and most suitable. The liquid to be used can be changed from a circulation type to a one-way type, and the size can be reduced to a hand-held gun type.

各社のスプレー・ヘッド、ミキシングチャンバーのま
とめを表−1に示す。
Table 1 summarizes the spray heads and mixing chambers of each company.

本発明の成形に使用する高圧2液吐出マシンの例とし
ては、液圧を100kg/cm2程度の高圧に昇圧することの出
来るタイプなら特に形式にこだわらず使用出来る。実際
の例としてはポンプとしてギアポンプを用いた東レエン
ジニアリング社製THD−2K、アクシャルピストンポンプ
を用いた東邦機械工業社製NR−230型高圧ポリウレタン
発泡機、プランジャーポンプを使用したガスマー社(米
国)のH−2000型、グラスクラフト社(米国)のT−3H
等である。
As an example of the high-pressure two-liquid ejection machine used for the molding of the present invention, any type can be used without particular limitation as long as it can increase the liquid pressure to a high pressure of about 100 kg / cm 2 . Practical examples include THD-2K manufactured by Toray Engineering Co., Ltd. using a gear pump as a pump, NR-230 high-pressure polyurethane foaming machine manufactured by Toho Machinery Co., Ltd. using an axial piston pump, and Gasmer Co., Ltd. using a plunger pump (US ) H-2000, T-3H from Glasscraft (USA)
And so on.

〔実施例〕〔Example〕

以下に実施例を示し本発明を説明する。 Hereinafter, the present invention will be described with reference to examples.

(語句の説明) (1)タックフリー・タイム:吹き付け又は注入した材
料の表面に軽く指で触れ、材料が指に移行しなくなる最
短時間。
(Explanation of phrases) (1) Tack-free time: The shortest time during which the surface of the sprayed or injected material is lightly touched with a finger and the material does not transfer to the finger.

(2)スプレー状況(パターン):下記の項目に関し目
視観察を行いその結果を示した。
(2) Spray condition (pattern): The following items were visually observed and the results were shown.

・濃度分布:ガンより噴出された粒子の濃度差、筋引き
等 ・粒子サイズ:ガンより噴出された粒子のサイズ、霧化
の状況確認 ・形状:対象物にスプレーされた噴出物の形状、変形等
の確認 (3)表面性:ポリプロピレンの板上に厚さ約2mmにス
プレー成形し、表面の平滑性及びピンボールの有無を調
べた。
・ Concentration distribution: concentration difference of particles ejected from the gun, straining, etc. ・ Particle size: size of particles ejected from the gun, confirmation of atomization status ・ Shape: shape, deformation of ejected material sprayed on the target (3) Surface properties: Spray-molded to a thickness of about 2 mm on a polypropylene plate, and the smoothness of the surface and the presence or absence of pinball were examined.

(4)物性試験:JIS K−6301に準拠し、測定は23℃、湿
度55%の状態に一週間養生後行った。(成形材料)リム
スプレー(三井東圧化学製の速硬化2液型ウレタンスプ
レー材料)を使用した。配合比及び粘度の異なる次の2
銘柄を使用した。
(4) Physical property test: Measurement was performed after curing for one week at 23 ° C. and 55% humidity in accordance with JIS K-6301. (Molding material) A rim spray (a quick-curing two-part urethane spray material manufactured by Mitsui Toatsu Chemicals) was used. Next 2 with different blending ratio and viscosity
Brand used.

(高圧2液吐出マシン) 米国ガスマー社のH−2000型を使用。本マシンは、一
軸のダブルアクション・プランジャーポンプを油圧で駆
動したワン・ウェイタイプで、注入及びスプレーに使用
できる。液圧は2000psi(約140kg/cm2)まで昇圧出来、
液温度もA液及びB液別々に設定できる構造となってい
る。
(High-pressure two-liquid discharge machine) H-2000 type manufactured by Gasmer Corporation of the United States is used. This machine is a one-way type that hydraulically drives a single-shaft, double-action plunger pump, and can be used for injection and spraying. The fluid pressure can be raised up to 2000psi (about 140kg / cm 2 )
The liquid temperature can be set separately for the liquid A and the liquid B.

以下、図面と実施例により本発明の詳細を説明する。
第1図及び第2図は実施例−1で使用した改良GX−7ガ
ン用ミキシングモジュールの構成を示す断面図及び正面
図、第3−1図〜第3−3図は実施例−4、第4−1図
〜第4−3図は実施例−5、第5−1図〜第5−3図は
比較例−4、第6−1図〜第6−3図は比較例−5にお
けるそれぞれの正面及び側面よりみたA液及びB液の流
れ方向を示す略図、第7図及び第8図は実施例−6にお
いて使用したプロブラーガン用の改良ミキシングモジュ
ールの斜視図及び正面断面図である。図中、1はミキシ
ングモジュール、2はバルビング・ロッドであり、1aは
A液の流入孔、1bはB液の流入孔、1cは混合液の噴出孔
である。
Hereinafter, the present invention will be described in detail with reference to the drawings and embodiments.
1 and 2 are a sectional view and a front view, respectively, showing the configuration of the improved GX-7 gun mixing module used in Example-1. FIGS. 3-1 to 3-3 show Example-4, FIGS. 4-1 to 4-3 show Example-5, FIGS. 5-1 to 5-3 show Comparative Example-4, and FIGS. 6-1 to 6-3 show Comparative Example-5. 7 and 8 are perspective views and front sectional views of an improved mixing module for a prober gun used in Example-6. It is. In the figure, 1 is a mixing module, 2 is a valving rod, 1a is an inflow hole for liquid A, 1b is an inflow hole for liquid B, and 1c is an ejection hole for mixed liquid.

実施例−1 スプレーヘッドとしてはガスマー社製機械式クリーニ
ング方法のGX−7ガンを、ミキシングモジュールは本発
明者らが新規に設計したものを使用した。構造を第1
図、及び第2図に示した。表−3〜表−5の略図はA液
及びB液のミキシングチャンバー内への吐出角度及びこ
れら2液の衝突角度を示した。第1図及び第2図にみる
ようにA液(イソシアナート成分)用のオリフィスを、
前方に穴の位置を180度として2個開け、B液(レジン
成分)用のオリフィスを後方に穴の位置を90度として4
個開け、それぞれの吐出角度は2液がミキシングチャン
バーの中心部に向かう線上とし、方向は2液が直接衝突
する角度とした。すなわち2液は直接衝突し回転運動は
生じない状態で混合が行われる設計とした。オリフィス
の直径はすべて0.406mmとし、ミキシングチャンバーの
直径は3.175mmとした。材質は、繰り返しの使用による
耐摩耗性と液のシール性を考慮しポリアセタール樹脂
(デルリン,Du Pont社商標)とした。ガンの先端にはス
プレーチップ(#212:扇状パターン)を装着して成形を
行った。原材料は、リムスプレーPD−450(A液:B液=
1:2容積比)を用い液温度をA液は50℃、B液は65℃、
吐出時の圧力はそれぞれ112kg/cm2及び120kg/cm2の条件
とした。その結果は表−3にみる通りタックフリー・タ
イムは9〜11秒と速硬化であり、スプレー状況(パター
ン)を観察したところ、濃度分布は均一であり、粒子サ
イズも細かく、更に形状は扇型かつ正常であり変形等は
認められなかった。成形物の表面は平滑でありピンホー
ルも認められなかった。硬化性も十分であり,作成した
シートの物性試験結果は硬さ、モジュラス、引張り強
さ、伸び及び引裂き強さのいずれも優れており、混合特
性が良好である事を示していた。
Example 1 A GX-7 gun of a mechanical cleaning method manufactured by Gasmer Co. was used as a spray head, and a mixing module newly designed by the present inventors was used. First structure
FIG. 2 and FIG. The schematic diagrams in Tables 3 to 5 show the discharge angles of the liquid A and the liquid B into the mixing chamber and the collision angles of these two liquids. As shown in FIGS. 1 and 2, the orifice for liquid A (isocyanate component)
Two holes are opened forward with the position of the hole at 180 degrees, and the orifice for liquid B (resin component) at the rear with the position of the hole at 90 degrees.
The two liquids were opened, and the respective discharge angles were on a line toward the center of the mixing chamber, and the directions were angles at which the two liquids collided directly. That is, the two liquids are designed to be mixed in a state where they directly collide with each other and do not generate rotational movement. The diameter of all the orifices was 0.406 mm, and the diameter of the mixing chamber was 3.175 mm. The material was a polyacetal resin (Delrin, a trademark of Du Pont) in consideration of the abrasion resistance and liquid sealing properties due to repeated use. A spray tip (# 212: fan-shaped pattern) was attached to the tip of the gun for molding. The raw material is Rim Spray PD-450 (Solution A: Solution B =
1: 2 volume ratio), the liquid temperature is 50 ° C for liquid A, 65 ° C for liquid B,
Pressure during ejection respectively the condition of 112 kg / cm 2 and 120 kg / cm 2. As a result, as shown in Table 3, the tack-free time was as fast as 9 to 11 seconds, and when the spray condition (pattern) was observed, the concentration distribution was uniform, the particle size was fine, and the shape was fan-shaped. The mold was normal and no deformation was observed. The surface of the molded product was smooth and no pinhole was observed. The curability was sufficient, and the physical property test results of the prepared sheet showed that all of the hardness, modulus, tensile strength, elongation and tear strength were excellent, and that the mixing properties were good.

比較例−1 スプレーヘッドは、実施例−1同様ガスマー社のGX−
7ガンを使用しミキシングモジュールは同社の#10タイ
プを使用した。構造は表−3に略示したもので、実施例
−1と同様の略図法に従ったものを表−3中に示した。
又、液の流れを表−3に示した。主剤(イソシアナート
成分)用のオリフィスは前方に2個、レジン成分用のオ
リフィスは後方に2個開いておりそれぞれの吐出角度は
バルビング・ロッドに対して直角となっており、2液が
ミキシングチャンバーの中に平行の流れで吐出される構
造である。液の吐出方向はミキシングチャンバーの中心
を通過する線上にあるため、いずれの液にも回転は生じ
ない構造となっている。オリフィスの直径は全て0.914m
mである。成形試験の結果は表−3にみる通り混合液の
噴出量は5.2kg/分と実施例−1の約1.6倍である。スプ
レー状況は粒子サイズも細かく、形状も扇型で正常であ
ったが、濃度分布は端部が濃くなっておりさらに筋も入
り不均一であった。タックフリー・タイムは9〜10秒と
実施例−1同等であったが、物性試験結果は全ての項目
が低めになっており、又成形した2枚のシートに物性差
があり混合特性の変動が認められた。オリフィスの直径
は実施例−1で試作したミキシングモジュールより大き
いためレイノズル数的な見地からの混合効率は良好と考
えられるが、わずかの条件の変化で物性値が変わった。
Comparative Example-1 The spray head was GX-
Using 7 guns, the company's # 10 mixing module was used. The structure is schematically shown in Table 3, and the structure according to the same schematic drawing method as in Example 1 is shown in Table 3.
Table 3 shows the flow of the liquid. Two orifices for the main agent (isocyanate component) are open at the front and two orifices for the resin component are open at the rear. The discharge angles of each are perpendicular to the valving rod, and the two liquids are mixed in the mixing chamber. Is a structure in which the liquid is discharged in a parallel flow. Since the discharge direction of the liquid is on a line passing through the center of the mixing chamber, neither liquid is rotated. All orifices have a diameter of 0.914m
m. As shown in Table 3, the result of the molding test showed that the ejection amount of the mixed liquid was 5.2 kg / min, which was about 1.6 times that of Example 1. The spraying condition was fine with a fine particle size and a fan-shaped shape, but the concentration distribution was uneven at the edges and was uneven with streaks. The tack-free time was 9 to 10 seconds, which was equivalent to that of Example 1. However, in the physical property test results, all items were lower, and there was a difference in physical properties between the two sheets formed, and the fluctuation of the mixing characteristics. Was observed. Since the diameter of the orifice is larger than that of the mixing module prototyped in Example 1, the mixing efficiency is considered to be good from the viewpoint of the number of Reynolds nozzles.

実施例−2、−3 実施例−1と同様のスプレーヘッド及び原料を使用
し、成形条件のうち「吐出圧力」のみを下げた状態とし
た。その結果は表−3にみる通リ吐出圧力が低下しても
実施例−1同様のスプレー状況、表面性を維持し、物性
もほぼ同等ないしは極めてわずかの低下しか示しておら
ず、混合特性の圧力依存性は少なく、圧力低下に対して
の安定性が有り、実用上のメリットが大きい。
Examples-2 and -3 The same spray head and raw material as in Example-1 were used, and only the "discharge pressure" of the molding conditions was reduced. As a result, even if the through-discharge pressure is lowered as shown in Table 3, the same spraying condition and surface properties as those of Example 1 are maintained, and the physical properties are almost the same or only slightly reduced. It has little pressure dependency, has stability against pressure drop, and has great practical advantages.

比較例−2、−3 比較例−1と同様のスプレーヘッド及び原料を使用
し、成形条件のうち「吐出圧力」のみを下げ、混合特性
が低下した状態とした。その結果は表−3にみる通り吐
出圧力が低下することによりスプレー状況がさらに悪化
し、物性も低下し、混合に欠点があることが判明した。
特に吐出圧力を約70kg/cm2とした場合は、シート全体に
タックが残り部分的に硬化不良が発生し物性測定はでき
なかった。
Comparative Examples 2 and -3 The same spray head and raw material as in Comparative Example 1 were used, and only the “discharge pressure” of the molding conditions was reduced to bring the mixing characteristics into a reduced state. As a result, as shown in Table 3, it was found that the spraying condition was further deteriorated due to a decrease in the discharge pressure, the physical properties were also reduced, and there was a defect in the mixing.
In particular, when the discharge pressure was set to about 70 kg / cm 2 , tackiness was left on the entire sheet and poor curing occurred, and physical properties could not be measured.

実施例−4 ガスマー社のGX−7ガンを用い、ミキシングチャンバ
ーに吐出される液に回転を与えた場合の混合性を調べ
た。第3−1図〜第3−3図にGX−7ガン用改良ミキシ
ングモジュールにおけるA液及びB液の流れ方向の略図
を示してあるが、前部より吐出するA液(イソシアナー
ト成分)を穴の位置を180度として2個開けた穴よりミ
キシングチャンバーの中心に向け直線的に導入し、後部
よりB液(レジン成分)を穴の位置を90度として開けた
4個のオリフィスより導入し、液が回転するような角度
でA液が吐出する方向に向け角度を付けた状態で吐出し
た。すなわち吐出する液は、後部から吐出するB液のみ
が回転し、前部から吐出するA液は回転しない状況で混
合が行われる設計とした。オリフィスの数及び面積は実
施例−1と同様、いずれも材料の配合比に合わせてい
る。原液はリムスプレーPD−450を実施例−1と同様の
設定条件(液温、吐出圧力)で使用した。この結果は表
−4にみる通り吐出量は3.3kg/分と中程度の吐出量であ
り硬化・反応性はタックフリー・タイムが9〜11秒と速
硬化で良好な硬化性を示した。スプレー状況を観察した
ところ、(1)濃度分布は全体に均一であり、(2)粒
子サイズは細かく(3)形状は扇型で変形は認められな
かった。物性試験結果は、硬さ、モジュラス、引張り強
さ、伸び及び引裂き強さのいずれの項目も優れており良
好な結果であった。
Example-4 Using a GX-7 gun manufactured by Gasmer Co., the mixing property when the liquid discharged to the mixing chamber was rotated was examined. FIGS. 3-1 to 3-3 show schematic diagrams of the flow directions of the liquid A and the liquid B in the improved mixing module for the GX-7 gun. The liquid A (isocyanate component) discharged from the front part is shown in FIG. The position of the hole was set to 180 degrees, and the two holes were introduced linearly toward the center of the mixing chamber from the two holes. Liquid B (resin component) was introduced from the rear through four orifices opened at a position of 90 degrees. The liquid A was discharged at an angle such that the liquid was rotated so as to face the direction in which the liquid A was discharged. That is, the design is such that the liquid to be discharged is mixed in a state where only the liquid B discharged from the rear rotates and the liquid A discharged from the front does not rotate. The number and area of the orifices are all adjusted to the compounding ratio of the materials, as in Example-1. As the stock solution, Rim Spray PD-450 was used under the same conditions (liquid temperature, discharge pressure) as in Example-1. As shown in Table 4, the discharge rate was a medium discharge rate of 3.3 kg / min, and the curing / reactivity exhibited a tack-free time of 9 to 11 seconds, and showed good curability by rapid curing. Observation of the spray condition revealed that (1) the concentration distribution was uniform throughout, (2) the particle size was fine, and (3) the shape was fan-shaped and no deformation was observed. The results of the physical properties test were excellent in all of the items of hardness, modulus, tensile strength, elongation and tear strength, and were good results.

実施例−5 ガスマー社のGX−7ガンを用い、設定条件は実施例−
4と同様とし、第4−1図〜第4−3図にミキシングモ
ジュールにおけるA液及びB液の流れ方向の略図を示し
てある。前部より吐出するA液(イソシアナート成分)
を3個のオリフィスより液が回転するような角度で導入
し、後部よりB液(レジン成分)を6個のオリフィスよ
りミキシングチャンバーの中心に向け直線的に導入し
た。すなわち吐出する液は、前部から吐出するA液のみ
が回転し、後部から吐出するB液は回転しない状況で混
合が行われる設計とした。オリフィスの数及び面積は、
実施例−4同様とした。その結果は表−4にみる通り、
硬化・反応性はタックフリー・タイムが9〜11秒と速硬
化で良好な硬化性を示した。スプレー状況を観察したと
ころ、(1)濃度分布は全体に均一であり、(2)粒子
サイズは細かく(3)形状は扇型で変形は認められなか
った。物性試験結果は、硬さ、モジュラス、引張り強
さ、伸び及び引裂き強さのいずれの項目も優れており良
好な結果であった。
Example-5 Using a GX-7 gun manufactured by Gasmer, the setting conditions were as follows:
4 and FIGS. 4-1 to 4-3 are schematic diagrams of the flow directions of the A liquid and the B liquid in the mixing module. Liquid A (isocyanate component) discharged from the front
Was introduced from three orifices at an angle such that the liquid would rotate, and from the rear part, liquid B (resin component) was introduced linearly from six orifices toward the center of the mixing chamber. That is, the liquid to be discharged is designed to be mixed in a state where only the liquid A discharged from the front rotates and the liquid B discharged from the rear does not rotate. The number and area of orifices
Same as Example-4. As shown in Table-4,
As for the curing / reactivity, the tack-free time was 9 to 11 seconds, and the curing was fast and showed good curability. Observation of the spray condition revealed that (1) the concentration distribution was uniform throughout, (2) the particle size was fine, and (3) the shape was fan-shaped and no deformation was observed. The results of the physical properties test were excellent in all of the items of hardness, modulus, tensile strength, elongation and tear strength, and were good results.

比較例−4 使用した機器及び設定条件は実施例−4と同様とし、
第5−1図〜第5−3図にミキシングモジュールにおけ
るA液及びB液の流れ方向の略図を示してある。前部よ
り吐出するA液(イソシアナート成分)を2個のオリフ
ィスより、後部よりB液(レジン成分)を4個のオリフ
ィスよりいずれの液も吐出した液が回転するような角度
で導入した。回転の方向は同方向とし2液がミキシング
チャンバー内で回転運動が行われる状態で混合が行われ
る。オリフィスの数及び面積は、実施例−4同様とし
た。その結果は表−4にみる通り硬化・反応性はタック
フリー・タイムは9〜11秒と実施例−4同様速硬化で良
好な硬化性を示した。しかし、スプレー状況を観察した
ところ、(1)濃度分布は端部に濃い部分があり不均一
であり成形を行う場合厚みが変化した。(2)粒子サイ
ズは細かく良好であったが(3)スプレー形状はネジレ
(変形)た状況であり吹き付け作業は非常に難しく成形
体の厚み管理及び歩留まりに問題があった。物性試験結
果は、硬さは発現しているが、モジュラス、引張り強
さ、伸び及び引裂き強さはいずれの項目も実施例−4及
び−5と比較し低目であった。
Comparative Example-4 The used equipment and setting conditions were the same as in Example-4,
FIGS. 5-1 to 5-3 are schematic diagrams of the flow directions of the A liquid and the B liquid in the mixing module. The liquid A (isocyanate component) discharged from the front part was introduced at an angle such that the liquid discharged from the two orifices rotated from the two liquid orifices, and the liquid B (resin component) was discharged from the four orifices. The directions of rotation are the same, and the two liquids are mixed in a state where they rotate in the mixing chamber. The number and area of the orifices were the same as in Example-4. As a result, as shown in Table-4, the tack-free time of the curing / reactivity was 9 to 11 seconds. However, when the spray condition was observed, (1) the density distribution was non-uniform with a dark portion at the end and the thickness changed when molding was performed. (2) The particle size was fine and good, but (3) the spray shape was twisted (deformed), and the spraying operation was extremely difficult, and there was a problem with the thickness control and yield of the compact. As a result of the physical property test, although the hardness was developed, the modulus, tensile strength, elongation and tear strength were lower than those of Examples -4 and -5 in all items.

比較例−5 使用した機器及び設定条件は実施例−4と同様とし、
第6−1図〜第6−3図にミキシングモジュールにおけ
るA液及びB液の流れ方向の略図を示してある。前部よ
り吐出するA液(イソシアナート成分)を2個のオリフ
ィスより、後部よりB液(レジン成分)を4個のオリフ
ィスよりいずれの液も吐出した液が回転するような角度
で導入した。回転の方向は逆方向とし2液がミキシング
チャンバー内で回転運動を抑制する状態で混合が行われ
る。オリフィスの数及び面積も、実施例−4同様とし
た。試験結果は表−4にみる通り硬化・反応性はタック
フリー・タイムは9〜11秒であり実施例−4同様速硬化
で良好な硬化性を示した。しかし、スプレー状況を観察
したところ、(1)濃度分布は端部に濃い部分があり不
均一であり成形を行う場合厚みが変化した。(2)粒子
サイズは細かく良好であったが(3)スプレー形状はネ
ジレ(変化)た状況であり吹き付け作業は非常に難しく
成形体の厚み管理及び歩留まりに問題があった。物性試
験結果は、硬さは発現しているが、モジュラス、引張り
強さ、伸び及び引裂き強さはいずれの項目も実施例−4
及び−5と比較して低目であった。
Comparative Example-5 The equipment and setting conditions used were the same as in Example-4.
FIGS. 6-1 to 6-3 show schematic diagrams of the flow directions of the A liquid and the B liquid in the mixing module. The liquid A (isocyanate component) discharged from the front part was introduced at an angle such that the liquid discharged from the two orifices rotated from the two liquid orifices, and the liquid B (resin component) was discharged from the four orifices. The direction of rotation is reversed, and the two liquids are mixed in a state where the rotational movement is suppressed in the mixing chamber. The number and area of the orifices were the same as in Example-4. As can be seen from the test results, as shown in Table 4, the tack-free time of the curing / reactivity was 9 to 11 seconds. However, when the spray condition was observed, (1) the density distribution was non-uniform with a dark portion at the end and the thickness changed when molding was performed. (2) The particle size was fine and good, but (3) the spray shape was twisted (changed), and the spraying operation was extremely difficult, and there was a problem in thickness control and yield of the molded product. As for the physical property test results, although the hardness is expressed, the modulus, tensile strength, elongation and tear strength are all items of Example-4.
And -5.

実施例−6 空気洗浄(クリーニング)方式のガンとしてグラスク
ラフト社のプロブラーガンを使用したミキシングモジュ
ールを試作した。本ガンは、液の吐出及び停止を、オリ
フィスを有する一体構造のミキシングチャンバーを前後
にスライドして行っているが、この両サイドに開ける穴
をそれぞれ3個とし、液の吐出角度は全てミキシングチ
ャンバーの中心に向け直線的とした。構造を第7図及び
第8図に示した。すなわち吐出する液は、両サイドより
直線衝突混合が行われる状況で混合が行われる。オリフ
ィスの数及び面積は、いずれも材料の配合比に合わせて
同数で同面積とし、口径は0.45mmで合計面積は0.447mm2
とした。この結果は表−4にみる通り吐出量は3.9kg/分
と中程度の吐出量であり硬化・反応性はタックフリー・
タイムが12〜14秒と速硬化で良好な硬化性を示した。ス
プレー状況を観察したところ、(1)濃度分布は全体に
均一であり、(2)粒子サイズは中〜細でスプレーチッ
ブを使用していないため粒子サイズはやや大きいものの
実際の使用には十分耐える。(3)形状は丸型で変形は
認められなかった。物性試験結果は、硬さ、モジュラ
ス、引張り強さ、伸び及び引裂きのいずれの項目も優れ
ており、良好な結果であった。
Example -6 A mixing module using a prober gun manufactured by Glasscraft as an air-cleaning (cleaning) type gun was prototyped. This gun slides the mixing chamber with an orifice back and forth to discharge and stop the liquid, but has three holes on each side, and the liquid discharge angle is all It was linear toward the center. The structure is shown in FIG. 7 and FIG. That is, the liquid to be discharged is mixed in a situation where the linear collision mixing is performed from both sides. The number and area of the orifices are the same and the same area according to the mixing ratio of the materials, and the diameter is 0.45 mm and the total area is 0.447 mm 2
And As shown in Table 4, the discharge rate was 3.9 kg / min, a medium discharge rate, and the curing / reactivity was tack-free.
The time was 12 to 14 seconds, showing good curability with fast curing. Observation of the spray condition revealed that (1) the concentration distribution was uniform throughout, and (2) the particle size was medium to fine and no spray chip was used. . (3) The shape was round and no deformation was observed. The results of the physical property tests were excellent in all of the items of hardness, modulus, tensile strength, elongation and tear, and were good results.

比較例−6 グラスクラフト社のミキシングモジュール(No.R#1:
ラウンドタイプでチップを使用しない)を使用し、実施
例−6と同様のマシン、原料及び設定条件とした。R#
1チャンバーにおける液の流れ方向は、表−4に略示し
たように、両サイドにオリフィスをそれぞれ1個有し、
液の吐出角度はミキシングチャンバー内でA液及びB液
が回転する方向で導入する形式となっており、実施例−
6同様吐出する液は、両サイドより直接衝突混合が行な
われる状況で攪拌・混合が行われる。オリフィスの数及
び面積は、1:1であり、口径は0.80mmであった。この結
果は表−4にみる通り、吐出量は4.4kg/分とやや多目の
吐出量であり硬化・反応性はタックフリー・タイムが12
〜14秒と速硬化で良好な硬化性を示していた。スプレー
状況を観察したところ、(1)濃度分布は全体に均一で
あり、(2)粒子サイズは大きくシートを成形した場合
表面の平滑性が悪く凸凹があり、又ピンホールも存在し
ており意匠を重視する用途には不向きである。(3)形
状は丸型で変形は認められなかった。物性試験結果は、
硬さ、モジュラス、引張り強さ、伸び及び引裂き強さの
いずれの項目も低目の結果であった。
Comparative Example-6 Mixing module of Glasscraft (No.R # 1:
(A round type without using a chip) was used, and the same machine, raw materials and setting conditions were used as in Example-6. R #
The flow direction of the liquid in one chamber has one orifice on each side as shown in Table-4.
The discharge angle of the liquid is such that the liquid A and the liquid B are introduced in a rotating direction in the mixing chamber.
As in 6, the liquid to be discharged is agitated and mixed in a state where the liquid is directly impacted and mixed from both sides. The number and area of the orifices were 1: 1 and the diameter was 0.80 mm. As can be seen from Table 4, the discharge rate was slightly higher at 4.4 kg / min, and the curing / reactivity showed a tack-free time of 12
It showed good curability with fast curing of about 14 seconds. Observation of the spray condition revealed that (1) the concentration distribution was uniform throughout, (2) the particle size was large, and when the sheet was formed, the surface was poor and the surface was uneven, and there were pinholes. It is not suitable for applications that place importance on. (3) The shape was round and no deformation was observed. Physical property test results
All of the items of hardness, modulus, tensile strength, elongation and tear strength were lower results.

比較例−7 ビンクス社の43Pガンを使用した。本ガンは、ミキシ
ングモジュールではなく、ミキシングチャンバーに直接
オリフィスを取り付け使用するタイプである。マシン、
原料及び設定条件は実施例−6と同様とした。本ガンの
構造は、表−4に略示した様にミキシングチャンバーの
両サイドにオリフィスをそれぞれ1個有しており、液の
吐出角度は全てミキシングチャンバーの中心に向け直線
的に導入する形式となっている。オリフィスの口径は別
々に任意設定が可能であるが数は1個に限られている。
今回は材料の配合比は実施例−6と同じとし、口径は0.
89mmとした。ガンの先端にはスプレーチップ(030−45:
口径が0.030インチで扇型に広がる角度が45度)を取り
付けて試験を行った。その結果は表−4にみる通り、吐
出量は2.4kg/分とやや少な目の吐出量であり硬化・反応
性はタックフリー・タイムが16〜22秒と硬化性がやや低
下していた。スプレー状況を観察したところ、(1)濃
度分布は全体に均一であり、(2)粒子サイズは細かく
シートの表面は平滑で良好、(3)形状は扇型で変形は
認められなかった。しかし物性試験結果は、硬さ、モジ
ュラス、引張り強さ、伸び及び引裂き強さのいずれの項
目もかなり低く、攪拌、混合が十分行われていない結果
であった。
Comparative Example-7 Binks 43P gun was used. This gun is of the type that uses an orifice directly attached to the mixing chamber instead of the mixing module. Machine,
The raw materials and setting conditions were the same as in Example-6. The structure of this gun has one orifice on each side of the mixing chamber as shown in Table-4, and all liquid discharge angles are introduced linearly toward the center of the mixing chamber. Has become. The diameter of the orifice can be arbitrarily set separately, but the number is limited to one.
This time, the compounding ratio of the materials was the same as in Example-6, and the caliber was 0.
89 mm. Spray tip (030-45:
The test was carried out with a 0.030 inch caliber and a fan-shaped spread angle of 45 degrees. As can be seen from Table 4, the discharge rate was slightly lower at 2.4 kg / min, and the curing / reactivity had a tack-free time of 16 to 22 seconds and the curability was slightly lowered. Observation of the spray condition revealed that (1) the concentration distribution was uniform throughout, (2) the particle size was fine, the surface of the sheet was smooth and good, and (3) the shape was fan-shaped and no deformation was observed. However, the results of the physical property test showed that all of the items of hardness, modulus, tensile strength, elongation and tear strength were considerably low, and that stirring and mixing were not sufficiently performed.

比較例−8 ガスマー社のDガンにミキシングモジュール(52L)
を取り付け使用した。このミキシングモジュールの吐出
液の流れ方向を表−4に略示した。この構造は一体化し
た構造で両サイドに長方形で同口径のオリフィスを各一
個有している。オリフィスサイズは、0.3×3mmで機械洗
浄される円筒形のミキシングチャンバーに同方向の回転
が発生する向きで吐出する。ガンの先端にはスプレーチ
ップを取り付ける事が出来ない。マシン本体及び原料は
実施例−6と同様としたが、設定条件は本ガンの耐圧が
70kg/cm2のため低くし、耐圧の上限で設定した。その結
果表−4にみる通り吐出量は3.2kg/分と中程度の吐出量
であり硬化・反応性はタックフリー・タイムが11〜13秒
と硬化性には特に問題は無かった。スプレー状況を観察
したところ、(1)濃度分布は部分的に濃度差があり不
均一であった。(2)粒子サイズは非常に大きくシート
の平滑性は悪くさらにピンホールも多く、比較例−6の
プロブラーガンを使用した場合より悪く実用にならない
状況であった。(3)形状は丸型で変形は認められた。
このガンはロッドの位置を調節することによりミキシン
グチャンバーの長さを変形することが出来るので実施し
てみたが、変形及び濃度分布は改善されなかった。物性
試験結果は、硬さ、モジュラス、引張り強さ、伸び及び
引裂き強さ、のいずれの項目もかなり低く攪拌、混合が
十分行われていない結果であった。
Comparative Example-8 Mixing module (52L) for D-Gun manufactured by Gasmer
Was used. Table 4 schematically shows the flow direction of the liquid discharged from the mixing module. This structure is an integrated structure and has one rectangular orifice on each side on each side. The orifice size is 0.3 × 3 mm, and discharge is performed in the direction that rotation in the same direction occurs in a cylindrical mixing chamber that is machine-cleaned. The spray tip cannot be attached to the tip of the gun. The machine body and raw materials were the same as in Example-6, but the setting conditions were that the withstand pressure of this gun was
Because of 70 kg / cm 2 , it was lowered and set at the upper limit of pressure resistance. As a result, as shown in Table 4, the discharge rate was a medium discharge rate of 3.2 kg / min, and there was no particular problem in the curability as the tack-free time was 11 to 13 seconds. As a result of observing the spray condition, (1) the density distribution was partially uneven and uneven. (2) The particle size was very large, the smoothness of the sheet was poor, and there were also many pinholes, which was worse than when the prober gun of Comparative Example-6 was used and was not practical. (3) The shape was round and deformed.
This gun was able to change the length of the mixing chamber by adjusting the position of the rod, but was tested, but the deformation and concentration distribution were not improved. The results of the physical property tests were such that all of the items of hardness, modulus, tensile strength, elongation and tear strength were considerably low, and stirring and mixing were not sufficiently performed.

実施例−7 ガスマー社のGX−7ガンを用い、スプレーの設定条件
は液温を低下させ原液の粘度の高い場合のスプレー状態
及び物性の検討を行った。ミキシングモジュールの設計
は表−5の中に示した通り、前部よりA液(イソシアナ
ート成分)を2個の円形のオリフィスより吐出し、液は
ミキシングチャンバーの中心に向け直線的に導入され、
後部よりレジン成分を2個の円形のオリフィスを通じて
A液と同様の形式で導入した。すなわち吐出する液は前
部、後部とも回転しない状況で混合が行われる設計とな
っている。オリフィスの数及び面積は、実施例−4と同
様とした。硬化・反応性はタックフリー・タイムが13〜
15秒と速硬化で良好な硬化性を示していた。スプレー状
況を観察したところ、(1)濃度分布は全体に均一であ
り、(2)粒子サイズは細かく(3)形状は扇型で変形
は認められなかった。物性試験結果は表−5にみる通り
硬さ、モジュラス、引張り強さ、伸び及び引裂き強さの
いずれの項目も優れ良好な結果であり、原液の温度が上
昇しても成形体の表面性及び物性には全く影響が無く混
合特性が良好であることを示していた。
Example -7 Using a GX-7 gun manufactured by Gasmer Co., Ltd., the spraying conditions and physical properties were examined when the spray was set at a low temperature and the viscosity of the stock solution was high. As shown in Table 5, the design of the mixing module discharges liquid A (isocyanate component) from two circular orifices from the front part, and the liquid is introduced linearly toward the center of the mixing chamber.
The resin component was introduced from the rear through two circular orifices in the same manner as in the solution A. That is, the design is such that the liquid to be discharged is mixed in a state in which neither the front part nor the rear part rotates. The number and area of the orifices were the same as in Example-4. Tack-free time for curing / reactivity is 13 ~
Good curability was shown by quick curing in 15 seconds. Observation of the spray condition revealed that (1) the concentration distribution was uniform throughout, (2) the particle size was fine, and (3) the shape was fan-shaped and no deformation was observed. As shown in Table 5, the physical property test results were excellent in all items of hardness, modulus, tensile strength, elongation and tear strength. Even if the temperature of the stock solution was increased, the surface properties of the molded product and This indicated that the mixing properties were good without any influence on the physical properties.

〔発明の効果〕 2成分型速硬化材料を衝突混合で混合する方法におい
て、2液を衝突させるミキシングチャンバー部分を一体
成形とした本発明の構造とすることで、2液の混合特性
が格段に向上することにより、(1)2液の配合比の違
い、(2)高粘度液及び液温低下時(3)衝突圧力が低
下した際の混合許容範囲を拡大することが可能となり、
成形したシートの表面性及び物性のバラツキを少なくす
ることができる。また、ガンのクリーニング方法も各種
方式に対応し、スプレー、注型等に使用することが出来
る。
[Effect of the Invention] In the method of mixing the two-component type fast-curing material by collision mixing, the mixing chamber portion for impinging the two liquids is integrally formed with the structure of the present invention, so that the mixing characteristics of the two liquids are remarkably improved. By the improvement, (1) the difference in the mixing ratio of the two liquids, (2) the high-viscosity liquid and when the liquid temperature decreases, and (3) the allowable mixing range when the collision pressure decreases, can be expanded.
Variations in the surface properties and physical properties of the formed sheet can be reduced. In addition, the cleaning method of the gun corresponds to various methods, and can be used for spraying, casting, and the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は実施例−1で使用した改良GX−7ガ
ン用ミキシングモジュールの構成を示す断面図及び正面
図、第3−1図〜第3−3図は実施例−4、第4−1図
〜第4−3図は実施例−5、第5−1図〜第5−3図は
比較例−4、第6−1図〜第6−3図は比較例−5にお
けるそれぞれの正面及び側面よりみたA液及びB液の流
れ方向を示す略図、第7図及び第8図は実施例−6にお
いて使用したプロブラーガン用の改良ミキシングモジュ
ールの斜視図及び正面断面図である。図中、1はミキシ
ングモジュール、2はバルビング・ロッドであり、1aは
A液の流入孔、1bはB液の流入孔、1cは混合液の噴出孔
である。
1 and 2 are a sectional view and a front view, respectively, showing the configuration of the improved GX-7 gun mixing module used in Example-1. FIGS. 3-1 to 3-3 show Example-4, FIGS. 4-1 to 4-3 show Example-5, FIGS. 5-1 to 5-3 show Comparative Example-4, and FIGS. 6-1 to 6-3 show Comparative Example-5. 7 and 8 are perspective views and front sectional views of an improved mixing module for a prober gun used in Example-6. It is. In the figure, 1 is a mixing module, 2 is a valving rod, 1a is an inflow hole for liquid A, 1b is an inflow hole for liquid B, and 1c is an ejection hole for mixed liquid.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B29B 7/76 B01F 5/02 B05B 7/08 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) B29B 7/76 B01F 5/02 B05B 7/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2液混合硬化型樹脂のA液及びB液を吐出
口より吐出し、衝突混合方式により混合する装置におい
て、該2液を衝突させるミキシングチャンバー部分が、
一体成形になるモジュールであり、 (1)A液用とB液用にそれぞれ2個以上の吐出口(オ
リフィス)を有し、 (2)A液及びB液の吐出口の合計開口面積比がA液及
びB液の配合比の±50%以内であり、 (3)A液及びB液の両方又はいずれか一方がミキシン
グチャンバーの中心に向け直線的に吐出され、更に、 (4)A液及びB液をミキシングチャンバー内に吐出す
る角度を2液が直接衝突する方向としたこと を特徴とする改良された衝突混合型ミキシングモジュー
ル。
1. An apparatus for discharging a liquid A and a liquid B of a two-liquid mixed-curable resin from a discharge port and mixing them by a collision mixing method, wherein a mixing chamber portion for causing the two liquids to collide is provided.
(1) It has two or more discharge ports (orifices) for liquid A and liquid B, respectively. (2) The total opening area ratio of the liquid A and liquid B discharge ports is (3) Solution A and / or Solution B are discharged linearly toward the center of the mixing chamber, and (4) Solution A An improved collision-mixing type mixing module, characterized in that the angle at which the two liquids directly collide with each other is set such that the angle at which the two liquids are discharged into the mixing chamber.
JP2210181A 1990-08-10 1990-08-10 Improved collision mixing type mixing module Expired - Lifetime JP2930392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2210181A JP2930392B2 (en) 1990-08-10 1990-08-10 Improved collision mixing type mixing module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2210181A JP2930392B2 (en) 1990-08-10 1990-08-10 Improved collision mixing type mixing module

Publications (2)

Publication Number Publication Date
JPH0493204A JPH0493204A (en) 1992-03-26
JP2930392B2 true JP2930392B2 (en) 1999-08-03

Family

ID=16585124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2210181A Expired - Lifetime JP2930392B2 (en) 1990-08-10 1990-08-10 Improved collision mixing type mixing module

Country Status (1)

Country Link
JP (1) JP2930392B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102182425B1 (en) * 2019-05-22 2020-11-25 한국교통대학교 산학협력단 Mixing head for in-mold coating based on two-component polyurethane with a high difference in mixing ratio

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4547207B2 (en) * 2004-08-02 2010-09-22 新日本製鐵株式会社 Collision mixing spray gun and coating method using the same
JP5126817B2 (en) * 2007-06-12 2013-01-23 株式会社イノアックコーポレーション Mixing head device and molding method using the same
CN102216045B (en) * 2008-11-27 2014-08-27 井上株式会社 Mixing head apparatus and molding method using the apparatus
JP5753921B2 (en) * 2014-03-10 2015-07-22 株式会社イノアックコーポレーション Mixing head device and molding method using the same
JP5732158B2 (en) * 2014-03-10 2015-06-10 株式会社イノアックコーポレーション Mixing head device and molding method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102182425B1 (en) * 2019-05-22 2020-11-25 한국교통대학교 산학협력단 Mixing head for in-mold coating based on two-component polyurethane with a high difference in mixing ratio

Also Published As

Publication number Publication date
JPH0493204A (en) 1992-03-26

Similar Documents

Publication Publication Date Title
US5290602A (en) Hindered-hydroxyl functional (meth) acrylate-containing copolymers particularly suitable for use in coating compositions which are sprayed with compressed fluids as viscosity reducing diluents
KR101450122B1 (en) Pressure swirl atomizing nozzle for spraying a curable composition and associated method and use
JP2930392B2 (en) Improved collision mixing type mixing module
CN102216045B (en) Mixing head apparatus and molding method using the apparatus
JPH10315226A (en) Mixing module for spray gun with improved two-liquid mixing properties
CA2082565A1 (en) Polyester particularly suitable for use in coating compositions which are sprayed with compressed fluids as viscosity reducing diluents
CN110603107A (en) Mixer design for multi-component systems
US8905329B2 (en) Method and device for spraying mixtures obtained from the reaction of polymer materials
JP6943454B2 (en) Liquid spray nozzle
EP1414584A1 (en) Air-assisted, low pressure spray equipment having an improved spray nozzle
JP2919927B2 (en) Improved mechanical cleaning collision mixing type mixing module
US7025286B1 (en) Third stream automotive color injection
US6755348B1 (en) Third stream automotive color injection
JP3023399B2 (en) Two-part mixing device
JP5126817B2 (en) Mixing head device and molding method using the same
CN217140796U (en) Multi-component polymer mixing spiral jet device
CN113231216A (en) Multi-component polymer mixing spiral jet device
JPH10315225A (en) Mixing module for spray gun with improved two-liquid mixing properties
JP3326493B2 (en) Mixed color coating method and mixed color coating equipment
RU2426601C1 (en) Pressure swirl nozzle to spray hardenable composition on surface (versions) and method of producing polymer layer on surface thereby
US11389812B2 (en) Measuring and mixing devices
JP4441087B2 (en) Electrostatic coating equipment
JPH0924308A (en) High speed curing reaction type spray gun for two-pack mixed coating and coating method using the same
JPS59228960A (en) Rotary atomization electrostatic painting device
JP5732158B2 (en) Mixing head device and molding method using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12